Introduction to Coastal Dynamics and Shoreline Protection

WIT*PRESS*

WIT Press publishes leading books in Science and Technology. Visit our website for the current list of titles. www.witpress.com

WIT*eLibrary*

Home of the Transactions of the Wessex Institute, the WIT electronic-library provides the international scientific community with immediate and permanent access to individual papers presented at WIT conferences. Visit the WIT eLibrary at http://library.witpress.com

Introduction to Coastal Dynamics and Shoreline Protection

G. Benassai University of Naples Parthenope, Italy

Introduction to Coastal Dynamics and Shoreline Protection

G. Benassai

University of Naples Parthenope, Italy

Published by

WIT Press

Ashurst Lodge, Ashurst, Southampton, SO40 7AA, UK Tel: 44 (0) 238 029 3223; Fax: 44 (0) 238 029 2853 E-Mail: witpress@witpress.com http://www.witpress.com

For USA, Canada and Mexico

WIT Press

25 Bridge Street, Billerica, MA 01821, USA Tel: 978 667 5841; Fax: 978 667 7582 E-Mail: infousa@witpress.com http://www.witpress.com

British Library Cataloguing-in-Publication Data

A Catalogue record for this book is available from the British Library

ISBN: 1-84564-054-3

No responsibility is assumed by the Publisher, the Editors and Authors for any injury and/or damage to persons or property as a matter of products liability, negligence or otherwise, or from any use or operation of any methods, products, instructions or ideas contained in the material herein.

© WIT Press 2006

Printed in Great Britain by Cambridge Printing

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of the Publisher.

Contents

Preface	xi
CHAPTER 1 Integrated approach to coastal dynamics	1
1. Coastal dynamics basic approach	1
2. Coastal erosion and remediation study	3
2.1 Data acquisition	4
2.2 Critical erosion evaluation	6
2.3 Planning analysis	7
3. Causes of coastal erosion	7
4. Space and time scales	8
5. Meteomarine factors	9
5.1 Wind	10
5.2 Waves	10
5.3 Currents	14
5.4 Sea level variations	16
6. Sediment transport and coastal structures	17
6.1 Modes of sediment movement and their appearance region	17
6.2 Coastal structures and sediment transport	19
7. Elements of coastal management	21
CHAPTER 2 Beach morphology and sediment analysis	27
1. Introduction	27
2. Beach classification	27
3. Beach morphology and sediment transport	30
4. Seasonal profiles, bars and berms	33 33
5. Equilibrium beach profile	
6. Sediment analysis	35
6.1 Bathymetric and geophysical surveys	35
6.2 Physical and chemical analysis	37

6.3 Sediment size classification	39
7. Case study	42
CHAPTER 3 Linear wave analysis	45
1. Introduction to linear wave theory	45
1.1 Governing equations	45
1.2 Boundary conditions	49
1.3 Linearized boundary conditions	50
2. Results of the linear theory	51
2.1 Wave profile, length and celerity	51
2.2 Group celerity	54
2.3 Velocity components	56 58
2.4 Particle displacements	58 60
2.5 Wave pressure 3. Case study	62
5. Case study	02
CHAPTER 4 Sea level variability	67
1. Introduction	67
2. Astronomical tide	67
3. Long waves (tsunami and seiches)	71
4. Wave set-up and set-down	73
4.1 Radiation stress	74
4.2 Water level fluctuations due to radiation stress	76
5. Storm surge	77
6. Case study	85
CHAPTER 5 Random wave measurement and analysis	87
1. Wave measurements	87
1.1 Ultrasonic and pressure gauges	87
1.2 Wave buoys	88
1.3 Italian Sea Wave measurement Network	89
1.4 Satellite remote sensing	90
1.4.1 Radar altimeter	90
1.4.2 Synthetic Aperture Radars	92
2. Statistical properties of random waves	93
2.1 Data sampling	93
2.2 Data processing	95
2.2.1 Time domain analysis	95
2.2.2 Directional wave spectra	99
2.2.3 Pierson – Moskowitz and Jonswap spectrum	100
3. Statistical representation of wave climate	102
4. Case study	103

1. Introduction1072. Elements of wind measurement analysis1082.1 Wind information needed for wave hindcasting1092.2 Geostrophic and low-height winds1103. Wave prediction on deep water1113.1 Fetch and duration limited growth1123.2 Significant wave (SMB) model1143.3 Spectral wave models1173.3.1 First, second and third generation models1183.3.2 Third generation models1193.3.4 Case study (WWIII application for the Gulf of Naples)124
2.1 Wind information needed for wave hindcasting1092.2 Geostrophic and low-height winds1103. Wave prediction on deep water1113.1 Fetch and duration limited growth1123.2 Significant wave (SMB) model1143.2.1 Case study1163.3 Spectral wave models1173.3.1 First, second and third generation models1183.3.2 Third generation models1193.3.3 WaveWatch III122
2.2 Geostrophic and low-height winds1103. Wave prediction on deep water1113.1 Fetch and duration limited growth1123.2 Significant wave (SMB) model1143.2.1 Case study1163.3 Spectral wave models1173.3.1 First, second and third generation models1183.3.2 Third generation models1193.3.3 WaveWatch III122
3. Wave prediction on deep water1113.1 Fetch and duration limited growth1123.2 Significant wave (SMB) model1143.2.1 Case study1163.3 Spectral wave models1173.3.1 First, second and third generation models1183.3.2 Third generation models1193.3.3 WaveWatch III122
3.1 Fetch and duration limited growth1123.2 Significant wave (SMB) model1143.2.1 Case study1163.3 Spectral wave models1173.3.1 First, second and third generation models1183.3.2 Third generation models1193.3.3 WaveWatch III122
3.2 Significant wave (SMB) model1143.2.1 Case study1163.3 Spectral wave models1173.3.1 First, second and third generation models1183.3.2 Third generation models1193.3.3 WaveWatch III122
3.2.1 Case study1163.3 Spectral wave models1173.3.1 First, second and third generation models1183.3.2 Third generation models1193.3.3 WaveWatch III122
3.3 Spectral wave models1173.3.1 First, second and third generation models1183.3.2 Third generation models1193.3.3 WaveWatch III122
3.3.1 First, second and third generation models1183.3.2 Third generation models1193.3.3 WaveWatch III122
3.3.2 Third generation models1193.3.3 WaveWatch III122
3.3.3 WaveWatch III 122
3.3.4 Case study (WWIII application for the Gulf of Naples) 124
CHAPTER 7 Long term wave statistics 127
1. Introduction 127
1.1 Wave data 128
1.2 Data selection 129
1.3 Extreme value probability distribution 129
2. Data fitting to the probability distribution 129
2.1 Normal Probability Distribution 130
2.2 Log-Normal Distribution 131
2.3 Gumbel distribution 131
2.4 Weibull distribution 132
3. Parameter calculation 133
3.1 Statistical tests of fit 133
3.2 Confidence intervals 134
3.3 Statistics of offshore extreme waves 135
3.4 Wave height persistence 137
3.5 Case study 138
CHAPTER 8 Wave transformation in the coastal zone 143
1. Wave energy and energy flux 143
1.1 Potential Energy 142
1.2 Kinetic Energy 144
1.3 Energy Flux 145
2. Refraction and shoaling 146
2.4 Discussion on K_r and K_s 150
3. Total reflection 152
4. Wave diffraction 155
5. Numerical models for wave propagation 156
5.1 Phase-averaged model 158
6. Finite depth spectral wave models 159
6.1 Other finite depth spectral wave models 161

6.2 Phase-resolving models	161
6.2.1 Boundary Integral Models	163
6.2.1.1 Mild Slope Equation Models	163
6.2.1.2 Boussinesq equation model	165
6.2.2 Lagrangian models – Ray method for wave transformation	166
6.2.3 Eulerian models	169
6.3 Grid models	169
7. Wave breaking	172
CHAPTER 7 Sediment transport	175
1. Introduction	175
2. Basic concepts of sediment transport	176
2.1 Critical bed shear stress	176
2.2 The Shields parameter and modified Shields diagram	177
2.3 Sediment fall velocity	179
2.4 Bed load and suspended load	180
2.4.1 Bed-load and shear stress	181
2.4.2 Steady bed load in sheet flow transport	182
2.4.3 Basics of suspended load transport formulation	183
2.5 The bottom boundary layer and the bed roughness	185
2.6 Bed load and suspended load: a simple parametrical model	187
2.7 Case study	189
3. Basic shore processes	194
3.1 Nearshore circulation	194
3.2 Wave run-up in the swash zone	198
3.3 Bar formation by cross-zone flow mechanisms	199
CHAPTER 10 Beach profile modeling	201
1. Cross-shore transport	201
2. Cross-shore sediment transport and equilibrium beach profile	203
3. Dean's model for equilibrium beach profile	204
3.1 Equilibrium parameter A	207
4. Processes of accretion and erosion	208
4.1 Surf zone	208
4.2 Swash zone	208
5. Erosion/accretion parameters	209
5.1 Case study	213
6. Analytical profile modelling	214
6.1 Case study	219
7. Numerical beach profile modeling	220
7.1 Example of numerical model: SBEACH	222

CHAPTER 11	Shoreline modeling	227
1. Introduction		227

228
230
231
234
234
236
239
241

CHAPTER 12 Comparison and choice among alternative protection systems

systems	245
1. Introduction	245
2. Insertion of protection systems on the coastline	245
3. Shoreline protection systems	246
4. Hard measures	248
4.1 Detached emerged breakwaters	248
4.2 Detached submerged breakwaters	249
4.3 Emerged or semi-submerged groins	250
4.4 "T"-shaped emerged of semi-submerged groins	252
4.5 Adherent breakwaters	252
4.6 Seawalls	254
5. Soft measures	254
5.1 Artificial nourishment	254
5.2 Dune restoration	256
6. Schematic indications for the choice	258
7. Mechanisms of protection	260
7.1 Efficiency	260
7.2 Induced efforts	261
CHADTED 13 Hydroulia dasian	263
CHAPTER 13 Hydraulic design 1. Dimensional analysis	263
•	265
2. Wave run-up R_u and run-down R_d	203

3. Overtopping discharge	268
4. Transmission coefficient	270
5. Reflections	271
6. Case study	273

CHAPTER 14 Structural design	275
1. Introduction	275
2. Structural stability	277
2.1 Hudson formulation	279
2.2 Van der Meer Formulation	280
2.3 Comparison of Hudson and new formulae	283
3. Armour layers with concrete units	283

4. Low-crested structures	285
5. Reef breakwaters	286
6. Statically stable low-crested breakwater	286
7. Submerged breakwaters	287
8. Filter and core characteristics	287
9. Toe stability and protection	288
10. Breakwater head stability	289
11. Fundamentals of probabilistic design	289
12. Deterministic design – case study	291

CHAPTER 15 Beach fills	293
1. Introduction	293
2. Beach fill profile	296
3. Volume computation	298
4. Beach planform evolution	298
5. Longevity of beach fills	301
6. Effect of fill length and of wave climate	303
6.1 Case study	305
7. Compatibility of the borrow material	306
7.1 Case study	308
8. Sediment sources	309
9. Monitoring	310

References

Preface

This book was developed from lecture notes for a course on Coastal Dynamics and Shoreline Protection addressed to students of Environmental Sciences. This is the reason why it is organized to introduce the reader to the fundamental principles of the topics treated in each chapter. It can be used as a training aid both for students and for practicing engineers, as almost every topic is developed with case studies.

The book, which deals primarily with sandy coastlines, is divided into three parts. In the first part, which is limited to Chapter 1 – Integrated approach to coastal dynamics, the reader is introduced to the approach of a coastal erosion and remediation study and to coastal management.

In the second part, the meteomarine factors cited in Chapter 1 are dealt with in some detail, together with the mechanisms of sediment transport. The topics addressed are, amongst others, linear and higher order waves, random waves and spectra, wave transformation in the coastal zone, water levels, short-term and longterm wave prediction, sediment transport, shoreline and beach profile modeling.

The third part deals with the choice between various protection systems and tries to give the reader some basic elements of hydraulic and structural design for both rigid structures and beach fills.

Acknowledgements have to be addressed to all the people who inspired me, in particular my father Edoardo for the first approach to the maritime structures, Giulio Scarsi and Laura Rebaudengo of Genoa University for their rigorous analytical approach to the maritime hydraulics.

Many thanks have to be addressed to all the students to whom I had the privilege of teaching the concepts reported in this book for more than 14 years, and to the University Parthenope of Naples where I currently teach the course on coastal dynamics and shoreline protection.

Additional thanks have to be addressed to the people who typed the manuscript for their patience and their contributions, especially Dr I. Ascione and Dr. E. Chianese.

Finally, particular thanks is due to my wife Maria Pia and my sons Edoardo Maria and Rossella who have given me total support and encouragement, and to whom this book is dedicated.

G. Benassai Naples, 2006.