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Abstract We introduce the fundamental tenets of Bayesian

inference, which derive from two basic laws of proba-

bility theory. We cover the interpretation of probabilities,

discrete and continuous versions of Bayes’ rule, parame-

ter estimation, and model comparison. Using seven worked

examples, we illustrate these principles and set up some of

the technical background for the rest of this special issue of

Psychonomic Bulletin & Review. Supplemental material is

available via https://osf.io/wskex/.

Keywords Bayesian inference and parameter estimation ·
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Dark and difficult times lie ahead. Soon we must all

face the choice between what is right and what is easy.

A. P. W. B. Dumbledore

Introduction

Bayesian methods by themselves are neither dark nor, we

believe, particularly difficult. In some ways, however, they

are radically different from classical statistical methods and

as such, rely on a slightly different way of thinking that may

appear unusual at first. Bayesian estimation of parameters

will usually not result in a single estimate, but will yield

a range of estimates with varying plausibilities associated

with them; and Bayesian hypothesis testing will rarely result
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in the falsification of a theory but rather in a redistribu-

tion of probability between competing accounts. Bayesian

methods are also not new, with their first use dating back

to the 18th century. Nor are they new to psychology: They

were introduced to the field over 50 years ago, in what

today remains a remarkably insightful exposition by Ward

Edwards, Harold Lindman, and Savage (1963).

Nonetheless, until recently Bayesian methods have not

been particularly mainstream in the social sciences, so the

recent increase in their adoption means they are new to

most practitioners – and for many psychologists, learning

about new statistical techniques can evoke understandable

feelings of anxiety or trepidation. At the same time, recent

revelations regarding the reproducibility of psychological

science (e.g., Open Science Collaboration, 2015; Etz &

Vandekerckhove, 2016) have spurred interest in the statisti-

cal methods that find use in the field.

In the present article, we provide a gentle technical intro-

duction to Bayesian inference (and set up the rest of this

special issue of Psychonomic Bulletin & Review), starting

from first principles. We will first provide a short overview

involving the definition of probability, the basic laws of

probability theory (the product and sum rules of probabil-

ity), and how Bayes’ rule and its applications emerge from

these two simple laws. We will then illustrate how the laws

of probability can and should be used for inference: to draw

conclusions from observed data. We do not shy away from

showing formulas and mathematical exposition, but where

possible we connect them to a visual aid, either in a figure or

a table, to make the concepts they represent more tangible.

We also provide examples after each main section to illus-

trate how these ideas can be put into practice. Most of the

key ideas outlined in this paper only require mathematical

competence at the level of college algebra; as will be seen,

many of the formulas are obtained by rearranging equations

http://crossmark.crossref.org/dialog/?doi=10.3758/s13423-017-1262-3&domain=pdf
https://osf.io/wskex/
mailto:joachim@uci.edu
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in creative ways such that the quantity of interest is on the

left-hand side of an equality.

At any point, readers more interested in the bigger pic-

ture than the technical details can safely skip the equations

and focus on the examples and discussion. However, the

use of verbal explanations only suffices to gain a superfi-

cial understanding of the underlying ideas and implications,

so we provide mathematical formulas for those readers who

are interested in a deeper appreciation. Throughout the text,

we occasionally use footnotes to provide extra notational

clarification for readers who may not be as well-versed with

mathematical exposition.

While we maintain that the mathematical underpinnings

serve understanding of these methods in important ways,

we should also point out that recent developments regarding

Bayesian statistical software packages (e.g., Wagenmakers,

Love, et al., this issue; Matzke, Boehm, & Vandekerckhove,

this issue; van Ravenzwaaij, Cassey, & Brown, this issue;

Wagenmakers, Marsman, et al., this issue) have made it pos-

sible to perform many kinds of Bayesian analyses without

the need to carry out any of the technical mathemati-

cal derivations. The mathematical basis we present here

remains, of course, more general.

First, however, we will take some time to discuss a subtle

semantic confusion between two interpretations of the key

concept “probability.” The hurried reader may safely skip

the section that follows (and advance to “The Product and

Sum Rules of Probability”), knowing only that we use the

word “probability” to mean “a degree of belief”: a quantity

that indicates how strongly we believe something to be true.

What is probability?

Throughout this text, we will be dealing with the concept

of probability. This presents an immediate philosophical

problem, because the word “probability” is in some sense

ambiguous: it will occasionally switch from one meaning

to another and this difference in meaning is sometimes

consequential.

In one meaning—sometimes called the epistemic1

interpretation—probability is a degree of belief : it is a num-

ber between zero and one that quantifies how strongly we

should think something to be true based on the relevant

information we have. In other words, probability is a math-

ematical language for expressing our uncertainty. This kind

of probability is inherently subjective—because it depends

on the information that you have available—and reason-

able people may reasonably differ in the probabilities that

they assign to events (or propositions). Under the epis-

temic interpretation, there is hence no such thing as the

probability—there is only your probability (Lindley, 2000).

1From Greek epistēmē, meaning knowledge.

Your probability can be thought of as characterizing your

state of incomplete knowledge, and in that sense probability

does not exist beyond your mind.

We may for example say “There is a 60% probability that

the United Kingdom will be outside the European Union on

December 31, 2018.” Someone who believes there is a 60%

probability this event will occur should be willing to wager

up to $6 against $4 on the event, because their expected

gain would be at least 60% × (+4$) + 40% × (−6$),

which is zero. In other words, betting more than $6 would

be unsound because they would expect to lose money, and

to take such an action would not cohere with what they

believe. Of course, in scientific practice one is rarely forced

to actually make such bets, but it would be unfortunate if our

probabilities (and hence our inferences) could not be acted

on with confidence if such an occasion were to arise (Hill,

1974).

The fact that epistemic probabilities of events are sub-

jective does not mean that they are arbitrary. Probabilities

are not acts of will; they are subjective merely in the sense

that they may differ from one individual to the next. That

is just to say that different people bring different informa-

tion to a given problem. Moreover, if different people update

their beliefs in a rational way, then as data accumulate they

will gradually approach agreement (unless they have a pri-

ori ruled out the point of agreement entirely; see, e.g., Jern,

Chang, & Kemp, 2014). In fact, it can be shown that the

only way that our pre-data beliefs (whatever those may be)

will cohere with our post-data beliefs is to use probability to

represent our uncertainty and update our beliefs according

to the laws of probability (Lindley, 2000).

In another meaning—the physical or aleatory2

interpretation—probability is a statement of an expected

frequency over many repetitions of a procedure. A state-

ment of aleatory probability might be “If I flip a fair coin

very many times, the ratio of flips on which the coin

will come up heads is 50%. Thus, the probability that a

fair coin will come up heads is 50%.” These statements

express properties of the long-run behavior of well-defined

processes, but they can not speak to singular events; they

require assumptions about physical repeatability and inde-

pendence among repetitions. It is important to grasp that

these frequencies are seen as being a real part of the phys-

ical world, in that “the relative frequencies of a die falling

this way or that way are ‘persistent’ and constitute this

die’s measurable properties, comparable to its size and

weight” (Neyman, 1977, p. 99). Neyman’s quote provides

an interesting contrast to the epistemic interpretation. Ital-

ian probabilist and influential Bayesian statistician Bruno

de Finetti famously began his treatise Theory of Proba-

bility by stating “Probability does not exist” and that “the

2From Latin alea, meaning dice.
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abandonment of superstitious beliefs about the existence of

the Phlogiston, the Cosmic Ether, Absolute Space and Time,

. . . or Fairies and Witches was an essential step along the

road to scientific thinking. Probability, too, if regarded as

something endowed with some kind of objective existence,

is no less a misleading misconception, an illusory attempt to

exteriorize or materialize our true probabilistic beliefs” (De

Finetti, 1974, p. x). This is not to say that we cannot build

models that assign probabilities to the outcomes of physical

processes, only that they are necessarily abstractions.

It is clear that these two interpretations of probability

are not the same. There are many situations to which the

aleatory definition does not apply and thus probabilities

could not be determined: we will not see repeated instances

of December 31, 2018, in which the UK could be inside or

outside the EU, we will only see one such event. Similarly,

“what is the probability that this coin, on the very next flip,

will come up heads?” is not something to which an aleatory

probability applies: there are no long-run frequencies to

consider if there is only one flip that matters.

Aleatory probability may—in some cases—be a valid

conceptual interpretation of probability, but it is rarely ever

an operational interpretation (see Jaynes, 1984; Winkler,

1972; Wrinch & Jeffreys, 1919): it cannot apply to singu-

lar events such as the truth or falsity of a scientific theory,

so we simply cannot speak of aleatory probabilities when

wrestling with the uncertainty we face in scientific prac-

tice. That is to say, we may validly use aleatory probability

to think about probability in an abstract way, but not to

make statements about real-world observed events such as

experimental outcomes.

In contrast, epistemic probability applies to any event that

we care to consider—be it singular or repetitive—and if we

have relevant information about real-world frequencies then

we can choose to use that information to inform our beliefs.

If repetition is possible and we find it reasonable to assume

that the chance a coin comes up heads on a given toss does

not change based on the outcome of previous tosses, then

a Bayesian could reasonably believe both (a) that on the

next toss there is a 50% chance it comes up heads; and

(b) 50% of tosses will result in heads in a very long series

of flips. Hence, epistemic probability is both a conceptual

interpretation of probability and an operational interpreta-

tion. Epistemic probability can be seen as an extension of

aleatory probability that applies to all the cases where the

latter would apply and to countless cases where it could not.

Why this matters We argue that the distinction above

is directly relevant for empirical psychology. In the over-

whelming majority of cases, psychologists are interested

in making probabilistic statements about singular events:

this theory is either true or not; this effect is either pos-

itive or negative; this effect size is probably between x

and y; and either this model or the other is more likely

given the data. Seldom are we merely interested in the fre-

quency with which a well-defined process will achieve a

certain outcome. Even arbitrarily long sequences of faithful

replications of empirical studies serve to address a singu-

lar question: “is this theory correct?” We might reasonably

define a certain behavioral model and assign parameters

(even parameters that are probabilities) to it, and then exam-

ine its long-run behavior. This is a valid aleatory question.

However, it is not an inferential procedure: it describes the

behavior of an idealized model but does not provide us with

inferences with regard to that model. We might also wonder

how frequently a researcher will make errors of inference

(however defined) under certain conditions, but this is a

purely academic exercise; unless the proportion of errors is

0 or 1, such a long-run frequency alone does not allow us

to determine the probability the researcher actually made

an error regarding any singular finding—regarding this

coin, this effect, or this hypothesis. By contrast, epistemic

probability expresses degrees of belief regarding specific,

individual, singular events, and for that reason should be the

default for scientific inference.

In the next section, we will introduce the basic rules of

probability theory. These rules are agnostic to our concep-

tion of probability—they hold equally for epistemic and

aleatory probability—but throughout the rest of this paper

and particularly in the examples, we will, unless other-

wise noted, use an epistemic interpretation of the word

“probability.”

The product and sum rules of probability

Here we will introduce the two cardinal rules of probabil-

ity theory from which essentially all of Bayesian inference

derives. However, before we venture into the laws of prob-

ability, there are notational conventions to draw. First, we

will use P(A) to denote the probability of some event A,

where A is a statement that can be true or false (e.g., A

could be “it will rain today”, “the UK will be outside the

EU on December 31, 2018”, or “the 20th digit of π is 3”).

Next, we will use (B|A) to denote the conditional event:

the probability that B is true given that A is true (e.g., B

could be “it will rain tomorrow”) is P(B|A): the probability

that it will rain tomorrow given that it rained today. Third,

we will use (A, B) to denote a joint event: the probability

that A and B are both true is P(A,B). The joint probability

P(A,B) is of course equal to that of the joint probability

P(B,A): the event “it rains tomorrow and today” is logi-

cally the same as “it rains today and tomorrow.” Finally, we

will use (¬A) to refer to the negation of A: the probability

A is false is P(¬A). These notations can be combined: if

C and D represent the events “it is hurricane season” and

“it rained yesterday,” respectively, then P(A,B|¬C,¬D) is
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the probability that it rains today and tomorrow, given that

(¬C) it is not hurricane season and that (¬D) it did not rain

yesterday (i.e., both C and D are not true).

With this notation in mind, we introduce the Product Rule

of Probability:

P(A,B) = P(B)P (A|B)

= P(A)P (B|A).
(1)

In words: the probability that A and B are both true is equal

to the probability of B multiplied by the conditional prob-

ability of A assuming B is true. Due to symmetry, this is

also equal to the probability of A multiplied by the condi-

tional probability of B assuming A is true. The probability

it rains today and tomorrow is the probability it first rains

today multiplied by the probability it rains tomorrow given

that we know it rained today.

If we assume A and B are statistically independent then

P(B) equals P(B|A), since knowing A happens tells us

nothing about the chance B happens. In such cases, the

product rule simplifies as follows:

P(A,B) = P(A)P (B|A) = P(A)P (B). (2)

Keeping with our example, this would mean calculating

the probability it rains both today and tomorrow in such a

way that knowledge of whether or not it rained today has

no bearing on how strongly we should believe it will rain

tomorrow.

Understanding the Sum Rule of Probability requires one

further concept: the disjoint set. A disjoint set is nothing

more than a collection of mutually exclusive events. To sim-

plify the exposition, we will also assume that exactly one

of these events must be true although that is not part of the

common definition of such a set. The simplest example of a

disjoint set is some event and its denial:3 {B, ¬B}. If B rep-

resents the event “It will rain tomorrow,” then ¬B represents

the event “It will not rain tomorrow.” One and only one of

these events must occur, so together they form a disjoint set.

If A represents the event “It will rain today,” and ¬A repre-

sents “It will not rain today” (another disjoint set), then there

are four possible pairs of these events, one of which must be

true: (A, B), (A, ¬B), (¬A, B), and (¬A,¬B). The prob-

ability of a single one of the singular events, say B, can be

found by adding up the probabilities of all of the joint events

that contain B as follows:

P(B) = P(A,B) + P(¬A, B).

In words, the probability that it rains tomorrow is the sum of

two joint probabilities: (1) the probability it rains today and

3We use curly braces {. . . } to indicate a set of events. Other com-
mon examples of disjoint sets are the possible outcomes of a coin flip:
{heads, tails}, or the possible outcomes of a roll of a six-sided die:
{1, 2, 3, 4, 5, 6}. A particularly useful example is the truth of some
model M, which must be either true or false: {M, ¬M}.

tomorrow, and (2) the probability it does not rain today but

does rain tomorrow.

In general, if {A1, A2, . . . , AK} is a disjoint set, the Sum

Rule of Probability states:

P(B) = P(A1, B) + P(A2, B) + . . . + P(AK , B)

=
K

∑

k=1

P(AK , B).
(3)

That is, to find the probability of event B alone you add

up all the joint probabilities that involve both B and one

element of a disjoint set. Intuitively, it is clear that if one

of {A1, A2, . . . , AK} must be true, then the probability that

one of these and B is true is equal to the base probability

that B is true.

In the context of empirical data collection, the disjoint set

of possible outcomes is often called the sample space.

An illustration of the Product Rule of Probability is

shown by the path diagram in Fig. 1. Every fork indicates

the start of a disjoint set, with each of the elements of that set

represented by the branches extending out. The lines indi-

cate the probability of selecting each element from within

the set. Starting from the left, one can trace this diagram to

find the joint probability of, say, A and B. At the Start fork

there is a probability of .6 of going along the top arrow to

event A (a similar diagram could of course be drawn that

starts with B): The probability it rains today is .6. Then

there is a probability of .667 of going along the next top fork

to event (A, B): The probability it rains tomorrow given

it rained today is .667. Hence, of the initial .6 probability

assigned to A, two-thirds of it forks into (A, B), so the prob-

ability of (A, B) is .6 × .667 = .40: Given that it rained

today, the probability it rains tomorrow is .667, so the proba-

bility it rains both today and tomorrow is .4. The probability

of any joint event at the end of a path can be found by

multiplying the probabilities of all the forks it takes to get

there.

Fig. 1 An illustration of the Product Rule of probability: The proba-
bility of the joint events on the right end of the diagram is obtained by
multiplying the probabilities along the path that leads to it. The paths
indicate where and how we are progressively splitting the initial prob-
ability into smaller subsets. A suggested exercise to test understanding
and gain familiarity with the rules is to construct the equivalent path
diagram (i.e., that in which the joint probabilities are identical) starting
on the left with a fork that depends on the event B instead of A
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An illustration of the Sum Rule of Probability is shown

in Table 1, which tabulates the probabilities of all the joint

events found through Fig. 1 in the main cells. For exam-

ple, adding up all of the joint probabilities across the row

denoted A gives P(A). Adding up all of the joint proba-

bilities down the column denoted B gives P(B). This can

also be seen by noting that in Fig. 1, the probabilities of

the two child forks leaving from A, namely (A, B) and

(A, ¬B), add up to the probability indicated in the initial

fork leading to A. This is true for any value of P(B|A) (and

P(¬B|A) = 1 − P(B|A)).

What is Bayesian inference?

Together [the Sum and Product Rules] solve the prob-

lem of inference, or, better, they provide a framework

for its solution.

D. V. Lindley (2000)

Bayesian inference is the application of the product and

sum rules to real problems of inference Applications of

Bayesian inference are creative ways of looking at a prob-

lem through the lens of these two rules. The rules form the

basis of a mature philosophy of scientific learning proposed

by Dorothy Wrinch and Sir Harold Jeffreys (Jeffreys, 1961,

1973; Wrinch and Jeffreys, 1921; see also Ly et al., 2016).

Together, the two rules allow us to calculate probabilities

and perform scientific inference in an incredible variety of

circumstances. We begin by illustrating one combination of

the two rules that is especially useful for scientific inference:

Bayesian hypothesis testing.

Bayes’ Rule

Call event M (the truth of) an hypothesis that a researcher

holds and call ¬M a competing hypothesis. Together these

can form a disjoint set: {M, ¬M}. The set {M, ¬M} is

necessarily disjoint if ¬M is simply the denial of M, but

in practice the set of hypotheses can contain any number

of models spanning a wide range of theoretical accounts.

In such a scenario, it is important to keep in mind that

we cannot make inferential statements about any model not

included in the set.

Before any data are collected, the researcher has some

level of prior belief in these competing hypotheses, which

manifest as prior probabilities and are denoted P(M) and

P(¬M). The hypotheses are well-defined if they make a

specific prediction about the probability of each experimen-

tal outcome X through the likelihood functions P(X|M)

and P(X|¬M). Likelihoods can be thought of as how

strongly the data X are implied by an hypothesis. Condi-

tional on the truth of an hypothesis, likelihood functions

specify the probability of a given outcome and are usually

easiest to interpret in relation to other hypotheses’ likeli-

hoods. Of interest, of course, is the probability that M is

true, given the data X, or P(M|X).

By simple rearrangement of the factors of the Prod-

uct Rule shown in the first line of Eq. 1, P(M, X) =
P(X)P (M|X), we can derive that

P(M|X) = P(M, X)

P (X)
.

Due to the symmetric nature of the Product Rule, we can

reformulate the joint event in the numerator above by apply-

ing the product rule again as in the second line in Eq. 1,

P(M, X) = P(M)P (X|M), and we see that this is

equivalent to

P(M|X) = P(M)P (X|M)

P (X)
. (4)

Equation 4 is one common formulation of Bayes’ Rule,

and analogous versions can be written for each of the other

competing hypotheses; for example, Bayes’ Rule for ¬M is

P(¬M|X) = P(¬M)P (X|¬M)

P (X)
.

The probability of an hypothesis given the data is equal

to the probability of the hypothesis before seeing the data,

multiplied by the probability that the data occur if that

hypothesis is true, divided by the prior predictive probabil-

ity of the observed data (see below). In the way that P(M)

and P(¬M) are called prior probabilities because they cap-

ture our knowledge prior to seeing the data X, so P(M|X)

and P(¬M|X) are called the posterior probabilities.

Table 1 An illustration of the Sum Rule of Probability

B ¬B B or ¬B

A P(A, B) = .40 P(A, ¬B) = .20 ⇒ P(A) = .60

¬A P(¬A, B) = .15 P(¬A, ¬B) = .25 ⇒ P(¬A) = .40

A or ¬A P(B) = .55 P(¬B) = .45 1.00

The event A is that it rains today. The event B is that it rains tomorrow. Sum across rows to find P(A), sum down columns to find P(B). One can
also divide P(A,B) by P(A) to find P(B|A), as shown in the next section
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The prior predictive probability P(X)

Many of the quantities in Eq. 4 we know: we must have

some prior probability (belief or prior information) that the

hypothesis is true if we are even considering the hypoth-

esis at all, and if the hypothesis is well-described it will

attach a particular probability to the observed data. What

remains is the denominator: the prior predictive probability

P(X)—the probability of observing a given outcome in the

experiment, which can be thought of as the average proba-

bility of the outcome implied by the hypotheses, weighted

by the prior probability of each hypothesis. P(X) can be

obtained through the sum rule by adding the probabilities of

the joint events P(X,M) and P(X, ¬M), as in Eq. 3, each

of which is obtained through an application of the product

rule, so we obtain the following expression:

P(X) = P(X,M) + P(X, ¬M)

= P(M)P (X|M) + P(¬M)P (X|¬M),
(5)

which amounts to adding up the right-hand side numera-

tor of Bayes’ Rule for all competing hypotheses, giving a

weighted-average probability of observing the outcome X.

Now that we have a way to compute P(X) in Eq. 5, we

can plug the result into the denominator of Eq. 4 as follows:

P(M|X) = P(M)P (X|M)

P (M)P (X|M) + P(¬M)P (X|¬M)
. (6)

Equation 6 is for the case where we are only considering

one hypothesis and its complement. More generally,

P(Mi |X) = P(Mi)P (X|Mi)
∑K

k=1 P(Mk)P (X|Mk)
, (7)

for the case where we are considering K competing and

mutually-exclusive hypotheses (i.e., hypotheses that form a

disjoint set), one of which is Mi .

Quantifying evidence

Now that we have, in one equation, factors that correspond

to our knowledge before—P(M)—and after—P(M|X)—

seeing the data, we can address a slightly alternative ques-

tion: How much did we learn due to the data X? Consider

that every quantity in Eq. 7 is either a prior belief in an

hypothesis, or the probability that the data would occur

under a certain hypothesis—all known quantities. If we

divide both sides of Eq. 7 by P(Mi),

P(Mi |X)

P (Mi)
= P(X|Mi)

∑K
k=1 P(Mk)P (X|Mk)

, (8)

we see that after observing outcome X, the ratio of an

hypothesis’s posterior probability to its prior probability is

larger than 1 (i.e., its probability goes up) if the probability it

attaches to the observed outcome is greater than a weighted-

average of all such probabilities—averaged across all candi-

date hypotheses, using the respective prior probabilities as

weights.

If we are concerned with only two hypotheses, a par-

ticularly interesting application of Bayes’ Rule becomes

possible. After collecting data we are left with the posterior

probability of two hypotheses, P(M|X) and P(¬M|X).

If we form a ratio of these probabilities we can quantify

our relative belief in one hypothesis vis-à-vis the other, or

what is known as the posterior odds: P(M|X)/P (¬M|X).

If P(M|X) = .75 and P(¬M|X) = .25, the posterior

odds are .75/.25 = 3, or 3:1 (“three to one”) in favor of M

over ¬M. Since the posterior probability of an hypothesis

is equal to the fraction in the right-hand side of Eq. 6, we

can calculate the posterior odds as a ratio of two right-hand

sides of Bayes’ Rule as follows:

P(M|X)

P (¬M|X)
=

P(M)P (X|M)

P (M)P (X|M) + P(¬M)P (X|¬M)

P (¬M)P (X|¬M)

P (M)P (X|M) + P(¬M)P (X|¬M)

,

which can be reduced to a simple expression (since the

denominators cancel out),

P(M|X)

P (¬M|X)
︸ ︷︷ ︸

Posterior odds

= P(M)

P (¬M)
︸ ︷︷ ︸

Prior odds

× P(X|M)

P (X|¬M)
︸ ︷︷ ︸

Bayes factor

. (9)

The final factor—the Bayes factor—can be interpreted as

the extent to which the data sway our relative belief from one

hypothesis to the other, which is determined by comparing

the hypotheses’ abilities to predict the observed data. If the

data are more probable under M than under ¬M (i.e., if

P(X|M) is larger than P(X|¬M)) then M does the better

job predicting the data, and the posterior odds will favor M

more strongly than the prior odds.

It is important to distinguish Bayes factors from posterior

probabilities. Both are useful in their own role—posterior

probabilities to determine our total belief after taking into

account the data and to draw conclusions, and Bayes fac-

tors as a learning factor that tells us how much evidence

the data have delivered. It is often the case that a Bayes

factor favors M over ¬M while at the same time the

posterior probability of ¬M remains greater than M. As

Jeffreys, in his seminal paper introducing the Bayes factor

as a method of inference, explains: “If . . . the [effect] exam-

ined is one that previous considerations make unlikely to

exist, then we are entitled to ask for a greater increase of

the probability before we accept it,” and moreover, “To raise

the probability of a proposition from 0.01 to 0.1 does not

make it the most likely alternative” (Jeffreys, 1935, p. 221).

This distinction is especially relevant to today’s publish-

ing environment, where there exists an incentive to publish
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counterintuitive results—whose very description as counter-

intuitive implies most researchers would not have expected

them to be true. Consider as an extreme example (Bem,

2011) who presented data consistent with the hypothesis

that some humans can predict future random events. While

Bem’s data may indeed provide positive evidence for that

hypothesis (Rouder and Morey, 2011), it is staggeringly

improbable a priori and the evidence in the data does not

stack up to the strong priors many of us will have regard-

ing extrasensory perception—extraordinary claims require

extraordinary evidence.

Since Bayes factors quantify statistical evidence, they

can serve two (closely related) purposes. First, evidence can

be applied to defeat prior odds: supposing that prior to the

data we believe that ¬M is three times more likely than M

(i.e., the prior ratio favoring ¬M is 3, or its prior proba-

bility is 75%), we need a Bayes factor favoring M that is

greater than 3 so that M will end up the more likely hypoth-

esis. Second, evidence can be applied to achieve a desired

level of certainty: supposing that we desire a high degree of

certainty before making any practical decision (say, at least

95% certainty or a posterior ratio of at least 19) and suppos-

ing the same prior ratio as before, then we would require a

Bayes factor of 19 × 3 = 57 to defeat the prior odds and

obtain this high degree of certainty. These practical consid-

erations (often left implicit) are formalized by utility (loss)

functions in Bayesian decision theory. We will not go into

Bayesian decision theory in depth here; introductions can be

found in Lindley (1985) or Winkler (1972), and an advanced

introduction is available in Robert (2007).

In this section, we have derived Bayes’ Rule as a neces-

sary consequence of the laws of probability. The rule allows

us to update our belief regarding an hypothesis in response

to data. Our beliefs after taking account the data are captured

in the posterior probability, and the amount of updating is

given by the Bayes factor. We now move to some applied

examples that illustrate how this simple rule pertains to

cases of inference.

Example 1: “The happy herbologist” At Hogwarts

School of Witchcraft and Wizardry,4 professor Pomona

Sprout leads the Herbology Department (see Illustration).

In the Department’s greenhouses, she cultivates crops of a

magical plant called green codacle—a flowering plant that

when consumed causes a witch or wizard to feel euphoric

and relaxed. Professor Sybill Trelawney, the professor of

Divination, is an avid user of green codacle and frequently

visits Professor Sprout’s laboratory to sample the latest

harvest.

However, it has turned out that one in a thousand codacle

plants is afflicted with a mutation that changes its effects:

4With our apologies to J. K. Rowling.

Illustration. Professor Pomona Sprout is Chair of the Herbology
Department at Hogwarts School of Witchcraft and Wizardry. ©Brian
Clayton, used with permission

Consuming those rare plants causes unpleasant side effects

such as paranoia, anxiety, and spontaneous levitation. In

order to evaluate the quality of her crops, Professor Sprout

has developed a mutation-detecting spell. The new spell has

a 99% chance to accurately detect an existing mutation, but

also has a 2% chance to falsely indicate that a healthy plant

is a mutant. When Professor Sprout presents her results at a

School colloquium, Trelawney asks two questions: What is

the probability that a codacle plant is a mutant, when your

spell says that it is? And what is the probability the plant is a

mutant, when your spell says that it is healthy? Trelawney’s

interest is in knowing how much trust to put into Professor

Sprout’s spell.

Call the event that a specific plant is a mutant M, and

that it is healthy ¬M. Call the event that Professor Sprout’s

spell diagnoses a plant as a mutant D, and that it diag-

noses it healthy ¬D. Professor Trelawney’s interest is in

the probability that the plant is indeed a mutant given that

it has been diagnosed as a mutant, or P(M|D), and the

probability the plant is a mutant given it has been diag-

nosed healthy, or P(M|¬D). Professor Trelawney, who is

an accomplished statistician, has all the relevant information

to apply Bayes’ Rule (Eq. (7) above) to find these prob-

abilities. She knows the prior probability that a plant is a

mutant is P(M) = .001, and thus the prior probability that

a plant is not a mutant is P(¬M) = 1 − P(M) = .999.

The probability of a correct mutant diagnosis given the plant

is a mutant is P(D|M) = .99, and the probability of an

erroneous healthy diagnosis given the plant is a mutant is
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thus P(¬D|M) = 1 − P(D|M) = .01. When the plant

is healthy, the spell incorrectly diagnoses it as a mutant

with probability P(D|¬M) = .02, and correctly diag-

noses the plant as healthy with probability P(¬D|¬M) =
1 − P(D|¬M) = .98.

When Professor Sprout’s spell gives a mutant diagnosis,

the posterior probability that the plant is really a mutant is

given by Bayes’ Rule:

P(M|D) = P(M)P (D|M)

P (M)P (D|M) + P(¬M)P (D|¬M)
.

Professor Trelawney can now consult Fig. 2 to find that the

posterior probability the plant is a mutant given a mutant

diagnosis is:

P(M|D) = .001 × .99

.001 × .99 + .999 × .02
≈ .047.

A mutant diagnosis from Professor Sprout’s spell raises

the probability the plant is a mutant from .001 to roughly

.047. This means that when a plant is diagnosed as a

mutant, the posterior probability the plant is not a mutant is

P(¬M|D) ≈ 1 − .047 = .953. The low prior probability

that a plant is a mutant means that, even with the spell hav-

ing 99% accuracy to correctly diagnose a mutant plant as

such, a plant diagnosed as a mutant is still probably safe to

eat—nevertheless, Professor Trelawney will think twice.

Analogous calculations show that the posterior probabil-

ity that a plant is a dangerous mutant, given it is diagnosed

as healthy, is:

P(M|¬D) = .001 × .01

.001 × .01 + .999 × .98
≈ .000010.

Fig. 2 The event M is that a given codacle plant is a mutant. The
event D is that Professor Sprout’s spell returns a mutant diagno-
sis. A mutant diagnosis D is in fact observed, so the only paths
that remain relevant are those that lead to a mutant diagnosis (events
(M, D) and (¬M, D), shaded). Professor Trelawney takes the fol-
lowing steps to find the posterior probability the plant is a mutant given
the mutant diagnosis: Multiply P(M) by P(D|M) to find P(M, D);
multiply P(¬M) by P(D|¬M) to find P(¬M, D); add P(M, D)

and P(¬M, D) to find P(D); divide P(M, D) by P(D) to find
P(M|D). Professor Trelawney’s question can be rephrased as: of the
total probability remaining in the diagram after D is observed—which
is equal to P(D)—what proportion of it originated at the M node?
The results of Professor Trelawney’s calculations are given in the text

The posterior probability that a plant is a dangerous mutant

despite being diagnosed as healthy is quite small, so Trelaw-

ney can be relatively confident she is eating a healthy plant

after professor Sprout’s spell returns a healthy diagnosis.

A major advantage of using Bayes’ Rule in this way

is that it gracefully extends to more complex scenarios.

Consider the perhaps disappointing value of P(M|D): a

mutant diagnosis only raises the posterior probability to just

under 5%. Suppose, however, that Trelawney knows that

Professor Sprout’s diagnosis (DS) is statistically indepen-

dent from the diagnosis of her talented research associate

Neville Longbottom (DL) —meaning that for any given

state of nature M or ¬M, Longbottom’s diagnosis does

not depend on Sprout’s. Further suppose that both Sprout

and Longbottom return the mutant diagnosis (and for sim-

plicity we also assume Longbottom’s spells are equally as

accurate as Sprout’s). To find the posterior probability the

plant is a mutant after two independent mutant diagnoses,

P(M|DS, DL), Trelawney can apply a fundamental princi-

ple in Bayesian inference: Yesterday’s posterior is today’s

prior (Lindley, 2000).

Since we take diagnosis DS and diagnosis DL as con-

ditionally independent, we know that P(DL|M, DS) =
P(DL|M) and P(DL|¬M, DS) = P(DL|¬M), giving

P(M|DS , DL)

= P(M|DS)P (DL|M)

P (M|DS)P (DL|M) + P(¬M|DS)P (DL|¬M)

= .047 × .99

.047 × .99 + .953 × .02
≈ .71,

where the probability the plant is a mutant prior to Long-

bottom’s diagnosis DL, P(M|DS), is the probability it is

a mutant posterior to Sprout’s diagnosis DS . This illus-

trates the value of multiple independent sources of evidence:

a plant that has twice been independently diagnosed as a

mutant is quite likely to be one. A third independent diagno-

sis would put the posterior probability over 99%. Note that,

crucially, we would have obtained precisely the same final

probability of .71 had we updated P(M) to P(M|DS, DL)

all at once. This is easily confirmed when we consider

the two diagnoses as a joint event (DS, DL) and use the

conditional probability P(DS, DL|M) = P(DS |M) ×
P(DL|M) (as in Eq. 2) to update P(M) to P(M|DS, DL)

in a single step.

Discussion It is instructive to consider some parallels of

this (admittedly fictional) example to current practices

in social science. The scenario is similar in setup to a

null-hypothesis significance testing scenario in which one

defines the null hypothesis H0 (e.g., that there is no effect

of some manipulation) and its negation H1 (that there is an

effect), and the end goal is to make a choice between two



Psychon Bull Rev (2018) 25:5–34 13

possible decisions {D,¬D}; D means deciding to reject H0,

and ¬D means deciding not to reject H0. In the example

above the rate at which we falsely reject the null hypothe-

sis (i.e., deciding to reject it when in fact it is true) is given

by P(D|¬M) = .02—this is what is commonly called the

false alarm rate. The rate at which we correctly reject the

null hypothesis (i.e., rejecting it if it is false) is P(D|M) =
.99. However, even with a low false alarm rate and a very

high correct rejection rate, a null hypothesis rejection may

not necessarily provide enough evidence to overcome the

low prior probability an alternative hypothesis might have.

Example 2: “A curse on your hat” At the start of every

school year, new Hogwarts students participate in the

centuries-old Sorting ceremony, during which they are

assigned to one of the four Houses of the School:

Gryffindor, Hufflepuff, Ravenclaw, or Slytherin. The

assignment is performed by the Sorting Hat, a pointy hat

which, when placed on a student’s head, analyzes their abil-

ities and personality before loudly calling out the House that

it determines as the best fit for the student. For hundreds of

years the Sorting Hat has assigned students to houses with

perfect accuracy and in perfect balance (one-quarter to each

House).

Unfortunately, the Hat was damaged by a stray curse dur-

ing a violent episode at the School. As a result of the dark

spell, the Hat will now occasionally blurt out “Slytherin!”

even when the student’s proper alliance is elsewhere. Now,

the Hat places exactly 40% of first-years in Slytherin instead

of the usual 25%, and each of the other Houses get only 20%

of the cohort.

To attempt to correct the House assignment, Professor

Cuthbert Binns has developed a written test—the Place-

ment Accuracy Remedy for Students Erroneously Labeled

or P.A.R.S.E.L. test—on which true Slytherins will tend

to score Excellent (SE), while Ravenclaws will tend to

score Outstanding (SO ), Gryffindors Acceptable (SA), and

Hufflepuffs Poor (SP ). Benchmark tests on students who

were Sorted before the Hat was damaged have revealed the

approximate distribution of P.A.R.S.E.L. scores within each

House (see Table 2). The test is administered to all students

who are sorted into Slytherin House by the damaged Sort-

ing Hat, and their score determines the House to which they

are assigned. Headmistress Minerva McGonagall, who is

a Gryffindor, asks Professor Binns to determine the prob-

ability that a student who was sorted into Slytherin and

scored Excellent on the P.A.R.S.E.L. test actually belongs in

Gryffindor.

The solution relies on the repeated and judicious appli-

cation of the Sum and Product Rules, until an expression

appears with the desired quantity on the left-hand side and

only known quantities on the right-hand side. To begin, Pro-

fessor Binns writes down Bayes’ Rule (remembering that

Table 2 Probability of each P.A.R.S.E.L. score by true House
affiliation

Excellent
(SE)

Outstanding
(SO )

Acceptable
(SA)

Poor
(SP )

Slytherin (MS ) 0.80 0.10 0.05 0.05

Gryffindor (MG) 0.05 0.20 0.70 0.05

Ravenclaw (MR) 0.05 0.80 0.15 0.00

Hufflepuff (MH ) 0.00 0.10 0.25 0.65

Each value indicates the conditional probability P(S|M), that is, the
probability that a student from house M obtains score S

a joint event like (DS, SE) can be treated like any other

event):

P(MG|DS, SE) = P(MG)P (DS, SE |MG)

P (DS, SE)

Here, MG means that the true House assignment is

Gryffindor, DS means that the Sorting Hat placed them in

Slytherin, and SE means the student scored Excellent on the

P.A.R.S.E.L. test.

In most simple cases, we often have knowledge of sim-

ple probabilities, of the form P(A) and P(B|A), while the

probabilities of joint events (A, B) are harder to obtain. For

Professor Binns’ problem, we can overcome this difficulty

by using the Product Rule to unpack the joint event in the

numerator:5

P(MG|DS, SE) = P(MG)P (SE |MG)P (DS |SE,MG)

P (DS, SE)
.

Now we discover the probability P(DS |SE,MG) in the

numerator. Since the cursed hat’s recommendation does not

add any information about the P.A.R.S.E.L. score above

and beyond the student’s true House affiliation (i.e., it is

conditionally independent; the test score is not entirely

independent of the hat’s recommendation since the hat is

often right about the student’s correct affiliation and the

affiliation influences the test score), we can simplify this

conditional probability: P(DS |SE,MG) = P(DS |MG).

Note that the numerator now only contains known quan-

tities: P(SE |MG) can be read off as 0.05 from Table 2;

P(DS |MG) is the probability that a true Gryffindor is erro-

neously sorted into Slytherin, and since that happens to one

in five true Gryffindors (because the proportion sorted into

Gryffindor went down from 25 to 20%), P(DS |MG) must

5Note that this is an application of the Product Rule to the sce-
nario where both events are conditional on MG: P(DS , SE |MG) =
P(SE |MG)P (DS |SE,MG).
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be 0.20; and P(MG) is the base probability that a student

is a Gryffindor, which we know to be one in four. Thus,

P(MG|DS, SE) = P(MG)P (SE |MG)P (DS |MG)

P (DS, SE)

= 0.25 × 0.05 × 0.20

P(DS, SE)
.

This leaves us having to find P(DS, SE), the prior predic-

tive probability that a student would be Sorted into Slytherin

and score Excellent on the P.A.R.S.E.L. test. Here, the Sum

Rule will help us out, because we can find the right-hand side

numerator for each type of student in the same way we did

for true Gryffindors above—we can find P(DS, SE |Mi) for

any House i = S, G, R, H . Hence (from Eq. 3),

P(DS, SE) =
∑

i

P(Mi)P (SE |Mi)P (DS |Mi)

= P(MS)P (SE |MS)P (DS |MS)

+ P(MG)P (SE |MG)P (DS |MG)

+ P(MR)P (SE |MR)P (DS |MR)

+ P(MH )P (SE |MH )P (DS |MH )

= 0.25 × 0.80 × 1.00

+ 0.25 × 0.05 × 0.20

+ 0.25 × 0.05 × 0.20

+ 0.25 × 0.00 × 0.20

= 0.2050.

So finally, we arrive at:

P(MG|DS, SE) = 0.0025

0.2050
= 0.0122,

which allows Professor Binns to return to the Headmistress

with good news: There is only around a 1% probabil-

ity that a student who is Sorted into Slytherin and scores

Excellent on the P.A.R.S.E.L. test is actually a Gryffindor.

Furthermore, Binns claims that the probability that such

a student is a true Slytherin is over 95%, and that the

combined procedure—that consists of first letting the Sort-

ing Hat judge and then giving Slytherin-placed students

a P.A.R.S.E.L. test and rehousing them by their score—

will correctly place students of any House with at least

90% probability. For example, he explains, a true Raven-

claw would be sorted into their correct House by the Hat

with 80% (P(DR|MR)) probability, and would be placed

into Slytherin with 20% probability. In the second case,

the student would be given the P.A.R.S.E.L. test, in which

they would obtain an Outstanding with 80% (P(SO |MR))

probability. Hence, they would be placed in their cor-

rect House with probability P(DR|MR) + P(DS |MR) ×
P(SO |MR) = 0.80 + 0.20 × 0.80 = 0.96.

Discussion The Sorting Hat example introduces two exten-

sions from the first. Here, there are not two but four

possible “models”—whereas statistical inference is often seen

as a choice problem between two alternatives, probabilis-

tic inference naturally extends to any number of alternative

hypotheses. The extension that allows for the evaluation of

multiple hypotheses did not require the ad hoc formulation

of any new rules, but relied entirely on the same basic rules

of probability.

The example additionally underscores an inferential

facility that we believe is vastly underused in social science:

we selected between models making use of two qualitatively

different sources of information. The two sources of infor-

mation were individually insufficient but jointly powerful:

the Hat placement is only 80% accurate in most cases, and

the written test was only 50% accurate for the Ravenclaw

case, but together they are 90% accurate. Again, this exten-

sion is novel only in that we had not yet considered it – the

fact that information from multiple sources can be so com-

bined requires no new facts and is merely a consequence of

the two fundamental rules of probability.

Probability theory in the continuous case

In Bayesian parameter estimation, both the prior and

posterior distributions represent, not any measurable

property of the parameter, but only our own state of

knowledge about it. The width of the [posterior] dis-

tribution. . . indicates the range of values that are con-

sistent with our prior information and data, and which

honesty therefore compels us to admit as possible values.

E. T. Jaynes (1986)

The full power of probabilistic inference will come to

light when we generalize from discrete events A with prob-

abilities P(A), to continuous parameters a with probability

densities p(a).6 Probability densities are different from

probabilities in many ways. Densities express how much

probability exists “near” a particular value of a, while the

probability of any particular value of a in a continuous range

is zero. Probability densities cannot be negative but they can

be larger than 1, and they translate to probabilities through

the mathematical operation of integration (i.e., calculating

the area under a function over a certain interval). Possibly

the most well-known distribution in psychology is the theo-

retical distribution of IQ in the population, which is shown

in Fig. 3.

By definition, the total area under a probability density

function is 1:

1 =
∫

A

p(a)da,

6When we say a parameter is “continuous” we mean it could take any
one of the infinite number of values comprising some continuum. For
example, this would apply to values that follow a normal distribution.
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Fig. 3 An example of a probability density function (PDF). PDFs
express the relative plausibility of different values and can be used to
determine the probability that a value lies in any interval. The PDF
shown here is the theoretical distribution of IQ in the population: a
normal distribution (a.k.a. Gaussian distribution) with mean 100 and
standard deviation 15. In this distribution, the filled region to the left
of 81 has an area of approximately 0.10, indicating that for a random
member of the population, there is a 10% chance their IQ is below 81.
Similarly, the narrow shaded region on the right extends from 108 to
113 and also has an area of 0.10, meaning that a random member has
a 10% probability of falling in that region

where capitalized A indicates that the integration is over the

entire range of possible values for the parameter that appears

at the end—in this case a. The range A is hence a disjoint

set of possible values for a. For instance, if a is the mean of

a normal distribution, A indicates the range of real numbers

from −∞ to ∞; if a is the rate parameter for a binomial

distribution, A indicates the range of real numbers between

0 and 1. The symbol da is called the differential and the

function that appears between the integration sign and the

differential is called the integrand—in this case p(a).

We can consider how much probability is contained

within smaller sets of values within the range A; for exam-

ple, when dealing with IQ in the population, we could

consider the integral over only the values of a that are less

than 81, which would equal the probability that a is less than

81:7

P(a < 81) =
∫ 81

−∞
p(a)da.

In Fig. 3, the shaded area on the left indicates the probability

density over the region (−∞, 81).

The fundamental rules of probability theory in the dis-

crete case—the sum and product rules—have continuous

analogues. The continuous form of the product rule is

7Strictly speaking, this integral is the probability that a is less than
or equal to 81, but the probability of any single point in a continuous
distribution is 0. By the sum rule, P(a ≤ 81) = P(a < 81) + P(a =
81), which simplifies to P(a ≤ 81) = P(a < 81) + 0.

essentially the same as in the discrete case: p(a, b) =
p(a)p(b|a), where p(a) is the density of the continuous

parameter a and p(b|a) denotes the conditional density of

b (i.e., the density of b assuming a particular value of a).

As in the discrete case of Eq. 1, it is true that p(a, b) =
p(a)p(b|a) = p(b)p(a|b), and that p(a, b) = p(a)p(b) if

we consider a and b to be statistically independent. For the

continuous sum rule, the summation in Eq. 3 is replaced by

an integration over the entire parameter space B:

p(a) =
∫

B

p(a, b)db.

Because this operation can be visualized as a function over

two dimensions (p(a, b) is a function that varies over a

and b simultaneously) that is being collapsed into the one-

dimensional margin (p(a) varies only over a), this operation

is alternatively called marginalization, integrating over b, or

integrating out b.

Using these continuous forms of the sum and product

rules, we can derive a continuous form of Bayes’ Rule by

successively applying the continuous sum and product rules

to the numerator and denominator (analogously to Eq. 7):

p(a|b) = p(a, b)

p(b)
= p(a)p(b|a)

p(b)

= p(a)p(b|a)
∫

A
p(a)p(b|a)da

.

(10)

Since the product in the numerator is divided by its own

integral, the total area under the posterior distribution

always equals 1; this guarantees that the posterior is always

a proper distribution if the prior and likelihood are proper

distributions. It should be noted that by “continuous form

of Bayes’ Rule” we mean that the prior and posterior dis-

tributions for the model parameter(s) are continuous—the

sample data can still be discrete, as in Example 3 below.

One application of Bayesian methods to continuous

parameters is estimation. If θ (theta) is a parameter of inter-

est (say, the success probability of a participant in a task),

then information about the relative plausibility of different

values of θ is given by the probability density p(θ). If new

information becomes available, for example in the form of

new data x, the density can be updated and made conditional

on x:

p(θ |x) = p(θ)p(x|θ)

p(x)
= p(θ)p(x|θ)

∫

�
p(θ)p(x|θ)dθ

. (11)

Since in the context of scientific learning these two den-

sities typically represent our knowledge of a parameter θ

before and after taking into account the new data x, p(θ) is

often called the prior density and p(θ |x) the posterior den-

sity. Obtaining the posterior density involves the evaluation
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of Eq. 11 and requires one to define a likelihood function

p(x|θ), which indicates how strongly the data x are implied

by every possible value of the parameter θ .

The numerator on the right-hand side of Eq. 11,

p(θ)p(x|θ), is a product of the prior distribution and the

likelihood function, and it completely determines the shape

of the posterior distribution (note that the denominator in

that equation is not a function of the parameter θ ; even

though the parameter seems to feature in the integrand, it

is in fact “integrated out” so that the denominator depends

only on the data x). For this reason, many authors pre-

fer to ignore the denominator of Eq. 11 and simply write

the posterior density as proportional to the numerator, as

in p(θ |x) ∝ p(θ)p(x|θ). We do not, because this con-

ceals the critical role the denominator plays in a predictive

interpretation of Bayesian inference.

The denominator p(x) is the weighted-average proba-

bility density of the data x, where the form of the prior

distribution determines the weights. This normalizing con-

stant is the continuous analogue of the prior predictive

distribution, often alternatively referred to as the marginal

likelihood or the Bayesian evidence.8 Consider that, in a

similar fashion to the discrete case, we can rearrange Eq. 11

as follows—dividing each side by p(θ)—to illuminate in

an alternative way how Bayes’ rule operates in updat-

ing the prior distribution p(θ) to a posterior distribution

p(θ |x):

p(θ |x)

p(θ)
= p(x|θ)

p(x)
= p(x|θ)

∫

�
p(θ)p(x|θ)dθ

. (12)

On the left-hand side, we see the ratio of the posterior to

the prior density. Effectively, this tells us for each value of

θ how much more or less plausible that value became due

to seeing the data x. The equation shows that this ratio is

determined by how well that specific value of θ predicted

the data, in comparison to the weighted-average predictive

accuracy across all values in the range �. In other words,

parameter values that exceed the average predictive accu-

racy across all values in � have their densities increased,

while parameter values that predict worse than the aver-

age have their densities decreased (see Morey, Romeijn, &

Rouder, 2016; Wagenmakers, Morey, & Lee, in press).

While the discrete form of Bayes’ rule has natural appli-

cations in hypothesis testing, the continuous form more

naturally lends itself to parameter estimation. Examples of

such questions are: “What is the probability that the regres-

sion weight β is positive?” and “What is the probability

that the difference between these means is between δ =
−.3 and δ = .3?” These questions can be addressed in a

8We particularly like Evans’s take on the term Bayesian evidence: “For
evidence, as expressed by observed data in statistical problems, is what
causes beliefs to change and so we can measure evidence by measuring
change in belief” (Evans, 2014, p. 243).

straightforward way, using only the product and sum rules

of probability.

Example 3: “Perfection of the puking pastille” In the

secretive research and development laboratory of Weasley’s

Wizarding Wheezes, George Weasley works to develop gag

toys and prank foods for the entertainment of young witches

and wizards. In a recent project, Weasley is studying the

effects of his store’s famous puking pastilles, which cause

immediate vomiting when consumed. The target audience

is Hogwarts students who need an excuse to leave class and

enjoy making terrible messes.

Shortly after the pastilles hit Weasley’s store shelves,

customers began to report that puking pastilles cause not

one, but multiple “expulsion events.” To learn more about

this unknown behavior, George turns to his sister Ginny

and together they decide to set up an exploratory study.

From scattered customer reports, George believes the expul-

sion rate to be between three to five events per hour, but

he intends to collect data to determine the rate more pre-

cisely. At the start of this project, George has no distinct

hypotheses to compare—he is interested only in estimating

the expulsion rate.

Since the data x are counts of the number of expulsion

events within an interval of time, Ginny decides that the

appropriate model for the data (i.e., likelihood function) is a

Poisson distribution (see top panel of Fig. 4):

p(x|λ) = 1

x! exp (−λ) λx, (13)

with the λ (lambda) parameter representing the expected

number of events within the time interval (note exp(−λ) is

simply a clearer way to write e−λ).

A useful prior distribution for Poisson rates is the Gamma

distribution (Gelman et al., 2004, Appendix A):9

p(λ|a, b) = ba

Ŵ(a)
exp (−λb) λa−1, (14)

A visual representation of the Gamma distribution is given

in the second panel of Fig. 4. A Gamma distribution has two

parameters that determine its form, namely shape (a) and

scale (b).10 The Gamma distribution is useful here for two

9Recall that x! = x×(x−1)×· · ·×1 (where x! is read as “the factorial
of x,” or simply “x factorial”). Similarly, the Gamma function Ŵ(a) is
equal to (a − 1)! = (a − 1) × (a − 2) × · · · × 1 when a is an integer.
Unlike a factorial, however, the Gamma function is more flexible in
that it can be applied to non-integers.
10To ease readability we use Greek letters for the parameters of a likeli-
hood function and Roman letters for the parameters of prior (posterior)
distributions. The parameters that characterize a distribution can be
found on the right side of the conditional bar; for instance, the likeli-
hood function p(x|λ) has parameter λ, whereas the prior distribution
p(λ|a, b) has parameters (a, b).
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Fig. 4 Top row: An example Poisson distribution. The function is p(x|λ = 7) as defined in Eq. 13. The height of each bar indicates the probability
of that particular outcome (e.g., number of expulsion events). Second row: The prior distribution of λ; a Gamma distribution with parameters
a = 2 and b = 0.2. This is the initial state of the Weasley’s knowledge of the expulsion rate λ (the expected number of expulsion events per hour).
Third row: The likelihood functions associated with x1 = 7 (left), x2 = 8 (center), and x3 = 19 (right). Bottom row: The posterior distribution of
λ; a Gamma distribution with parameters a = 36 and b = 3.2. This is the final state of knowledge regarding λ

reasons: first, it has the right support, meaning that it pro-

vides nonzero density for all possible values for the rate (in

this case all positive real numbers); and second, it is conju-

gate with the Poisson distribution, a technical property to be

explained below.

Before collecting further data, the Weasleys make sure to

specify what they believe to be reasonable values based on

the reports George has heard. In the second panel of Fig. 4,

Ginny set the prior parameters to a = 2 and b = 0.2 by

drawing the shape of the distribution for many parameter

combinations and selecting a curve that closely resembles

George’s prior information: Values between three and five

are most likely, but the true value of the expulsion rate could

conceivably be much higher.

Three volunteers are easily found, administered one puk-

ing pastille each, and monitored for 1 h. The observed event

frequencies are x1 = 7, x2 = 8, and x3 = 19.

With the prior density (14) and the likelihood (13)

known, Ginny can use Bayes’ rule as in Eq. 10 to derive

the posterior distribution of λ, conditional on the new data

points Xn = (x1, x2, x3). She will assume the n = 3 data

points are independent given λ, so that their likelihoods

may be multiplied.11 This leaves her with the following

expression for the posterior density of (λ|Xn, a, b):

p(λ|Xn, a, b) =
ba

Ŵ(a)
exp (−λb) λa−1

∏n=3
i=1

1
xi ! exp (−λ) λxi

∫

	
ba

Ŵ(a)
exp (−λb) λa−1

∏n=3
i=1

1
xi ! exp (−λ) λxi dλ

.

This expression may look daunting, but Ginny Weasley

is not easily intimidated. She goes through the following

algebraic steps to simplify the expression: (1) collect all fac-

tors that do not depend on λ (which, notably, includes the

entire denominator) and call them Q(Xn), and (2) combine

exponents with like bases:

p(λ|Xn, a, b) = Q(Xn) exp (−λb) λa−1×
n=3
∏

i=1

exp (−λ) λxi

= Q(Xn) exp [−λ(b + n)] λ

(

a+
∑n=3

i=1 xi

)

−1
.

11The likelihood function of the combined data is
p(Xn|λ) = p(x1|λ) × p(x2|λ) × p(x3|λ), which we write using

the more compact product notation,
∏n=3

i=1 p(xi |λ), in the fol-

lowing equations to save space. Similarly,
∏n=3

i=1 exp (−λ) λxi =
exp(−3λ)λ(x1+x2+x3).
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Note the most magical result that is obtained here! Com-

paring the last equation to Eq. 14, it turns out that these

have exactly the same form. Renaming (b + n) to b̂ and
(

a +
∑n

i xi

)

to â makes this especially clear:

p(λ|Xn, a, b) = b̂â

Ŵ
(

â
) exp

(

−λb̂
)

λâ−1 = p(λ|â, b̂).

Here, Ginny has completed the distribution by replacing

the scaling constant Q(Xn) with the scaling constant of the

Gamma distribution—after all, we know that the outcome

must be a probability density, and each density has a unique

scaling constant that ensures the total area under it is 1.

The posterior distribution p(λ|Xn, a, b) thus turns out to

be equal to the prior distribution with updated parameters

b̂ = b + n and â = a +
∑n

i=1 xi . Differently put,

p(λ|Xn, a, b) = p

(

λ | a +
n

∑

i=1

xi, b + n

)

. (15)

This amazing property, where the prior and posterior dis-

tributions have the same form, results from the special

relationship between the Gamma distribution and the Pois-

son distribution: conjugacy. The bottom panel of Fig. 4

shows the much more concentrated posterior density for λ:

a Gamma distribution with parameters â = 36 and b̂ = 3.2.

When priors and likelihoods are conjugate, three main

advantages follow. First, it is easy to express the posterior

density because it has the same form as the prior density (as

seen in Eq. 15). Second, it is straightforward to calculate

means and other summary statistics of the posterior density.

For example, the mean of a Gamma distribution has a simple

formula: a/b. Thus, George and Ginny’s prior density for λ

has a mean of a/b = 2/.2 = 10, and their posterior den-

sity for λ has a mean of â/b̂ = 36/3.2 = 11.25. The prior

and posterior densities’ respective modes are (a − 1)/b = 5

and (â − 1)/b̂ = 35/3.2 ≈ 11, as can be seen from

Fig. 4. Third, it is straightforward to update the posterior

distribution sequentially as more data become available.

Discussion Social scientists estimate model parameters in

a wide variety of settings. Indeed, a focus on estimation is

the core of the New Statistics (Cumming, 2014; see also

Kruschke & Liddell, this issue). The puking pastilles exam-

ple illustrates how Bayesian parameter estimation is a direct

consequence of the rules of probability theory, and this rela-

tionship licenses a number of interpretations that the New

Statistics does not allow. Specifically, the basis in proba-

bility theory allows George and Ginny to (1) point at the

most plausible values for the rate of expulsion events and

(2) provide an interval that contains the expulsion rate with

a certain probability (e.g., a Gamma distribution calculator

shows that λ is between 8.3 and 14.5 with 90% probability).

The applications of parameter estimation often involve

exploratory settings: no theories are being tested and a

distributional model of the data is assumed for descrip-

tive convenience. Nevertheless, parameter estimation can be

used to adjudicate between theories under certain special

circumstances: if a theory or hypothesis makes a particular

prediction about a parameter’s value or range, then estima-

tion can take a dual role of hypothesis testing. In the social

sciences most measurements have a natural reference point

of zero, so this type of hypothesis will usually be in the form

of a directional prediction for an effect. In our example, sup-

pose that George was specifically interested in whether λ

was less than 10. Under his prior distribution for λ, the prob-

ability of that being the case was 59.4%. After seeing the

data, the probability λ is less than 10 decreased to 26.2%.

Estimating the mean of a normal distribution

By far the most common distribution used in statistical

testing in social science, the normal distribution deserves

discussion of its own. The normal distribution has a number

of interesting properties—some of them rather unique—but

we discuss it here because it is a particularly appropriate

choice for modeling unconstrained, continuous data. The

mathematical form of the normal distribution is

p(x|μ, σ) = N(x|μ, σ 2)

= 1√
2πσ 2

exp

[

−1

2

(
x − μ

σ

)2
]

,

with the μ (mu) parameter representing the average (mean)

of the population from which we are sampling and σ

(sigma) the amount of dispersion (standard deviation) in

the population. We will follow the convention that the nor-

mal distribution is parameterized with the variance σ 2. An

example normal distribution is drawn in Fig. 3.

One property that makes the normal distribution useful is

that it is self-conjugate: The combination of a normal prior

density and normal likelihood function is itself a normal

distribution, which greatly simplifies the derivation of pos-

terior densities. Using Eq. 10, and given some data set Xn =
(x1, x2, ..., xn), we can derive the following expression for

the posterior density (μ|Xn, a, b):

p(μ|Xn, a, b) = N(μ|a, b2)×
∏n

i N(xi |μ, σ 2)
∫

M
N(μ|a, b2)×

∏n
i N(xi |μ, σ 2)dμ

Knowing that the product of normal distributions is also

a normal distribution (up to a scaling factor), it is only a

matter of tedious algebra to derive the posterior distribution

of μ. We do not reproduce the algebraic steps here – the

detailed derivation can be found in Gelman et al. (2004) and
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Raiffa and Schlaifer (1961), among many other places. The

posterior is

p(μ|Xn, a, b) = N
(

μ|â, b̂2
)

,

where

b̂2 = 1
n

σ 2 + 1
b2

and

â =
(

b̂2

b2

)

a +
(

b̂2

σ 2/n

)

x̄

= W 2a +
(

1 − W 2
)

x̄,

where x̄ refers to the mean of the sample.

Carefully inspecting these equations can be instructive.

To find b̂, the standard deviation (i.e., spread) of the poste-

rior distribution of μ, we must compare the spread of the

prior distribution, b, to the standard error of the sample,

σ/
√

n. The formula for b̂ represents how our uncertainty

about the value of μ is reduced due to the information

gained in the sample. If the sample is noisy, such that the

standard error of the sample is large compared to the spread

of the prior, then relatively little is learned from the data

compared to what we already knew before, so the difference

between b̂ and b will be small. Conversely, if the data are

relatively precise, such that the standard error of the sam-

ple is small when compared to the spread of the prior, then

much will be learned about μ from the data and b̂ will be

much smaller than b.

To find â, the mean of the posterior distribution for μ,

we need to compute a weighted average of the prior mean

and the sample mean. In the formula above, the weights

attached to a and x̄ sum to 1 and are determined by how

much each component contributes to the total precision of

the posterior distribution. Naturally, the best guess for the

value of μ splits the difference between what we knew of

μ before seeing the sample and the estimate of μ obtained

from the sample; whether the posterior mean is closer to the

prior mean or the sample mean depends on a comparison of

their relative precision. If the data are noisy compared to the

prior (i.e., the difference between prior variance b2 and pos-

terior variance b̂2 is small, meaning W 2 is near 1), then the

posterior mean will stay relatively close to the prior mean.

If the data are relatively precise (i.e., W 2 is near zero), the

posterior mean will move to be closer to the sample mean.

If the precision of the prior and the precision of the data

are approximately equal then W 2 will be near 1/2, so the

posterior mean for μ will fall halfway between a and x̄.

The above effect is often known as shrinkage because

our sample estimates are pulled back toward prior estimates

(i.e., shrunk). Shrinkage is generally a desirable effect, in

that it will lead to more accurate parameter estimates and

empirical predictions (see Efron & Morris, 1977). Since

Bayesian estimates are automatically shrunk according to

the relative precision of the prior and the data, incorporating

prior information simultaneously improves our parameter

estimates and protects us from being otherwise misled by

noisy estimates in small samples. Quoting Gelman (2010, p.

163): “Bayesian inference is conservative in that it goes with

what is already known, unless the new data force a change.”

Another way to interpret these weights is to think of

the prior density as representing some amount of infor-

mation that is available from an unspecified number of

previous hypothetical observations, which are then added to

the information from the real observations in the sample.

For example, if after collecting 20 data points the weights

come to W 2 = .5 and 1 − W 2 = .5, that implies that the

prior density carried 20 data points’ worth of information.

In studies for which obtaining a large sample is difficult,

the ability to inject outside information into the problem to

come to more informed conclusions can be a valuable asset.

A common source of outside information is estimates of

effect sizes from previous studies in the literature. As the

sample becomes more precise, usually through increasing

sample size, W 2 will continually decrease, and eventually

the amount of information added by the prior will become

a negligible fraction of the total (see also the principle of

stable estimation, described in Edwards et al., 1963).

Example 4: “Of Murtlaps and Muggles” According to

Fantastic Beasts and Where to Find Them (Scamander,

2001), a Murtlap is a “rat-like creature found in coastal areas

of Britain” (p. 56). While typically not very aggressive, a

startled Murtlap might bite a human, causing a mild rash,

discomfort in the affected area, profuse sweating, and some

more unusual symptoms.

Anecdotal reports dating back to the 1920s indicate that

Muggles (non-magical folk) suffer a stronger immunohisto-

logical reaction to Murtlap bites. This example of physio-

logical differences between wizards and Muggles caught the

interest of famed magizoologist Newton (“Newt”) Scaman-

der, who decided to investigate the issue: When bitten by a

Murtlap, do symptoms persist longer in the average Muggle

than in the average wizard?

The Ministry of Magic keeps meticulous historical

records of encounters between wizards and magical crea-

tures that go back over a thousand years, so Scamander has

a great deal of information on wizard reactions to Murt-

lap bites. Specifically, the average duration of the ensuing

sweating episode is 42 hours, with a standard deviation of

2. Due to the large amount of data available, the standard

error of measurement is negligible. Scamander’s question

can now be rephrased: What is the probability a Murtlap bite

on a Muggle results in an average sweating episode longer

than 42 hours?
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Scamander has two parameters of interest: the population

mean—episode duration μ—and its corresponding popula-

tion standard deviation σ . He has no reason to believe there

is a difference in dispersion between the magical and non-

magical populations, so he will assume for convenience that

σ is known and does not differ between Muggles and wiz-

ards (i.e., σ = 2; ideally, σ would be estimated as well, but

for ease of exposition we will take the standard deviation as

known).

Before collecting any data, Scamander must assign to μ

a prior distribution that represents what he believes to be the

range of plausible values for this parameter before collect-

ing data. To characterize his background information about

the population mean μ, Scamander uses a prior density rep-

resented by a normal distribution, p(μ|a, b) = N(μ|a, b2),

where a represents the location of the mean of the prior

and b represents its standard deviation (i.e., the amount

of uncertainty we have regarding μ). From his informal

observations, Scamander believes that the mean difference

between wizards and Muggles will probably not be larger

than 15 hours. To reflect this information, Scamander cen-

ters the prior distribution p(μ|a, b) at a = 42 hours (the

average among wizards) with a standard deviation of b =
6 hours, so that prior to running his study there is a 99%

probability μ lies between (approximately) 27 and 57 hours.

Thus, p(μ|a, b) = N(μ|42, 62).

With these prior distributions in hand, Scamander can

compute the prior probability that μ is less than 42 hours by

finding the area under the prior distribution to the left of the

benchmark value via integration. Integration from negative

infinity to some constant is most conveniently calculated

with the cumulative distribution function �:

p(μ < 42|a, b) =
∫ 42

−∞
N(μ|a, b2)dμ

= �
(

42|a, b2
)

,

which in this case is exactly 0.5 since the benchmark value

is exactly the mean of the prior density: Scamander cen-

tered his prior on 42 and specified that the Muggle sweating

duration could be longer or shorter with equal probability.

Scamander covertly collects information on a represen-

tative sample of 30 Muggles by exposing them to an angry

Murtlap.12 He finds a sample mean of x̄ = 43 and standard

error of s = σ/
√

n = 2/
√

30 = 0.3651. Scamander can

now use his data and the above formulas to update what he

knows about μ.

12In order to preserve the wizarding world’s statutes of secrecy, Mug-
gles who are exposed to magical creatures must be turned over to a
team of specially-trained wizards called Obliviators, who will erase
the Muggles’ memories, return them to their homes, and gently steer
them into the kitchen.

Since the spread of the prior for μ is large compared to

the standard error of the sample (b = 6 versus s = 0.3651),

Scamander has learned much from the data and his posterior

density for μ is much less diffuse than his prior:

b̂ =
√

1
1
s2 + 1

b2

=
√

1
1

0.36512 + 1
62

= 0.3645.

With b̂ in hand, Scamander can find the weights needed

to average a and x̄: W 2 = (0.3645/6)2 = 0.0037

and 1 − W 2 = 0.9963, thus â = 0.0037 × 42 +
0.9963 × 43 = 42.9963 hours. In summary, Scaman-

der’s prior distribution for μ, p(μ|a, b) = N(μ|42, 62), is

updated into a much more informative posterior distribution,

p(μ|â, b̂) = N(μ|42.9963, 0.36452). This posterior distri-

bution is shown in the left panel of Fig. 5; note that the prior

density looks nearly flat when compared to the much more

peaked posterior density.

Now that the posterior distribution of μ is known, Sca-

mander can revisit his original question: What is the prob-

ability that μ is greater than 42 hours? The answer is again

obtained by finding the area under the posterior distribution

to the right of the benchmark value via integration:

p(μ > 42|â, b̂) =
∫ ∞

42

N(μ|â, b̂2)dμ

= 1 −
∫ 42

−∞
N(μ|â, b̂2)dμ

= 1 − �
(

42|â, b̂2
)

= 1 − �
(

42|42.9963, 0.36452
)

≈ 0.09970.

In summary, the probability that the reaction to Murtlap

bites in the average Muggle is greater than in the average

wizard increases from exactly 50 to 99.70%.
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Fig. 5 A closer look at the prior (dashed) and posterior (solid) den-
sities involved in Newt Scamander’s study on the relative sensitivity
of magical folk and Muggles to Murtlap bites. The left panel shows
the location of the fixed value (42) in the body of the prior and pos-
terior distributions. The right panel is zoomed in on the density in the
area around the fixed value. Comparing the prior density to the poste-
rior density at the fixed value reveals that very little was learned about
this specific value: the density under the posterior is close to the den-
sity under the prior and amounts to a Bayes factor of approximately 3
supporting a deviation from the fixed value
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Discussion The conclusion of a Bayesian estimation prob-

lem is the full posterior density for the parameter(s). That

is, once the posterior density is obtained then the estimation

problem is complete. However, researchers often choose to

report summaries of the posterior distribution that represent

its content in a meaningful way. One common summary

of the posterior density is a posterior (credible) interval.

Credible intervals have a unique property: as Edwards et al.

(1963) put it, “The Bayesian theory of interval estimation is

simple. To name an interval that you feel 95% certain inc-

ludes the true value of some parameter, simply inspect your

posterior distribution of that parameter; any pair of points

between which 95% of your posterior density lies defines

such an interval” (p. 213). This property is made possible

by the inclusion of a prior density in the statistical model

(Rouder et al., 2016). It is important not to confuse credi-

ble intervals with confidence intervals, which have no such

property in general (Morey et al., 2016). Thus, when Sca-

mander reports that there is a 99.70% probability that μ lies

between 42 and positive infinity hours, he is reporting a

99.70% credible interval. It is important to note that there

is no unique interval for summarizing the posterior distri-

bution; the choice depends on the context of the research

question.

Model comparison

[M]ore attention [should] be paid to the precise state-

ment of the alternatives involved in the questions

asked. It is sometimes considered a paradox that the

answer depends not only on the observations but on

the question; it should be a platitude.

H. Jeffreys (1939)

Consider the following theoretical questions. Is partic-

ipant performance different than chance? Does this gene

affect IQ? Does stimulus orientation influence response

latency? For each of these questions the researcher has a

special interest in a particular parameter value and entertains

it as a possibility. However, when we estimate a parame-

ter using a continuous distribution the answers to each of

these questions is necessarily “yes.” To see why, recall that

a probability density function specifies how much probabil-

ity exists near—not at—a particular value of the parameter.

That is, with a continuous probability distribution, prob-

ability only exists within a given range of the parameter

space; the probability of any single point within the distri-

bution is zero. This is inconsistent with our belief that a

specified parameter value might hold true. Moreover, this

poses a problem for any research question that focuses

on a single value of a continuous parameter, because if

its prior probability is zero then no amount of data can

cause its posterior probability to become anything other than

zero.

A simple but brilliant solution to this problem was first

executed by Haldane (1932) but is credited mostly to (Jef-

freys 1939; see Etz & Wagenmakers in press). The solution

involves applying the sum and product rules across multiple

independent statistical models at once. We can specify mul-

tiple separate models that have different implications about

the parameter of interest, call it θ , and calculate the prob-

ability of each model after data are collected. One model,

say M0, says θ is equal to a single special value denoted θ0.

A second model, say M1, says θ is unknown and assigns

it a continuous prior density, implying θ is not equal to θ0.

After collecting data X, there are two main questions to

answer: (1) What is P(M0|X), the posterior probability that

θ = θ0? And (2) what is p(θ |X,M1), the posterior distri-

bution13 of θ under M1 (i.e., considering the new data X, if

θ �= θ0 then what might θ be)?

As before, this scenario can be approached with the prod-

uct and sum rules of probability. The setup of the problem

is captured by Fig. 7 (focusing for now on the left half). We

start at the initial fork with two potential models: M0 and

M1. This layer of analysis is called the model space, since it

deals with the probability of the models. Subsequently, each

model implies some belief about the value of θ . This layer

of analysis is called the parameter space since it specifies

what is known about the parameters within a model, and it

is important to note that each model has its own indepen-

dent parameter space. Under M0 the value of θ is known

to be equal to θ0, so all of its probability is packed into a

“spike” (a point mass) at precisely θ0. Under M1 the value

of θ is unknown and we place a probability distribution over

the potential values of θ in the form of a conditional prior

density. Each model also makes predictions about what data

will occur in the experiment (i.e., the model’s prior predic-

tive distribution), information represented by each model’s

respective sample space. We then condition on the data we

observe, which allows us to update each layer of the analysis

to account for the information gained. Below is a step-by-

step account of how this is done, but we remind readers that

they should feel free to skip this technical exposition and

jump right into the next examples.

We answer our questions in reverse order, first deriving

the posterior distribution of θ under M1, for a reason that

13Note that we will now be using probabilities and probability densi-
ties side-by-side. In general, if the event to which the measure applies
(i.e., what is to the left of the vertical bar) has a finite number of pos-
sible values, we will consider probabilities and use uppercase P(·) to
indicate that. If the event has an infinite number of possible values in
a continuum, we will consider probability densities and use lowercase
p(·). In the case of a joint event in which at least one component has
an infinite set of possibilities, the joint event will also have an infinite
set of possibilities and we will use probability densities there also.
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will become clear in a moment. In this setup there are events

that vary among three dimensions: X, θ , and M1. When

joint events have more than two components, the product

rule decomposes p(X, θ,M1) one component at a time to

create a chain of conditional probabilities and densities (for

this reason the product rule is also known as the chain rule).

This was seen above in Example 2. These chains can be

thought of as moving from one layer of Fig. 7 to the next.

Thus, since we could choose any one of the three events to

be factored out first, the product rule creates three possible

initial chains with two probabilities per chain,

p(X, θ,M1) = P(M1)p(X, θ |M1)

= P(X)p(θ,M1|X)

= p(θ)P (X,M1|θ).

(where the use of P(X) or p(X) depends on whether the

data are discrete or continuous; we assume they are discrete

here).

A natural choice is to work with the first formulation,

p(X, θ,M1) = P(M1)p(X, θ |M1), since P(M1) , the

prior probability of the model, is known to us (it corresponds

to the probability we take the right fork at the start of Fig. 7).

The product rule can then be applied again to the remaining

joint probability on the right-hand side as follows:

P(M1)×p(X, θ |M1) = P(M1)×P(X|M1)p(θ |X,M1),

(16)

By symmetry of the product rule, we can also write

P(M1)×p(X, θ |M1) = P(M1)×p(θ |M1)P (X|θ,M1).

(17)

If we now equate the right-hand sides of Eqs. 16 and 17, we

can divide out P(M1) and P(X|M1):

P(M1)P (X|M1)p(θ |X,M1) = P(M1)p(θ |M1)P (X|θ,M1)

p(θ |X,M1) = p(θ |M1)P (X|θ,M1)

P (X|M1)

and by recognizing that

P(X|M1) =
∫

�

p(θ |M1)P (X|M1, θ)dθ

by way of the sum rule, we are left with the following:

p(θ |X,M1) = p(θ |M1)P (X|θ,M1)
∫

�
p(θ |M1)P (X|θ,M1)dθ

. (18)

This last formula is identical to the continuous form of

Bayes’ Rule (10), where now each term is also conditional

on M1.

The implication of this finding is that it is possible to

perform inference using the distribution of θ under M1,

p(θ |X,M1), ignoring everything relating to other models,

since no other models (such as M0) feature in this calcula-

tion. As before, the denominator is known as the marginal

likelihood for M1, and represents a predictive distribution

for potential future data, P(X|M1). This predictive distri-

bution is shown in the sample space under M1 in Fig. 7,

and can be thought of as the average prediction made across

all possible parameter values in the model (weighted by the

conditional prior density). Once the data are collected and

the result is known, we can condition on the outcome and

use it to update p(θ |M1) to obtain p(θ |X,M1).

To answer our first question—what is P(M0|X)?—we

need to find our way back to the discrete form of Bayes’

Rule (7). Recall that for hypothesis testing the key terms to

find are P(X|M0) and P(X|M1), which can be interpreted

as how accurately each hypothesis predicts the observed

data in relation to the other. Since the parameter space under

M0 is simply θ = θ0, we can write P(X|M0) = P(X|θ0).

However, since the parameter space under M1 includes

a continuous distribution, we need to find M1’s aver-

age predictive success across the whole parameter space,

P(X|M1) =
∫

�
p(θ |M1)P (X|M1, θ)dθ . Conveniently,

as we just saw above in Eq. 18, this is also the normalizing

constant in the denominator of the posterior distribution of

θ under M1. Hence, the discrete form of Bayes’ Rule for

hypothesis testing can be rewritten as

P(M1|X) = P(M1)P (X|M1)

P (M1)P (X|M1) + P(M0)P (X|M0)

=
P(M1)

∫

�
p(θ |M1)P (X|θ,M1)dθ

P (M1)
∫

�
p(θ |M1)P (X|θ,M1)dθ + P(M0)P (X|θ0)

.

Furthermore, in cases of model comparison between a

“point null” (i.e., an hypothesis that, like our M0, involves

a prior point mass on some parameter) and an alternative

with a continuous prior for the parameter, one can rewrite

the odds form of Bayes’ Rule from Eq. 9 as follows:

P(M1|X)

P (M0|X)
︸ ︷︷ ︸

Posterior odds

= P(M1)

P (M0)
× P(X|M1)

P (X|M0)

= P(M1)

P (M0)
︸ ︷︷ ︸

Prior odds

×
∫

�
p(θ |M1)P (X|θ,M1)dθ

P (X|θ0)
︸ ︷︷ ︸

Bayes factor (BF10)

,

where the Bayes factor is the ratio of the marginal like-

lihoods from the two models, and its subscript indicates

which models are being compared (BF10 means M1 is in

the numerator versus M0 in the denominator).

Finally, we point out one specific application of Bayes’

rule that occurs when certain values of θ have a special

theoretical status. For example, if θ represents the differ-

ence between two conditions in an experiment, then the case

θ = 0 will often be of special interest (see also Rouder &
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Vandekerckhove, this issue). Dividing each side of Eq. 18 by

p(θ |M1) allows one to quantify the change in the density

at this point:

p(θ = 0|X,M1)

p(θ = 0|M1)
= P(X|θ = 0,M1)

∫

�
p(θ |M1)P (X|θ,M1)dθ

= BF01

This change in density is known as the Savage–Dickey den-

sity ratio or the Savage–Dickey representation of the Bayes

factor (Dickey, 1971; see also Wagenmakers, Lodewyckx,

Kuriyal, & Grasman, 2010, and Wagenmakers, Marsman,

et al., this issue; and see also Marin & Robert, 2010,

for some cautionary notes). When it applies, the Savage–

Dickey ratio allows for an especially intuitive interpretation

of the Bayes factor: If the point null value is lower on

the alternative model’s conditional posterior density than its

prior density, the Bayes factor supports M1 over M0 by the

ratio of their respective heights, and vice-versa.

The conditions under which the Savage–Dickey ratio

applies are typically met in practice, since they correspond

to the natural way one would build nested models for com-

parison (for a good discussion on the different types of

nested models see Consonni & Veronese, 2008, Section

2). Namely, that all facets of the models are the same

except that the smaller model fixes θ to be θ0. In our

development above there is only one parameter so this

condition is automatically satisfied. If, however, we have

additional parameters common to both models, say φ, then

the Savage-Dickey ratio is obtained using the marginal prior

and posterior densities, p(θ = θ0|X,M1)/p(θ = θ0|M1),

where the marginal distribution is found using the sum

rule, p(θ |X,M1) =
∫

�
p(φ, θ |X,M1)dφ. For this to be

a proper representation of the Bayes factor, we must ensure

that the conditional prior for φ under M1, when θ = θ0,

equals the prior density for φ under M0. In other terms, the

Savage-Dickey representation holds only if the parameters

are statistically independent a priori: p(φ|θ = θ0,M1) =
p(φ|M0).

Above, our motivation for model comparison was that we

wanted to test the hypothesis that a parameter took a single

specified value. However, model comparison is not limited

to cases where point nulls are tested. The above formula-

tion allows us to compare any number of different types of

models by finding the appropriate P(X|M). Models do not

need to be nested or even have similar functional forms; in

fact, the models need not be related in any other way than

that they make quantitative predictions about the data that

have been observed. For example, a non-nested comparison

might pit a model with a mostly positive prior distribution

for θ against a model where the support of the prior distribu-

tion for θ is restricted to negative values only. Or rather than

a precise point null we can easily adapt the null model such

that we instead compare M1 against model MS , which

says θ is “small.” Extending model comparison to the sce-

nario where there are more than two (but finitely many)

competing models Mk is similar to before, in that

P(Mi |X) = P(Mi)P (X|Mi)
∑

k P(Mk)P (X|Mk)
. (19)

In practice, Bayes factors can be difficult to compute for

more complicated models because one must integrate over

possibly very many parameters to obtain the marginal like-

lihood (Kass and Raftery, 1995; Wasserman, 2000). Recent

computational developments have made the computation of

Bayes factors more tractable, especially for common scenar-

ios (Wagenmakers, Love, et al., this issue; Wagenmakers,

Marsman, this issue). For uncommon or complex scenarios,

one might resort to reporting a different model compari-

son metric that does not rely on the marginal likelihood,

such as the various information criteria (AIC, BIC, DIC,

WAIC) or leave-one-out cross validation (LOOCV; see

Spiegelhalter, Best, Carlin, & van der Linde, 2002; Van-

dekerckhove, Matzke, & Wagenmakers, 2015; Vehtari &

Ojanen, 2012). However, it should be emphasized that for

the purposes of inference these alternative methods can be

suboptimal.

Example 5: “The French correction” Proud of his work

on Murtlap bite sensitivity, Newt Scamander (from Exam-

ple 4) decides to present his results at a conference on

magical zoology held in Carcassonne, France. As required

by the 1694 International Decree on the Right of Access

to Magical Research Results, he has made all his data and

methods publicly available ahead of time and he is confident

that his findings will withstand the review of the audience

at this annual meeting. He delivers a flawless presentation

that culminates in his conclusion that Muggles are, indeed,

slightly more sensitive to Murtlap bites than magical folk

are. The evidence, he claims, is right there in the data.

After his presentation, Scamander is approached by a

member of the audience—the famously critical high-born

wizard Jean-Marie le Cornichonesque—with a simple com-

ment on the work: “Monsieur, you have not told us the

evidence for your claim.”

“In fact,” continues le Cornichonesque, “given your prior

distributions for the difference between Muggles and mag-

ical folk, you have not even considered the possibility that

the true difference might be exactly zero, and your results

merely noise. In other words, you are putting the cart before

the horse because you estimate a population difference

before establishing that evidence for one exists. If I have

reservations about whether a basilisk even exists, it does not

help for you to give me an estimate for the length of the

creature’s tail! Instead, if you please, let us ascertain how

much more stock we should put in your claim over the more
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parsimonious claim of no difference between the respective

population means.”

Scamander is unfazed by the nobleman’s challenge, and,

with a flourish of his wand makes the following equations

appear in the air between them:

Ms : μ ∼ N(42, 6)

Mc : μ = 42

“These,” Scamander says, “are our respective hypotheses.

I claim that Muggles have different symptom durations on

average than wizards and witches. I have prior information

that completes my model. Your claim is that the population

means may be exactly equal. In order to quantify the rela-

tive support for each of these hypotheses, we need a Bayes

factor. Luckily, in this case the Bayes factor is quite easy to

calculate with the Savage-Dickey density ratio, like so. . .

p(μ|X,Ms)

p(μ|Ms)
= p(μ|X,Ms)

p(μ|Ms)

= N(μ|â, b̂2)

N(μ|a, b2)

“Now that we have derived the ratio of posterior to prior

density, all that remains is to plug in the values of the param-

eters and to compute the ratio of Gaussian densities at the

specified points...”

BFcs = N(42 | 42.9963, 0.36452)

N(42 | 42, 62)

= 0.0261

0.0665
= 0.3925 = 1

2.5475

“Tant pis. A Bayes factor of not even three favors

your hypothesis. You have essentially no evidence for your

claim,” snorts le Cornichonesque, before turning his back

and leaving Scamander alone in the conference room.

Discussion What has happened here? At first glance, it

appears that at first Scamander had strong evidence that

Muggles are more sensitive than magical folk to Murtlap

bites, and now through some sleight of hand his evidence

appears to have vanished. To resolve the paradox of le

Cornichonesque, it is important to appreciate a few facts.

First, in Example 4, Scamander indeed did not consider the

hypothesis Mc that μ = 42. In fact, because a continuous

prior density was assigned to μ, the prior probability of it

taking on any particular value is zero.

The paradox of le Cornichonesque occurs in part because

of a confusion between the hypotheses being considered.

While in our example, le Cornichonesque wishes to com-

pare an “existence” and a “nonexistence” hypothesis, Sca-

mander started out from an existence assumption and arrives

at conclusions about directionality (see also Marsman &

Wagenmakers, 2016).

Implicitly, there are four different models being consid-

ered in all. There is Mc, which specifies no effect, and

Ms , which specifies some effect, but also M−, which spec-

ifies an effect in the negative direction, and M+, which

specifies an effect in the positive direction. These last two

models are concealed by Scamander’s original analysis, but

his model specification implies a certain probability for the

events (μ < 42) and (μ > 42). Indeed, because we know

that the probability that Muggles are more (vs. less) sensi-

tive than their magical counterparts increased from P(μ >

2) = 50% to P(μ > 42|X) = 99.70%, we can compute

Bayes factors for this case as well. In odds notation, the prior

odds were increased from 1 to 333; the Bayes factor, found

by taking the ratio of posterior to prior odds, is in this case

equal to the posterior odds. Scamander’s test for direction

returns a much stronger result than le Cornichoneque’s test

of existence.

As a rule, inference must be limited to the hypothe-

ses under consideration: No method of inference can make

claims about theories not considered or ruled out a pri-

ori. Moreover, the answer we get naturally depends on the

question we ask. The example that follows involves a very

similar situation, but the risk of the paradox of le Cor-

nichonesque is avoided by making explicit all hypotheses

under consideration.

Example 6: “The measure of an elf” In the wizard-

ing world, the Ministry of Magic distinguishes between

two types of living creatures. Beings, such as witches,

wizards, and vampires, are creatures who have the intelli-

gence needed to understand laws and function in a peaceful

society. By contrast, Beasts are creatures such as trolls,

dragons, and grindylows, which do not have that capac-

ity. Recently, the classification of house-elves has become a

matter of contention. On one side of the debate is the pop-

ulist wizard and radio personality Edward Runcorn, who

claims that house-elves are so far beneath wizard intelli-

gence that they should be classified as Beasts; on the other

side is the famed elfish philosopher and acclaimed author

Doc, who argues that elves are as intelligent as wizards

and should be classified as Beings, with all the rights and

responsibilities thereof. The Ministry of Magic decides to

investigate and convene the Wizengamot’s Internal Sub-

committee on House Elf Status (W.I.S.H.E.S.), an ad-hoc

expert committee. W.I.S.H.E.S. in turn calls on psycho-

metrician Dr. Karin Bones of the Magical Testing Service

to decide whether house-elves are indeed as intelligent as

wizards.

Bones knows she will be asked to testify before

W.I.S.H.E.S. and takes note of the composition of the

three-member committee. The committee’s chairperson is
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Griselda Marchbanks, a venerable and wise witch who is

known for her impartiality and for being of open mind to all

eventualities. However, the junior members of W.I.S.H.E.S.

are not so impartial: one member is Edward Runcorn, the

magical supremacist who believes that wizards and witches

are more intelligent than house elves; the other is Hermione

Granger, a strong egalitarian who believes that house elves

are equal in intelligence to wizards and witches.

Bones begins her task by formalizing three basic

hypotheses. She will call the population’s average wizard-

ing intelligence quotient (WIQ) μw for wizards and witches

and μe for elves. She can now call the difference between

the population means δ = μw − μe so that δ captures

how much more intelligent magical folk are. If wizards and

elves are equally intelligent, δ = 0. If they are not, δ can

take on nonzero values. We can restate this as an hypoth-

esis of approximately no difference (M0), an hypothesis

of substantial positive difference (M+; magical folk much

more intelligent than elves), and an hypothesis of substan-

tial negative difference (M−; elves much more intelligent

than magical folk):

M0 : δ ≈ 0

M+ : δ > 0

M− : δ < 0.

However, it is not enough to state simply that δ < 0 because

as a model for data, it is underspecified: no quantitative pre-

dictions follow (i.e., the likelihood for a specific data set

cannot be calculated). In order to be more specific, Bones

consults with W.I.S.H.E.S. and together they decide on three

concrete models:14

p(δ|M0) = I (−5 < δ < 5)/10 if − 5 < δ < 5

p(δ|M+) = 2N(δ|5, 15)I (δ > 5) if δ > 5

p(δ|M−) = 2N(δ| − 5, 15)I (δ < −5) if δ < −5.

M0 is the assumption that the true difference δ is some-

where between −5 and 5 with all values equally likely—a

uniform distribution. This is based on a consensus among

W.I.S.H.E.S. that differences of only five WIQ points are

negligible for the Ministry’s classification purposes: differ-

ences in this range are practically equivalent to zero. Under

M+, it is assumed that wizards score at least 5 points higher

than elves on average (δ > 5) but differences of 20 are

not unexpected and differences of 40 possible, if unlikely.

Under M−, it is assumed that wizards score at least 5 points

lower than elves (δ < −5).

After having determined the three hypotheses that

W.I.S.H.E.S. wishes to consider, Bones decides to collect

14I (·) is the indicator function, which takes the value 1 if its argument
is true and 0 otherwise; here it takes the role of a truncation. Since
these distributions are truncated, they must be multiplied by a suitable
constant such that they integrate to 1 (i.e., we renormalize them to be
proper distributions).

one more piece of information: how strongly each member

of the committee believes in each of the three options. She

provides each member with 100 tokens and three cups, and

gives them the following instructions:

I would like you to distribute these 100 tokens over

these three cups. The first cup represents M−, the

second M0, and the third M+. You should distribute

them proportionally to how strongly you believe in

each hypothesis.

Marchbanks’ inferred prior probabilities of each of the three

hypotheses are (25, 50, 25), Granger’s are (15, 70, 15),

and Runcorn’s are (5, 15, 80). This type of procedure is

known as prior elicitation; for more in-depth discussion on

prior elicitation, see Garthwaite et al. (2005) and Lee and

Vanpaemel (this issue).

To summarize the different prior expectations, Bones

constructs a figure to display the marginal distribution of

the effect size δ for each committee member. This marginal

prior density is easily obtained with the sum rule:

p(δ) =
∑

h∈(M−,M0,M+)

p(h)p(δ|h)

= p(M−)p(δ|M−) + p(M0)p(δ|M0) + p(M+)p(δ|M+).

Figure 6 shows the resulting distribution for each of the

committee members. These graphs serve to illustrate the rel-

ative support each committee member’s prior gives to each

possible population difference.

Using a well-calibrated test, Bones sets out to gather a

sample of n1 = 100 magical folk and n2 = 100 house-

elves, and obtains WIQ scores of Mw = 99.00 for wizards

and witches and Me = 101.00 for elves, giving a sample

difference of d = −2.00. The test is calibrated such that

the standard deviation for magical folk and elves are both

equal to 15: σw = σe = 15.00, which in turn gives a stan-

dard deviation for their difference δ of σδ =
√

152 + 152 =
21.21. Therefore, the standard error of measurement is se =
21.21/

√
n1 + n2 = 1.50 and the likelihood function to use

is now N
(

d|δ, s2
e

)

= N
(

−2|δ, 1.52
)

.

To address the committee’s question, Bones can now use

Eq. 19 to obtain the posterior probability of each model:

P(Mi |d) = p(Mi)p(d|Mi)

P (M0)p(d|M0) + P(M−)p(d|M−) + P(M+)p(d|M+)
.

For this, she needs to compute the three marginal likelihoods

p(d|M0), p(d|M−), and p(d|M+), which are obtained

with the continuous sum rule. For the case of M0, the
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Fig. 6 Left: Each of the three panel members has their own prior
probability on each of the three possible models M−, M0, and M+.
In this scenario, the three models do not overlap in the parameter
space: no parameter value is supported by more than one model. How-
ever, this is merely a convenient feature of this example and not a
requirement of Bayesian model selection—it is entirely possible (and
common) for two different models to support the same parameter
value. Right: The predicted observed difference in a sample with a
standard error of estimation of 1.5. Here, the predictive distribution for

each model has been multiplied by the prior probability for that model.
This representation has the interesting property that the posterior ratio
between two models, given some observed difference, can be read
from the figure as the ratio between the heights of the two correspond-
ing densities. Note, for example, that at the dashed vertical line (where
d = −2), the posterior probability for M0 is higher than that for M−
or M+ for every judge. If the distributions had not been scaled by the
prior probability, these height ratios would give the Bayes factor

marginal likelihood can be worked out by hand in a few

steps:15

p(d|M0) =
∫




p(δ|M0) × p(d|δ,M0)dδ

=
∫




1

10
I (−5 < δ < 5) × N(d|δ, s2

e )dδ

= 1

10

∫ 5

−5

N(d|δ, s2
e )dδ

= 1

10

[

�(2| − 5, 1.52) − �(2|5, 1.52)
]

= 9.772 × 10−2

15Bones’ derivation makes use of the fact that the identity function
I (·) can be factored out of the integrand if the integration bounds are
accordingly limited to the region where the argument is true. This fact
is used in moving from the second step to the third.

For the cases of M+ and M−, the derivation is much more

tedious. It can be done by hand by making use of the fact

that the product of two normal distributions has a closed-

form solution. However, a numerical approximation can be

very conveniently performed with standard computational

software or—at the Ministry of Magic—a simple numerical

integration spell.16 For this particular task, Dr. Bones arrives

at p(d|M+)=8.139×10−8 and p(d|M−) = 1.209×10−3.

Bones now has all that she needs to compute the poste-

rior probabilities of each hypothesis and for each committee

member. The prior and posterior probabilities are given in

Table 3. As it turns out, the data that Bones has available

should effectively overwhelm each of the three members’

16Some popular non-magical options include MATLAB (The Math-
works, Inc., 2015) and R (R Development Core Team, 2004), or
readers can use www.wolframalpha.com. MATLAB and R code for
this example is available on the OSF repository (https://osf.io/wskex/)
and in the Appendix.

www.wolframalpha.com
https://osf.io/wskex/
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Table 3 Prior and posterior probabilities for each hypothesis and each
committee member

Marchbanks Granger Runcorn

P(M−) .250 .150 .050

P(M0) .500 .700 .150

P(M+) .250 .150 .800

P(“Being”) .750 .850 .200

P(M−|d) .006 .003 .012

P(M0|d) .994 .997 .988

P(M+|d) .000 .000 .000

P(“Being” | d) 1.000 1.000 1.000

Probabilities are updated with Eq. 19. The fourth row in each half of
the table serves to emphasize that, for the purposes of the committee,
P(M−) and P(M0) constitute a single category since they both lead
to the classification of “Being” rather than “Beast.” Thus, we consider
P(“Being”) = P(M−) + P(M0)

prior probabilities and put the bulk of the posterior proba-

bility on M0 for each member. Counting on the ability of

each committee member to rationally update their beliefs,

she prepares a concise presentation in which she lays out a

confident case for elf equality and “Being” status.

Discussion Probability theory allows model comparison in

a wide variety of scenarios. In this example the psycho-

metrician deals with a set of three distinct models, each

of which was constructed ad hoc—custom-built to capture

the psychological intuition of the researcher (and a review

panel). Once the models were built, the researcher had only

to “turn the crank” of probabilistic inference and poste-

rior probabilities are obtained through standard mechanisms

that rely on little other than the sum and product rules of

probability. As this example illustrates, the practical com-

putation of posterior probabilities will often rely on calculus

or numerical integration methods; several papers in this

special issue deal with computational software that is avail-

able (Wagenmakers, Love, et al., this issue; Matzke et al.,

this issue; Van Ravenzwaaij et al., this issue; Wagenmakers,

Marsman, et al., this issue).

An interesting aspect to this example is the fact that the

analyst is asked to communicate to a diverse audience: three

judges who hold different prior notions about the crucial

hypotheses. That is, they hold different notions on the prior

probability that each hypothesis is true. They happen to

agree on the prior distribution of the δ parameter under each

hypothesis (but we made that simplification only for ease of

exposition; it is not a requirement of the method). This is

comparable to the situation in which most researchers find

themselves: there is one data set that brings evidence, but

there are many—possibly diverse—prior notions. Given that

prior probabilities must be subjective, how can researchers

hope to reasonably communicate their results if they can

only report their own subjective knowledge?

One potential strategy is the one employed by the psy-

chometrician in the example. The strategy relies on the

realization that we can compute posterior probabilities for

any rational person as soon as we know their prior probabil-

ities. Because the psychometrician had access to the prior

probabilities held by each judge, she was able to determine

whether her evidence would be compelling to this particular

audience.

Social scientists who present evidence to a broad audi-

ence can take a similar approach by formulating multiple

prior distributions – for example, some informative priors

motivated by theory, some priors that are uninformative or

indifferent in some ways, and some priors that might be

held by a skeptic. Such a practice would be a form of sen-

sitivity analysis or robustness analysis. If the data available

are sufficiently strong that skeptics of all camps must ratio-

nally come to the same conclusion, then concerns regarding

the choice of priors are largely alleviated. This was the

case above, where Marchbanks, Granger, and Runcorn all

were left with a greater than 98% posterior probability for

the model specifying elf equality despite their wide-ranging

prior probabilities.

Of course, data is often noisy and the evidence may in

many cases not be sufficient to convince the strongest skep-

tics. In such cases, collecting further data may be useful.

Otherwise, the researcher can transparently acknowledge

that reasonable people could reasonably come to different

conclusions.

An alternative option is to report the evidence in iso-

lation. Especially when the ultimate claim is binary—a

discrimination between two models—one might report only

the amount of discriminating evidence for or against a

model. By reporting only the amount of evidence, in the

form of a Bayes factor, every individual reader can com-

bine that evidence with their own prior and form their own

conclusions. This is now a widely-recommended approach

(e.g., Wagenmakers, Marsman, et al., this issue; but see

Robert, 2016, for words of caution; and see Kruschke &

Liddell, this issue, for a discussion of scenarios in which the

Bayes factor should not be the final step of an analysis) that

is taken in the final example.

Example 7: “Luck of the Irish” Every four years, the wiz-

arding world organizes the most exhilarating sporting event

on earth: the Quidditch World Cup. However, the Cup is

often a source of controversy. In a recent edition, aspersions

were cast on the uncommonly strong showing by the Irish

team: An accusation was brought that the Irish players were

dosed with a curious potion called felix felicis, which gives

an individual an extraordinary amount of “dumb luck.”
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At the Ministry of Magic’s Department for International

Magical Cooperation—who oversee the event and have

decided to investigate the doping claims—junior statistician

Angelina Johnson noticed that the Irish team had another

striking piece of good luck: in each of the four games, the

Irish team captain won the coin toss that allows them to

choose in which direction to play. From these data, Johnson

reasons as follows.

If the coin is fair, and there is no cheating, then the Irish

team captain should win the toss with 50% probability on

each occasion (M0 : θ = θ0 = 0.5). However, if the captain

has taken felix felicis, they should win with a higher, but

unknown probability (MJ : θ > 0.5). Johnson then sets

out to determine whether this small amount of data (k = 4

wins in N = 4 games) contains enough evidence to warrant

strong suspicions.

The discriminating evidence is given by the Bayes factor,

BFJ0 = P(k|MJ )/P (k|M0), where the marginal likeli-

hoods (with capital P(·) since number of wins are discrete)

can be calculated one model at a time. Since the outcomes

of the four coin tosses are assumed independent given θ , the

probability of k successes in any sequence of length N is

given by the binomial distribution:
(
N
k

)

θk(1−θ)N−k , where

the binomial coefficient
(
N
k

)

is the number of ways N items

can arrange themselves in groups of size k (e.g., four items

can be arranged into a group of four exactly one way). Thus,

for M0,

P(k|M0) =
(

4

4

)

0.54 × 0.50

= 1

24
= 1

16
.

For MJ , Johnson needs to express her prior knowledge of

the parameter θ . Since she knows very little about the potion

felix felicis, she takes all values between 0.5 and 1.0 to be

equally plausible, so that P(θ |MJ ) = 2I (0.5 < θ < 1.0).

The shape of this prior density is depicted in the left half of

Fig. 7. Hence,

P(k|MJ ) =
∫

�

p(θ |MJ ) × P(k|θ,MJ )dθ

=
∫

�

2I (0.5 < θ < 1.0) ×
(

4

4

)

θ4 (1 − θ)0 dθ

= 2

∫ 1.0

0.5

θ4dθ

= 2

[
θ5

5

]1.0

0.5

= 2

5

(

15 − 0.55
)

= 31

80

Thus, the data are implied (31/80) / (1/16) = 6.2 times

more strongly by MJ than by M0 (i.e., BFJ0 = 6.2). John-

son concludes that these data afford only a modest amount

of evidence—certainly not enough evidence to support

a controversial and consequential recommendation—and

decides to return to tallying quidditch-related nose fractures

instead.

Example 7b: “Luck of the Irish — Part 2” As might

be expected, the Irish quidditch controversy did not fail

to pique interest throughout the wizarding world. Indepen-

dently of the Ministry statistician, Barnabas Cuffe, Editor-

in-Chief of the Daily Prophet—England’s premier magical

newspaper—had noticed the same peculiar luck in the Irish

team’s pregame coin tosses. In the editor’s case, however,

attention to the coin tosses was not a coincidence – in

fact, “liquid luck” had helped him win a few career-saving

coin tosses in a mildly embarrassing part of his journalistic

past.

Cuffe’s experience with felix felicis is straightforward: on

11 different occasions did he sip the potion just before a coin

toss would decide which of two journalistic leads he would

pursue that day—his colleague would pursue the other. He

recalls clearly that on each of the 11 occasions, his leads

carried him in the thick of dramatic, newsworthy events

while his colleague’s leads turned out dead ends. Cuffe was

promoted; his colleague dismissed.

As it happens, Cuffe is an accomplished statistician, and

he reasons in much the same way as Angelina Johnson (the

junior statistician at the Ministry). If there is no cheating the

winning probability should be 50% each time (M0 : θ =
0.5). If there is cheating, the winning probability should be

higher. In contrast to Johnson, however, Cuffe has a good

idea how much higher the winning probability θ will be

with felix felicis: before evaluating the Irish captain’s luck

he can estimate θ from additional information y that only he

possesses.

Cuffe starts by writing down Eq. 10 and filling in the

quantities on the right-hand side. Among these is the prior

density p(θ), which gives the density at each possible value

of θ before considering his own 11 winning coin tosses y.

A reasonable place to start (as before) is that all values

between 0.5 and 1.0 are equally plausible: p(θ) = 2I (0.5 <

θ < 1.0) = 2Iθ (where we introduce Iθ as a shorthand for

I (0.5 < θ < 1.0), the appropriate indicator function). He

also uses the same binomial likelihood function as Johnson,

hence,

p(θ |y) = p(θ) × p(y|θ)
∫

�
p(θ) × p(y|θ)dθ

=
2Iθ ×

(11
11

)

θ11(1 − θ)0

∫

�
2Iθ ×

(11
11

)

θ11(1 − θ)0dθ
= 2Iθ × θ11

2
∫ 1.0

0.5 θ11dθ

= Iθ × θ11

[
θ12

12

]1.0

0.5

= Iθ × θ11

1
12

(

1.012 − 0.512
) ≈ 12θ11Iθ
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Fig. 7 The structure of Johnson and Cuffe’s models, which can be
viewed as more complex (rotated) versions of earlier path diagrams.
Top: The model space shows the contending models. In this case, both
Johnson and Cuffe are comparing two models. The prior probabili-
ties for the models are left unspecified. Middle: The parameter space
shows what each model predicts about the true value of θ (i.e., each
model’s conditional prior distribution). Johnson and Cuffe both use a
point null model, which packs all of its mass into a single point (shown
as the arrow spiking at θ = .5). However, they have different back-
ground knowledge about felix felicis, so their prior distributions for

θ under their respective alternative model differ. Note that p(θ |MC)

is obtained from updating p(θ |MJ ) with 11 additional felix felicis

successes. Bottom: The sample space shows what each model pre-
dicts about the data to be observed (i.e., each model’s prior predictive
distribution). The Bayes factor is formed by taking the ratio of the
probability each model attached to the observed data, which was four
wins in four coin tosses. Since the predictions from the null model are
identical for Cuffe and Johnson, the difference in their Bayes factors is
due to the higher marginal likelihood Cuffe’s alternative model placed
on the Irish captain winning all four coin tosses

This calculation17 yields Cuffe’s posterior density of

the winning probability θ , which captures his knowledge

and uncertainty of the value of θ under luck doping. The

shape of this density function is depicted in the right half

of Fig. 7. Crucially, Cuffe can use this knowledge to per-

form the same analysis as the Ministry statistician with only

one difference: yesterday’s posterior p(θ |y) is today’s prior

p(θ |MC). The fact that the latter notation of the prior does

not include mention of y serves to illustrate that densities

and probabilities are often implicitly conditional on (some-

times informal) background knowledge. Note, for instance,

that the entire calculation above assumes that felix felicis

was taken, but this is not made explicit in the mathematical

notation.

Unknowingly repeating Johnson’s calculation, Cuffe

finds that the probability of the Irish team captain’s k = 4

17Note that here and below, we make use of a convenient approxima-
tion: 0.5k ≈ 0 for large values of k. Making the calculation exact is not
difficult but requires a rather unpleasant amount of space. Also note
that the indicator function from the prior density carries over to the
posterior density.

winning coin tosses assuming no luck doping is again

p(k|M0) = 1/16. His calculation for the probability of the

k = 4 wins assuming luck doping is

P(k|MC) =
∫

�

p(θ |MC) × p(k|θ,MC)dθ

≈
∫ 1.0

0.5

12θ11Iθ ×
(

4

4

)

θ4 (1 − θ)0 dθ

= 12

[
θ16

16

]1.0

0.5

= 12

16

(

116 − 0.516
)

≈ 12

16

To complete his analysis, Cuffe takes the ratio of marginal

likelihoods, BFC0 = P(k|MC)/P (k|M0) ≈ 12, which is

strong—but not very strong—evidence in favor of Cuffe’s

luck doping model.

Inspired partly by the evidence and partly by the reck-

lessness that follows from years of felix felicis abuse, editor

Cuffe decides to publish an elaborate exposé condemning

both the Irish quidditch team for cheating and the Ministry

of Magic for failing to act on strong evidence of misconduct.
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Discussion This final, two-part example served mostly to

illustrate the effects of prior knowledge on inference. This

is somewhat in contrast to Example 6, where the prior infor-

mation was overwhelmed by the data. In the two scenarios

here, the Ministry junior statistician and the Prophet editor

are both evaluating evidence that discriminates between two

models. Both consider a “nil model” in which all parameters

are known (the fairness of a coin implies that the parameter

θ must be 0.5), but they critically differ in their definition of

the alternative model. The Ministry statistician, having no

particular knowledge of the luck doping potion, considers

all better-than-chance values equally plausible, whereas the

Prophet editor can quantify and insert relevant prior infor-

mation that specifies the expected effects of the drug in

question to greater precision.

As illustrated in the bottom row of Fig. 7, these three

models (the chance model M0, the Ministry model MJ ,

and the Prophet model MC) make distinct predictions: M0

predicts a distribution of Irish coin toss wins that is symmet-

ric about k = 2; MJ predicts a right-leaning distribution

with a greater probability of four Irish wins; and MC pre-

dicts an even greater such probability. More specifically, the

marginal likelihoods are P(k|M0) = 5/80, P(k|MJ ) =
31/80, and P(k|MC) ≈ 60/80, and the Bayes factor

between any two of these models is given by forming the

appropriate ratio.

This example illustrates a general property in Bayesian

model comparison: A model that makes precise predictions

can be confirmed to a much stronger extent than a model

that makes vague predictions, while at the same time the

precision of its predictions makes it easier to disconfirm.

The reason Cuffe was able to obtain a higher Bayes fac-

tor than Johnson is because his alternative model made

much more precise predictions; MC packed three-quarters

of its prior predictive distribution into k = 4, whereas MJ

spread its probability more broadly among the potential out-

comes. Since Cuffe’s precise prediction was correct, he was

rewarded with a larger Bayes factor. However, Cuffe’s pre-

diction was risky: if the Irish captain had won any fewer

than all four coin tosses, M0 would have been supported

over MC . In contrast, the Bayes factor would still favor

MJ when k = 3 because Johnson’s model is more conser-

vative in its predictions. In sum, the ability to incorporate

meaningful theoretical information in the form of a prior

distribution allows for more informed predictions and hence

more efficient inferences (Lee & Vanpaemel, this issue).

Broader appeal and advantages of Bayesian

inference

The Bayesian approach is a common sense approach.

It is simply a set of techniques for orderly expression

and revision of your opinions with due regard for inter-

nal consistency among their various aspects and for

the data.

W. Edwards et al. (1963)

In our opinion, the greatest theoretical advantage of

Bayesian inference is that it unifies all statistical practices

within the consistent formal system of probability theory.

Indeed, the unifying framework of Bayesian inference is so

uniquely well suited for scientific inference that these authors

see the two as synonymous. Inference is the process of com-

bining multiple sources of information into one, and the rules

for formally combining information derive from two sim-

ple rules of probability. Inference can be as straightforward

as determining the event of interest (in our notation, usually

M or θ ) and the relevant data and then exploring what the

sum and product rules tell us about their relationship.

As we have illustrated, common statistical applications

such as parameter estimation and hypothesis testing nat-

urally emerge from the sum and product rules. However,

these rules allow us to do much more, such as make precise

quantitative predictions about future data. This intuitive way

of making predictions can be particularly informative in dis-

cussions about what one should expect in future studies –

it is perhaps especially useful for predicting and evaluating

the outcome of a replication attempt, since we can derive

a set of new predictions after accounting for the results of

the original study (e.g., Verhagen & Wagenmakers, 2014;

Wagenmakers, Verhagen, & Ly, 2016).

The practical advantages of using probability theory as

the basis of scientific and statistical inference are legion.

One of the most appealing in our opinion is it allows us to

make probabilistic statements about the quantities of actual

interest, such as “There is a 90% probability the participants

are guessing,” or “The probability is .5 that the population

mean is negative.” It also allows us to construct hierar-

chical models that more accurately capture the structure

of our data, which often includes modeling theoretically-

meaningful variability at the participant, task, item, or stim-

ulus level (Gelman and Hill, 2007; Lee & Wagenmakers,

2013; Rouder et al., in press).

Bayesian inference also gracefully handles so-called nui-

sance parameters. In most of our present examples there

has been only a single quantity of interest—in order to help

keep the examples simple and easy to follow. In real appli-

cations, however, there are typically many parameters in a

statistical model, some of which we care about and some

of which we do not. The latter are called nuisance parame-

ters because we have little interest in them: we only estimate

them out of necessity. For example, if we were estimat-

ing the mean of a normal distribution (as in Example 4)

and did not know the population standard deviation, then

we would have to assign it a prior density, such that the

overall prior density would be of the form p(μ, σ); after
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collecting data X, the posterior density would be of the

form p(μ, σ |X). Since we are generally only interested in

the parameter μ, estimating σ out of necessity, σ is con-

sidered a nuisance parameter. To make inferences about μ

we merely integrate out σ from the posterior density using

the sum rule: p(μ|X) =
∫

�
p(μ, σ |X)dσ , from which we

can do inference about μ. Similarly, in Examples 7 and 7b,

the exact win rate from a luck-doped coin toss is not of

primary interest, only whether the coin tossed in the four

games was plausibly fair or not. Here, the bias parameter

of the coin can be seen as a nuisance parameter. Dealing

with nuisance parameters in a principled way is a unique

advantage of the Bayesian framework: except for certain

special cases, frequentist inference can become paralyzed

by nuisance parameters.

The ability of Bayesian inference to deal with nuisance

parameters also allows it to flexibly handle one of the

biggest statistical challenges for data analysts: situations in

which the assumptions of the statistical model regarding the

data are badly violated. For example, one of the most com-

mon assumptions violated is that of normality (e.g., due

to the presence of many outliers). In technical terms, this

means that we may not think the normal likelihood function

adequately characterizes the data-generating mechanism for

the inference problem at hand. In Bayesian inference the

choice of likelihood is important because, as we have seen

in the estimation examples above, with even moderate sam-

ples sizes the likelihood quickly begins to dominate the prior

densities. To resolve this issue, a Bayesian can construct two

models: one that uses a normal likelihood function (model

MN ), and one that uses a likelihood function with wider

tails (model MW ), such as a t distribution with few degrees

of freedom. After collecting data we then have a posterior

distribution for the parameters of interest for each model,

p(θ |X,MN ) and p(θ |X,MW ). If we assign prior proba-

bilities to these two models (we emphasize that a “model”

consists of both a prior distribution for the parameters and

a likelihood function for the data), P(MN ) and P(MW ),

we can calculate their posterior probabilities P(MN |X) and

P(MW |X). We are then in a position to use the sum rule

to marginalize over the different models (as Dr. Bones did

with the various prior densities in Example 6), allowing us

to find the model-averaged posterior density for θ ,

p(θ |X) = P(MN |X)p(θ |X,MN ) + P(MW |X)p(θ |X,MW ).

Note that model averaging is in a sense the flip-side

of model selection: In model selection, the identity of the

model is central while the model parameters are some-

times seen as nuisance variables to be integrated away. By

contrast, in the previous equation the model identities are

treated as nuisance variables while the shared model parameters

remain central (see Roberts, 1965; Etz & Wagenmakers,

in press). The flexibility to perform model averaging across

any variable we care to name (e.g., Hoeting, Madigan,

Raftery, & Volinsky, 1999; Link & Barker, 2009) is a unique

advantage of Bayesian inference.

Finally, Bayesian analysis allows for immense freedom

in data collection because it respects the likelihood prin-

ciple (Berger & Wolpert, 1988). The likelihood principle

states that the likelihood function of the data contains all of

the information relevant to the evaluation of statistical evi-

dence. What this implies is that other properties of the data

or experiment that do not factor into the likelihood function

are irrelevant to the statistical inference based on the data

(Lindley, 1993; Royall, 1997). Adherence to the likelihood

principle means that one is free to do analyses without need-

ing to adhere to rigid sampling plans, or even have any plan

at all (Rouder, 2014). Note that we did not consider the sam-

pling plan in any of our examples above, and none of the

inferences we made would have changed if we had. Within a

Bayesian analysis, “It is entirely appropriate to collect data

until a point has been proven or disproven, or until the data

collector runs out of time, money, or patience” (Edwards

et al., 1963, p. 193).

Conclusions

We believe that Bayes’ theorem is not only useful, but

in fact leads to the only correct formulas for solving a

large number of our cryptanalytic problems.

F. T. Leahy (1960) [emphasis original]

The goal of this introduction has been to familiarize the

reader with the fundamental principles of Bayesian

inference. Other contributions in this special issue (Dienes

and McLatchie, this issue; Kruschke & Liddell, this issue)

focus on why and how Bayesian methods are preferable

to the methods proposed in the New Statistics (Cumming,

2014). The Bayesian approach to all inferential problems

follows from two simple formal laws: the sum and prod-

uct rules of probability. Taken together and in their various

forms, these two rules make up the entirety of Bayesian

inference—from testing simple hypotheses and estimating

parameters, to comparing complex models and producing

quantitative predictions.

The Bayesian method is unmatched in its flexibility, is

rooted in relatively straightforward calculus, and uniquely

allows researchers to make statements about the relative

probability of theories and parameters – and to update

those statements with more data. That is, the laws of prob-

ability show us how our scientific opinions can evolve

to cohere with the results of our empirical investigations.

For these reasons, we recommend that social scientists

adopt Bayesian methods rather than the New Statistics, and

we hope that the present introduction will contribute to

deterring the field from taking an evolutionary step in the

wrong direction.
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Appendix: Computer code for “The measure

of an elf”

MATLAB/Octave users who do not have access to the Statistics Tool-
box can add on line 6:
normpdf = @(x,m,s) exp(-((x-m)./s).ˆ2/2)./sqrt(2.*s.ˆ2.*pi);
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