Introduction to Classical Integrable Systems

OLIVIER BABELON

Laboratoire de Physique Théorique et Hautes Energies, Universités Paris VI-VII

DENIS BERNARD Service de Physique Théorique de Saclay, Gif-sur-Yvette

MICHEL TALON Laboratoire de Physique Théorique et Hautes Energies, Universités Paris VI–VII

PUBLISHED BY THE PRESS SYNDICATE OF THE UNIVERSITY OF CAMBRIDGE The Pitt Building, Trumpington Street, Cambridge, United Kingdom

CAMBRIDGE UNIVERSITY PRESS The Edinburgh Building, Cambridge CB2 2RU, UK 40 West 20th Street, New York, NY 10011-4211, USA 477 Williamstown Road, Port Melbourne, VIC 3207, Australia Ruiz de Alarcón 13, 28014 Madrid, Spain Dock House, The Waterfront, Cape Town 8001, South Africa

http://www.cambridge.org

© O. Babelon, D. Bernard & M. Talon 2003

This book is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2003

A catalogue record for this book is available from the British Library

Library of Congress Cataloguing in Publication data

Babelon, Olivier, 1951–

Introduction to classical integrable systems / Olivier Babelon, Denis Bernard, Michel Talon. p. cm. – (Cambridge monographs on mathematical physics)

Includes bibliographical references and index.

ISBN 0 521 82267 X

1. Dynamics. 2. Hamiltonian systems. I. Bernard, Denis, 1961-

II. Talon, Michel, 1952– III. Title. IV. Series. QA845 .B32 2003

531'.163-dc21 2002034955

ISBN 0 521 82267 X hardback

Contents

1	Introduction	1
2	Integrable dynamical systems	5
2.1	Introduction	5
2.2	The Liouville theorem	7
2.3	Action–angle variables	10
2.4	Lax pairs	11
2.5	Existence of an r -matrix	13
2.6	Commuting flows	17
2.7	The Kepler problem	17
2.8	The Euler top	19
2.9	The Lagrange top	20
2.10	The Kowalevski top	22
2.11	The Neumann model	23
2.12	Geodesics on an ellipsoid	25
2.13	Separation of variables in the Neumann model	27
3	Synopsis of integrable systems	32
3.1	Examples of Lax pairs with spectral parameter	33
3.2	The Zakharov–Shabat construction	35
3.3	Coadjoint orbits and Hamiltonian formalism	41
3.4	Elementary flows and wave function	49
3.5	Factorization problem	54
3.6	Tau-functions	59
3.7	Integrable field theories and monodromy matrix	62
3.8	Abelianization	65
3.9	Poisson brackets of the monodromy matrix	72
3.10	The group of dressing transformations	74

Con	ten	nte
C0n	ien	us

3.11	Soliton solutions	79
4	Algebraic methods	86
4.1	The classical and modified Yang–Baxter equations	86
4.2	Algebraic meaning of the classical Yang–Baxter equations	89
4.3	Adler–Kostant–Symes scheme	92
4.4	Construction of integrable systems	94
4.5	Solving by factorization	96
4.6	The open Toda chain	97
4.7	The r -matrix of the Toda models	100
4.8	Solution of the open Toda chain	105
4.9	Toda system and Hamiltonian reduction	109
4.10	The Lax pair of the Kowalevski top	115
5	Analytical methods	124
5.1	The spectral curve	125
5.2	The eigenvector bundle	130
5.3	The adjoint linear system	138
5.4	Time evolution	142
5.5	Theta-functions formulae	145
5.6	Baker–Akhiezer functions	149
5.7	Linearization and the factorization problem	153
5.8	Tau-functions	154
5.9	Symplectic form	156
5.10	Separation of variables and the spectral curve	162
5.11	Action–angle variables	164
5.12	Riemann surfaces and integrability	167
5.13	The Kowalevski top	169
5.14	Infinite-dimensional systems	175
6	The closed Toda chain	178
6.1	The model	178
6.2	The spectral curve	181
6.3	The eigenvectors	182
6.4	Reconstruction formula	184
6.5	Symplectic structure	191
6.6	The Sklyanin approach	193
6.7	The Poisson brackets	196
6.8	Reality conditions	200
7	The Calogero–Moser model	206
7.1	The spin Calogero–Moser model	206

viii

7.2	Lax pair	208
7.3	The <i>r</i> -matrix	210
7.4	The scalar Calogero–Moser model	214
7.5	The spectral curve	216
7.6	The eigenvector bundle	218
7.7	Time evolution	220
7.8	Reconstruction formulae	221
7.9	Symplectic structure	223
7.10	Poles systems and double-Bloch condition	226
7.11	Hitchin systems	232
7.12	Examples of Hitchin systems	239
7.13	The trigonometric Calogero–Moser model	244
8	Isomonodromic deformations	249
8.1	Introduction	249
8.2	Monodromy data	251
8.3	Isomonodromy and the Riemann–Hilbert problem	262
8.4	Isomonodromic deformations	264
8.5	Schlesinger transformations	270
8.6	Tau-functions	272
8.7	Ricatti equation	277
8.8	Sato's formula	278
8.9	The Hirota equations	280
8.10	Tau-functions and theta-functions	282
8.11	The Painlevé equations	290
9	Grassmannian and integrable hierarchies	299
9.1	Introduction	299
9.2	Fermions and $GL(\infty)$	303
9.3	Boson–fermion correspondence	308
9.4	Tau-functions and Hirota bilinear identities	311
9.5	The KP hierarchy and its soliton solutions	314
9.6	Fermions and Grassmannians	316
9.7	Schur polynomials	322
9.8	From fermions to pseudo-differential operators	328
9.9	The Segal–Wilson approach	331
10	The KP hierarchy	338
10.1	The algebra of pseudo-differential operators	338
10.2	The KP hierarchy	341
10.3	The Baker–Akhiezer function of KP	344
10.4	Algebro-geometric solutions of KP	348

ix

10.5	The tau-function of KP	352
10.6	The generalized KdV equations	355
10.7	KdV Hamiltonian structures	359
10.8	Bihamiltonian structure	363
10.9	The Drinfeld–Sokolov reduction	364
10.10	Whitham equations	370
	Solution of the Whitham equations	379
11	The KdV hierarchy	382
11.1	The KdV equation	382
11.2	The KdV hierarchy	386
11.3	Hamiltonian structures and Virasoro algebra	392
11.4		394
11.5	Algebro-geometric solutions	398
11.6		408
11.7	Action-angle variables	414
11.8	Analytical description of solitons	419
	Local fields	425
11.10	Whitham's equations	433
12	The Toda field theories	443
12.1	The Liouville equation	443
12.2	The Toda systems and their zero-curvature representations	445
12.3	Solution of the Toda field equations	447
12.4	Hamiltonian formalism	454
12.5	Conformal structure	456
12.6	Dressing transformations	463
12.7	The affine sinh-Gordon model	467
12.8	Dressing transformations and soliton solutions	471
12.9		474
12.10	Finite-zone solutions	481
13	Classical inverse scattering method	486
13.1	The sine-Gordon equation	486
13.2	The Jost solutions	487
13.3	Inverse scattering as a Riemann–Hilbert problem	496
13.4	Time evolution of the scattering data	497
13.5	The Gelfand–Levitan–Marchenko equation	498
13.6	Soliton solutions	502
13.7	Poisson brackets of the scattering data	505
13.8	Action-angle variables	510

х

14	Symplectic geometry	516
14.1	Poisson manifolds and symplectic manifolds	516
14.2	Coadjoint orbits	522
14.3	Symmetries and Hamiltonian reduction	525
14.4	The case $M = T^*G$	532
14.5	Poisson–Lie groups	534
14.6	Action of a Poisson–Lie group on a symplectic manifold	538
14.7	The groups G and G^*	540
14.8	The group of dressing transformations	542
15	Riemann surfaces	545
15.1	Smooth algebraic curves	545
15.2	Hyperelliptic curves	547
15.3	The Riemann–Hurwitz formula	549
15.4	The field of meromorphic functions of a Riemann surface	549
15.5	Line bundles on a Riemann surface	551
15.6	Divisors	553
15.7	Chern class	554
15.8	Serre duality	554
15.9	The Riemann–Roch theorem	556
15.10	Abelian differentials	559
15.11	Riemann bilinear identities	560
15.12	Jacobi variety	562
15.13	Theta-functions	563
15.14	The genus 1 case	567
15.15	The Riemann–Hilbert factorization problem	568
16	Lie algebras	571
16.1	Lie groups and Lie algebras	571
16.2	Semi-simple Lie algebras	574
16.3	Linear representations	580
16.4	Real Lie algebras	583
16.5	Affine Kac–Moody algebras	587
16.6	Vertex operator representations	592
	Index	599

Contents

xi

1 Introduction

The aim of this book is to introduce the reader to classical integrable systems. Because the subject has been developed by several schools having different perspectives, it may appear fragmented at first sight. We develop here the thesis that it has a profound unity and that the various approaches are simply changes of point of view on the same underlying reality. The more one understands each approach, the more one sees their unity. At the end one gets a very small set of interconnected methods.

This fundamental fact sets the tone of the book. We hope in this way to convey to the reader the extraordinary beauty of the structures emerging in this field, which have illuminated many other branches of theoretical physics.

The field of integrable systems is born together with Classical Mechanics, with a quest for exact solutions to Newton's equations of motion. It turned out that apart from the Kepler problem which was solved by Newton himself, after two centuries of hard investigations, only a handful of other cases were found. In the nineteenth century, Liouville finally provided a general framework characterizing the cases where the equations of motion are "solvable by quadratures". All examples previously found indeed pertained to this setting. The subject stayed dormant until the second half of the twentieth century when Gardner, Greene, Kruskal and Miura invented the Classical Inverse Scattering Method for the Kortewegde Vries equation, which had been introduced in fluid mechanics. Soon afterwards, the Lax formulation was discovered, and the connection with integrability was unveiled by Faddeev, Zakharov and Gardner. This was the signal for a revival of the domain leading to an enormous amount of results, and truly general structures emerged which organized the subject. More recently, the extension of these results to Quantum Mechanics already led to remarkable results and is still a very active field of research.

1 Introduction

Let us give a general overview of the ideas we present in this book. They all find their roots in the notion of Lax pairs. It consists of presenting the equations of motion of the system in the form $\dot{L}(\lambda) = [M(\lambda), L(\lambda)]$, where the matrices $L(\lambda)$ and $M(\lambda)$ depend on the dynamical variables and on a parameter λ called the spectral parameter, and [,] denotes the commutator of matrices. The importance of Lax pairs stems from the following simple remark: the Lax equation is an isospectral evolution equation for the Lax matrix $L(\lambda)$. It follows that the curve defined by the equation det $(L(\lambda) - \mu I) = 0$ is time-independent. This curve, called the spectral curve, can be seen as a Riemann surface. Its moduli contain the conserved quantities. This immediately introduces the two main structures into the theory: groups enter through the Lie algebra involved in the commutator [M, L], while complex analysis enters through the spectral curve.

As integrable systems are rather rare, one naturally expects strong constraints on the matrices $L(\lambda)$ and $M(\lambda)$. Constructing consistent Lax matrices may be achieved by appealing to factorization problems in appropriate groups. Taking into account the spectral parameter promotes this group to a loop group. The factorization problem may then be viewed as a Riemann-Hilbert problem, a central tool of this subject.

In the group theoretical setting, solving the equations of motion amounts to solving the factorization problem. In the analytical setting, solutions are obtained by considering the eigenvectors of the Lax matrix. At any point of the spectral curve there exists an eigenvector of $L(\lambda)$ with eigenvalue μ . This defines an analytic line bundle \mathcal{L} on the spectral curve with prescribed Chern class. The time evolution is described as follows: if $\mathcal{L}(t)$ is the line bundle at time t then $\mathcal{L}(t)\mathcal{L}^{-1}(0)$ is of Chern class 0, i.e. is a point on the Jacobian of the spectral curve. It is a beautiful result that this point evolves linearly on the Jacobian. As a consequence, one can express the dynamical variables in terms of theta-functions defined on the Jacobian of the spectral curve. The two methods are related as follows: the factorization problem in the loop group defines transition functions for the line bundle \mathcal{L} .

The framework can be generalized by replacing the Lax matrix by the first order differential equation $(\partial_{\lambda} - M_{\lambda}(\lambda))\Psi = 0$, where $M_{\lambda}(\lambda)$ depends rationally on λ . The solution Ψ acquires non-trivial monodromy when λ describes a loop around a pole of M_{λ} . The isomonodromy problem consists of finding all M_{λ} with prescribed monodromy data. The solutions depend, in general, on a number of continuous parameters. The deformation equations with respect to these parameters form an integrable system. The theta-functions of the isospectral approach are then promoted to more general objects called the tau-functions.

One can study the behaviour around each singularity of the differential operator quite independently. In the group theoretical version, the above extension of the framework corresponds to centrally extending the loop groups. Around a singularity the most general extended group is the group $GL(\infty)$ which corresponds to the KP hierarchy. It can be represented in a fermionic Fock space. Fermionic monomials acting on the vacuum yield decomposed vectors, which describe an infinite Grassmannian introduced by Sato. In this setting, the time flows are induced by the action of commuting one-parameter subgroups, and the tau-function is defined on the Grassmannian, i.e. the orbit of the vacuum, and characterizes it. Finally the Plücker equations of the Grassmannian are identified with the equations of motion, written in the bilinear Hirota form.

We have tried, as much as possible, to make the book self-contained, and to achieve that each chapter can be studied quite independently. Generally, we first explain methods and then show how they can be applied to particular examples, even though this does not correspond to the historical development of the subject.

In Chapter 2 we introduce the classical definition of integrable systems through the Liouville theorem. We present the Lax pair formulation, and describe the symplectic structure which is encoded into the so-called r-matrix form. In Chapter 3 we explain how to construct Lax pairs with spectral parameter, for finite and infinite-dimensional systems. The Lax matrix may be viewed as an element of a coadjoint orbit of a loop group. This introduces immediately a natural symplectic structure and a factorization problem in the loop group. We also introduce, at this early stage, the notion of tau-functions. In Chapter 4 we discuss the abstract group theoretical formulation of the theory. We then describe the analytical aspects of the theory in Chapter 5. In this setting, the action variables are g moduli of the spectral curve, a Riemann surface of genus g, and the angle variables are g points on it. We illustrate the general constructions by the examples of the closed Toda chain in Chapter 6, and the Calogero model in Chapter 7.

The following two Chapters, 8 and 9, describe respectively the isomonodromic deformation problem and the infinite Grassmannian. Soliton solutions are obtained using vertex operators. Chapters 10 and 11 are devoted to the classical study of the KP and KdV hierarchies. We develop and use the formalism of pseudo-differential operators which allows us to give simple proofs of the main formal properties. Finite-zone solutions of KdV allow us to make contact with integrable systems of finite dimensionality and soliton solutions.

In the next Chapter, 12, we study the class of Toda and sine-Gordon field theories. We use this opportunity to exhibit the relations between their conformal and integrable properties. The sine-Gordon model is presented in the framework of the Classical Inverse Scattering Method in Chapter 13. This very ingenious method is exploited to solve the sine-Gordon equation.

The last three chapters may be viewed as mathematical appendices, provided to help the reader. First we present the basic facts of symplectic geometry, which is the natural language to speak about Classical Mechanics and integrable systems. Since mathematical tools from Riemann surfaces and Lie groups are used almost everywhere, we have written two chapters presenting them in a concise way. We hope that they will be useful at least as an introduction and to fix notations.

Let us say briefly how we have limited our discussion. First we choose to remain consistently at a relatively elementary mathematical level, and have been obliged to exclude some important developments which require more advanced mathematics. We put the emphasis on methods and we have not tried to make an exhaustive list of integrable systems. Another aspect of the theory we have touched only very briefly, through the Whitham equations, is the study of perturbations of integrable systems. All these subjects are very interesting by themselves, but the present book is big enough!

A most active field of recent research is concerned with quantum integrable systems or the closely related field of exactly soluble models in statistical mechanics. When writing this book we always had the quantum theory present in mind, and have introduced all classical objects which have a well-known quantum counterpart, or are semi-classical limits of quantum objects. This explains our emphasis on Hamiltonians methods, Poisson brackets, classical *r*-matrices, Lie–Poisson properties of dressing transformations and the method of separation of variables. Although there is nothing quantum in this book, a large part of the apparatus necessary to understand the literature on quantum integrable systems is in fact present.

The bibliography for integrable systems would fill a book by itself. We have made no attempt to provide one. Instead, we give, at the end of each chapter, a short list of references, which complements and enhances the material presented in the chapter, and we highly encourage the reader to consult them. Of course these references are far from complete, and we apologize to the numerous authors having contributed to the domain, and whose due credit is not acknowledged. Finally we want to thank our many colleagues from whom we learned so much and with whom we have discussed many parts of this book.