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RÉSUMÉ. Un des grand défis de la recherche d’aujourd’hui est de pouvoir simuler de manière
réaliste les matériaux granulaires comme le sable ou les poudres qui sont constituées de mil-
lions de particules. Dans ce chapitre, la méthode des éléments discrets (DEM en anglais), ba-
sée sur le concept de la méthode de dynamique moléculaire, est introduite dans le cadre de la
simulation de systèmes contenants un grand nombre de particules et quelques exemples d’ap-
plications sont présentés.
Il existe en fait deux approches de base, celle appelée “soft particle molecular dynamics” et
celle appelée “hard sphere, event-driven method”. La première est directe, facile a généraliser
et compte de nombreuses applications, alors que la seconde est optimale pour des interactions
de type rigide et est surtout utilisée pour les gaz granulaires dissipatifs. Les relations entre ces
deux méthodes sont étudiés.
Les modèles de contacts sont basés sur la méthode des éléments discrets (DEM). Une série
de modèles de base est présenté avec des interactions de type visco-élastique, adhésives, vis-
queuses, des contacts à frottements statique et dynamique ainsi que des contacts résistant en
roulement et torsion.
Des exemples de simulations de glissements bi-axiaux et cylindriques dans des systèmes denses
sont étudiés afin d’illustrer le passage du discret au continu.

ABSTRACT. One challenge of todays research is the realistic simulation of granular materials,
like sand or powders, consisting of millions of particles. In this chapter, the discrete element
method (DEM), as based on molecular dynamics methods, is briefly introduced for the simula-
tion of many-particle systems, and some examples of applications are presented.
There exist two basically different approaches, the so-called soft particle molecular dynamics
and the hard sphere, event-driven method. The former is straightforward, easy to general-
ize, and has numberless applications, while the latter is optimized for rigid interactions and is
mainly used for collisional, dissipative granular gases. The connection between the two meth-
ods will be elaborated on.
Contact models are on the basis of DEM. A set of the most basic force models is presented in-
volving elasto-plasticity, adhesion, viscosity, static and dynamic friction as well as rolling- and
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torsion-resistance.
The examples given concern clustering in granular gases, and bi-axial as well as cylindrical
shearing of dense packings in order to illustrate the micro-macro transition towards continuum
theory.

MOTS-CLÉS : matériaux granulaires, dynamique moléculaire, “event-driven MD”, parallélisa-
tion, équation d’état, “clustering”, formation de bandes de glissement

KEYWORDS: granular matter, molecular dynamics (MD), discrete element methods (DEM), event
driven MD, equation of state, clustering, shear band formation, micro-macro transition
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1. Introduction

The approach towards the microscopic understanding of macroscopic particulate
material behavior [HER 97, KIS 01, HIN 04] is the modeling of particles using so-
called discrete element methods (DEM). Even though millions of particles can be si-
mulated, the possible length of such a particle system is in general too small in order to
regard it as macroscopic. Therefore, methods and tools to perform a so-called micro-
macro transition [VER 01, P¨ 01, KIR 49] are discussed, starting from the DEM si-
mulations. These “microscopic” simulations of a small sample (representative volume
element) can be used to derive macroscopic constitutive relations needed to describe
the material within the framework of a macroscopic continuum theory.

For granular materials, as an example, the particle properties and interaction laws
are inserted into DEM, which is also often referred to as molecular dynamics (MD),
and lead to the collective behavior of the dissipative many-particle system. From a
particle simulation, one can extract, e.g., the pressure of the system as a function of
density. This equation of state allows a macroscopic description of the material, which
can be viewed as a compressible, non-Newtonian complex fluid [LUD 01b], including
a fluid-solid phase transition.

In the following, two versions of the molecular dynamics simulation method are
introduced. The first is the so-called soft sphere molecular dynamics (MD=DEM), as
described in section 2. It is a straightforward implementation to solve the equations
of motion for a system of many interacting particles [ALL 87, RAP 95]. For DEM,
both normal and tangential interactions, like friction, are discussed for spherical par-
ticles. The second method is the so-called event-driven (ED) simulation, as discussed
in section 3, which is conceptually different from DEM, since collisions are dealt with
via a collision matrix that determines the momentum change on physical grounds. For
the sake of brevity, the ED method is only discussed for smooth spherical particles.
A comparison and a way to relate the soft and hard particle methods is provided in
section 4.

As one ingredient of a micro-macro transition, the stress is defined for a dynamic
system of hard spheres, in section 5, by means of kinetic-theory arguments [P¨ 01],
and for a quasi-static system by means of volume averages [L¨ 00]. Examples are
presented in the following sections 6 and 7, where the above-described methods are
applied.

2. The Soft Particle Molecular Dynamics Method

One possibility to obtain information about the behavior of granular media is to
perform experiments. An alternative are simulations with the molecular dynamics
(MD) or discrete element model (DEM) [CUN 79, BAS 91, BAA 96, HER 98, THO 00a,
THO 00b, THO 01, VER 01, L¨ 03]. Note that both methods are identical in spirit, ho-
wever, different groups of researchers use these (and also other) names.
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Conceptually, the DEM method has to be separated from the hard sphere event-
driven (ED) molecular dynamics, see section 3, and also from the so-called Contact
Dynamics (CD). The former will be discussed below and in the chapter by T. Pöschel
in this book, the latter (CD) will be introduced in the chapter by F. Radjai in this
book. Alternative stochastic methods like cell- or lattice gas-methods are just named
as keywords, but not discussed here at all.

2.1. Discrete Particle Model

The elementary units of granular materials are mesoscopic grains which deform
under stress. Since the realistic modeling of the deformations of the particles is much
too complicated, we relate the interaction force to the overlap δ of two particles, see
Fig. 1. Note that the evaluation of the inter-particle forces based on the overlap may
not be sufficient to account for the inhomogeneous stress distribution inside the par-
ticles. Consequently, our results presented below are of the same quality as the simple
assumptions about the force-overlap relation, see Fig. 1.

δ

r

ri

j

δ

k1δ

−k

(δ−δ )*
2        0k

δmax

f hys

minδ

min
f

f
0

0

δ0

cδ

Figure 1. (Left) Two particle contact with overlap δ. (Right) Schematic graph of the
piecewise linear, hysteretic, adhesive force-displacement model used below.

2.2. Equations of Motion

If all forces f i acting on the particle i, either from other particles, from bounda-
ries or from external forces, are known, the problem is reduced to the integration of
Newton’s equations of motion for the translational and rotational degrees of freedom :

mi
d2

dt2
ri = f i +mig , and Ii

d2

dt2
ϕi = ti [1]
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with the mass mi of particle i, its position ri the total force f i =
∑

c fc
i acting

on it due to contacts with other particles or with the walls, the acceleration due to
volume forces like gravity g, the spherical particles moment of inertia Ii, its angular
velocity ωi = dϕi/dt and the total torque ti =

∑

c (lci × f c
i + qc

i ), where qc
i are

torques/couples at contacts other than due to a tangential force, e.g., due to rolling and
torsion.

The equations of motion are thus a system of D + D(D − 1)/2 coupled ordinary
differential equations to be solved in D dimensions. With tools from numerical inte-
gration, as nicely described in textbooks as [ALL 87, RAP 95], this is straightforward.
The typically short-ranged interactions in granular media, allow for a further optimi-
zation by using linked-cell or alternative methods [ALL 87, RAP 95] in order to make
the neighborhood search more efficient. In the case of long-range interactions, (e.g.
charged particles with Coulomb interaction, or objects in space with self-gravity) this
is not possible anymore, so that more advanced methods for optimization have to be
applied – for the sake of brevity, we restrict ourselves to short range interactions here.

2.3. Normal Contact Force Laws

2.3.1. Linear Normal Contact Model

Two spherical particles i and j, with radii ai and aj , respectively, interact only if
they are in contact so that their overlap

δ = (ai + aj) − (ri − rj) · n [2]

is positive, δ > 0, with the unit vector n = nij = (ri − rj)/|ri − rj | pointing from
j to i. The force on particle i, from particle j, at contact c, can be decomposed into a
normal and a tangential part as fc := fc

i = fnn + f tt, where fn is discussed first.

The simplest normal contact force model, which takes into account excluded vo-
lume and dissipation, involves a linear repulsive and a linear dissipative force

fn = kδ + γ0vn , [3]

with a spring stiffness k, a viscous damping γ0, and the relative velocity in normal
direction vn = −vij · n = −(vi − vj) · n = δ̇.

This so-called linear spring dashpot model allows to view the particle contact as a
damped harmonic oscillator, for which the half-period of a vibration around an equi-
librium position, see Fig. 1, can be computed, and one obtains a typical response time
on the contact level,

tc =
π

ω
, with ω =

√

(k/m12) − η2
0 , [4]

with the eigenfrequency of the contact ω, the rescaled damping coefficient η0 =
γ0/(2mij), and the reduced mass mij = mimj/(mi + mj). From the solution of
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the equation of a half period of the oscillation, one also obtains the coefficient of
restitution

r = v′n/vn = exp (−πη0/ω) = exp (−η0tc) , [5]

which quantifies the ratio of relative velocities after (primed) and before (unprimed)
the collision. For a more detailed discussion of this and other, more realistic, non-
linear contact models see e.g. [LUD 98a] and the chapters by Pöschel and Radjai in
this book.

The contact duration in Eq. (4) is also of practical technical importance, since the
integration of the equations of motion is stable only if the integration time-step ∆tDEM

is much smaller than tc. Furthermore, it depends on the magnitude of dissipation. In
the extreme case of an overdamped spring, tc can become very large. Therefore, the
use of neither too weak nor too strong dissipation is recommended.

2.3.2. Adhesive, Elasto-Plastic Normal Contact Model

Here we apply a variant of the linear hysteretic spring model [WAL 86, LUD 98a,
TOM 00, LUD 08a], as an alternative to the frequently applied spring-dashpot models.
This model is the simplest version of some more complicated nonlinear-hysteretic
force laws [WAL 86, ZHU 91, SAD 93], which reflect the fact that at the contact point,
plastic deformations may take place. The repulsive (hysteretic) force can be written as

fhys =







k1δ for loading, if k∗2(δ − δ0) ≥ k1δ
k∗2(δ − δ0) for un/reloading, if k1δ > k∗2(δ − δ0) > −kcδ
−kcδ for unloading, if − kcδ ≥ k∗2(δ − δ0)

[6]

with k1 ≤ k∗2 , see Fig. 1, and Eq. (7) below for the definition of the (variable) k∗2 as
function of the constant model parameter k2.

During the initial loading the force increases linearly with the overlap δ, until
the maximum overlap δmax is reached (which has to be kept in memory as a history
parameter). The line with slope k1 thus defines the maximum force possible for a
given δ. During unloading the force drops from its value at δmax down to zero at
overlap δ0 = (1 − k1/k

∗

2)δmax, on the line with slope k∗2 . Reloading at any instant
leads to an increase of the force along this line, until the maximum force is reached ;
for still increasing δ, the force follows again the line with slope k1 and δmax has to be
adjusted accordingly.

Unloading below δ0 leads to negative, attractive forces until the minimum force
−kcδmin is reached at the overlap δmin = (k∗2 − k1)δmax/(k

∗

2 + kc). This mini-
mum force, i.e. the maximum attractive force, is obtained as a function of the mo-
del parameters k1, k2, kc, and the history parameter δmax. Further unloading leads
to attractive forces fhys = −kcδ on the adhesive branch with slope −kc. The hi-
ghest possible attractive force, for given k1 and k2, is reached for kc → ∞, so that
fhys
max = −(k2 − k1)δmax. Since this would lead to a discontinuity at δ = 0, it is

avoided by using finite kc.
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The lines with slope k1 and −kc define the range of possible force values and
departure from these lines takes place in the case of unloading and reloading, res-
pectively. Between these two extremes, unloading and reloading follow the same line
with slope k2. Possible equilibrium states are indicated as circles in Fig. 1, where the
upper and lower circle correspond to a pre-stressed and stress-free state, respectively.
Small perturbations lead, in general, to small deviations along the line with slope k2

as indicated by the arrows.

A non-linear un/reloading behavior would be more realistic, however, due to a lack
of detailed experimental informations, we use the piece-wise linear model as a com-
promise. One refinement is a k∗2 value dependent on the maximum overlap that implies
small and large plastic deformations for weak and strong contact forces, respectively.
One model, as implemented recently [LUD 05c, LUD 08a], requires an additional mo-
del parameter, δ∗max, so that k∗2(δmax) is increasing from k1 to k2 (linear interpolation
is used below, however, this is another choice to be made and will depend on the
material under consideration) with the maximum overlap, until δ∗max is reached 1 :

k∗2(δmax) =

{

k2 if δmax ≥ δ∗max

k1 + (k2 − k1)δmax/δ
∗

max if δmax < δ∗max

. [7]

While in the case of collisions of particles with large deformations, dissipation
takes place due to the hysteretic nature of the force-law, stronger dissipation of small
amplitude deformations is achieved by adding the viscous, velocity dependent dissi-
pative force from Eq. (3) to the hysteretic force, such that fn = fhys + γ0vn. The
hysteretic model contains the linear contact model as special case k1 = k2 = k.

2.3.3. Long Range Normal Forces

Medium range van der Waals forces can be taken into account in addition to the
hysteretic force such that fn = fhys

i + fvdW
i with, for example, the attractive part of

a Lennard-Jones Potential

fvdW = −6(ε/r0)[(r0/rij)
7 − (r0/rc)

7] for rij ≤ rc . [8]

The new parameters necessary for this force are an energy scale ε, a typical length
scale r0 and a cut-off length rc. As long as rc is not much larger than the particle
diameter, the methods for short range interactions still can be applied to such a medium
range interaction model – only the linked cells have to be larger than twice the cut-off
radius, and no force is active for r > rc.

1. A limit to the slope k2 is needed for practical reasons. If k2 would not be limited, the contact
duration could become very small so that the time step would have to be reduced below reaso-
nable values.
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2.4. Tangential Forces and Torques in General

For the tangential degrees of freedom, there are three different force- and torque-
laws to be implemented : (i) friction, (ii) rolling resistance, and (iii) torsion resistance.

2.4.1. Sliding

For dynamic (sliding) and static friction, the relative tangential velocity of the
contact points,

vt = vij − n(n · vij) , [9]

is to be considered for the force and torque computations in subsection 2.5, with the
total relative velocity of the particle surfaces at the contact

vij = vi − vj + a′in × ωi + a′jn × ωj , [10]

with the corrected radius relative to the contact point a′α = aα − δ/2, for α = i, j.
Tangential forces acting on the contacting particles are computed from the accumula-
ted sliding of the contact points along each other, as described in detail in subsection
2.5.1.

2.4.2. Objectivity

In general, two particles can rotate together, due to both a rotation of the reference
frame or a non-central “collision”. The angular velocity ω0 = ωn

0 +ωt
0, of the rotating

reference has the tangential-plane component

ωt
0 =

n × (vi − vj)

a′i + a′j
, [11]

which is related to the relative velocity, while the normal component, ωn
0 , is not. Inser-

ting ωi = ωj = ωt
0, from Eq. (11), into Eq. (10) leads to zero sliding velocity, proving

that the above relations are objective. Tangential forces and torques due to sliding can
become active only when the particles are rotating with respect to the common rotating
reference frame. 2

Since action should be equal to reaction, the tangential forces are equally strong,
but opposite, i.e., f t

j = −f t
i, while the corresponding torques are parallel but not ne-

cessarily equal in magnitude : qfriction
i = −a′in×f i, and qfriction

j = (a′j/a
′

i)q
friction
i .

Note that tangential forces and torques together conserve the total angular momentum
about the pair center of mass

Lij = Li + Lj +mir
2
icmωt

0 +mjr
2
jcmωt

0 , [12]

with the rotational contributions Lα = Iαωα, for α = i, j, and the distances rαcm =
|rα−rcm| from the particle centers to the center of mass rcm = (miri+mjrj)/(mi+

2. For rolling and torsion, there is no similar relation between rotational and tangential degrees
of freedom : for any rotating reference frame, torques due to rolling and torsion can become
active only due to rotation relative to the common reference frame, see below.
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mj), see Ref. [LUD 98a]. The change of angular momentum consists of the change
of particle spins (first term) and of the change of the angular momentum of the two
masses rotating about their common center of mass (second term) :

dLij

dt
= qfriction

i

(

1 +
a′j
a′i

)

+
(

mir
2
icm +mjr

2
jcm

) dωt
0

dt
, [13]

which both contribute, but exactly cancel each other, since

qfriction
i

(

1 +
a′j
a′i

)

= −(a′i + a′j)n × f i [14]

= −
(

mir
2
icm +mjr

2
jcm

) dωt
0

dt
,

see [LUD 06] for more details.

2.4.3. Rolling

A rolling velocity v0
r = −a′in×ωi + a′jn×ωj , defined in analogy to the sliding

velocity, is not objective in general [ELS 06, LUD 06] – only in the special cases of
(i) equal-sized particles or (ii) for a particle rolling on a fixed flat surface.

The rolling velocity should quantify the distance the two surfaces roll over each
other (without sliding). Therefore, it is equal for both particles by definition. An ob-
jective rolling velocity is obtained by using the reduced radius, a′ij = a′ia

′

j/(a
′

i + a′j),
so that

vr = −a′ij (n × ωi − n × ωj) . [15]

This definition is objective since any common rotation of the two particles vanishes
by construction. A more detailed discussion of this issue is beyond the scope of this
paper, rather see [ELS 06, LUD 06] and the references therein.

A rolling velocity will activate torques, acting against the rolling motion, e.g.,
when two particles are rotating anti-parallel with spins in the tangential plane. These
torques are then equal in magnitude and opposite in direction, i.e., qrolling

i = −q
rolling
j =

aij n×fr, with the quasi-force fr, computed in analogy to the friction force, as func-
tion of the rolling velocity vr in subsection 2.5.2 ; the quasi-forces for both particles
are equal and do not act on the centers of mass. Therefore, the total momenta (trans-
lational and angular) are conserved.

2.4.4. Torsion

For torsion resistance, the relative spin along the normal direction

vo = aij (n · ωi − n · ωj)n , [16]

is to be considered, which activates torques when two particles are rotating anti-
parallel with spins parallel to the normal direction. Torsion is not activated by a com-
mon rotation of the particles around the normal direction n · ω0 = n · (ωi + ωj) /2,
which makes the torsion resistance objective.
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The torsion torques are equal in magnitude and directed in opposite directions, i.e.,
qtorsion

i = −qtorsion
j = aij fo, with the quasi-force fo, computed from the torsion

velocity in subsection 2.5.3, and also not changing the translational momentum. Like
for rolling, the torsion torques conserve the total angular momentum.

2.4.5. Summary

The implementation of the tangential force computations for f t, fr, and fo as
based on vt, vr, and vo, respectively, is assumed to be identical, i.e., even the same
subroutine is used, but with different parameters as specified below. The difference is
that friction leads to a force in the tangential plane (changing both translational and
angular momentum), while rolling- and torsion-resistance lead to quasi-forces in the
tangential plane and the normal direction, respectively, changing the particles’ angular
momentum only. For more details on tangential contact models, friction, rolling and
torsion, see Refs. [BAR 05, DIN 05, LUD 07a, LUD 06, ELS 06].

2.5. The tangential force- and torque-models

The tangential contact model presented now is a single procedure (subroutine) that
can be used to compute either sliding, rolling, or torsion resistance. The subroutine
needs a relative velocity as input and returns the respective force or quasi-force as
function of the accumulated deformation. The sliding/sticking friction model will be
introduced in detail, while rolling and torsion resistance are discussed where different.

2.5.1. Sliding/Sticking Friction Model

The tangential force is coupled to the normal force via Coulomb’s law, f t ≤ fs
C :=

µsfn, where for the sliding case one has dynamic friction with f t = f t
C := µdfn. The

dynamic and the static friction coefficients follow, in general, the relation µd ≤ µs.
The static situation requires an elastic spring in order to allow for a restoring force, i.e.,
a non-zero remaining tangential force in static equilibrium due to activated Coulomb
friction.

If a purely repulsive contact is established, fn > 0, and the tangential force is
active. For an adhesive contact, Coulombs law has to be modified in so far that fn is
replaced by fn + kcδ. In this model, the reference for a contact is no longer the zero
force level, but it is the adhesive, attractive force level along −kcδ.

If a contact is active, one has to project (or better rotate) the tangential spring into the
actual tangential plane, since the frame of reference of the contact may have rotated
since the last time-step. The tangential spring

ξ = ξ′ − n(n · ξ′) , [17]

is used for the actual computation, where ξ′ is the old spring from the last iteration,
with |ξ| = |ξ′| enforced by appropriate scaling/rotation. If the spring is new, the
tangential spring-length is zero, but its change is well defined after the first, initiation
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step. In order to compute the changes of the tangential spring, a tangential test-force is
first computed as the sum of the tangential spring force and a tangential viscous force
(in analogy to the normal viscous force)

f t
0 = −kt ξ − γtvt , [18]

with the tangential spring stiffness kt, the tangential dissipation parameter γt, and vt

from Eq. (9). As long as |f t
0| ≤ fs

C , with fs
C = µs(fn + kcδ), one has static friction

and, on the other hand, for |f t
0| > fs

C , sliding friction becomes active. As soon as |f t
0|

gets smaller than fd
C , static friction becomes active again.

In the static friction case, below the Coulomb limit, the tangential spring is incre-
mented

ξ′ = ξ + vt ∆tMD , [19]

to be used in the next iteration in Eq. (17), and the tangential force f t = f t
0 from Eq.

(18) is used. In the sliding friction case, the tangential spring is adjusted to a length
consistent with Coulombs condition, so that

ξ′ = − 1

kt

(

fd
C t + γtvt

)

, [20]

with the tangential unit vector, t = f t
0/|f t

0|, defined by Eq. (18), and thus the ma-
gnitude of the Coulomb force is used. Inserting ξ′ from Eq. (20) into Eq. (18) during
the next iteration will lead to f t

0 ≈ fd
Ct. Note that f t

0 and vt are not necessarily pa-
rallel in three dimensions. However, the mapping in Eq. (20) works always, rotating
the new spring such that the direction of the frictional force is unchanged and, at the
same time, limiting the spring in length according to Coulombs law. In short notation
the tangential contact law reads

f t = f tt = +min
(

fC , |f t
0|

)

t , [21]

where fC follows the static/dynamic selection rules described above. The torque on a
particle due to frictional forces at this contact is qfriction = lci × f c

i , where lci is the
branch vector, connecting the center of the particle with the contact point. Note that
the torque on the contact partner is generally different in magnitude, since lci can be
different, but points in the same direction ; see subsection 2.4.2 for details on this.

The four parameters for the friction law are kt, µs, φd = µd/µs, and γt, accounting
for tangential stiffness, the static friction coefficient, the dynamic friction ratio, and
the tangential viscosity, respectively. Note that the tangential force described above is
identical to the classical Cundall-Strack spring only in the limits µ = µs = µd, i.e.,
φd = 1, and γt = 0. The sequence of computations and the definitions and mappings
into the tangential direction can be used in 3D as well as in 2D.

2.5.2. Rolling Resistance Model

The three new parameters for rolling resistance are kr, µr, and γr, while φr =
φd is used from the friction law. The new parameters account for rolling stiffness, a
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static rolling “friction” coefficient, and rolling viscosity, respectively. In the subroutine
called, the rolling velocity vr is used instead of vt and the computed quasi-force fr

is used to compute the torques, qrolling, on the particles.

2.5.3. Torsion Resistance Model

The three new parameters for rolling resistance are ko, µo, and γo, while φo = φd

is used from the friction law. The new parameters account for torsion stiffness, a static
torsion “friction” coefficient, and torsion viscosity, respectively. In the subroutine, the
torsion velocity vo is used instead of vt and the projection is a projection along the
normal unit-vector, not into the tangential plane as for the other two models. The
computed quasi-force fo is then used to compute the torques, qtorsion, on the particles.

2.6. Background Friction

Note that the viscous dissipation takes place in a two-particle contact. In the bulk
material, where many particles are in contact with each other, this dissipation mode is
very inefficient for long-wavelength cooperative modes of motion [LUD 94b, LUD 94a].
Therefore, an additional damping with the background can be introduced, so that the
total force on particle i is

f i =
∑

j

(

fnn + f tt
)

− γbvi , [22]

and the total torque

qi =
∑

j

(

qfriction + qrolling + qtorsion
)

− γbra
2
i ωi , [23]

with the damping artificially enhanced in the spirit of a rapid relaxation and equilibra-
tion. The sum in Eqs. (22) and (23) takes into account all contact partners j of particle
i, but the background dissipation can be attributed to the medium between the par-
ticles. Note that the effect of γb and γbr should be checked for each set of parameters :
it should be small in order to exclude artificial over-damping. The set of parameters is
summarized in table 1. Note that only a few parameters are specified with dimensions,
while the other paramters are expressed as ratios.

2.7. Example : Tension Test Simulation Results

In order to illustrate the power of the contact model (especially the adhesive normal
model), in this section, uni-axial tension and compression tests are presented. Note
that the contact model parameters are chosen once and then one can simulate loose
particles, pressure-sintering, and agglomerates with one set of paramters. With slight
extensions, the same model was already applied to temperature-sintering [LUD 05c]
or self-healing [LUD 07b, LUD 08c].
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Property Symbol

Time unit tu
Length unit xu

Mass unit mu

Particle radius a0

Material density ρ
Elastic stiffness (variable) k2

Maximal elastic stiffness k = k2

Plastic stiffness k1/k
Adhesion “stiffness” kc/k
Friction stiffness kt/k
Rolling stiffness kr/k
Torsion stiffness ko/k
Plasticity depth φf

Coulomb friction coefficient µ = µd = µs

Dynamic to static Friction ratio φd = µd/µs

Rolling “friction” coefficient µr

Torsion “friction” coefficient µo

Normal viscosity γ = γn

Friction viscosity γt/γ
Rolling viscosity γr/γ
Torsion viscosity γo/γ
Background viscosity γb/γ
Background viscous torque γbr/γ

Tableau 1. Summary of the microscopic contact model parameters. The longer ranged

forces and their parameters, ǫ, r0, and rc are not included here.

The tests consists of three stages : (i) pressure sintering, (ii) stress-relaxation, and
(iii) the compression- or tension-test itself. The contact parameters, as introduced in
the previous section, are summarized in table 1 and typical values are given in table 2.
These parameters are used for particle-particle contacts, the same for all tests, unless
explicitly specified.

First, for pressure sintering, a very loose assembly of particles is compressed with
isotropic stress ps2a/k2 ≈ 0.02 in a cuboidal volume so that the adhesive contact
forces are activated this way. The stress- and strain-controlled wall motion modes
aredescribed below in subsection 6.2.2.

Two of the six walls are adhesive, with kwall
c /k2 = 20, so that the sample sticks to

them later, while all other walls are adhesionless, so that they can be easily removed
in the next step. Note that during compression and sintering, the walls could all be
without adhesion, since the high pressure used keeps the sample together anyway –
only later for relaxation, adhesion must switched on. If not the sample does not remain
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a solid, and it also could lose contact with the walls, which are later used to apply the
tensile strain.
All walls should be frictionless during sintering, while the particles can be slightly
adhesive and frictional. If the walls would be frictional, the pressure from a certain
wall would not be transferred completely to the respective opposite wall, since fric-
tional forces carry part of the load – an effect that is known since the early work of
Janssen [JAN 95, SPE 06, TIG 07].
Pressure-sintering is stopped when the kinetic energy of the sample is many orders of
magnitude smaller than the potential energy – typically 10 orders of magnitude.

During stress-relaxation all wall stresses are slowly released to pr/ps ≪ 1 and
the sample is relaxed again until the kinetic energy is much smaller than the potential
energy. After this, the sample is ready for the tension or compression tests. The non-
adhesive side walls still feel a very small external stress that is not big enough to
affect the dynamics of the tension test, it is just convenient to keep the walls close to
the sample. (This is a numerical and not a physical requirement, since our code uses
linked-cells and those are connected to the system size. If the walls would move too
far away, either the linked cells would grow, or their number would increase. Both
cases are numerically inefficient.)

For the tension test wall friction is typically active, but some variation does not
show a big effect. One of the sticky walls is slowly and smoothly moved outwards like
described and applied in earlier studies [LUD 01a, LUD 05a, LUD 07a, LUD 07b,
LUD 08a, LUD 08c], following a prescribed cosine-function with time.

2.7.1. Model Parameters for tension

The system presented in this subsection contains N = 1728 particles with radii ai

drawn from a Gaussian distribution around a = 0.005 mm [DAV 05, DAV 07]. The
contact model parameters are summarized in tables 1 and 2. The volume fraction, ν =
∑

i V (ai)/V , with the particle volume V (ai) = (4/3)πa3
i , reached during pressure

sintering with 2aps/k2 = 0.01 is νs = 0.6754. The coordination number is C ≈ 7.16
in this state. After stress-relaxation, these values have changed to ν ≈ 0.629 and C ≈
6.19. A different preparation procedure (with adhesion kc/k2 = 0 during sintering)
does not lead to a difference in density after sintering. However, one observes ν ≈
0.630 and C ≈ 6.23 after relaxation. For both preparation procedures the tension test
results are virtually identical, so that only the first procedure is used in the following.

The material parameters used for the particle contacts are given in table 2. The
particle-wall contact parameters are the same, except for cohesion and friction, for
which kwall

c /k2 = 20 and µwall = 10 are used – the former during all stages, the latter
only during tensile testing.

The choice of numbers and units is such that the particles correspond spheres
with several microns in radius. The magnitude of stiffness k cannot be compared
directly with the material bulk modulus C, since it is a contact property. However,
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Symbol Value rescaled units SI-units

tu 1 1µs 10−6 s
xu 1 1 mm 10−3 m
mu 1 1 mg 10−6 kg
a0 0.005 5µm 5.10−6m
ρ 2 2 mg/mm3 2000 kg/m3

k = k2 5 5 mg/µs2 5.106 kg/s2

k1/k 0.5
kc/k 0.5
kt/k 0.2
kr/k = ko/k 0.1
φf 0.05
µ = µd = µs 1
φd = µd/µs 1
µr = µo 0.1
γ = γn 5.10−5 5.10−5 mg/µs 5.101 kg/s
γt/γ 0.2
γr/γ = γo/γ 0.05
γb/γ 4.0
γbr/γ 1.0

Tableau 2. Microscopic material parameters used (second column), if not explicitly

specified. The third column contains these values in the appropriate units, i.e., when

the time-, length-, and mass-unit are µs, mm, and mg, respectively. Column four
contains the parameters in SI-units. Energy, force, acceleration, and stress have to
be scaled with factors of 1, 103, 109, and 109, respectively, for a transition from redu-
ced to SI-units.

there are relations from micro-macro transition analysis, which allow to relate k and
C ∼ kCa2/V [LUD 05a, LUD 08a].

Using the parameter k = k2 in Eq. (4) leads to a typical contact duration (half-
period) tc ≈ 6.5 10−4 µs, for a normal collision of a large and a small particle with
γ = 0. Accordingly, an integration time-step of tMD = 5.10−6 µs is used, in order
to allow for a “safe” integration of the equations of motion. Note that not only the
normal “eigenfrequency” but also the eigenfrequencies in tangential and rotational
direction have to be considered as well as the viscous response times tγ ≈ m/γ.
All of the physical time-scales should be considerably larger than tMD, whereas the
viscous response times should be even larger, so that tγ > tc > tMD. A more detailed
discussion of all the effects due to the interplay between the model parameters and the
related times is, however, far from the scope of this paper.
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2.7.2. Tensile strength and contact adhesion

The tensile (compressive) test is performed uni-axially in x-direction by increasing
(reducing) slowly and smoothly the distance between the two sticky walls. (The same
initial sample, prepared with kc/k2 = 1/2, is used for all tests reported here.) The
stress-strain curves for different cohesion are plotted in Fig. 2, for both tension and
compression. Note that the shape of the curves and the apparent material behavior
(ductile, quasi-brittle, and brittle) depends not only on the contact parameters, but
also on the rate the deformation is performed (due to the viscous forces introduced
above). The present data are for moderate to slow deformation. Faster deformation
leads to even smoother curves with larger apparent strength, while considerably slower
deformation leads to more brittle behavior (with sharper drops of stress) and somewhat
smaller strength.
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Figure 2. (Left) Axial tensile stress plotted against tensile strain for simulations with

weak, moderate and strong particle contact adhesion ; the kc/k2 values are given in

the inset. The line gives a fit to the linear elastic regime with Ct = 3.1011 N/m2.

(Right) Axial compressive stress plotted against compressive strain for two of the pa-
rameter sets from the top panel. The initial slope is the same as in the top panel,
indicating that the linear elastic regime is identical for tension and compression.

The axial tensile stress initially increases linearly with strain, practically inde-
pendent from the contact adhesion strength. With increasing strain, a considerable
number of contacts are opened due to tension – contacts open more easily for smaller
adhesion (data not shown). This leads to a decrease of the stress-strain slope, then the
stress reaches a maximum and, for larger strain, turns into a softening failure mode. As
expected, the maximal stress is increasing with contact adhesion kc/k2. The compres-
sive strength is 6− 7 times larger than the tensile strength, and a larger adhesion force
also allows for larger deformation before failure. The sample with weakest adhesion,
kc/k2 = 1/2, shows tensile and compressive failure at strains εxx ≈ −0.006 and
εxx ≈ 0.045, respectively.

Note that for tension, the post-peak behavior for the test with kc/k2 = 20 is dif-
ferent from the other two cases, due to the strong particle-particle contact adhesion.
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In this case, the tensile fracture occurs at the wall (except for a few particles that
remain in contact with the wall). This is in contrast to the other cases with smaller
bulk-adhesion, where the fracture occurs in the bulk, see Fig. 3.

Figure 3. Snapshots from tensile tests with kc/k2 = 1/5, 1/2, 1, and 20 at horizontal

strain of εxx ≈ −0.8 (top) and −0.7 (bottom). The color code denotes the distance

from the viewer : blue, green, and red correspond to large, moderate, and short dis-
tance. The figure with the larges wall adhesion (bottom-left) shows, that it also can
happen that the sample does not fail, but remains sticking to one wall.

3. Hard Sphere Molecular Dynamics

In this section, the hard sphere model is introduced together with the event-driven
algorithm. A generalized model takes into account the finite contact duration of rea-
listic particles and, besides providing a physcial parameter, saves computing time be-
cause it avoids the “inelastic collapse”.

In the framework of the hard sphere model, particles are assumed to be perfectly ri-
gid and they follow an undisturbed motion until a collision occurs as described below.
Due to the rigidity of the interaction, the collisions occur instantaneously, so that an
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event-driven simulation method [LUB 91, LUD 98c, MIL 04c, MIL 04b, MIL 04a]
can be used. Note that the ED method was only recently implemented in parallel
[LUB 92, MIL 04c] ; however, we avoid to discuss this issue in detail.

The instantaneous nature of hard sphere collisions is artificial, however, it is a
valid limit in many circumstances. Even though details of the contact- or collision
behavior of two particles are ignored, the hard sphere model is valid when binary col-
lisions dominate and multi-particle contacts are rare [LUD 03]. The lack of physical
information in the model allows a much simpler treatment of collisions than descri-
bed in section 2 by just using a collision matrix based on momentum conservation
and energy loss rules. For the sake of simplicity, we restrict ourselves to smooth hard
spheres here. Collision rules for rough spheres are extensively discussed elsewhere,
see e.g. [LUD 98b, HER 04], and references therein.

3.1. Smooth Hard Sphere Collision Model

Between collisions, hard spheres fly independently from each other. A change in
velocity – and thus a change in energy – can occur only at a collision. The stan-
dard interaction model for instantaneous collisions of identical particles with radius
a, and mass m, is used in the following. The post-collisional velocities v′ of two
collision partners in their center of mass reference frame are given, in terms of the
pre-collisional velocities v, by

v′

1,2 = v1,2 ∓ (1 + r)vn /2 , [24]

with vn ≡ [(v1 − v2) · n] n, the normal component of the relative velocity v1 − v2,
parallel to n, the unit vector pointing along the line connecting the centers of the
colliding particles. If two particles collide, their velocities are changed according to
Eq. (24), with the change of the translational energy at a collision ∆E = −m12(1 −
r2)v2

n/2, with dissipation for restitution coefficients r < 1.

3.2. Event-Driven Algorithm

Since we are interested in the behavior of granular particles, possibly evolving over
several decades in time, we use an event-driven (ED) method which discretizes the
sequence of events with a variable time step adapted to the problem. This is different
from classical DEM simulations, where the time step is usually fixed.

In the ED simulations, the particles follow an undisturbed translational motion
until an event occurs. An event is either the collision of two particles or the collision of
one particle with a boundary of a cell (in the linked-cell structure) [ALL 87]. The cells
have no effect on the particle motion here ; they were solely introduced to accelerate
the search for future collision partners in the algorithm.

Simple ED algorithms update the whole system after each event, a method which
is straightforward, but inefficient for large numbers of particles. In Ref. [LUB 91] an
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ED algorithm was introduced which updates only those two particles involved in the
last collision. Because this algorithm is “asynchronous” in so far that an event, i.e.
the next event, can occur anywhere in the system, it is so complicated to parallelize it
[MIL 04c]. For the serial algorithm, a double buffering data structure is implemented,
which contains the ‘old’ status and the ‘new’ status, each consisting of : time of event,
positions, velocities, and event partners. When a collision occurs, the ‘old’ and ‘new’
status of the participating particles are exchanged. Thus, the former ‘new’ status be-
comes the actual ‘old’ one, while the former ‘old’ status becomes the ‘new’ one and
is then free for the calculation and storage of possible future events. This seemingly
complicated exchange of information is carried out extremely simply and fast by only
exchanging the pointers to the ‘new’ and ‘old’ status respectively. Note that the ‘old’
status of particle i has to be kept in memory, in order to update the time of the next
contact, tij , of particle iwith any other object j if the latter, independently, changed its
status due to a collision with yet another particle. During the simulation such updates
may be neccessary several times so that the predicted ‘new’ status has to be modified.

The minimum of all tij is stored in the ‘new’ status of particle i, together with the
corresponding partner j. Depending on the implementation, positions and velocities
after the collision can also be calculated. This would be a waste of computer time,
since before the time tij , the predicted partners i and j might be involved in several
collisions with other particles, so that we apply a delayed update scheme [LUB 91].
The minimum times of event, i.e. the times, which indicate the next event for a certain
particle, are stored in an ordered heap tree, such that the next event is found at the
top of the heap with a computational effort of O(1) ; changing the position of one
particle in the tree from the top to a new position needs O(logN) operations. The
search for possible collision partners is accelerated by the use of a standard linked-
cell data structure and consumesO(1) of numerical resources per particle. In total, this
results in a numerical effort of O(N logN) for N particles. For a detailed description
of the algorithm see Ref. [LUB 91]. Using all these algorithmic tricks, we are able to
simulate about 105 particles within reasonable time on a low-end PC [LUD 99], where
the particle number is more limited by memory than by CPU power. Parallelization,
however, is a means to overcome the limits of one processor [MIL 04c].

As a final remark concerning ED, one should note that the disadvantages conn-
cected to the assumptions made that allow to use an event driven algorithm limit the
applicability of this method. Within their range of applicability, ED simulations are
typically much faster than DEM simulations, since the former accounts for a collision
in one basic operation (collision matrix), whereas the latter requires about one hun-
dred basic steps (integration time steps). Note that this statement is also true in the
dense regime. In the dilute regime, both methods give equivalent results, because col-
lisions are mostly binary [LUD 94a]. When the system becomes denser, multi-particle
collisions can occur and the rigidity assumption within the ED hard sphere approach
becomes invalid.

The most striking difference between hard and soft spheres is the fact that soft
particles dissipate less energy when they are in contact with many others of their kind.
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In the following chapter, the so called TC model is discussed as a means to account
for the contact duration tc in the hard sphere model.

4. The Link between ED and DEM via the TC Model

In the ED method the contact duration is implicitly zero, matching well the corres-
ponding assumption of instantaneous contacts used for the kinetic theory [HAF 83,
JEN 85]. Due to this artificial simplification (which disregards the fact that a real
contact takes always finite time) ED algorithms run into problems when the time bet-
ween events tn gets too small : In dense systems with strong dissipation, tn may even
tend towards zero. As a consequence the so-called “inelastic collapse” can occur, i.e.
the divergence of the number of events per unit time. The problem of the inelastic col-
lapse [MCN 94] can be avoided using restitution coefficients dependent on the time
elapsed since the last event [LUD 98c, LUD 03]. For the contact that occurs at time
tij between particles i and j, one uses r = 1 if at least one of the partners involved
had a collision with another particle later than tij − tc. The time tc can be seen as a
typical duration of a contact, and allows for the definition of the dimensionless ratio

τc = tc/tn . [25]

The effect of tc on the simulation results is negligible for large r and small tc ; for a
more detailed discussion see [LUD 98c, LUD 99, LUD 03].

In assemblies of soft particles, multi-particle contacts are possible and the inelastic
collapse is avoided. The TC model can be seen as a means to allow for multi-particle
collisions in dense systems [LUD 96, LUD 97, LUD 98c]. In the case of a homoge-
neous cooling system (HCS), one can explicitly compute the corrected cooling rate
(r.h.s.) in the energy balance equation

d

dτ
E = −2I(E, tc) , [26]

with the dimensionless time τ = (2/3)At/tE(0) for 3D systems, scaled by A =
(1−r2)/4, and the collision rate t−1

E = (12/a)νg(ν)
√

T/(πm), with T = 2K/(3N).
In these units, the energy dissipation rate I is a function of the dimensionless energy
E = K/K(0) with the kinetic energy K , and the cut-off time tc. In this repre-
sentation, the restitution coefficient is hidden in the rescaled time via A = A(r),
so that inelastic hard sphere simulations with different r scale on the same master-
curve. When the classical dissipation rate E3/2 [HAF 83] is extracted from I , so that
I(E, tc) = J(E, tc)E

3/2, one has the correction-function J → 1 for tc → 0. The
deviation from the classical HCS is [LUD 03] :

J(E, tc) = exp (Ψ(x)) , [27]

with the series expansion Ψ(x) = −1.268x+ 0.01682x2 − 0.0005783x3 +O(x4) in
the collision integral, with x =

√
πtct

−1
E (0)

√
E =

√
πτc(0)

√
E =

√
πτc [LUD 03].
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Figure 4. (Left) Deviation from the HCS, i.e. rescaled energy E/Eτ , where Eτ is the

classical solutionEτ = (1+τ)−2. The data are plotted against τ for simulations with

different τc(0) = tc/tE(0) as given in the inset, with r = 0.99, and N = 8000. Sym-
bols are ED simulation results, the solid line results from the third order correction.
(Right) E/Eτ plotted against τ for simulations with r = 0.99, and N = 2197. Solid
symbols are ED simulations, open symbols are DEM (soft particle simulations) with
three different tc as given in the inset.

This is close to the result ΨLM = −2x/
√
π, proposed by Luding and McNamara,

based on probabilistic mean-field arguments [LUD 98c] 3.

Given the differential equation (26) and the correction due to multi-particle contacts
from Eq. (27), it is possible to obtain the solution numerically, and to compare it to
the classical Eτ = (1 + τ)−2 solution. Simulation results are compared to the theory
in Fig. 4 (left). The agreement between simulations and theory is almost perfect in the
examined range of tc-values, only when deviations from homogeneity are evidenced
one expects disagreement between simulation and theory. The fixed cut-off time tc
has no effect when the time between collisions is very large tE ≫ tc, but strongly
reduces dissipation when the collisions occur with high frequency t−1

E
>∼ t−1

c . Thus,
in the homogeneous cooling state, there is a strong effect initially, and if tc is large,
but the long time behavior tends towards the classical decay E → Eτ ∝ τ−2.

The final check if the ED results obtained using the TC model are reasonable is
to compare them to DEM simulations, see Fig. 4 (right). Open and solid symbols
correspond to soft and hard sphere simulations respectively. The qualitative behavior
(the deviation from the classical HCS solution) is identical : The energy decay is
delayed due to multi-particle collisions, but later the classical solution is recovered. A
quantitative comparison shows that the deviation of E from Eτ is larger for ED than
for DEM, given that the same tc is used. This weaker dissipation can be understood
from the strict rule used for ED : Dissipation is inactive if any particle had a contact
already. The disagreement between ED and DEM is systematic and should disappear

3. ΨLM thus neglects non-linear terms and underestimates the linear part
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if an about 30 per-cent smaller tc value is used for ED. The disagreement is also
plausible, since the TC model disregards all dissipation for multi-particle contacts,
while the soft particles still dissipate energy - even though much less - in the case of
multi-particle contacts.

The above simulations show that the TC model is in fact a “trick” to make hard
particles soft and thus connecting between the two types of simulation models : soft
and hard. The only change made to traditional ED involves a reduced dissipation for
(rapid) multi-particle contacts.

5. The Stress in Particle Simulations

The stress tensor is a macroscopic quantity that can be obtained by measurement
of forces per area, or via a so-called micro-macro homogenization procedure. Both
methods will be discussed below. During derivation, it also turns out that stress has
two contributions, the first is the “static stress” due to particle contacts, a potential

energy density, the second is the “dynamics stress” due to momentum flux, like in the
ideal gas, a kinetic energy density. For the sake of simplicity, we restrict ourselves to
the case of smooth spheres here.

5.1. Dynamic Stress

For dynamic systems, one has momentum transport via flux of the particles. This
simplest contribution to the stress tensor is the standard stress in an ideal gas, where
the atoms (mass points) move with a certain fluctuation velocity vi. The kinetic energy
E =

∑N
i=1mv

2
i /2 due to the fluctuation velocity vi can be used to define the tempe-

rature of the gas kBT = 2E/(DN), with the dimension D and the particle number
N . Given a number density n = N/V , the stress in the ideal gas is then isotropic
and thus quantified by the pressure p = nkBT ; note that we will disregard kB in the
following. In the general case, the dynamic stress is σ = (1/V )

∑

imi vi ⊗ vi, with
the dyadic tensor product denoted by ‘⊗’, and the pressure p = trσ/D = nT is the
kinetic energy density.

The additional contribution to the stress is due to collisions and contacts and will
be derived from the principle of virtual displacement for soft interaction potentials
below, and then be modified for hard sphere systems.

5.2. Static Stress from Virtual Displacements

From the centers of mass r1 and r2 of two particles, we define the so-called branch
vector l = r1 − r2, with the reference distance l = |l| = 2a at contact, and the
corresponding unit vector n = l/l. The deformation in the normal direction, relative
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to the reference configuration, is defined as δ = 2an − l. A virtual change of the
deformation is then

∂δ = δ′ − δ ≈ ∂l = ε · l , [28]

where the prime denotes the deformation after the virtual displacement described by
the tensor ε. The corresponding potential energy density due to the contacts of one pair
of particles is u = kδ2/(2V ), expanded to second order in δ, leading to the virtual
change

∂u =
k

V

(

δ · ∂δ +
1

2
(∂δ)2

)

≈ k

V
δ · ∂ln , [29]

where k is the spring stiffness (the prefactor of the quadratic term in the series expan-
sion of the interaction potential), V is the averaging volume, and ∂ln = n(n · ε · l) is
the normal component of ∂l. Note that ∂u depends only on the normal component of
∂δ due to the scalar product with δ, which is parallel to n.

From the potential energy density, we obtain the stress from a virtual deformation
by differentiation with respect to the deformation tensor components

σ =
∂u

∂ε
=
k

V
δ ⊗ l =

1

V
f ⊗ l , [30]

where f = kδ is the force acting at the contact, and the dyadic product ⊗ of two
vectors leads to a tensor of rank two.

5.3. Stress for Soft and Hard Spheres

Combining the dynamic and the static contributions to the stress tensor [LUD 01c],
one has for smooth, soft spheres :

σ =
1

V

[

∑

i

mivi ⊗ vi −
∑

c∈V

fc ⊗ lc

]

, [31]

where the right sum runs over all contacts c in the averaging volume V . Replacing the
force vector by momentum change per unit time, one obtains for hard spheres :

σ =
1

V





∑

i

mivi ⊗ vi −
1

∆t

∑

n

∑

j

pj ⊗ lj



 , [32]

where pj and lj are the momentum change and the center-contact vector of particle
j at collision n, respectively. The sum in the left term runs over all particles i, the
first sum in the right term runs over all collisions n occurring in the averaging time
∆t, and the second sum in the right term concerns the collision partners of collision n
[LUD 98c].

Exemplary stress computations from DEM and ED simulations are presented in the
following section.
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6. 2D Simulation Results

Stress computations from two dimensional DEM and ED simulations are presented
in the following subsections. First, a global equation of state, valid for all densities, is
proposed based on ED simulations, and second, the stress tensor from a slow, quasi-
static deformation is computed from DEM simulations with frictional particles.

6.1. The Equation of State from ED

The mean pressure in two dimensions is p = (σ1 + σ2)/2, with the eigenvalues
σ1 and σ2 of the stress tensor [LUD 01b, LUD 01c, LUD 02]. The 2D dimensionless,
reduced pressure P = p/(nT ) − 1 = pV/E − 1 contains only the collisional contri-
bution and the simulations agree nicely with the theoretical prediction P2 = 2νg2(ν)
for elastic systems, with the pair-correlation function g2(ν) = (1− 7ν/16)/(1− ν)2,
and the volume fraction ν = Nπa2/V , see Fig. 5. A better pair-correlation function
is

g4(ν) =
1 − 7ν/16

(1 − ν)2
− ν3/16

8(1 − ν)4
, [33]

which defines the non-dimensional collisional stress P4 = 2νg4(ν). For a system
with homogeneous temperature, as a remark, the collision rate is proportional to the
dimensionless pressure t−1

n ∝ P .
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Figure 5. The dashed lines are P4 and Pdense as functions of the volume fraction ν,

and the symbols are simulation data, with standard deviations as given by the error

bars in the inset. The thick solid line is Q, the corrected global equation of state from

Eq. (34), and the thin solid line is Q0 without empirical corrections.



Introduction to Discrete Element Methods 25

When plottingP against ν with a logarithmic vertical axis, in Fig. 5, the simulation
results can almost not be distinguished from P2 for ν < 0.65, but P4 leads to better
agreement up to ν = 0.67. Crystallization is evidenced at the point of the liquid-solid
transition νc ≈ 0.7, and the data clearly deviate from P4. The pressure is strongly
reduced due to the increase of free volume caused by ordering. Eventually, the data
diverge at the maximum packing fraction νmax = π/(2

√
3) for a perfect triangular

array.

For high densities, one can compute from free-volume models, the reduced pres-
sure Pfv = 2νmax/(νmax−ν). Slightly different functional forms do not lead to much
better agreement [LUD 02]. Based on the numerical data, we propose the corrected
high density pressure Pdense = Pfvh(νmax − ν) − 1, with the empirical fit function
h(x) = 1 + c1x + c3x

3, and c1 = −0.04 and c3 = 3.25, in perfect agreement with
the simulation results for ν ≥ 0.73.

Since, to our knowledge, there is no conclusive theory available to combine the
disordered and the ordered regime [KAW 79], we propose a global equation of state

Q = P4 +m(ν)[Pdense − P4] , [34]

with an empirical merging function m(ν) = [1 + exp (−(ν − νc)/m0)]
−1, which

selects P4 for ν ≪ νc and Pdense for ν ≫ νc, with the transition density νc and
the width of the transition m0. In Fig. 5, the fit parameters νc = 0.702 and m0 ≈
0.0062 lead to qualitative and quantitative agreement between Q (thick line) and the
simulation results (symbols). However, a simpler versionQ0 = P2 +m(ν)[Pfv −P2],
(thin line) without empirical corrections leads already to reasonable agreement when
νc = 0.698 and m0 = 0.0125 are used. In the transition region, this function Q0

has no negative slope but is continuous and differentiable, so that it allows for an
easy and compact numerical integration of P . We selected the parameters for Q0 as
a compromise between the quality of the fit on the one hand and the simplicity and
treatability of the function on the other hand.

As an application of the global equation of state, the density profile of a dense
granular gas in the gravitational field has been computed for monodisperse [LUD 01c]
and bidisperse situations [LUD 01b, LUD 02]. In the latter case, however, segregation
was observed and the mixture theory could not be applied. The equation of state and
also other transport properties are extensively discussed in Refs. [ALA 02b, ALA 02a,
ALA 03b, ALA 03a] for 2D, bi-disperse systems.

6.2. Quasi-static DEM simulations

In contrast to the dynamic, collisional situation discussed in the previous section,
a quasi-static situation, with all particles almost at rest most of the time, is discussed
in the following.
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6.2.1. Model Parameters

The systems examined in the following contain N = 1950 particles with radii ai

randomly drawn from a homogeneous distribution with minimum amin = 0.5 10−3 m
and maximum amax = 1.5 10−3 m. The masses mi = (4/3)ρπa3

i , with the density
ρ = 2.0 103 kg m−3, are computed as if the particles were spheres. This is an artifi-
cial choice and introduces some dispersity in mass in addition to the dispersity in size.
Since we are mainly concerned about slow deformation and equilibrium situations, the
choice for the calculation of mass should not matter. The total mass of the particles in
the system is thus M ≈ 0.02 kg with the typical reduced mass of a pair of particles
with mean radius, m12 ≈ 0.42 10−5 kg. If not explicitly mentioned, the material pa-
rameters are k2 = 105 N m−1 and γ0 = 0.1 kg s−1. The other spring-constants k1 and
kc will be defined in units of k2. In order to switch on adhesion, k1 < k2 and kc > 0 is
used ; if not mentioned explicitly, k1 = k2/2 is used, and k2 is constant, independent
of the maximum overlap previously achieved.

Using the parameters k1 = k2 and kc = 0 in Eq. (4) leads to a typical contact dura-
tion (half-period) : tc ≈ 2.03 10−5 s for γ0 = 0, tc ≈ 2.04 10−5 s for γ0 = 0.1 kg s−1,
and tc ≈ 2.21 10−5 s for γ0 = 0.5 kg s−1 for a collision. Accordingly, an integration
time-step of tDEM = 5 10−7 s is used, in order to allow for a ‘safe’ integration of
contacts involving smaller particles. Large values of kc lead to strong adhesive forces,
so that also more energy can be dissipated in one collision. The typical response time
of the particle pairs, however, is not affected so that the numerical integration works
well from a stability and accuracy point of view.

6.2.2. Boundary Conditions

The experiment chosen is the bi-axial box set-up, see Fig. 6, where the left and
bottom walls are fixed, and stress- or strain-controlled deformation is applied. In the
first case a wall is subject to a predefined pressure, in the second case, the wall is sub-
ject to a pre-defined strain. In a typical ‘experiment’, the top wall is strain controlled
and slowly shifted downwards while the right wall moves stress controlled, dependent
on the forces exerted on it by the material in the box. The strain-controlled position of
the top wall as function of time t is here

z(t) = zf +
z0 − zf

2
(1 + cosωt) , with εzz = 1 − z

z0
, [35]

where the initial and the final positions z0 and zf can be specified together with the
rate of deformation ω = 2πf so that after a half-period T/2 = 1/(2f) the extremal
deformation is reached. With other words, the cosine is active for 0 ≤ ωt ≤ π. For
larger times, the top-wall is fixed and the system can relax indefinitely. The cosine
function is chosen in order to allow for a smooth start-up and finish of the motion
so that shocks and inertia effects are reduced, however, the shape of the function is
arbitrary as long as it is smooth.

The stress-controlled motion of the side-wall is described by

mwẍ(t) = Fx(t) − pxz(t) − γwẋ(t) , [36]
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Figure 6. (Left) Schematic drawing of the model system. (Right) Position of the top-
wall as function of time for the strain-controlled situation.

wheremw is the mass of the right side wall. Large values ofmw lead to slow adaption,
small values allow for a rapid adaption to the actual situation. Three forces are active :
(i) the force Fx(t) due to the bulk material, (ii) the force −pxz(t) due to the external
pressure, and (iii) a strong frictional force which damps the motion of the wall so that
oscillations are reduced.

6.2.3. Initial Configuration and Compression

εzz = 0 εzz = 0.042 εzz = 0.091

Figure 7. Snapshots of the simulation at different εzz for constant side pressure p.
The color code corresponds to the potential energy of each particle, decaying from
red over green to blue and black. The latter black particles are so-called rattlers that
do not contribute to the static contact network.



28 S. Luding. Volume 10/2008

Initially, the particles are randomly distributed in a huge box, with rather low ove-
rall density. Then the box is compressed, either by moving the walls to their desired
position, or by defining an external pressure p = px = pz, in order to achieve an
isotropic initial condition. Starting from a relaxed, isotropic initial configuration, the
strain is applied to the top wall and the response of the system is examined. In Fig. 7,
snapshots from a typical simulation are shown during compression.

In the following, simulations are presented with different side pressures p = 20,
40, 100, 200, 400, and 500. The behavior of the averaged scalar and tensor variables
during the simulations is examined in more detail for situations with small and large
confining pressure. The averages are performed such that ten to twenty per-cent of the
total volume are disregarded in the vicinity of each wall in order to avoid boundary
effects. A particle contact is taken into account for the average if the contact point lies
within the averaging volume V .

6.2.4. Compression and Dilation

The first quantity of interest is the density (volume fraction) ν and, related to it, the
volumetric strain εV = ∆V/V . From the averaged data, we evidence compression for
small deformation and large side pressure. This initial regime follows strong dilation,
for all pressures, until a quasi-steady-state is reached, where the density is almost
constant besides a weak tendency towards further dilation.
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Figure 8. (Left) Volume fraction ν =
∑

i πa
2
i /V for different confining pressure p.

(Right) Volumetric strain – negative values mean compression, whereas positive va-
lues correspond to dilation.

An initially dilute granular medium (weak confining pressure) thus shows dilation
from the beginning, whereas a denser granular material (strong confining pressure)
can be compressed even further by the relatively strong external forces until dilation
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starts. The range of density changes is about 0.02 in volume fraction and spans up to
3 % changes in volumetric strain.

From the initial slope, one can obtain the Poisson ratio of the bulk material, and
from the slope in the dilatant regime, one obtains the so-called dilatancy angle, a
measure of the magnitude of dilatancy required before shear is possible [LUD 01a,
LUD 04a].

6.2.5. Fabric Tensor

The fabric tensor is computed according to Ref. [LUD 05b, LUD 05a], and its iso-
tropic and deviatoric contributions are displayed in Fig. 9. The isotropic contribution
(the contact number density) is scaled by the prediction from Madadi et al. [MAD 04],
and the deviation from the prediction is between one to three percent, where the larger
side pressure data are in better agreement (smaller deviation). Note that the correction
due to the factor g2 corresponds to about nine per-cent, and that the data are taken
in the presence of friction, in contrast to the simulations by [MAD 04], a source of
discrepancy, which accounts in our opinion for the remaining deviation.
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Figure 9. (Left) Quality factor for the trace of the fabric tensor scaled by the ana-
lytical prediction g2νC from [MAD 04], for different pressures p, as function of the
vertical deformation. (Right) Deviatoric fraction of the fabric tensor from the same
simulations plotted against the deviatoric strain.

The anisotropy of the granular packing is quantified by the deviatoric fabric, as
displayed in its scaled form in Fig. 9. The anisotropy is initially of the order of a few
percent at most – thus the initial configurations are not perfectly isotropic. With in-
creasing deviatoric deformation, the anisotropy grows, reaches a maximum and then
saturates on a lower level in the critical state flow regime. The scaled fabric grows fas-
ter for smaller side pressure and is also relatively larger for smaller p. The non-scaled
fabric deviator, astonishingly, grows to values around fmax

D trF ≈ 0.56± 0.03, inde-
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pendently of the side pressures used here (data not shown, see [LUD 04a, LUD 04b]
for details). Using the definition fD := devF /trF , the functional behavior,

∂fD

∂εD
= βf (fmax

D − fD) , [37]

was evidenced from simulations in Ref. [LUD 04a], with fmax
D trF ≈ const., and the

deviatoric rate of approach βf = βf (p), decreasing with increasing side pressure. The
differential equation is solved by an exponential function that describes the approach
of the anisotropy fD to its maximal value, 1 − (fD/f

max
D ) = exp (−βfεD), but not

beyond.

6.2.6. Stress Tensor

The sums of the normal and the tangential stress-contributions are displayed in Fig.
10 for two side-pressures p = 20 and p = 200. The lines show the stress measured
on the walls, and the symbols correspond to the stress measured via the micro-macro
average in Eq. (31), proving the reasonable quality of the micro-macro transition as
compared to the wall stress “measurement”.

There is also other macroscopic information hidden in the stress-strain curves in
Fig. 10. From the initial, rapid increase in stress, one can determine moduli of the
bulk-material, i.e, the stiffness under confinement p. Later, the stress reaches a peak
at approximately 2.6p and then saturates at about 2p. From both peak- and saturation
stress, one obtains the yield stresses at peak and in critical state flow, respectively
[SCH 03].
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Figure 10. Total stress tensor σ = σn +σt for small (Left) and high (Right) pressure

– the agreement between the wall pressure and the averaged stress is almost perfect.

Note that for the parameters used here, both the dynamic stress and the tangential
contributions to the stress tensor are more than one order of magnitude smaller than
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the normal contributions. As a cautionary note, we remark also that the artificial stress
induced by the background viscous force is negligible here (about two per-cent), when
γb = 10−3 kg s−1 and a compression frequency f = 0.1 s−1 are used. For faster
compression with f = 0.5 s−1, one obtains about ten per-cent contribution to stress
from the artificial background force.

The behavior of the stress is displayed in Fig. 11, where the isotropic stress 1
2
tr σ

is plotted in units of p, and the deviatoric fraction is plotted in units of the isotropic
stress. Note that the tangential forces do not contribute to the isotropic stress here
since the corresponding entries in the averaging procedure compensate. From Fig.
11, we evidence that both normal contributions, the non-dimensional trace and the
non-dimensional deviator behave similarly, independent of the side pressure : Starting
from an initial value, a maximum is approached, where the maximum is only weakly
dependent on p.
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Figure 11. Non-dimensional stress tensor contributions for different p. The isotropic
(Left) and the deviatoric fractions (Right) are displayed as functions of the vertical
and deviatoric strain, respectively.

The increase of stress is faster for lower p. After the maximum is reached, the
stresses decay and approach a smaller value in the critical state flow regime. Using
the definitions sV := tr σ /(2p) − 1 and sD := dev σ /trσ , the maximal (non-
dimensional) isotropic and deviatoric stresses are smax

V ≈ 0.8 ± 0.1 and smax
D ≈

0.4± 0.02, respectively, with a rather large error margin. The corresponding values at
critical state flow are sc

V ≈ 0.4 ± 0.1 and sc
D ≈ 0.29 ± 0.04.

The evolution of the deviatoric stress fraction, sD, as function of εD, is displayed
in Fig. 11. Like the fabric, also the deviatoric stress exponentially approaches its maxi-
mum. This is described by the differential equation

∂sD

∂εD
= βs (smax

D − sD) , [38]
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where βs = βs(p) is decaying with increasing p (roughly as βs ≈ p−1/2). For more
details on the deviatoric stress and also on the tangential contribution to the stress, see
[LUD 04a, LUD 04b, LUD 05b, LUD 05a].

7. Larger Computational Examples

In this section, several examples of rather large particle numbers simulated with
DEM and ED are presented. The ED algorithm is first used to simulate a freely cooling
dissipative gas in two and three dimensions [LUD 99, MIL 04b]. Then, a peculiar three
dimensional ring-shear experiment is modeled with soft sphere DEM.

7.1. Free Cooling and Cluster Growth (ED)

In the following, a two-dimensional system of length L = l/d = 560 with N =
99856 dissipative particles of diameter d = 2a is examined [LUD 98c, LUD 99],
with volume fraction ν = 0.25 and restitution coefficient r = 0.9. This 2D system
is compared to a three-dimensional system of length L = l/d = 129 with N =
512000 dissipative spheres of diameter d and volume fraction ν = 0.25 with r = 0.3
[MIL 04b].

7.1.1. Initial configuration

Initially the particles are arranged on a square lattice with random velocities drawn
from an interval with constant probability for each coordinate. The mean total velocity,
i.e. the random momentum due to the fluctuations, is eliminated in order to have a
system with its center of mass at rest. The system is allowed to evolve for some time,
until the arbitrary initial condition is forgotten, i.e. the density is homogeneous, and
the velocity distribution is a Gaussian in each coordinate. Then dissipation is switched
on and the evolution of the system is reported for the selected r. In order to avoid the
inelastic collapse, the TC model is used, which reduces dissipation if the time between
collisions drops below a value of tc = 10−5 s.

7.1.2. System evolution

For the values of r used here, the system becomes inhomogeneous quite rapidly
[LUD 99, MIL 04b]. Clusters, and thus also dilute regions, build up and have the ten-
dency to grow. Since the system is finite, their extension will reach system size at a
finite time. Thus we distinguish between three regimes of system evolution : (i) the
initially (almost) homogeneous state, (ii) the cluster growth regime, and (iii) the sys-
tem size dependent final stage where the clusters have reached system size. We note
that a cluster does not behave like a solid body, but has internal motion and can even-
tually break into pieces after some time. These pieces (small clusters) collide and can
merge to larger ones.
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Figure 12. (Left) Collision frequency of individual particles from a 2D simulation,

after about 5200 collisions per particle. (Right) Cluster visualization from a 3D si-
mulation. The colors in both panels indicate large (red), medium (green), and small
(blue) collision rates.

In Fig. 12, snapshots are presented and the collision rate is color-coded. The col-
lision rate and the pressure are higher inside the clusters than at their surface. Note
that most of the computational effort is spent in predicting collisions and to compute
the velocities after the collisions. Therefore, the regions with the largest collision fre-
quencies require the major part of the computational resources. Due to the TC model,
this effort stays limited and the simulations can easily continue for many thousand
collisions per particle.

7.1.3. Discussion

Note that an event driven simulation can be 10-100 times faster than a soft-particle
DEM code applied to model the same particle number. However, ED is rather limited
to special, simple interactions between the particles. Further examples of event-driven
simulations will be presented in the paper by T. Pöschel in this book.

7.2. 3D (Ring) Shear Cell Simulation

The simulation in this section models a ring-shear cell experiment, as recently pro-
posed [FEN 03, FEN 04]. The interesting observation in the experiment is a universal
shear zone, initiated at the bottom of the cell and becoming wider and moving inwards
while propagating upwards in the system.

In the following, the shear-band will be examined, and the micro-macro transi-
tion from will be performed, leading to a yield stress (or flow function) based on a
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single simulation. This is in contrast to the two-dimensional example from the pre-
vious chapter, where the yield stress had to be determined from different simulations
with different side stress p. In the ring shear cell, space- and time-averaging is pos-
sible, so that - at different radial and vertical positions, one obtains data for different
density, stress, velocity gradient, etc.

7.2.1. Model system

The numerical model chosen here is DEM with smooth particles in three dimen-
sions. In order to save computing time, only a quarter of the ring-shaped geometry is
simulated. The walls are cylindrical, and are rough on the particle scale due to some
attached particles. The outer cylinder wall with radius Ro, and part of the bottom
r > Rs are rotating around the symmetry axis, while the inner wall with radius Ri,
and the attached bottom-disk r < Rs remain at rest. In order to resemble the expe-
riment, the geometry data are Ri = 0.0147 m, Rs = 0.085m, and Ro = 0.110 m.
Note that the small Ri value is artificial, but it does not affect the results for small and
intermediate filling heights.

The slit in the bottom wall at r = Rs triggers a shear band. In order to examine the
behavior of the shear band as function of the filling heightH , this system is filled with
6000 to 64000 spherical particles with mean radius 1.0 mm and radii range 0.5 mm
< a < 1.5 mm, which interact here via repulsive and dissipative forces only. The
particles are forced towards the bottom by the gravity force f g = mg here and are kept
inside the system by the cylindrical walls. In order to provide some wall roughness, a
fraction of the particles (about 3 per-cent) that are originally in contact with the walls
are glued to the walls and move with them.

7.2.2. Material and system parameters

The material parameters for the particle-particle and -wall interactions are k =
102 N/m and γ0 = 2.10−3 kg/s. Assuming a collision of the largest and the smallest
particle used, the reduced mass m12 = 2.94 10−6 kg, leads to a typical contact dura-
tion tc = 5.4 10−4 s and a restitution coefficient of r = 0.83. The integration time step
is tDEM = 5.10−6 s, i.e. two orders of magnitude smaller than the contact duration.

The simulations run for 25 s with a rotation rate fo = 0.01 s−1 of the outer cylin-
der, with angular velocity Ωo = 2πfo. For the average of the displacement, only times
t > 10 s are taken into account. Within the averaging accuracy, the system seemingly
has reached a quasi-steady state after about 8 s. The empty cell is shown in Fig. 13,
while three realizations with different filling height are displayed in Fig. 14, both as
top- and front-view.

7.2.3. Shear deformation results

From the top-view, it is evident that the shear band moves inwards with increasing
filling height, and it also becomes wider. From the front-view, the same information
can be evidenced and, in addition, the shape of the shear band inside the bulk is vi-
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Figure 13. Snapshots from the quarter-cylinder geometry. Visible are here only those
particles glued to the wall ; the cylinder and slit positions are indicated by the lines.
(Left) Top-view and (Right) front-view. The colors blue and red correspond to static
and moving wall particles.

sible : The inwards displacement happens deep in the bulk and the position of the
shear band is not changing a lot closer to the surface.

N = 16467 N = 34518 N = 60977

Figure 14. Snapshots from simulations with different filling heights seen from the top
and from the front, and the particle number N is given in the inset. The colors blue,
green, orange and red denote particles with rdφ ≤ 0.5 mm, rdφ ≤ 2 mm, rdφ ≤
4 mm, and rdφ > 4 mm, i.e. the displacement in tangential direction per second,
respectively. The filling heights in these simulations are H = 0.018 m, 0.037 m, and
0.061 m (from left to right).
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In order to allow for a more quantitative analysis of the shear band, both on the top
and as function of depth, we perform fits with the universal shape function proposed
in [FEN 03] :

vϕ(r)

rΩo
= A

(

1 + erf

(

r −Rc

W

))

, [39]

where A is a dimensionless amplitude A = 0.50 ± 0.02, Rc is the center of the
shearband, and W its width.

The fits to the simulations confirm qualitatively the experimental findings in so far
that the center of the shear band, as observed on top of the material, see Fig. 15, moves
inwards with a Rc ∝ H5/2 behavior, and that the width of the shear band increases
almost linearly with H . For filling heights larger than H ≈ 0.05 m, deviations from
this behavior are observed, because the inner cylinder is reached and thus sensed by
the shearband. Slower shearing does not affect the center, but reduces slightly the
width - as checked by one simulation.
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Figure 15. (Left) Distance of the top-layer shearband center from the slit, both plotted
against the filling heightH . The open symbols are simulation results, the solid symbol
is a simulation with slower rotation fo = 0.005 s−1, and the line is a fit with constant
cR = 30. (Right) Width of the shearband from the same simulations ; the line is a fit
with cW = 2/5.

Like in the experiments, the behavior of the shearband within the bulk, see Fig. 16,
deviates qualitatively from the behavior seen from the top. Instead of a slow motion of
the shear band center inwards, the shear band rapidly moves inwards at small heights
h, and reaches a saturation distance with small change closer to the surface. Again, a
slower rotation does not affect the center but reduces the width.

From the velocity field in the bulk it is straightforward to compute the velocity
gradient tensor and, from this extracting the (symmetric) strain rate :

γ̇ =
√

d2
1 + d2

2 =
1

2

√

(

∂vφ

∂r
− vφ

r

)2

+

(

∂vφ

∂z

)2

, [40]
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Figure 16. (Left) Distance of the bulk shearband center from the slit and, (Right) width

of the shearband, both plotted against the height h. The open symbols are simulation

results obtained with fo = 0.01 s−1, the solid symbols are obtained with slower rota-
tion fo = 0.005 s−1. Squares, circles and triangles correspond to the filling heights
H = 0.037 m, 0.049 m, and 0.061 m, respectively. The curves are identical to those
plotted in Fig. 15.

i.e., the shear intensity in the shear plane [LUD 08b]. Note that the solid-body rotation
term vφ/r comes from the cylindrical coordinate system used. The shear planes are
in fact described by a normal unit vector γ̂ = (cos θ, 0, sin θ), with θ = θ(r, z) =
arccos(d1/γ̇), as predicted [DEP 06]. The center of the shear band indicates the di-
rection of the unit-vector γ̂. In the system with friction, we observe that the average
particles spin is also normal to the shear-plane, i.e., parallel to γ̂, within the rather
strong fluctuations (data not shown).

From the stress, as computed according to Eq. (31), the shear stress is extracted (in
analogy to the strain rate) as proposed in [DEP 06] :

|τ | =
√

σ2
rφ + σ2

zφ . [41]

Remarkably, the shear stress intensity |τ |/p ≈ µ is almost constant for practically
all averaging volumina with strain rates larger than some threshold value, i.e., γ̇ > γ̇c,
with γ̇c ≈ 0.02 s−1. Whether the threshold has a physical meaning or is only an
artefact due to the statistical fluctuations in the average data has to be examined further
by much longer runs with better statistics.

From the constant shear stress intensity in the shear zone, one can determine the
Mohr-Coulomb-type friction angle of the equivalent macroscopic constitutive law, see
Fig. 17, as ψ ≈ arcsinµ. Interestingly, without friction ψ is rather large, i.e., much
larger than expected from a frictionless material, whereas it is astonishingly small with
friction (data not shown), i.e., smaller than the microscopic contact friction µ = 0.4
used, see Ref. [LUD 08b].
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against pressure. The size of the points is proportional to the shear rate, and the da-
shed line (right panel) separates the data from simulations without (Bottom) and with
(Top) friction, see [LUD 08b].

7.2.4. Discussion

In summary, the example of a ring shear cell simulation in 3D has shown, that
even without the more complicated details of fancy interaction laws, experiments can
be reproduced at least qualitatively. A more detailed study of quantitative agreement
has been performed in 2D [L¨ 03], and is in progress for the 3D case.

A challenge for the future remains the micro-macro transition, for which a first
result has been shown, i.e. the yield stress can be extracted from a single 3D DEM
simulation for various pressures and shear rates. Open remains an objective continuum
theory formulation of the shear band problem.

8. Conclusion

The present study is a summary of the most important details about soft particle
molecular dynamics (MD), widely referred to as discrete element methods (DEM) in
engineering, and hard particle event driven (ED) simulations, together with an attempt
to link the two approaches in the dense limit where multi-particle contacts become
important.

As an example for a micro-macro transition, the stress tensor was defined and com-
puted for dynamic and quasi-static systems. This led, for example, to a global equation
of state, valid for all attainable densities, and also to the partial stresses due to normal
and tangential (frictional) contacts. For the latter situation, the micro-macro average
is compared to the macroscopic stress (=force/area) measurement (with reasonable
agreement) and, at least in 3D, a yield stress function can be extracted from a single
ring shear cell simulation.
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In conclusion, discrete element methods have proven a helpful tool for the unders-
tanding of many granular systems. The qualitative approach of the early years has
now developed into the attempt of a quantitative predictive modeling of the diverse
modes of complex behavior in granular media. To achieve this goal will be a research
challenge for the next decades, involving enhanced kinetic theories for dense collisio-
nal flows and elaborate constitutive models for quasi-static, dense systems with shear
band localisation.
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