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Abstract The power consumed by a circuit varies according

to the activity of its individual transistors and other compo-

nents. As a result, measurements of the power used by actual

computers or microchips contain information about the oper-

ations being performed and the data being processed. Cryp-

tographic designs have traditionally assumed that secrets

are manipulated in environments that expose no information

beyond the specified inputs and outputs. This paper exam-

ines how information leaked through power consumption

and other side channels can be analyzed to extract secret

keys from a wide range of devices. The attacks are practi-

cal, non-invasive, and highly effective—even against com-

plex and noisy systems where cryptographic computations

account for only a small fraction of the overall power con-

sumption. We also introduce approaches for preventing DPA

attacks and for building cryptosystems that remain secure

even when implemented in hardware that leaks.
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1 Background

Because attacks that involve multiple layers of a system

are difficult to predict and model, security vulnerabilities

often result from unanticipated interactions between compo-

nents and layers. If algorithm designers, software developers,

and hardware engineers do not collaborate and understand

each other’s work, security assumptions made in one layer

of a system may not match the actual properties of other

layers.

Many techniques have been designed for testing cryp-

tographic algorithms in isolation. For example, differential

cryptanalysis [1] and linear cryptanalysis [2] can exploit

extremely small statistical characteristics in a cipher’s inputs

and outputs. Modern ciphers are designed to resist such

attacks. Such analysis only applies, however, to one part

of a system’s architecture—an algorithm’s mathematical

structure.

Resistance to cryptanalysis is not sufficient to create

secure cryptosystems in practice. Even a correct implemen-

tation with strong algorithms and protocols is not necessarily

secure, since vulnerabilities can arise from other layers of the

implementation. For example, security can be compromised

by defective computations [3,4]. Attacks using timing infor-

mation [5,6] as well as data collected using invasive measur-

ing techniques [7,8] have also been demonstrated. The US

government has invested considerable resources in the classi-

fied TEMPEST program [9] to prevent sensitive information

from leaking through electromagnetic emanations.

In this paper, we introduce differential powerful analy-

sis (DPA), simple power analysis (SPA), as well as several

related techniques. These attacks leverage measurements of a

target device’s power consumption (or other side channels) to

extract secret keys. The methods are effective against imple-

mentations of all major algorithms.
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In the years since we first documented DPA, a tremendous

amount of research has been published on the subject [10].

The attacks have been implemented against hundreds of

devices, including implementations in ASICs, FPGAs, and

software. The targets range from tiny single-purpose chips to

complex devices whose power measurements are noisy and

obfuscated by unpredictable parallel operations. In short, the

evolution of power analysis attacks conforms to the adage

attributed to the National Security Agency: “Attacks always

get better; they never get worse.”

1.1 Organization of this paper

Section 2 introduces power analysis attacks, beginning in

Sect. 2.1 with an overview of power traces and their proper-

ties. Section 2.2 then presents a straightforward DPA attack.1

Section 3 then discusses simple power analysis and related

methods. Section 4 then returns to the topic of DPA, and

explores both the statistical properties of the attack as well

as practical techniques to make the attack process more effi-

cient. Variants of DPA are described in Sect. 5. Section 6

summarizes the types of countermeasures that can be used

to defend against side-channel attacks. Finally, we conclude

in Sect. 7.

2 Introduction to power analysis

Most modern cryptographic devices are implemented using

semiconductor logic gates, which are constructed out of

transistors. Electrons flow across the silicon substrate when

charge is applied to, or removed from, a transistor’s gate.

This flow of electrons consumes power and produces elec-

tromagnetic radiation.

The power consumption of an integrated circuit or a larger

device reflects the aggregate activity of its individual ele-

ments, as well as the capacitance and other electrical prop-

erties of the system. For example, a microprocessor may use

a different circuit to dispatch an addition operation than a

register load, causing these operations to consume differ-

ent amounts of power. Net power consumption depends also

on which transistors are switching within the active circuits.

Some transistors’ activity depends on the data the circuit is

processing. For example, more transistors may switch when

adding the hexadecimal bytes A7 to B9 than when adding 01

to 00.

Because the amount of power used by a device is influ-

enced by the data being processed, power consumption

1 We have chosen to introduce DPA before simple power analysis (SPA)

because DPA is the more important subject. SPA also lacks the noise-

filtering properties of DPA, so readers who are first exposed to SPA may

find DPA to be counterintuitive.

Fig. 1 Power trace from a smart card performing an AES-128 encryp-

tion, with the ten rounds clearly visible

measurements contain information about a circuit’s calcula-

tions. Even the effects of a single transistor, while not directly

observable in power measurements from a large devices, do

appear as weak correlations. When a device is processing

cryptographic secrets, its data-dependent power usage can

expose these secrets to attack.

2.1 Traces and frequency distributions

The first step in the power analysis process is to collect one

or more traces from the target device. A trace is a sequence

of measurements taken across a cryptographic operation or

sequence of operations.

Figure 1 shows approximately 3 ms of a power trace col-

lected from a smart card performing an AES-128 encryption

operation. The power consumption was sampled at 100 MHz,

and each point in the trace is the average of multiple samples.

The trace data were captured by placing a resistor in series

with the device’s ground line, then using an oscilloscope

to measure the voltage at the ground input. Accordingly, a

larger measurement (higher values on Fig. 1) represent higher

power consumption.

Figure 2 shows a 5 microsecond segment of a power trace

recorded from an FPGA encrypting 1 MB of data using AES-

128 in CBC mode. Four individual AES-128 encryptions are

visible in the figure. The full trace recorded nearly 40 million

measurements at 500 MHz, spanning the 216 AES operations

in the complete CBC encryption. This trace was captured by

placing a resistor in series with the power (Vcc) input and

measuring the voltage at the device, so higher power con-

sumption appears as a lower value in the figure.

Although the AES rounds are clearly identifiable in both

Figs. 1 and 2, clean measurements such as these are not

required for DPA attacks. Further details of the analysis setup

and data collection will be discussed in Sect. 2.4.

The following experiment, conducted using a set of traces

collected from the smart card, illustrates how power con-

sumption can be dependent on sensitive data. Figure 3 shows
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Fig. 2 Part of a power trace from an FPGA performing AES-128 CBC

mode encryptions. In power side measurement, down corresponds to

more power

Fig. 3 Power trace segment showing the first round of AES-128

encryption on a smart card. A vertical line marks the location of first

S-box lookup

the region of the power trace from Fig. 1 during the first round

of the AES-128 operation. (Figure 3 shows more detail than

Fig. 1 because fewer points are averaged together to produce

each point in the plot.) The moment in time when the card

computes the output of the first S-box is marked by a vertical

line.

A set of 4,000 traces were captured from the same smart

card while performing AES-128 encryption operations. Each

trace observes the encryption of a different, randomly chosen,

plaintext. The same random known key was used each time.

Figure 4 shows the distribution of power measurements, at

the time marked in Fig. 3, among the 4, 000 traces. An 8-bit

A/D converter was used, so the possible range of points is

from 0 to 255. The observed distribution is close to a Gaussian

distribution, with mean of 120 units and standard deviation

of 10.66.2 Figure 4 shows that there is significant variation

in the power consumption measurements among the traces at

2 We chose a Gaussian approximation to simplify the exposition. In

general, Gaussian mixtures are a better fit for the power consumption

distributions observed in practice. For more details see Chapter 4 of

[10].

Fig. 4 Distribution of power consumption at first S-box output com-

putation

Fig. 5 Distributions of power consumption measurements for traces

with the LSB of the output of the first S-box being 1 (left) and 0 (right)

this point during the computation. Such variations combine

a range of effects, including data-dependent variations in the

cryptographic processing, other activity in a device, mea-

surement inaccuracies, interference, environmental factors,

and so forth.

Figure 5 confirms that data-dependent power consump-

tion contributes to the variation observed in the power traces.

The figure shows two distributions of power measurements.

The distribution toward the left was produced using only the

traces where the least significant bit (LSB) of the output of

the first S-box is 1. The distribution toward the right was pro-

duced using only the traces where the LSB is 0. In this case,

the key and the plaintext were known, so the S-box output

could be computed from the plaintext.

For the traces where the LSB was 1, the power consump-

tion was approximately Gaussian with mean 116.9 and stan-

dard deviation 10.7. When the LSB was 0, the distribution

was approximately Gaussian with mean 121.9 and standard

deviation of 9.7. The placement of inverters by logic synthe-

sis tools and other design details make it possible for either

value to consume more power. What matters is that these

two distributions are significantly different, demonstrating

that the power consumption is statistically correlated to the

LSB of the S-box output. The distributions in Fig. 5 overlap
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significantly, so a single measurement will not be sufficient

to determine the value of the S-box output bit, but these dis-

tributions can be reliably distinguished given a sufficiently

large set of measurements.

The subsets shown in Fig. 5 are not the only way to divide

the data in Fig. 4. For example, if the data are divided into two

subsets based on the value of any other output bit from the

first S-box, the resulting distributions are also clearly distin-

guishable. This reaffirms that the power consumption at the

selected point in time is dependent on all bits of the output

of the first S box.

2.2 Differential power analysis

Differential Power Analysis DPA is a statistical method for

analyzing sets of measurements to identify data-dependent

correlations. The basic method involves partitioning a set

of traces into subsets, then computing the difference of the

averages of these subsets. If the choice of which trace is

assigned to each subset is uncorrelated to the measurements

contained in the traces, the difference in the subsets’ aver-

ages will approach zero as the number of traces increases.

Otherwise, if the partitioning into subsets is correlated to

the trace measurements, the averages will approach a non-

zero value. Given enough traces, extremely tiny correlations

can be isolated—no matter how much noise is present in the

measurements.

Recall that Fig. 4 showed the probability distribution of

measurements at a particular offset in a set of traces. Figure 5

showed the two component distributions for the cases where

the cryptographic calculation happened to produce a 0 or a 1

in the least-significant bit (LSB) of the first S-box lookup.

In other words, when the data points in Fig. 4 are correctly

divided into subsets according to the value of the LSB of

the output of the first S-box, the difference of the subsets’

averages will converge to the difference of the means of the

distributions in Fig. 5. Even if the difference of the means

is very small (such as the effect of a single transistor within

one chip in a complex device), the difference will eventually

become statistically significant given a sufficient number of

traces. On the other hand, if the partitioning into subsets is

uncorrelated to the data being processed, then each subset is

essentially a random sampling of measurements from the full

distribution shown in Fig. 4 and, except for sampling errors,

the subsets’ distributions will be the same as the full dis-

tribution. As the sample size increases, the sampling errors

will diminish, so the subsets’ averages will converge to the

mean of the full distribution and the difference of the subsets’

averages will converge to 0.

Figure 5 only reflects measurements at one carefully

chosen point in time during the operations. In practice, the

location of greatest leakage may not be known prior to the

analysis. To avoid the need for information about the target

Fig. 6 Typical DPA result showing (from top to bottom) the average

of the traces where the LSB of the output of first S-box in round 1 is

1, the average of traces where the LSB is 0, the difference between the

top two traces, and the difference with the Y axis magnified by a factor

of 15

device, the averaging process for DPA is typically performed

at a range of offsets within the traces. The basic DPA process

examines the difference of these averages at each point in the

set of traces. The DPA result can be graphed where the X axis

is the trace offset (time) and the Y axis shows the difference

in the averages of the two distributions at that point. At offsets

where the power consumption is correlated to the selection

function output (e.g., because the device is manipulating this

value internally), the distributions at that offset will differ,

resulting in a nonzero value (e.g., a spike) in the graph. In

regions of the graph where the power consumption is unre-

lated to the selection function output, the distributions will

not have statistically significant differences. The points in the

graph will converge to 0 as the number of traces increases,

making these regions appear flat.

Figure 6 shows the components of a typical successful

DPA result. In this case, the target device is the same smart

card performing AES, and the subsets are based on the actual

values of the LSB of the first S-box output in the first round.

Four traces are shown in the figure. The uppermost trace is the

average of the traces for which the LSB was 1 over the time

interval covering the first two rounds of the AES encryption.

The second trace is the average of the traces for which the

LSB was 0. The top two traces appear to be the same, since

the difference between the averages is much smaller than

overall power consumption variations. The third trace shows

the difference of the top two traces, and appears mostly flat—

again, because the differences are small. The fourth (lowest)

trace shows the difference of the averages with the Y axis

scaling increased by a factor of 15, and the DPA results are

clearly visible.

Areas of leakage are visible as spikes in the lowest trace.

The first spike occurs when the S-box output bit is first com-

puted by the target device. Further spikes appear when this

bit is further processed in the rest of the first round. By the
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end of the first round, the AES intermediates are no longer

correlated to the LSB of the S-box output due to mixing

with other bits and the cipher’s avalanche. As a result, no

spikes are seen in the difference trace in the second round

or beyond. Figure 6 shows relatively little noise between the

spikes, since the number of traces used (4,000) is high rela-

tive to the noise within individual traces. While more traces

yield cleaner results, there is normally no reason to use more

data than is necessary to distinguish the desired signals.

The information revealed by a DPA test is determined

by the choice of selection function. A selection function is

used to assign traces to subsets and is typically based on an

educated guess as to a possible value for one or more inter-

mediates within a cryptographic calculation. If the final DPA

trace shows significant spikes, the cryptanalyst knows the

selection function output is correlated to (or equals) a value

actually computed by the target device. If no correlation is

observed, then selection function output was not correlated

(or the correlation was too small to observe). Selection func-

tions may be the predicted value of a single bit, such as an

output bit from an S-box or multiplier. More complex func-

tions, such as the predicted difference between the value of a

bit in a register and the value of a bit that overwrites it, may

also be used. Selection functions can also be functions of

multiple bits. For example, a selection function might output

1 if a multi-bit intermediate is predicted to equal a constant

(or a different intermediate) and otherwise output 0. As we

will describe later in Sect. 4.2, the choice of selection func-

tion is a key part of the DPA process as it encapsulates the

engineering intuition about leakages that may be present in a

device. Selection functions used in DPA are typically binary

valued functions.

2.3 Using DPA to attack AES: an example

To illustrate the DPA process, we now present typical a DPA

attack on AES-128 encryption using the AES-128 smart card

traces.3 As previously shown in Fig. 5, computational inter-

mediates, such as the outputs of the AES S-box, have a small

statistical influence on power consumption measurements.

We now describe how these small correlations can be used

to reveal the secret key.

The first round of AES-128 encryption consists of the fol-

lowing steps:

1. Initialization The initial 16-byte state of the cipher,

organized as a 4 × 4 byte matrix, is initialized to the

16 bytes of the plaintext.

3 The initial discussion is using the same device for consistency, not

because there is anything about the attack that is specific to smart cards

or this particular device. We will discuss attacks against other devices

later, e.g., see Fig. 9.

Fig. 7 AES S-box lookup

during first round

2. AddRoundKey The 16-byte secret key is exclusive-

ORed with the 16 bytes of the plaintext state.

3. SubBytes Each byte of the state is replaced by another

using the S-box, which is an invertible lookup table.

4. ShiftRows Bytes in each row of the state are shuffled.

5. MixColumns Each column of bytes of the state is mixed

using a linear operation.

The DPA attack will target the output of AddRoundKey

and SubBytes in AES. These operations are shown in Fig. 7.

For each trace i , Let Ii denote the 16-byte intermediate

state of the cipher just after the SubBytes step in round 1. Let

the nth byte of this state (where n ∈ {0, . . . , 15}) be denoted

by Ii,n . Let the first round key be denoted by K and its nth

byte be denoted by Kn . Similarly let X i,n denote the nth byte

of plaintext X i used for the i th trace. As shown in Fig. 7, Ii,n

only depends on one byte X i,n of the input and one byte Kn

of the key, i.e.,

Ii,n = S[X i,n ⊕ Kn] (1)

In this equation, X i,n is a known variable: one byte of

plaintext. Kn is a secret constant. S is the AES substitution

table, which is defined in the AES standard, Ii,n is there-

fore an unknown variable which depends on a 1-byte secret

constant and other known quantities.

AES can be broken easily if there is an efficient test that

reveals whether a given candidate for Kn is correct. In par-

ticular, Kn is an 8-bit value, so at most 256 queries of this

test would be required to confirm the correct Kn . The 16 Kn

bytes that make up the entire AES-128 key could be found

by simply solving for each byte separately.

DPA provides a practical way to test if a candidate value

of Kn is correct. The candidate Kn is used with equation (1)

to derive the value of Ii,n for each trace’s X i,n . A selection

function can be developed based on the calculated Ii,n . In

this example, bit 0 (the LSB) of Ii,n was used as the selection

function output.4 Each trace is assigned to one of two subsets,

4 For many devices, such as the one in Fig. 6, all bits will work well.

For some devices, however, different selection function choices may

yield stronger correlations.
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Fig. 8 Five differential traces for the DPA test predicting the LSB of

Ii,0 for guesses K0 = 101, . . . , 105 from top to bottom, with the correct

key K0 = 103, corresponding to the third trace

depending on whether the selection function result is 0 or 1

for the candidate Kn and the plaintext being encrypted when

the trace was captured.

The difference of the subsets’ averages is then examined.

If the value of the S-box output bit predicted by the selection

function has even a tiny correlation to the power traces, the

DPA test will show spikes indicating that the candidate Kn

is correct. For each wrong Kn , the predicted values of Ii,n

will be (largely) unrelated to any data being processed by the

target device, and the DPA test will not be (or will be much

less) statistically significant.

Difference traces were prepared for all 256 possible val-

ues for K0 (i.e., K0 = 0, . . . , 255). Figure 8 shows, from top

to bottom, five traces for K0 = 101, . . . , 105. The correct

value for K0 is 103, as is obvious from the presence of large

spikes in the K0 = 103 trace (which matches Fig. 6). Traces

for incorrect K0 values have much smaller spikes 5 or are

relatively flat.

The same analysis can be repeated for all the 16 bytes

of the state (n=0,…,15) to recover the entire 128-bit AES

secret key from the device. The same traces can be reused in

finding each key byte; it is not necessary to collect separate

data, since each test is checking for different correlations in

the data set.

A DPA test can be summarized as follows: Let T denote

the set of traces that are collected and let Ti denote the i th

trace. Let Ti [ j] denote power measurement or sample at the

j th time offset within the trace Ti . Let C denote the set of

known inputs or outputs for the traces with Ci corresponding

to the i th trace. Let D(Ci , Kn) denote a binary valued selec-

tion function with input Ci and the guess Kn of a part of a

key. Each point j in the differential trace �D for the guess

Kn is computed as follows:

5 The presence of smaller spikes for incorrect hypothesis is due to har-

monics, which are discussed in Sect. 4.4.

Fig. 9 DPA results showing the average trace for an AES-128 opera-

tion running on an FPGA (top), the differential trace for an incorrect

guess of a byte of the last round key (middle) and the differential trace

for the correct key byte (bottom)

�D[ j] =

∑m
i=1 D(Ci , Kn)Ti [ j]
∑m

i=1 D(Ci , Kn)

−

∑m
i=1 (1 − D(Ci , Kn)) Ti [ j]
∑m

i=1 (1 − D(Ci , Kn))

For a typical DPA analysis, the guess for Kn that produces

the largest spikes in the differential trace �D is considered

to be the most likely candidate for the correct value.

The attack can be adjusted easily for other cipher modes

and target devices. For example, Fig. 9 shows a DPA result

from the FPGA implementation of AES-CBC shown in

Fig. 2. For convenience, a single oscilloscope capture was

used to capture all AES operations needed for the attack,

then the capture file was divided into 65,536 separate AES

operations for analysis. Also, because the ciphertext (instead

of plaintext) was available, the DPA process was used to

find bytes of the last round key.6 The top trace in Fig. 9 is

the average power trace for an AES operation. The middle

trace is a differential trace for a DPA test carried out with an

incorrect guess for the first byte of the last round key and the

bottom trace shows the corresponding differential trace for

the correct key byte guess.7

6 This analysis is a ciphertext-only attack; knowledge of the plaintext

is not required.

7 Although the FPGA yields less information per AES operation than

the smart card in Fig. 1, the FPGA leaks its key out more quickly because

it performs many more AES operations per second. The FPGA analysis

was automated using a simple automated tool to identify and synchro-

nize the individual AES block operations. The entire process (including

the time for the FPGA to perform the AES operations, the capture and

transfer of the trace data to a PC, and all necessary processing and

averaging steps to solve for the complete key) took 125 s from start to

finish.
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2.4 Stages of a black-box DPA attack

A typical DPA attack involves the following stages:

• Device instrumentation This preliminary stage involves

developing the means to communicate with the device

to invoke cryptographic operations and to record its

responses. The measurement apparatus, such as digital

oscilloscope driven by a PC, is also connected to the target

device. Depending on the device and the access available, a

resistor or a current probe in series with the device’s power

or ground lines can be used. Measurements taken closer to

the cryptographic component will generally be of better

quality, although a larger number of lower-quality traces

can also be used. If a resistor cannot be inserted (e.g., if a

device uses an internal battery), the device’s internal resis-

tance is often sufficient. E-field and M-field probes can

also be used to conduct EM attacks on a device, using

the same methodology as DPA. For triggering, the mea-

surement system is typically connected to the device’s I/O

lines.

• Measurement This is the data collection stage. Power

traces are recorded while the target device performs cryp-

tographic operations. Each captured trace is stored on a PC

with the associated cryptographic data (e.g., the plaintext

or ciphertext). As needed, trace quality and capture effi-

ciency may be improved by adding analog filters, adjusting

bandwidth or sampling rates, and by exploring SPA signal

characteristics (see Sect. 4.1) to remove irrelevant regions.

• Signal processing This optional stage involves process-

ing traces in software to remove alignment errors, isolate

features of interest, highlight signals, and reduce noise. In

many cases, only simple temporal alignment will be nec-

essary, or this step can be omitted entirely.

• Prediction and selection function generation In this stage,

different hypotheses about a portion of the key formed

are used to define selection functions for analysis. Each

selection function is then applied to the cryptographic data

associated with each trace, deriving a prediction about an

intermediate state for the next stages to test.

• Averaging The averaging stage computes, for each selec-

tion function, the averages of the input trace subsets defined

by the selection function outputs. This step is normally the

most computationally intensive stage.

• Evaluation The DPA test results are analyzed to deter-

mine the most likely candidate key guesses. This process

can be done visually or using automated tools.

The final three steps (prediction, averaging, and evalua-

tion) are often iterated. For example, with AES-256, the first

round key is typically found before the attack can begin on

the second round key. In other cases, additional steps may

also be repeated, e.g., if adaptively chosen input messages

are being used.

3 Simple power analysis

This section introduces SPA. In [11], SPA was described as “a

technique that involves directly interpreting power consump-

tion measurements collected during cryptographic opera-

tions. SPA can yield information about a device’s operation

as well as key material.” SPA exploits major variations in a

power consumption. As a result, unlike DPA, the method is

generally unable to extract keys from noisy measurements.8

For many devices, however, SPA provides a very effective

and efficient way to obtain the information necessary to solve

for the secret keys.

3.1 SPA methods

Simple power analysis is a collection of methods for inspect-

ing power traces to gain insight into a device’s operation,

including identifying data-dependent power variations. SPA

focuses on examining features that are directly visible in a

single power trace or evident by comparing pairs of power

traces.

This section introduces the common SPA analysis meth-

ods, including single trace analysis and trace pair analysis.

3.1.1 Single trace analysis

Within a single power trace, features which correspond to

timing, device attributes, algorithm structure, or other prop-

erties of the computation are often visible. The first stage of

simple power analysis involves looking at a power trace and

drawing inferences about the operation.

For example, Fig. 10 was captured from a smart card run-

ning a pseudorandom number generation operation using

3DES and an EEPROM. Variations in power consumption

convey information about the device’s operations. From left

to right, the trace shows the arrival of input data to the

device, the output of a single byte from the device, a tri-

ple-DES operation, and a series of EEPROM writes. Some

of these suboperations, such as the I/O and EEPROM writes,

can be recognized from their timing and power consumption

profiles, or using background knowledge about the device

and the protocols it implements. In other cases, information

8 Some methods fall in a gray area between SPA and DPA or combine

elements of both. For example, if individual traces are of low quality

many oscilloscopes can internally average power traces captured from

repeating the same operation several times, providing a higher-quality

trace for analysis using SPA techniques.
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Fig. 10 Power trace from a smart card that is performing a 3DES-based

PRNG operation

Fig. 11 SPA leaks from an RSA implementation

about what the device is doing can be inferred by recognizing

repeated patterns and counting iterations in loops.

Different information is available at different levels. The

view in Fig. 10 is zoomed out show each of the major oper-

ations involved in the transaction. Three bursts of activity

are noted in the portion labeled “Crypto (3DES)”. Zooming

in on the first of these bumps reveals a pattern repeated 16

times—which is the DES round function. If the analyst did

not know that the protocol was using 3DES, structural clues

such as these can be helpful. Zooming in to the clock cycle

level can reveal more detail, such as low-level implementa-

tion choices.9

While two segments may look similar to the eye, a more

reliable method of identifying subtle differences is by com-

puting the difference between two segments of a trace. The

approach usually used here is to make a copy of the trace,

shift it by some time interval and then compute and display

the point by point difference. When two segments of a trace

are truly similar, the difference between them should be rel-

atively flat over the range where they agree.

SPA leaks that are evident in a single trace can also reveal

cryptographic secrets. Figure 11 shows a segment of the

power trace of a modular exponentiation loop in which direct

interpretation of the SPA features reveals an RSA decryption

key.

9 For example, in this implementation, the C and D rotations in the key

schedule use a software routine that rotates 26-bit quantities by one bit.

The routine is called once in rounds 1, 2, 9, and 16 and twice in the other

rounds of the DES encryption. The timing variation that this creates—

although it does not leak any information about the secret key—is a

distinctive SPA signature.

Fig. 12 Two traces and their difference, with point of divergence indi-

cated

This trace shows a sequence of squares and multiplica-

tions as the device performs modular exponentiation using

the binary left-to-right algorithm. Multiplications consume

more power than squares in this trace, and appear as by higher

peaks. In the binary left-to-right algorithm, one square is per-

formed in every iteration of the exponentiation loop, while

multiplications are only performed when a bit of the expo-

nent is 1. This fact allows the pattern of operations in Fig. 11

to be interpreted. Each 1 bit in the secret exponent appears as

a shorter bump followed by a taller one, while a 0 bit appears

as a shorter bump without a subsequent taller one. The bits

of the exponent can thus be recovered as shown.

3.1.2 Trace pair analysis

Trace pair analysis involves comparing traces to identify sim-

ilar regions and differences.

Figure 12 shows two power traces recorded from a device

performing the GSM Authenticate Subscriber command

using the A3 algorithm. The device used the same key each

time, but with different initial data values, yielding the upper

two traces. The lower trace shows the difference between the

top traces.

The traces are aligned at the left edge of Fig. 12 and stay

synchronized across the first half of the figure—and the dif-

ference trace is relatively flat. At the point indicated by the

dark vertical line, however, the traces diverge and large dif-

ferences appear, indicating that the computations have taken

separate paths.

Figure 13 shows the same two traces, but the second trace

has been shifted 21 clock cycles (4.2 µS) to the left to bring

them back into synchronization at the location of the right-

most vertical black line. The black line from Fig. 12 has

been broken, and still marks the points that were originally

aligned.
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Fig. 13 he traces of Figure 12, aligned to showing point of rightward

synchronization, and the corresponding difference trace. The original

point of divergence is marked by the first, broken line

Fig. 14 Trace pair comparison of a permutation with different inputs

Figures 12 and 13 together indicate that the two calcula-

tions briefly took different paths, with the divergent region

taking 20 clock cycles in the upper trace and 41 clock cycles

in the second trace. This characteristic was caused by a con-

ditional branch that took different execution paths in the two

traces.

SPA leaks that result in timing differences can often be

attacked using timing attacks [5], but SPA generally pro-

vides more information than overall timing. Figure 14 shows

traces from a permutation function being run with two dif-

ferent input messages. In this case, even though the total

operation time is the same, high-amplitude leaks are evident.

Once the cause of the variations is well understood, leaks

such as these may provide information that can be used to

recover keys.

In analyzing pairs of traces, macroscopic SPA features in

the two traces allow similar features to be aligned and com-

pared. The simple method of subtracting one trace from the

other highlights amplitude and timing differences between

them.

3.2 SPA Leaks

Data-dependent conditional branches are one source of SPA

leak. Another common source of SPA leaks is CPU instruc-

tions with variable timing, such as multiplications on the

ARM7 and Intel 80486. Even in branchless code with con-

stant timing, instructions that have microcode variations can

have visible data-dependent variations in power consump-

tion. Arithmetic and multi-precision integer operations can

have major variations in computation complexity that lead to

leaks having high amplitude variations. An SPA leak may be

triggered by a low-probability event. For example, a multi-

precision integer multiplication may run faster for each 16-bit

word of its input that is zero. SPA variations unrelated to cryp-

tographic processing, such as timer interrupts and context

switches on multithreaded CPUs, are also common but these

tend to be less useful and can often be recognized because

they are not consistent for a given key and data input.

Specially chosen inputs can be used to search for SPA

leaks corresponding to unusual intermediate states. Addi-

tional trace pairs can be examined to determine whether

characteristics are consistent when the key and data are each

modified or held constant. As will be discussed later, SPA

leaks depending on the key or on computation intermediates

tend to be particularly useful for cryptanalysis.

3.3 SPA attacks

Once an SPA leak is identified, the next step is to use it to

recover the key. In some cases, such as the device in Fig. 11,

the process is simple. In other cases, more analysis may be

required.

The traces in Fig. 15 show an SPA leak that appears in

an RSA decryption implementation that uses the Chinese

Remainder Theorem (CRT). The figure shows the final CRT

processing steps from decrypting the two messages. The ci-

phertexts were chosen to have about half of the most-signif-

icant bits of the plaintext set to 0.10

The bottom trace shows a bump that appears for messages

larger than a threshold near 2512. The top trace shows the

same region when M is smaller than the threshold. Further

testing showed that this SPA leak reveals whether M mod p

> M mod q. Using an adaptive chosen ciphertext attack, the

threshold M = q can be located by binary search, revealing

the RSA private key. A similar attack was described in [12].

10 The plaintext values were selected then encrypted using the public

key to form the ciphertexts sent to the device for decryption. Although

the padding is invalid, the private key operation is completed before the

padding can be checked.
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Fig. 15 A trace from a device performing RSA using CRT for which

the decryption result is less than q, and a trace with decryption result

greater than q

Fig. 16 Trace pair showing branch difference that reveals one bit of

the nonce during an EC-NR signature

In black box evaluation, it may be harder to directly inter-

pret the meaning of an observed leak. Collision attacks can

be a relatively simple way to exploit SPA leaks [13,14]. In

particular, SPA can be used to infer when pairs of inputs lead

a device into colliding (or similar) states—without requiring

a precise understanding of the nature of the device’s leakage.

In some cases, the ability to identify these inputs enables

recovery of the key.

Algebraic attacks and specifically lattice-based meth-

ods are another avenue for exploiting SPA leaks that give just

a few bits of information per trace.

For example, Fig. 16 shows two power traces from a device

performing an ECC curve multiplication using a nonce. For

this device, 20 bits of the nonce could be easily inferred from

an SPA leak per multiplication on a 168-bit elliptic curve. The

top trace shows a nonce bit equal to 0, and the bottom trace

shows an operation with the nonce equal to 1. The value of

the nonce bit has a clearly visible effect in the region of the

traces between the vertical lines. Using a lattice attack based

on work by Bleichenbacher [15] and others (see [16–18]), the

signing key can be recovered easily. Algebraic attacks have

also been shown to be effective against implementations of

symmetric cryptographic algorithms [19,20].

As illustrated by these examples, recovery of the secret

key is often straightforward once an SPA vulnerability is

identified and characterized. This is not surprising, since the

adversary has useful information about computational inter-

mediates that the cipher designer assumed would be hidden.

SPA is only practical when significant, data-dependant

features in the power traces are apparent. In practice, data-

dependant power variations during cryptographic computa-

tions may be hidden in noise. In other situations, SPA leaks

may be visible, but their interpretation is so tedious that an

automated attack is more attractive. For these situations, the

statistical power and structural simplicity of a DPA attack are

advantageous.

4 Implementing DPA

Attackers and product evaluators are motivated to obtain keys

as quickly and easily as possible. If basic DPA is not imme-

diately successful, there are many ways to adapt the attack

to compensate for countermeasures or to reduce data collec-

tion or processing time. In many cases, these adjustments are

not essential, but are helpful for the impatient adversary. This

section elaborates on the DPA testing process and techniques

described in Sects. 2.2 and 2.4. These adjustments are based

on our experience in analyzing a broad range of algorithms

and devices.

4.1 DPA: Data collection and preparation

Leaks exploited by DPA can be much smaller than the level

of noise in a set of traces, but better signal-to-noise ratios

require fewer traces. Time is often of the essence in an eval-

uation lab or adversarial setting, and improvements in the

initial data collection can reduce the time to recover keys by

improving signal quality.

4.1.1 Device instrumentation

Many factors influence the signal quality of power mea-

surements. For example, taking measurements closer to the

crypto IC typically improves the traces. On large ASICs/

SoCs with multiple power and ground connections, inputs

that power the circuitry that performs the cryptographic com-

putations are likely to provide better data. Similarly, at the

board level, removal of decoupling capacitors or use of an

external bench-grade power supply can reduce noise.

While a resistor in series with a power or ground line is the

simplest way to obtain power traces, we have also had suc-

cess exploiting the internal resistance of batteries and internal

power supplies. If direct power traces are unavailable or of

poor quality, other sensors can be used instead. For example,

magnetic field pickups can be effective for larger ICs. While

thermal imaging and acoustic effects have been suggested as

possible side channels [21,22], the quality of the resulting
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measurements is likely to be low. If the integrated circuit has

been decapped, photon emissions measurements [23,24] and

other side channels may be options.

In some cases, signal quality is affected by a device’s oper-

ating parameters, such as voltage, temperature, and clock

rate/waveform. Stressing a device by running it near the edge

of its operational envelope may enhance the leak being tar-

geted or reduce the effectiveness of certain countermeasures.

For example, lowering the input voltage may stress volt-

age regulators and increase leakage. A bench-grade clock

can reduce timing jitter, especially when synchronized to

the sampling clock of the measurement apparatus. Using a

sine-wave clock may reduce high-frequency noise in mea-

surements.

For some devices, it is possible to control the number of

cryptographic operations performed in a given command,

e.g., by selecting the input message length. Commands that

perform more cryptographic operations are often preferred,

since increasing the number of cryptographic operations per

trace usually speeds up the data collection stage. For example,

the single CBC-mode encryption trace from Fig. 2 which con-

tained 216 AES encryptions was collected in a few seconds,

whereas collecting 216 power traces of single AES encryp-

tions on the same device takes over an hour due to the com-

munication and data transfer overheads.

While many DPA attacks work with random or arbitrary

input messages (such as typical ciphertext), chosen input

messages can sometimes reveal additional leakage or sim-

plify the analysis. For example, holding part of the input

constant can enable a practical attack [25,26] or decrease

the complexity of subsequent steps on the analysis [27,28].

Holding part of the input constant can also amplify leak-

age by increasing the number of intermediate bits that are

correlated to the value being predicted. Depending on the

algorithm being analyzed and the attack strategy, it may be

most efficient to use a sequence of adaptively-chosen input

sets, where each set of inputs depend on the results of a DPA

analysis done on the prior set. In other cases, such as with

the “doubling attack” [29], a chosen message strategy can

help circumvent poorly-designed DPA countermeasures. In

some instances, when inputs are not fully controllable by an

attacker, fault or glitching attacks may be used to influence

the cryptographic operations being performed. Adaptively

chosen inputs have also been used in the context and timing

analysis [30], and the efficiency of such side attacks has been

formally modeled and analyzed in [31,32].

4.1.2 Measurement

Data collection is performed with a high-speed analog-

to-digital conversion system. Digital storage oscilloscopes

are well-suited to this task. In selecting a scope, reason-

ably deep memory (for capturing longer traces) and trigger

flexibility (to help start trace capturing at the appropriate

time) are helpful. In addition, rapid trigger re-arming time

and fast transfer rates can help speed up the data collection

phase. (Data collection is often the most time-consuming step

of DPA.)

In our experience, signal fidelity and calibration are less

important, since the types of distortions introduced by

cheaper lab equipment generally do not interfere with the

leakage signals exploited by DPA. While it might appear that

sampling resolution would matter significantly when dealing

with very small correlations, the primary concern for DPA

is the signal-to-noise ratio, and sampling errors are usually

significantly smaller than other noise sources.11

Analog pre-processing of the raw signal prior to A/D con-

version is helpful in some situations. For example, in the

case of field-powered devices and some types of EM anal-

ysis, an AM or angle demodulation step helps isolate the

signal of interest. Similarly, simple bandwidth limiting (a

feature in many oscilloscopes) can help remove unwanted

high-frequency artifacts.

To minimize the amount of extraneous data collected, it

may also be helpful to examine any SPA signals to help

narrow down when the cryptographic process occurs (see

Sect. 3).

In other cases, a preliminary DPA test using the known

input and output bits as selection functions can highlight

the precise location where the cryptographic operation is

performed. A more general technique for characterizing the

leakage from a device is to perform DPA tests using selection

functions based on the expected intermediate values within

the cryptographic operation. This “known-key” analysis is

only possible if the attacker can obtain a device with a known

key. Tests using these intermediates help identify what infor-

mation is leaking from the implementation. For example,

Fig. 6 used known key analysis to illustrate how the least-

significant bit of the first S-box lookup leaked from an AES

implementation.

4.1.3 Signal processing

After traces have been collected in digital form, additional

digital signal processing can significantly improve the effi-

ciency of the rest of the DPA process and improve its out-

come.

Trace alignment (identifying a reference time location in

each trace) is typically performed and is the simplest signal

processing technique. To align a trace Ti against a reference

11 A biased coin provides a more familiar example of how a signal can

be identified with precision exceeding the measurement system. Given

enough measurements, the coin’s bias can be determined with arbi-

trarily fine accuracy—even though the individual measurements each

have only one bit of resolution (heads or tails).
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trace T0, a simple correlation test is employed to find the

time shift d that minimizes the differences (or the square of

the differences) between T0[ j] and Ti [ j + d]. Occasionally,

more complex alignment methods are needed. For example,

clock drifts across traces can be a source of misalignment,

and several countermeasures have been designed to create

misalignments. (These include shuffling the order of opera-

tions, insertion of random no-ops or clock skips, and use of

desynchronized clocks.) Often, careful alignment or signal

resynchronization can reduce or eliminate these effects (see

[33] and Sect. 6). Although correct alignment is not neces-

sary for DPA to succeed, good alignment does reduce the

number of traces required to extract a key.

An alternative to performing alignment is to perform DPA

in the frequency domain. To do this, the signal processing

phase involves performing Fourier analysis on the relevant

regions of each trace.

Other digital filtering of signals at this stage can also help

reduce noise and to focus on the parts of the spectrum where

the leakage signal is present. For example, trace “compres-

sion” can be performed by adding together successive mea-

surements, and can help reduce high-frequency noise and

amplify signal resolution while reducing the amount of data

that requires processing in subsequent steps. If unwanted

repetitive effects are present, these can be detected and sub-

tracted from the traces. Another simple strategy to reduce

extraneous and measurement noise from traces is to collect

multiple traces while an identical operation is repeated, then

average these together.

DPA testing can be a highly data intensive task, especially

when performed with a very large number of traces each

containing a large number of measurement points. Much of

the information present within the traces is not useful in the

DPA test; only a few trace offsets typically show DPA sig-

nals. Once a particular device has been characterized, traces

can be greatly compressed by discarding all points except the

few that matter.

At this stage, traces may also be prepared for analysis by

variants of DPA, such as higher-order DPA (see Sect. 5). In

the simplest case, certain traces may be discarded (filtered

out) based on the value of some portion of the signal. For

example, if all traces with below-average measurements at a

first location are discarded, high-order effects involving this

location and any other location will appear. More generally,

a function can be applied to transform n-tuples of measure-

ment points as part of an nth-order HODPA attack. A distor-

tion function may be applied to traces to enhance a ZO-2DPA

attack [34].

4.2 DPA: Hypothesis Generation Using Selection Functions

DPA attacks exploit leaked information by leveraging a pre-

diction about some aspect of the computation that varies in

a key-dependant manner. Section 2.2 gave an example of an

attack targeting an intermediate bit in the first round of an

AES encryption. Many aspects of the device state may leak,

for example, “Hamming distance” leaks correlate to the num-

ber of bits that change when the value of the word on a bus

or in a register changes. Real leaks can be complicated. In

some devices, transitions from 0 to 1 leak differently than

transitions from 1 to 0. Hamming weight and Hamming dis-

tance models treat bits independently, but in real devices, the

amplitude of leaks varies significantly for different bits, and

may be further modulated by multi-bit effects. Some devices

have word-oriented leaks which may be correlated to flag

bits such as sign, zero, overflow, or carry.

On the SASEBO-GII AES implementation, the FPGA

uses significantly less power than average when a byte being

written into the round register has the value 0. It uses even

less power when a byte written into the round register is

the same value as the overwritten byte. Knowledge of these

effects, often discovered through trial-and-error, is helpful in

formulating selection functions.

In many cases, the secret constant targeted by a DPA attack

is a recognizable portion of a round key. In other cases, such

as when analyzing DES-X, HMAC-SHA [35], or AES in

counter-mode with unknown starting counter [27], the attack

recovers a constant that is a function of multiple secret con-

stants (or keys). An attack may need to be iterated for a num-

ber of rounds to recover enough secret materials to solve

for all keys. In some cases (such as HMAC-SHA), instead

of recovering the original key, the analysis yields interme-

diate values which enable the attacker to perform the same

operations as with the original key.

In some instances, known key analysis may show fairly

large leaks, but targeting the device specific leakages may

appear to require guessing a large number of bits of the key or

sensitive parameter. In cases where an attacker can select the

cipher input, the analysis complexity can often be reduced,

allowing a practical attack against the leak. With the cipher

MISTY, e.g., chosen messages can reduce an attack from

32-bits to 16 [28]. Similarly, with AES, an attack on regis-

ter contents after the MixColumns step can be reduced from

32-bits to 24 or 16 using chosen messages [26].

Chosen message analysis is particularly helpful with pub-

lic key algorithms. One strategy frequently applied with pub-

lic key algorithms is to guess only part of the key (e.g., a few

most significant bits) and predict intermediates using this

value. The best prediction will provide the closest approxi-

mate of the key, yet still deviate from the actual intermediate

state (see Sect. 4.4.1). This approach can be applied itera-

tively, to successively obtain better approximations until the

key is known.

Selection functions are normally 0/1 valued. In some

cases, especially when leakage characteristics of a device

are well known, a selection function can have a non-binary
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output. This output is then used as a weight in the final

averaging step, where the weights can be zero, positive or

negative. This type of analysis is closely related to Cor-

relation Power Analysis described in Sect. 5.1. In general,

non-binary and multi-bit selection functions can improve the

efficiency of attacks when assumptions about device leakage

hold, whereas binary, single-bit selection functions can be

useful without requiring additional assumptions about multi-

bit leakages.

A final step of the hypothesis generation phase is to com-

pute the output of each selection function for each trace. For

example, if 256 selection functions are being tried to solve

for a byte of an AES key, the input to this phase would typ-

ically be the ciphertext or plaintext for each trace, and the

output would be a vector of 256 bits for each trace.

4.3 DPA: averaging

The analysis stage is where the core DPA calculations are

performed. In addition to computing the averages of various

subsets of the traces, the average of all traces and the variance

at each point across all traces are also generally computed.

Averaging performance is determined by processing

power and storage throughput. A number of performance

optimizations are helpful when working with large data sets.

The basic task is to rapidly compute averages of many sub-

sets of traces. A large analysis might involve 108 traces, each

with at least a few hundred points, with 105 subsets to aver-

age together. In terms of number of traces (N ), length of

traces (L), and number of selection functions (M), the naive

complexity of this task is O(N · M · L) and the memory use

is O(M · L).

Optimization can simplify the problem. DPA involves

comparing the average of the subset where a selection func-

tion is 1 (A1) to the average of the subset where the selection

function is 0 (A0). If the average of all traces (Aall ) is known,

then A0 can be calculated from A1 and Aall using the number

of traces in A1 and the total number of traces. Thus, when

calculating many selection functions over the same set of

traces, it is generally sufficient to calculate Aall and the A1,m

subsets since A0 ≈ Aall − A1. This results in just a factor of

two improvements, so the complexity is still O(N · M · L),

but CPU and memory use is halved.

A second optimization when calculating many selection

functions over the same set of traces is to use a cache. A

cache size of 28 −1 works with 8 traces at a time, computing

the sums of 255 possible combinations of these traces. Then,

these traces can be added into the mth averaging task using

one addition out of the cache instead of up to 8 additions of

the individual traces. A cache of size c requires O(c·L) mem-

ory and takes O(2c · L) operations to set up. Performance

using a cache is improved to O
(

N
c

· M · L + 2c
)

.

Many analyses have statistical bottlenecks. The attack on

AES in Sect. 2.3 predicted the output of SubBytes in the

first round. Guessing one byte of the round key allows 8 bits

of intermediate data to be predicted. If DPA tests are per-

formed for each of these bits, for each value the key byte

could take, then 2, 048 selection functions will be evaluated.

Because the prediction about the intermediate depends on

only one byte of the ciphertext, only 256 unique sequences

will be observed over the set of L traces. In general, if

there is a statistical bottleneck in the selection function out-

puts, and only B unique sequences of selection functions are

generated over our L traces (and B << L), then using an

“input bins” cache with B entries can improve performance

to O
(

L + B
c

· M · N + 2c
)

.12 Bottlenecks can be introduced

by repeating each message multiple times.

As a result, any decrease in the trace size produces a

proportional improvement in averaging time. For example,

trace regions before or after the cryptographic operation can

be deleted. Compression methods (as discussed in the sig-

nal processing subsection above) can also greatly reduce the

number of points that need to be averaged.

When evaluating extremely high numbers of selection

functions (e.g., 232) the selection function generation and

evaluation stages can be folded into the averaging step [36].

Although DPA tests normally compare the difference of

averages, this test is not effective in all cases, especially in

the presence of countermeasures, and in some cases the sig-

nals require preprocessing before averaging (see Sect. 5.2).

In other cases, distributions such as those shown in Fig. 5

may also be analyzed. In this case, instead if computing the

average of the subset traces at each point, this step would

be modified totally the frequency distribution of samples at

each point.

The task itself is also embarrassingly parallelizable. Data

can be distributed over many drives to eliminate I/O bottle-

necks. Computation can be distributed over multiple threads

or machines. Although few devices today require such large

data sets, optimizations can make working with billions or

potentially even trillions of traces practical [36].

4.4 DPA: evaluation

In simple cases, the results of DPA can be evaluated using

visual inspection by a human operator. The correct key guess

results in large peaks in the differential trace, while much

smaller peaks are visible for incorrect key guesses. It is also

easy to develop automated tools to measure peaks and list

12 Alternatively, if the cache optimization is not used, a bottleneck

still can be exploited in a very memory-efficient approach. After the

B averages are computed, the average for each of the m bins can be

computed one after the other and saved to disk. This approach involves

only O ((B + 2) · L) memory and O (L + (B · M · L)) complexity.
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or plot their amplitudes, or even suggest the most likely key

guesses.

Regions with unusually high noise can show spurious

spikes in a differential trace. To correct for these effects,

and to help assess the statistical significance of the results,

each point in the differential trace can be divided the standard

deviation of all traces at that point. The result is a normalized

trace giving the polarity and significance of the difference

(measured in standard deviations) at each point in time.

The “difference of averages” is just one way that two dis-

tributions of measurements can differ. A more general sta-

tistical test can compare at the distribution of measurements

at each point in the subsets of traces, and calculates the sig-

nificance of differences observed between them. For such

analysis, the “averaging” stage actually computes the distri-

butions of measurements rather than compressing the distri-

butions down into their averages.

For some algorithms, and for certain types of DPA attacks,

the evaluation process is more complex, since there are be

multiple other guesses besides the correct key which have

significant correlation to the target leak and thus may show

spikes in the differential trace. These guesses are termed as

“harmonics” of the correct key and these will be described

in the next subsection.

For some algorithms the attack is applied iteratively, as

new information about the key enables the generation of new

selection functions. In these cases, the DPA evaluation stage

is not the final stage of an attack. The iteration process usu-

ally restarts back at the selection function generation stage,

but for adaptive chosen message attacks, the evaluation result

guides the next sets of inputs for the data collection stage.

Iteration is also required for algorithms such as AES-256

and triple DES where multiple round subkeys or multiple

encryption keys must be found.

4.4.1 Harmonics

The AES selection function described in Sect. 2.3 targets a

bit of SubBytes output. When the guessed byte is correct,

its output is correct (i.e., equals the target bit for each input

message) with probability 1. The assumption that when the

guessed byte is incorrect the output from the prediction is

uncorrelated (i.e., can be treated as random) is an approxi-

mation; smaller positive or negative correlations exist.

These smaller correlations are ignored in a basic DPA

analysis, but can provide additional information for identify-

ing the correct key guess. A relatively extreme example of this

occurs in S-box 2 of the DES standard (Fig. 17) in output bit

2 (where 0 is the least-significant bit). If the guessed value

for the corresponding six key bits equals the correct value

except that its high order bit is complimented, then output

bit 2 for this S-box output will be incorrect in 60 out of 64

cases. As a result, when predictions for output bit 2 of S-box 2

Fig. 17 Biases observed for incorrect key guesses of DES S-box 2,

output bit 2. The X axis shows the XOR difference between the tested

6 key bits and the correct key bits. The Y axis shows the likelihood the

incorrect key will correctly predict the output bit

Fig. 18 Graph of signal amplitude observed for each key guess in an

attack on RSA-CRT reduction-by-division, from 0x8000 to 0xC9FC

are used as a selection function, the correct value will appear

along with a harmonic peak13 of opposite polarity. Although

this high-intensity “harmonic” peak could initially be mis-

interpreted as the correct one, the pattern of the peaks can

actually help an adversary by providing additional a way to

confirm key guesses.

Harmonics also often appear in public-key cryptography.

Two examples are the Hamming weight pattern observed in

the MRED attack on RSA-CRT [25], and the patterns often

observed in attacks based on the multiplication or division.

Figure 18 shows an example of such harmonic patterns, as

seen in an attack targeting intermediates in the RSA-CRT

initial reduction step.

In Fig. 18, the target device implements the RSA-CRT

initial reduction step by finding the remainder of the long

division of ciphertexts C by a secret prime p. The X axis indi-

cates the hypothesis tested, with the left edge of the screen

corresponding to hypothesis hexadecimal8000 and the right

edge corresponding to hypothesis hexadecimalC9FC. Selec-

tion functions were generated by predicting the 8th most-

significant bit of the quotient of each trace’s ciphertext C

divided by the 15-bit hypothesis value. The Y axis at each

offset plots the amplitude of the strongest signal observed in

13 DPA literature refers to harmonics as either “ghost” peaks or

“spurious” peaks. We chose to use the more positive term, “harmonics”,

to describe these peaks, since we believe harmonics actually help the

DPA process.
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the differential trace produced using the hypothesis. A strong

spike peaking in the range C074-C092 is visible, with side

lobes in neighboring X values.14 For guesses near 8000, the

selection function is correlated with RSA-CRT input bits,

causing elevated signals at the left side of the figure.

In algebraic relationships, hypotheses that are off by ±ǫ

are often strongly correlated to the correct value when ǫ is

small. For slightly larger ǫ, the correlation may pass through

zero, turn negative, and then become positive again. This is

seen in Fig. 18 and is due to the fact that in division when

the 15-bit hypothesis is correct in the highest 8 bits, the pre-

dicted quotient will also be roughly correct in the highest 8

bits (but may be off by a small amount due to carries from

the lower-order bits).

As ǫ increases, so do systematic errors in the predicted

value. When the guess of p is slightly larger than the correct

value, the predicted quotient will be systematically under-

estimated and vice versa. For very small ǫ, this systematic

error will be close to zero. For slightly larger ǫ, the predic-

tion is systematically biased towards being off by 1 or −1,

causing the DPA spikes to be anticorrelated. For even larger

ǫ, the prediction will be off by ±2, causing DPA spikes to

be correlated again. As ǫ increases, the degree of correlation

decreases due to other carries accruing in the calculation.

While the direction of the correlation alternates, the ampli-

tude decreases, causing the characteristic “wavelet” pattern

observed in Fig. 18.

4.4.2 Dealing with harmonics

Although harmonics can usually be ignored, they can provide

useful information. The pattern of harmonic peaks can help

identify the correct value. Harmonics are a function of the tar-

get algorithm and the selection function strategy employed.

It is, therefore, possible to analyze the selection function pro-

cess, determine the pattern of harmonics it would generate,

and then match this pattern against the amplitudes of the

observed harmonics.

In cases such as DES when the harmonic patterns vary

from bit to bit, harmonics from each S-box output bit can

provide additional confidence in the correct result. For each

bit, the fundamental signal will correspond to the correct key

guess, but the pattern of harmonics will vary. Alternate multi-

bit evaluation strategies such as correlation power analysis

(discussed in Sect. 5.1) are also less sensitive to harmonic

peaks.

Harmonics such as those observed in Fig. 18 may blur the

amount of low-order-bit information one can recover from a

typical attack. In this case, the attack can be repeated while

targeting successively narrower ranges of values for p. Each

14 Note that this observed peak does indeed correspond to the correct

value of the key, which begins with the sequence C083A6.

iteration of the attack recovers lower-order bits of the quo-

tient, ultimately permitting all of p to be recovered.

5 Variants of DPA

In addition to SPA and DPA, there are variants of the basic

attack that are better suited to exploit information leakage in

some settings. We briefly describe some of these techniques

here.

5.1 Correlation power analysis

Correlation power analysis (CPA) [37] involves evaluating

the degree of correlation between variations within the set of

measurements and a model of device leakage that depends

on the value of (or a function of) one or more intermediates

in the cryptographic calculation. Common examples include

correlating power measurements with the Hamming weight

of a multi-bit value in a register or on a bus or the Hamming

distance between a value and the value it overwrites.

Correlation power analysis is most effective in white-box

analysis where the device leakage model is known. It can also

be used for black-box evaluations as long as there is some

correlation between the actual leakages of the device and the

leakage model being used for CPA.

If the number of traces available is limited, CPA can help

make the maximum use of the data. If CPA does not find

leakage, it is ambiguous whether this indicates low leakage

in the device or a large gap between actual leakage and the

model. Similarly, if CPA is successful at recovering the key,

additional leakage modes may also be present.

In our experience, Hamming weight or Hamming dis-

tance models can be reasonable approximation for leaks from

software running on some 8-bit microcontrollers. For larger

ASICs and CPUs, these methods are less effective at model-

ing the leakage found. Because these models do not exactly

reflect a device’s properties, countermeasures developed

solely on the basis of these simplistic models are generally

insufficient to prevent DPA attacks.

5.2 Probability distribution analysis

The subset of data from applying a correct selection function

may have a different probability distribution from the overall

data set, yet have a mean that is statistically indistinguish-

able. For example, consider the case where the points at a

given offset in the subset of traces selected by a selection

function have the same mean but a smaller standard devia-

tion than the overall data set (see Fig. 19). Such a distribu-

tion could arise, e.g., in a hardware implementation that uses

the masking countermeasure, but processes the masked data

and the mask concurrently (see Sect. 6.2). A standard DPA
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Fig. 19 Example where a binary selection function creates two distri-

butions with the same mean but different standard deviations

performed at this location will not have any peaks, yet the

target device can be broken by adapting the attack to dis-

tinguish the distributions. For the distribution in Fig. 19, a

straightforward approach is to preprocess traces by first sub-

tracting from each trace the average of all traces collected,

then squaring the value of each remaining data point. The

DPA analysis performed on the preprocessed traces is equiv-

alent to comparing the variances of the data at each point,

rather than their means. This process actually performs the

zero-offset, second-order DPA attack (ZO2DPA) described

in [34].

More generally, given any differing probability distribu-

tion, it is possible to define a trace preprocessing operation

that will make DPA work. Alternatively, the DPA analysis can

be performed by comparing probability distributions instead

of averages. Techniques such as Mutual Information Analy-

sis [38] are also based on this principle.

5.3 DEMA and other side channels

Both the basic DPA test described in Sect. 2.2 and the

SPA techniques from Sect. 3 work equally well on elec-

tromagnetic (EM) measurements. SPA and DPA techniques

applied to EM measurements are termed simple electro-

magnetic attacks (SEMA) and differential electromagnetic

attacks (DEMA) in [39–41]. Such attacks can be highly effec-

tive, particularly if power measurements are unavailable.

Data from other sources could potentially be used in

DPA-style analysis. Potential side channels such as pho-

ton emissions from semiconductors [23] and temperature

measurements are areas for further research. To extract

keys from obfuscated cipher implementations, digital data

dumped from repeated cryptographic operations can be used

in lieu of power traces. Cache timing and other microarchitec-

tural attacks [42–44] also use similar statistical techniques,

but make somewhat different assumptions about the type of

access available to an attacker in order to break software

implementations of cryptography.

5.4 High-Order DPA

The DPA paper [11] introduced High-Order DPA, saying that

“Of particular importance are high-order DPA functions that

combine multiple samples from within a trace”. High-Order

DPA is an analysis method that targets a known or hypothe-

sized relationship between parameters contributing to a side

channel.15 The “order” of a high-order attack is the number

of parameters involved in the target relationship. High-order

DPA can help analyze relationships such as:

Similarity/difference The calculations at different points

in a power trace (or in a pair of traces) may involve a

common data parameter. High-order combination func-

tions that measure correlation or covariance can be used to

detect these relationships. We have successfully used this

approach in several cross-correlation attacks on modular

exponentiation and ECC.16

Masked shares of a secret This is the traditional second-

order DPA attack described in literature [45,46,34,47–50].

For example, in a masked implementation, a sensitive inter-

mediate may be manipulated as two parts. Each part by

itself is random, but the exclusive-or of the parts would give

the intermediate. Individual measurements are correlated

to the parts, but uncorrelated to the variable. A high-order

function can combine a measurement correlated to the first

part with a measurement correlated to the second part, so

that the combination is correlated to the sensitive variable.

For example, if two points are correlated to A and B respec-

tively, and the secret intermediate is A ⊕ B, the product

of points A and B will show correlation to A ⊕ B and

can be used to test hypotheses about the secret.17 Filtering

attacks are another simple high-order method for targeting

leaks such as this. For this attack, a standard DPA analy-

sis is performed using only the traces with below-average

measurements at the first point. Within these traces, A is

biased, so steps that manipulate B will be correlated to

A ⊕ B.

15 Unlike trace compression methods that simply combine multiple

measurements in order to shrink traces, a high-order analysis targets

distinct parameters involved in the target device’s computation.

16 For example, in binary left-to-right modular exponentiations, squar-

ing steps use only the previous result, while multiplication steps also

involve the input base. The correlation between two nonadjacent steps

will be higher if both operations are multiplications by the base. The

“doubling attack” [29] is another application of this method, using cho-

sen messages.

17 An even better high-order function is (A− < A >) · (B− < B >)

where < X > is the average of all traces at point X .

123



J Cryptogr Eng (2011) 1:5–27 21

Unknown input Measurements at a first location in a set of

power traces can be used to estimate the value of otherwise

unknown inputs and outputs to cryptographic functions.

These estimates can then be used to prepare probabilistic

predictions for plaintext/ciphertext portions needed for a

standard DPA attack which is then evaluated at a second

location in the set of power traces.

Note that when the exact relationship between data val-

ues in a calculation is known, high order attacks can, in

some cases, be avoided. For example, DPA can break AES

in counter mode with unknown initial counter using a first

order attack [27]. This attack takes advantage of the fact that,

although the input is unknown, it can be expressed as the sum

of a known value with a secret constant. The secret constant

can thus be treated as part of the key in a modified first-order

DPA analysis. The MRED attack on RSA [25] is also a var-

iant of this approach.

5.5 Template attacks

Template attacks [51,52] seek to make maximal use of a

small number of traces from a target device. In a template

attack, the analyst constructs a model of the target device. In

contrast to CPA, template attacks build a model from actual

power measurements or simulations. This model is typically

represented by a set of statistical parameters for the expected

power traces corresponding to various states that the device

may enter. Once these templates have been created, they can

be used to determine the most likely state of a target device

from a small number of actual traces.

In some cases, the model (set of templates) may be con-

structed using the actual device that is the target of the attack.

For example, programmable devices such as smartphones

often provide untrusted code with access to the same crypto-

graphic primitives used with high-value keys. In other cases,

the templates may be built using a device from the same fam-

ily as the target. Still other template attacks may use templates

approximated from simulations of the target device.

Although template attacks may require a large amount of

initial effort, they can achieve theoretically optimal use of

the signal in the target traces. In situations where parameter-

ized models for leakage from a target device family already

exist, the stochastic approach [53] can be a much more effi-

cient alternative to template attacks. If the leakage models

are accurate enough, the effectiveness of stochastic methods

can approach that of template attacks.

5.6 Reverse engineering unknown S-boxes and algorithms

Custom ciphers are sometimes encountered in black box eval-

uation of cryptographic devices. In cases where the custom

cipher is based on a well-known design, but with different set

of constants such as S-boxes, etc., DPA can be used to first

reverse engineer the values of these customized constants

and then attack the cipher. In cases where the design itself

is secret, reverse engineering of the design solely using SPA

and DPA can be a challenge but has been done in some cases

[54,55]. A general approach is to iteratively evaluate a broad

range of selection functions. Those yielding correlations that

are stronger or later in time may correspond to the device’s

intermediates deeper in the algorithm. The better selection

functions are kept and their outputs are used as candidate

inputs for subsequent iterations of the analysis.

6 Preventing DPA

A first step in preventing power analysis is to eliminate large

leaks that can create SPA vulnerabilities. In particular, imple-

mentations should use constant execution paths and avoid

taking conditional branches on secret data. Where possible,

processing primitives and instructions should be selected

from those known to leak less information in their power

consumption.

Preventing DPA requires additional effort. DPA can

exploit very small rates of information leakage, since the sta-

tistical test accumulates signals correlated to a target secret

and diminishes the effect of noise and uncorrelated device

activity. Techniques for preventing DPA are described in the

following sections.

6.1 Leakage reduction

Some approaches make DPA more challenging by decreasing

the signal-to-noise ratio of the power side channel—either by

decreasing leakage (signal) or increasing noise. A decrease

in the signal-to-noise ratio will increase the number of traces

required for a successful attack.

6.1.1 Balancing

Leakage may be reduced by structuring cryptographic cir-

cuits to use a more balanced amount of power. Balancing

aims to reduce signal by making the amount of power used

less dependent on data values and/or operation type (Fig. 20).

Balanced gate constructions using multi-bit data repre-

sentations and balanced transitions were first described in

[11,56,57]. Subsequently, there has been much research on

developing and implementing DPA-resistant logic styles.

Several works have focused on dual-rail precharge logic

[58–63]. Other proposals have been based on current mode

[64,65] and asynchronous logic styles [66,67].18 While it is

18 Chapter 7.3 in [10] is a good reference on this topic.
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Fig. 20 Balancing power consumption reduces the observed ampli-

tude of data dependant variations (simulated data)

Fig. 21 Example of adding amplitude noise to obscure and reduce sig-

nal (simulated data)

possible to implement cryptographic cores using logic styles

that minimize data-dependent leakage, it is a challenge to

do so effectively in modern ASICs using standard tools and

design flows. The power consumption of modern ASIC com-

ponents depends on wire routing, gate output driver strengths,

capacitive effects, cross-talk between wires, and other prop-

erties that are difficult to control at design time or that may

be changed by downstream tools.

At a coarser level, compensating circuitry and physical

shielding can also be applied to regulate and balance the

power consumption at the circuit or chip level [68,69].

6.1.2 Amplitude and temporal noise

A second approach involves introducing noise into the mea-

surements [70].

Amplitude noise is added by adding circuits that consume

a variable amount of power, or using circuit elements to per-

form calculations that are uncorrelated to the cryptographic

intermediates being hidden.19 With amplitude noise, only the

spectral component of noise that is frequency-matched to the

signal is relevant (Fig. 21).

Temporal noise is introduced by inserting variations in

timing and execution order. Methods include using delib-

erately decorrelated and varying clocks, random wait states,

random execution re-ordering, use of dummy operations, and

random branching [70]. These techniques reduce an adver-

sary’s ability to guess when a specific sensitive operation has

occurred (Fig. 22).

6.1.3 Effectiveness

A factor of k reduction in the signal-to-noise ratio using leak-

age reduction techniques such as balancing, increases the

19 If “noise” is positively correlated to intermediates, the attack gets

easier. If noise is negatively correlated to intermediates, the result is a

balancing countermeasure.

Fig. 22 Delays inserted into a power trace sequence make alignment

and synchronization more difficult (simulated data)

number of traces required for DPA by a factor of k2. How-

ever, there are practical limits to how well this can be done

in modern ASIC design.

The effectiveness of a single amplitude or temporal noise

introduction countermeasure is reduced if signal processing

techniques can detect and partially (or fully) eliminate the

additional noise. For example, filtering can eliminate ampli-

tude noise that is not frequency matched to the signal. Sim-

ilarly, dummy operations may have a distinct power profile

that can be detected (whether reliably or probabilistically)

and removed from a power trace. Combining multiple ampli-

tude and temporal noise introduction countermeasures and

leakage reduction techniques usually makes noise reduction

by signal processing much harder. Furthermore, such a com-

bination further increases the difficulty of DPA attack work-

flow steps that use automated (and frequently independent)

mechanisms to improve trace alignment, synchronize com-

mon trace features, and reject noise.

To the extent that amplitude and temporal noise are

not removable by signal processing, these countermeasures

increase the number of traces required by DPA. A factor of k

reduction in the signal-to-noise ratio achieved by amplitude

noise increases the number of traces required by a factor of k2.

Temporal noise is less effective; a reduction in the probability

of predicting when a critical operation occurs by a factor of

k only increases the number of traces required by a factor of

O(k). This is because, in this case, each individual trace pro-

vides O(k) more locations to perform the attack. (See [33]

for additional details on why temporal noise is less effective.)

While countermeasures targeting the signal-to-noise ratio

cannot reduce information leakage to zero, they can substan-

tially increase the number of samples required by an attacker

by reducing the information content of each trace. Bounding

the amount of information leaked from individual traces is

also a pre-requisite for other countermeasures described later.

6.2 Incorporating randomness: blinding and masking

Countermeasures based on masking or blinding resist DPA

by randomly changing the representation of secret

parameters. By periodically updating the representation, the

number of traces that use any one representation of the secret

is limited. This disrupts statistical tests such as first-order
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DPA from accumulating information about computational

intermediates that are directly related to a target secret.

6.2.1 Blinding public key algorithms

Many public key cryptographic systems involve mathemat-

ical computations over a finite field that can be masked or

blinded in a variety of ways. For example, the following equa-

tions show several relationships that hold in modular arith-

metic that enable secret values to be randomized without

changing the ultimate result:

Ad+k·φ(P) mod P = Ad mod P

((A mod (k P)) mod P) = (A mod P)

Ad mod P =

(

(

Ar
)

·

(

Ad−r
))

mod P

Ad mod P =

(

(

Ar
)d·r−1 mod φ(P)

)

mod P

and, for ((d · e) == 1 mod φ (N )) :

Ad mod N =

(

(

A · Be mod N
)d

mod N
)

· B−1 mod N

Similar relationships hold in many other finite fields used in

cryptography.

In a blinded implementation [5,71,72], secret parameters

are masked by combining each with one or more random

blinding factors. The blinding factor(s) and blinded secret

together comprise a blinded representation of that parameter.

The cryptographic algorithm is then implemented using the

blinded representation. Blinding factors and blinded secrets

are updated frequently between, or even during, computa-

tions. The update process mixes information unknown to the

attacker into the blinded representation so that partial infor-

mation leaked about past blinded representations is difficult

to combine with partial information that may leak about the

updated representation.

6.2.2 Masking symmetric algorithms

Symmetric algorithms can also be masked. Secret constants

and intermediates can be split into multiple randomized parts.

For example, in Boolean masking, intermediate data byte X

is masked by generating a random byte R and representing

X by the pair (A, R) where A = X ⊕ R [45,73,74]. Additive

masking works similarly, representing the byte X by the pair

(A, R) where A = X + R mod 256. Other masking opera-

tions can also be used.

A masked cipher implementation stores all key bits and

round intermediates in masked representations. Computa-

tions are performed on independent parts which are not

reconstituted until the final output from the final round is

complete.

Symmetric algorithms include nonlinear operations, such

as substitution tables, that must be adapted to work with

masked inputs and outputs. One approach involves trans-

forming the nonlinear operation to accept masked inputs and

produce masked outputs. For example, if a cipher uses a sub-

stitution table S and will apply a Boolean mask R0 to the

input and requires that the output be masked with R1, the

substitution table S′ where S′[i] = S[i ⊕ R0] ⊕ R1.

Other approaches involve decomposing a complex nonlin-

ear operation into a sequence of linear and nonlinear oper-

ations, where the nonlinear operations are simple enough to

be adapted to work with masked inputs and outputs [75–77].

Masked representations need to be updated frequently

with fresh randomness. Mask changes help prevent DPA

attackers from accumulating information about (or solving

for) the masking parameters.

The goal of blinding and masking is to ensure that informa-

tion leakage is not directly related to the secret data. Because

the individual values of blinding factors, masks, and blinded

or masked secrets are not correlated to the secret data, leaks

from only one of these values cannot be used to recover the

secret.

This strategy forces attackers to shift to a high-order DPA

attack targeting the relationship between blinding factors and

blinded secrets, or between masks and masked data. The

number of traces required for high-order analysis can be

much higher than for DPA. For example, in low signal-to-

noise environments and for certain kinds of leakages [45]

shows that the number of samples for a successful high-order

attack grows exponentially in the number of parts that the

secrets are split.

6.3 Protocol level countermeasures

The most effective and least difficult way to address side

channel attacks is to design cryptographic protocols to sur-

vive leakage. There is usually no way that a designer can

ensure that, across all operations an adversary could observe,

the leaked information will not approach the size of the

key. Evaluation processes also cannot ensure the absence

of minuscule side channels, even if extensive balancing and

noise generation countermeasures are attempted. For com-

parison, devices implementing conventional protocols can

be straightforward to break with leakage rates of 10−9 bits

per operation or less, whereas protocol-level countermea-

sures can preserve security with leakage rates exceeding 10

bits per operation—a difference of more than ten orders of

magnitude. Thus, cryptographic protocols that are resilient

to leakage are crucial for implementations using less-than-

perfect hardware.

A general approach for surviving leakage is to limit the

number of transactions that can be performed with any given

key. For example, consider the case of a device with a 256-bit

key that can be operated at most ten times, and which will
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destroy its keys after the 10th transaction attempt.20 If the

desired security level is 192 bits, then this design can toler-

ate a cumulative leak of 64 bits over its lifetime, which is

achieved if the average leak is <6.4 bits per transaction.21

Subsequent constructions in this section will also use this

concept of a maximum net leakage that the design can tol-

erate and a corresponding maximum leakage rate (LMAX)

per transaction.

Key update procedures enable leak resilience in devices to

support larger numbers of transactions. As with masking and

blinding approaches, a key update procedure is performed

at periodic intervals. The update frequency is chosen so that

LMAX times the number of uses for any one key value does

not cross the design’s security threshold.

The purpose of a key update transform is to mix the key

state such that incomplete information below the desired

security threshold about the pre-transformed key cannot be

usefully correlated to the post-transformed key. If done prop-

erly, the update process will make it cryptographically hard

for an adversary to accumulate useful information across

transforms. For example, if a 256-bit key is hashed (e.g.,

with SHA-256) between transactions to produce a new 256-

bit key, then a security level of 192 bits can be preserved

provided that the total information leaked in deriving each

temporary key, using the key in a transaction, and deriving

the next key totals <64 bits (i.e., LMAX = 64/3).

Key updates and key derivation may be structured in a

hierarchically defined key-tree, enabling a server in a multi-

party protocol to efficiently derive the current key derived by

a tamper resistant client device. A key-tree is a tree struc-

ture defined from a root secret key and a set of key update

transforms. For a typical binary key tree, two transforms

are defined, enabling two child nodes to be derived from

each parent node. Lowest-level nodes can be derived quickly

from the root or, if the update operations are invertible, from

other nodes. Counters or other protocol constructions limit

the number of times any given node is used to form transac-

tion keys. Key trees were first described in [78,79], and the

approach is now used in many systems including the EMV

payment protocol [80].

The key-tree construction can be extended to create and

validate symmetric message authentication codes (MACs) in

a leakage-resilient manner. The tree’s root is the MAC key,

and the message being authenticated (or its hash) defines the

20 Failure counters are necessary to prevent adversaries from exceeding

the transaction limit by interrupting power or resetting the device after

the cryptographic operation but before the counter update. Counters

should also be updated prior to the transaction.

21 For most devices, any transaction limits that could be applied would

result in L M AX being too low to be of much use. For example, if the

device could perform 216 operations, that maximum tolerable leakage

per operation would be ≈10−3, which is too small to be realistic or a

verifiable design threshold.

path to a leaf node that determines the MAC value. Leakage-

resilient MACs, key derivation, and nonlinear key updates

can be combined to perform DPA-resilient authenticated bulk

encryption/decryption [81]. In this construction, an encryp-

tion session key is derived from a shared key using a key-tree,

and the hash of the ciphertext is authenticated using a key-tree

based MAC. Bulk encryption is performed using a sequence

of encryption keys derived from the initial encryption session

key using a non-linear update function, limiting the number

of message blocks for each encryption key. The recipient

verifies the MAC of the ciphertext hash before decryption,

thus preventing any DPA attack based on decrypting multiple

altered ciphertexts with the same key. Unlike other construc-

tions, this approach is effective for applications such as stor-

age encryption which require repeated decryption of the same

ciphertext. In this case, the construction’s security requires

a bound on the implementation’s leakage when repeatedly

operating with the same inputs (message and key).

In recent years, the topic of leakage-resilient cryptogra-

phy has received much attention within the scientific com-

munity [82–90]. The focus of such research has been the

construction of cryptographic primitives whose implementa-

tions can be proven to be secure under certain leakage mod-

els. While more work is required to make the leakage models

used in some of the proofs more realistic, both leakage mod-

els and leakage-resistant constructions are important areas of

research. Work to integrate leakage resilience into protocols

is also needed, and can greatly improve hardware security by

aligning protocols’ security requirements with the properties

of actual devices.

7 Conclusion

Modern cryptographic primitives such as AES, RSA, ECC,

HMAC, etc., are designed to resist attacks by adversaries with

access to plaintext and ciphertext data. A cryptanalytic result

that yielded a small improvement over brute force would be

considered a major breakthrough, even if the attack required

resources far beyond the reach of normal adversaries.

DPA can accomplish in minutes or days what decades of

cryptanalytic work cannot: the extraction of secret keys from

devices using completely correct implementations of strong

primitives. Even if the amount of information in each trace is

orders of magnitude below the resolution of the measurement

apparatus, this additional information can convert the com-

putationally infeasible problem of breaking a cipher using

brute force into a computation that can be performed quickly

on a PC.

When we first discovered DPA, we realized that the tech-

nique would have a major impact on cryptosystem imple-

mentations. Nevertheless, we were surprised by how quickly

researchers and practitioners directed attention to the area,
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and we are amazed by the tremendous body of research

that has emerged on this topic over the last decade. At a

broader level, this body of new work has helped reinvig-

orate research on the practical problems of understanding

how actual cryptosystems fail and how they can be protected.

While modern algorithms provide extraordinary resistance

against conventional cryptanalysis, a much more research

is needed to help implementations achieve equivalent trust-

worthiness and strength against DPA and other attacks. We

appreciate the efforts of all the researchers who have built

upon and extended our work to create the field of side-chan-

nel cryptanalysis, and who are helping to train the next gen-

eration of engineers so that future cryptographic devices will

be better defended than those of the past.
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