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Laboratoire de Physique Théorique et Hautes Energies, Universités Paris VI–VII



published by the press syndicate of the university of cambridge
The Pitt Building, Trumpington Street, Cambridge, United Kingdom

cambridge university press
The Edinburgh Building, Cambridge CB2 2RU, UK

40 West 20th Street, New York, NY 10011-4211, USA
477 Williamstown Road, Port Melbourne, VIC 3207, Australia

Ruiz de Alarcón 13, 28014 Madrid, Spain
Dock House, The Waterfront, Cape Town 8001, South Africa

http://www.cambridge.org

c© O. Babelon, D. Bernard & M. Talon 2003

This book is in copyright. Subject to statutory exception
and to the provisions of relevant collective licensing agreements,

no reproduction of any part may take place without
the written permission of Cambridge University Press.

First published 2003

A catalogue record for this book is available from the British Library

Library of Congress Cataloguing in Publication data

Babelon, Olivier, 1951–
Introduction to classical integrable systems / Olivier Babelon, Denis Bernard, Michel Talon.

p. cm. – (Cambridge monographs on mathematical physics)
Includes bibliographical references and index.

ISBN 0 521 82267 X
1. Dynamics. 2. Hamiltonian systems. I. Bernard, Denis, 1961–

II. Talon, Michel, 1952– III. Title. IV. Series.
QA845 .B32 2003

531′.163–dc21 2002034955

ISBN 0 521 82267 X hardback



Contents

1 Introduction 1

2 Integrable dynamical systems 5
2.1 Introduction 5
2.2 The Liouville theorem 7
2.3 Action–angle variables 10
2.4 Lax pairs 11
2.5 Existence of an r-matrix 13
2.6 Commuting flows 17
2.7 The Kepler problem 17
2.8 The Euler top 19
2.9 The Lagrange top 20
2.10 The Kowalevski top 22
2.11 The Neumann model 23
2.12 Geodesics on an ellipsoid 25
2.13 Separation of variables in the Neumann model 27

3 Synopsis of integrable systems 32
3.1 Examples of Lax pairs with spectral parameter 33
3.2 The Zakharov–Shabat construction 35
3.3 Coadjoint orbits and Hamiltonian formalism 41
3.4 Elementary flows and wave function 49
3.5 Factorization problem 54
3.6 Tau-functions 59
3.7 Integrable field theories and monodromy matrix 62
3.8 Abelianization 65
3.9 Poisson brackets of the monodromy matrix 72
3.10 The group of dressing transformations 74

vii



viii Contents

3.11 Soliton solutions 79

4 Algebraic methods 86
4.1 The classical and modified Yang–Baxter equations 86
4.2 Algebraic meaning of the classical Yang–Baxter equations 89
4.3 Adler–Kostant–Symes scheme 92
4.4 Construction of integrable systems 94
4.5 Solving by factorization 96
4.6 The open Toda chain 97
4.7 The r-matrix of the Toda models 100
4.8 Solution of the open Toda chain 105
4.9 Toda system and Hamiltonian reduction 109
4.10 The Lax pair of the Kowalevski top 115

5 Analytical methods 124
5.1 The spectral curve 125
5.2 The eigenvector bundle 130
5.3 The adjoint linear system 138
5.4 Time evolution 142
5.5 Theta-functions formulae 145
5.6 Baker–Akhiezer functions 149
5.7 Linearization and the factorization problem 153
5.8 Tau-functions 154
5.9 Symplectic form 156
5.10 Separation of variables and the spectral curve 162
5.11 Action–angle variables 164
5.12 Riemann surfaces and integrability 167
5.13 The Kowalevski top 169
5.14 Infinite-dimensional systems 175

6 The closed Toda chain 178
6.1 The model 178
6.2 The spectral curve 181
6.3 The eigenvectors 182
6.4 Reconstruction formula 184
6.5 Symplectic structure 191
6.6 The Sklyanin approach 193
6.7 The Poisson brackets 196
6.8 Reality conditions 200

7 The Calogero–Moser model 206
7.1 The spin Calogero–Moser model 206



Contents ix

7.2 Lax pair 208
7.3 The r-matrix 210
7.4 The scalar Calogero–Moser model 214
7.5 The spectral curve 216
7.6 The eigenvector bundle 218
7.7 Time evolution 220
7.8 Reconstruction formulae 221
7.9 Symplectic structure 223
7.10 Poles systems and double-Bloch condition 226
7.11 Hitchin systems 232
7.12 Examples of Hitchin systems 239
7.13 The trigonometric Calogero–Moser model 244

8 Isomonodromic deformations 249
8.1 Introduction 249
8.2 Monodromy data 251
8.3 Isomonodromy and the Riemann–Hilbert problem 262
8.4 Isomonodromic deformations 264
8.5 Schlesinger transformations 270
8.6 Tau-functions 272
8.7 Ricatti equation 277
8.8 Sato’s formula 278
8.9 The Hirota equations 280
8.10 Tau-functions and theta-functions 282
8.11 The Painlevé equations 290
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1
Introduction

The aim of this book is to introduce the reader to classical integrable
systems. Because the subject has been developed by several schools hav-
ing different perspectives, it may appear fragmented at first sight. We
develop here the thesis that it has a profound unity and that the various
approaches are simply changes of point of view on the same underlying
reality. The more one understands each approach, the more one sees their
unity. At the end one gets a very small set of interconnected methods.
This fundamental fact sets the tone of the book. We hope in this way to

convey to the reader the extraordinary beauty of the structures emerging
in this field, which have illuminated many other branches of theoretical
physics.
The field of integrable systems is born together with Classical Mechan-

ics, with a quest for exact solutions to Newton’s equations of motion.
It turned out that apart from the Kepler problem which was solved by
Newton himself, after two centuries of hard investigations, only a handful
of other cases were found. In the nineteenth century, Liouville finally pro-
vided a general framework characterizing the cases where the equations
of motion are “solvable by quadratures”. All examples previously found
indeed pertained to this setting. The subject stayed dormant until the
second half of the twentieth century when Gardner, Greene, Kruskal and
Miura invented the Classical Inverse Scattering Method for the Korteweg–
de Vries equation, which had been introduced in fluid mechanics. Soon
afterwards, the Lax formulation was discovered, and the connection with
integrability was unveiled by Faddeev, Zakharov and Gardner. This was
the signal for a revival of the domain leading to an enormous amount of
results, and truly general structures emerged which organized the sub-
ject. More recently, the extension of these results to Quantum Mechanics
already led to remarkable results and is still a very active field of research.
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2 1 Introduction

Let us give a general overview of the ideas we present in this book. They
all find their roots in the notion of Lax pairs. It consists of presenting the
equations of motion of the system in the form L̇(λ) = [M(λ), L(λ)], where
the matrices L(λ) and M(λ) depend on the dynamical variables and on a
parameter λ called the spectral parameter, and [ , ] denotes the commu-
tator of matrices. The importance of Lax pairs stems from the following
simple remark: the Lax equation is an isospectral evolution equation for
the Lax matrix L(λ). It follows that the curve defined by the equation
det (L(λ) − µI) = 0 is time-independent. This curve, called the spectral
curve, can be seen as a Riemann surface. Its moduli contain the con-
served quantities. This immediately introduces the two main structures
into the theory: groups enter through the Lie algebra involved in the
commutator [M,L], while complex analysis enters through the spectral
curve.
As integrable systems are rather rare, one naturally expects strong con-

straints on the matrices L(λ) and M(λ). Constructing consistent Lax
matrices may be achieved by appealing to factorization problems in ap-
propriate groups. Taking into account the spectral parameter promotes
this group to a loop group. The factorization problem may then be viewed
as a Riemann–Hilbert problem, a central tool of this subject.
In the group theoretical setting, solving the equations of motion

amounts to solving the factorization problem. In the analytical setting,
solutions are obtained by considering the eigenvectors of the Lax matrix.
At any point of the spectral curve there exists an eigenvector of L(λ) with
eigenvalue µ. This defines an analytic line bundle L on the spectral curve
with prescribed Chern class. The time evolution is described as follows: if
L(t) is the line bundle at time t then L(t)L−1(0) is of Chern class 0, i.e. is
a point on the Jacobian of the spectral curve. It is a beautiful result that
this point evolves linearly on the Jacobian. As a consequence, one can ex-
press the dynamical variables in terms of theta-functions defined on the
Jacobian of the spectral curve. The two methods are related as follows:
the factorization problem in the loop group defines transition functions
for the line bundle L.
The framework can be generalized by replacing the Lax matrix by the

first order differential equation (∂λ−Mλ(λ))Ψ = 0, whereMλ(λ) depends
rationally on λ. The solution Ψ acquires non-trivial monodromy when λ
describes a loop around a pole of Mλ. The isomonodromy problem con-
sists of finding all Mλ with prescribed monodromy data. The solutions
depend, in general, on a number of continuous parameters. The deforma-
tion equations with respect to these parameters form an integrable sys-
tem. The theta-functions of the isospectral approach are then promoted
to more general objects called the tau-functions.
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One can study the behaviour around each singularity of the differential
operator quite independently. In the group theoretical version, the above
extension of the framework corresponds to centrally extending the loop
groups. Around a singularity the most general extended group is the group
GL(∞) which corresponds to the KP hierarchy. It can be represented in
a fermionic Fock space. Fermionic monomials acting on the vacuum yield
decomposed vectors, which describe an infinite Grassmannian introduced
by Sato. In this setting, the time flows are induced by the action of com-
muting one-parameter subgroups, and the tau-function is defined on the
Grassmannian, i.e. the orbit of the vacuum, and characterizes it. Finally
the Plücker equations of the Grassmannian are identified with the equa-
tions of motion, written in the bilinear Hirota form.
We have tried, as much as possible, to make the book self-contained,

and to achieve that each chapter can be studied quite independently.
Generally, we first explain methods and then show how they can be ap-
plied to particular examples, even though this does not correspond to the
historical development of the subject.
In Chapter 2 we introduce the classical definition of integrable systems

through the Liouville theorem. We present the Lax pair formulation, and
describe the symplectic structure which is encoded into the so-called r-
matrix form. In Chapter 3 we explain how to construct Lax pairs with
spectral parameter, for finite and infinite-dimensional systems. The Lax
matrix may be viewed as an element of a coadjoint orbit of a loop group.
This introduces immediately a natural symplectic structure and a factor-
ization problem in the loop group. We also introduce, at this early stage,
the notion of tau-functions. In Chapter 4 we discuss the abstract group
theoretical formulation of the theory. We then describe the analytical as-
pects of the theory in Chapter 5. In this setting, the action variables are
g moduli of the spectral curve, a Riemann surface of genus g, and the
angle variables are g points on it. We illustrate the general constructions
by the examples of the closed Toda chain in Chapter 6, and the Calogero
model in Chapter 7.
The following two Chapters, 8 and 9, describe respectively the isomon-

odromic deformation problem and the infinite Grassmannian. Soliton so-
lutions are obtained using vertex operators. Chapters 10 and 11 are de-
voted to the classical study of the KP and KdV hierarchies. We develop
and use the formalism of pseudo-differential operators which allows us to
give simple proofs of the main formal properties. Finite-zone solutions of
KdV allow us to make contact with integrable systems of finite dimen-
sionality and soliton solutions.
In the next Chapter, 12, we study the class of Toda and sine-Gordon

field theories. We use this opportunity to exhibit the relations between
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their conformal and integrable properties. The sine-Gordon model is
presented in the framework of the Classical Inverse Scattering Method
in Chapter 13. This very ingenious method is exploited to solve the sine-
Gordon equation.
The last three chapters may be viewed as mathematical appendices,

provided to help the reader. First we present the basic facts of symplectic
geometry, which is the natural language to speak about Classical Me-
chanics and integrable systems. Since mathematical tools from Riemann
surfaces and Lie groups are used almost everywhere, we have written two
chapters presenting them in a concise way. We hope that they will be
useful at least as an introduction and to fix notations.
Let us say briefly how we have limited our discussion. First we choose

to remain consistently at a relatively elementary mathematical level, and
have been obliged to exclude some important developments which re-
quire more advanced mathematics. We put the emphasis on methods and
we have not tried to make an exhaustive list of integrable systems. An-
other aspect of the theory we have touched only very briefly, through the
Whitham equations, is the study of perturbations of integrable systems.
All these subjects are very interesting by themselves, but the present book
is big enough!
A most active field of recent research is concerned with quantum in-

tegrable systems or the closely related field of exactly soluble models in
statistical mechanics. When writing this book we always had the quantum
theory present in mind, and have introduced all classical objects which
have a well-known quantum counterpart, or are semi-classical limits of
quantum objects. This explains our emphasis on Hamiltonians methods,
Poisson brackets, classical r-matrices, Lie–Poisson properties of dressing
transformations and the method of separation of variables. Although there
is nothing quantum in this book, a large part of the apparatus necessary
to understand the literature on quantum integrable systems is in fact
present.
The bibliography for integrable systems would fill a book by itself. We

have made no attempt to provide one. Instead, we give, at the end of each
chapter, a short list of references, which complements and enhances the
material presented in the chapter, and we highly encourage the reader
to consult them. Of course these references are far from complete, and
we apologize to the numerous authors having contributed to the domain,
and whose due credit is not acknowledged. Finally we want to thank our
many colleagues from whom we learned so much and with whom we have
discussed many parts of this book.


