
Math. Struct, in Comp. Science (1993), vol. 3, pp. 277-307 Copyright © 1993 Cambridge University Press

Introduction to distributive categories

J. R. B. COCKETT

Department of Computer Science, University of Calgary

Received 1 March 1991; revised 24 September 1992

Distributive category theory is the study of categories with two monoidal structures, one of

which "distributes" over the other in some manner. When these are the product and

coproduct, this distribution is taken to be the law

(AxB) + (Ax.C)~Ax(B + C),

which asserts that the obvious canonical map has an inverse. A distributive category is here

taken to mean a category with finite products and binary coproducts such that this law is

satisfied.

In any distributive category the coproduct of the final object with itself, 1 + 1, forms a

boolean algebra. Thus, maps into 1 + 1 provide a boolean logic: if each such map recognizes

a unique subobject, the category is a recognizable distributive category. If, furthermore, the

category is such that these recognizers classify detachable subobjects (coproduct

embeddings), it is an extensive distributive category.

Extensive distributive categories can be approached in various ways. For example,

recognizable distributive categories, in which coproducts are disjoint or all preinitials are

isomorphic, are extensive. Also, a category X having finite products and binary coproducts

satisfying the slice equation X x X ~ X / l + l (due to Schanuel and Lawvere) is extensive.

This paper describes a series of embedding theorems. Any distributive category has a full

faithful embedding into a recognizable distributive category. Any recognizable distributive

category can be "solidified" faithfully to produce an extensive distributive category. Any

extensive distributive category can be embedded into a topos.

A peculiar source of extensive distributive categories is the coproduct completion of

categories with familial finite products. In particular, this includes the coproduct completion

of cartesian categories, which is serendipitously, therefore, also the distributive completion.

Familial distributive categories can be characterized as distributive categories for which

every object has a finite decomposition into indecomposables.

1. Introduction

The purpose of this paper is to present the results obtained during the first three months

of 1990 in distributive category theory at the Sydney Category Seminar (SCS) and the

Categories in Computer Science Seminar (CICS) held at the University of Sydney and

Macquarie University. The nomenclature has evolved since those original discussions and

I have taken the liberty of bringing the exposition up to date in that respect. Although

many proofs have been omitted, the intention is to leave sufficient detail so that proofs

can be reconstructed when the results are not obvious from the development.
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Distributive categories occur (it seems) all over mathematics. However, a primary

motivation for this development was the potential computer science applications. It had

been realized for some time that distributive categories are the correct formal setting for

studying acyclic programs. In particular, the control aspects of programs, which have

proved to be difficult to model equationally, are modeled precisely by the coproduct (sum

or disjoint union) of distributive categories. Furthermore, distributive categories (and their

analogues in finite sum sketches) provide a powerful language for abstract data structure

specification.

The coproduct is a fundamental component of almost all complex data structures, yet

it has also, all too often, been absent from specification methodologies. The reason for

this can probably be traced to the negative results on the existence of initial algebras

for distributive (or finite sum) theories. Initial algebras provide a comfortable source of

models: their absence was viewed as a cause for concern. However, even for equational

theories the correct formal tool is the generic model, and distributive theories do have

generic models. Generic models do not live in Set: they are models that sit in formally

constructed environments. In this respect, generic models are examples of the "term

models" that are becoming more popular in semantics.

It is tempting to think that category theory simply provides nice theoretical models

of computational settings. However, there is a growing realization that category theory

is also an important medium for computation, and that a constructive categorical set-

ting can be implemented in much the same way as the A-calculus can be implemented.

Distributive categories stand at a crossroads, as on the one hand they can have a direct

computational reality, and on the other they can embody many of the elementary geo-

metric intuitions that underlie mathematical thought. The relationship between geometric

intuition and computation is there to be exploited: to enrich, facilitate, and elucidate

software implementation.

2. Basic definitions and overview

There are two basic types of categories central to (cartesian) distributive category theory:

Distributive categories: terminal object, binary products (i.e. finite products) and binary

coproducts, where the binary products "distribute" over coproducts:

(AxB) + (AxC) = Ax(B + C).

This isomorphism is obtained by requiring that the canonical map

(i x bo|» x bi) :(AxB) + (AxC) —> A x (B + C)

be an isomorphism. This is the distributive property.

Extensive (distributive) categories: Categories with finite products, binary coproducts, and

pullbacks along coprojections such that the diagram in Figure 1 holds, where (1)

and (2) are pullbacks if and only if the top row, (Z,x,y), is a coproduct. This is the

extensive property.

It is, of course, the case that every extensive (distributive) category satisfies the distribu-

tive property.
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X

(1) (2)

A + B

Fig. 1.

Between these extremes lie a number of different variations obtained by demanding

specific "local" properties. Recognizable distributive categories are required to have the

slice over 1 + 1 distributive. This implies that every slice over a sum of final objects (e.g.

n = 1 + 1+...+ 1) is distributive, giving a fibration over finite sets. The exact relationship

between recognizable and extensive distributive will be a central issue in the paper.

I do not demand that distributive categories have an initial object. An initial object,

however, can always be added. The gain in dropping this requirement is that some natural

examples, which definitely lack initial objects, are then covered.

Demanding that the extensive property holds does affect the structure of the category

significantly. The extensive property in the form of a slice condition was introduced by

Steve Schanuel at the Sydney category seminar in 1988. Extensive distributive categories

have pullbacks over detachable subobjects (essentially coprojections), an initial object,

and disjoint coproducts. Unlike distributive categories, they always have a full faithful

embedding into a topos.

Finitely complete extensive categories were the categories investigated by Steve Schanuel

and Bill Lawvere. They called them distributive categories: consequently they are often

referred to as Schanuel/Lawvere distributive categories. These categories seem to crop up

again and again in various disparate fields of mathematics.

The diagram in Figure 2 relates the 2-categories involved. Each arrow represents a

psuedo 2-adjunction. The horizontal arrows have their units full and faithful functors,

while the vertical arrows have only faithful units. The process of passing from the

distributive to the extensive property is called solidification. The process, in some sense,

represents the passage from computational settings to geometric settings.

Dist is the 2-category of distributive categories with distributive functors, that is functors

that preserve finite products and binary coproducts. Distrec is the 2-category of recogniz-

able distributive categories with functors that are not only distributive but preserve recog-

nition. Distioc is the 2-category of locally distributive categories with distributive functors

preserving recognition. EDist is the 2-category of extensive distributive categories with

distributive functors. LEDist is the 2-category of Schanuel/Lawvere distributive categories

with distributive functors. Finally Top is the 2-category of topoi.

Of particular interest is the problem of generating free distributive categories from

various starting points. Bob Walters, with Shu-Hao Sun, studied this problem starting

from:

11-2
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A x (B + C) ~ (A x B) + {A x C)

Dist Distr e c •- Dist|OC

solidification

EDist «- LEDist >- Top

X/(A + B) ~ X//4 x X/B

Fig. 2.

— an arbitrary category,

— a category with products,

— a distributive graph or sketch.

Steve Schanuel also studied the first of these problems and gave a "one step" construction,

as opposed to the two step construction (first freely add products, then freely add coprod-

ucts) advocated by Bob Walters and Shu-Hao Sun. It turns out that using the "family"

construction to freely add coproducts to a cartesian category automatically produces a

distributive category (observed by Shu-Hao Sun). Indeed, it is the free distributive category

on the cartesian category. Rather different is the construction from a distributive graph: it

is necessary to use essentially algebraic techniques to generate the initial free distributive

category on the given data. One is assured, from general principles, that such exists,

because initial models for all finite limit sketches exist (designated products, coproducts,

terminal, and initial are implied in these constructions, and some extra argumentation is

needed to remove such assumptions).

Free distributive categories in this sense have also been approached from the point of

view of their term logic (Cockett 1989). This gives yet another perspective. In particular,

there are techniques for "reducing" the terms of this logic, which process corresponds to

optimizing the corresponding acyclic code.

A familial distributive category is a distributive category for which every object has

a finite (possibly empty) decomposition as a finite coproduct of indecomposables. These

categories are equivalent to the coproduct completion of the full subcategory of their

indecomposables. The full subcategories A that are determined by the indecomposables

of familial distributive categories, are precisely categories that have familial products. The

coproduct completion, of course, is given by the "family" construction, which I shall write

as y / / A following Ross Street. The category A has familial products if and only if y / / A

has products. As this category embeds in the distributive category Sets preserving
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limits and colimits, it must itself be distributive. Thus, a distributive category is a familial

distributive category precisely if it is equivalent to y / / A for some A: whence the name.

Familial distributive categories are always extensive. They provide a good source of both

examples and counter-examples. G-Set/, that is the category of actions of a group G in the

category of finite sets Set/, provides a classic example of a familial distributive category.

In fact, G-Set/ also has each object decidable. That is each object has a decomposition of

its product as a diagonal and an off-diagonal. Extensive distributive categories with this

property are finitely complete, so they are Schanuel/Lawvere distributive. In fact, familial

distributive categories with decidable objects begin to look very like G-Set/ and have a

number of interesting properties.

The distributive completion of a cartesian category is also an example of a familial dis-

tributive category. In fact, the familial distributive category resulting from the coproduct

completion of a cartesian category can be characterized in various ways: as having inde-

composables whose products are indecomposable or as having the component counting

functor (which gives the familial fibration) distributive.

Familial distributive categories have (relatively) simple Burnside rigs (rings in which

additive inverses are not assumed), which can always be faithfully extended to Burnside

rings. This is another reason why they are of interest. In particular, the various rigs (and,

of course, their ring counterparts) of G-Set/ have been extensively studied.

3. Distributive categories

A distributive category is a category with finite products (including a final object), and

with binary coproducts such that the product distributes over the coproduct. Explicitly,

this means that the map

(b0 x iA\bi x iA) : Bi x A + B2 x A —• (B{ + B2) x A

is an isomorphism, whose inverse is denoted

d0 : (Bi + B2) x A —* B{ x A + B2 x A.

It follows that

{iA x bo\iA xb\) : A x Bi + A x B2 —> A x (Bx + B2)

is invertible, with inverse denoted by

d\ :Ax(Bi+B2) —>• A x B{ + A x B2.

Note that a distributive category need not have an initial object. An interesting way

in which a distributive category can arise is as the idempotent completion (otherwise

known as the Cauchy or Karoubi completion) of a cartesian category. In particular, the

idempotent completions of Bool, the theory of Boolean algebras, and Prim the formal

theory of primitive recursive functions are distributive (and lack initial objects). There are

general conditions that cause the idempotent completion of a cartesian category to be

distributive (Cockett 1991).
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3.1. Basic results

A fundamental observation concerning the coproduct in any distributive category is given

by the following lemma.

Lemma 3.1. In any distributive category, coproduct coprojections are monic.

Proof. Suppose bo : A —> A + B and f,g:C —> A with f.bo = g.b0, then certainly

(po.f.bo,i) = (po.g-bo,i) : C x A—+(A +B) x (C x A),

but then

(po-f-bo, i).do = {po-g-bo, i)A • C x A —y A x (C x A) + B x (C x A),

where

(po.f,i).bo = (po.f.bo,i).do = (Po-g-boJ)-do = (po-g,i}.bo.

However, the embedding

b0 : Ax (C x A) —> A x (C x A) + B x (C x A)

is certainly monic, as it is a section of

( i \ P i - ( p u ' ) ) : A x (C x A) + B x ( C x A) — > A x { C x A ) .

This means that {po-f, i) = (po-g, i), so po.f = po-g, and, as this projection is a retract (with

section (;,/)), it follows that / = g. Thus, the original bo was monic. •

This legitimizes the term embedding for coprojection.*

A distributive category does not require an initial object to be present, nor must

distributive functors preserve such an object. Despite this, objects that are nearly initial

play a key role.

A preinitial object is an object with at most one map to each given object. A preinitial

is strict if every object with a map to it is a preinitial object.

A preinitial need not be an initial object, as it need not have a map to every object in

the category. If the category has an initial object, the preinitial objects are "epimorphs" of

it, so might be regarded as "cotruth" values. Notice that an initial object is strict precisely

when every map to it is an isomorphism. Also notice that a strict preinitial is a subobject

of every object to which it has a map.

Lemma 3.2. In a category with coproducts, the following are equivalent:

(i) P is preinitial,

(ii) whenever there is a map p : P —> X, the embedding bo : X —> X + P is an

isomorphism,

(iii) bo : P —• P + P is an isomorphism,

* This fact has often been overlooked: for example the definition of "universal disjoint coproducts", occurring
everywhere, but probably originating in SGA 4 (Grothendiek and Verdier 1972), leads one to assume that
the requirement that the embeddings be monic is an independent requirement: this is not the case. In fact,
as shall be seen, even the requirement of disjointness is not totally independent, as universal coproducts are
nearly disjoint.
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\ + x

Fig. 3.

(iv) the codiagonal map (i\i) : P + P

(v) bo = bx :P-^P + P.

P is an isomorphism,

The proof of these equivalences is straightforward. In a distributive category even more

is true:

Proposition 3.3. In any distributive category the following are equivalent:

(i) P is preinitial,

(ii) there is an object X such that bo : X —> X + P is an isomorphism,

(iii) l.bo =\.b\ : P —> 1 + 1.

Proof.

(0 => (ii)
bo : P —• P + P is an isomorphism.

(ii) => (iii)

The square in Figure 3 commutes, as preceding the maps by b\ reduces them to the

identity. But

!i>o-bo = bo.(\ + i)-(bo + ') = hV- + O-^i + »> =!-biA).

Now, using the fact that bo is monic (notice that it is not necessary to use the above

result for this, as it is a section of (i\l.bo)) gives \.bo =!i>i.

(iii) => (i)

If l.bo =\.b\ : P —> 1 + 1, then the square in Figure 4 commutes. Notice that

distribution over 1 + 1 has been used to obtain this diagram. This means po-bo —

po-bi : P x P —> P + P. However, this po is split by the diagonal and so is a retract.

This shows that the embeddings are equal and that bo = b\ : P —> P + P, which

shows that P is preinitial. |—I

The proof of the last equivalence (iii) => (i) is due to Mike Johnson, and was a significant

improvement on the non-elementary proof of these facts that I gave. In particular, notice

that only this step requires distributivity, and, in fact, only the distributivity of the product

over 1 + 1. These various equivalent descriptions of preinitial allow the observations

contained in the following corollary.
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P xP
i x !

P x 1

i x ! = po.ba

P x 1

Fig. 4.

<2o

A + B

Fig. 5.

Corollary 3.4. In a distributive category

(i)

(ii)

(iii)

(iv)

(v)

preinitials are strict,

if an initial object exists, it is necessarily a strict initial object,*

if P is a preinitial and X is any object, then P x X is preinitial,

if any preinitial exists, every object has a preinitial subobject,

if the square in Figure 5 commutes, then P is preinitial.

3.2. Decomposition to preinitials and solid objects

A prelattice is a preorder with products and coproducts. A prelattice is unbounded if it

lacks a top and bottom.

Lemma 3.5. The full subcategory Pr(X) of preinitials of a distributive category is a,

possibly unbounded, distributive prelattice.

A final preinitial is a preinitial object 0 such that every preinitial has a (necessarily

unique) map to it. A distributive category is quasi-solid when it has a final preinitial, and

solid when this final preinitial is initial.

Observe that if a final preinitial is initial, every preinitial is isomorphic to it. As every

object X in a quasi-solid distributive category contains a preinitial, namely po '• X xO —•

X, a quasi-solid category in which all preinitials are isomorphic must be solid.

' Bob Walters originally gave the definition of a distributive category as having finite products and coproducts
such that not only was the distributive law satisfied but also the law X x 0 ~ 0. In retrospect, this is already
implied.
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y+o

X x (X + 0) -
i x h

~X x (Y +0)

—defn X Y) + (X X 0) Y + (X X 0)
Pi +»•

b0

X

Fig. 6.

/ i '

A solid object is one that has a (necessarily unique) map from the final preinitial 0, or,

equivalently, has X + 0 = X. If there is a final preinitial, there is an obvious distributive

functor S that reflects X faithfully into the full subcategory Solid(X) of solid objects.

The category Solid(X) is isomorphic to the coslice category 0/X, which is clearly solid.

Similarly, Pr(X) is isomorphic to the slice category X/0 and so has a coreflection P.

Proposition 3.6. If X is a distributive category with a final preinitial 0, then

Pr(X) is a distributive coreflection,

—> Solid(X) is a faithful distributive reflection to a solid full

(i) p = - x 0 : X —

(ii) S = - + 0 : X

subcategory,

(iii) (P,S) : X —> Pr(X)xSolid(X) is a fully faithful distributive subdirect decomposition.

The fact that the slicing and coslicing give rise to distributive functors relies heavily

on the fact that X is distributive. To prove that the decomposition is full, given h :

X + 0 Y + 0 and that P(X) < P(Y), the diagram in Figure 6 is useful.

https://doi.org/10.1017/S0960129500000232 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129500000232


J. R. B. Cockett 286

b0 A bi

Pi pb

A + B

Fig. 7.

A + B

Fig. 8.

Its purpose is to give the definition of a map W : X Y such that h = h' + i. To this

end, note that Y = Y + X x 0, as P(X) < P(Y). This means that the lowest polygon can

be used to define h'.

The functor —h 0 is the solidification functor. We shall return shortly to the problem

of performing a solidification when no final preinitial is present.

Distributive categories can be viewed as full subcategories of the product of a solid

distributive category and a prelattice. In fact, we will show that a distributive category is

always a full subcategory of the product of a topos and a prelattice.

3.3. Disjointness

Coproducts are disjoint (respectively quasi-disjoint) when all pullbacks of the form shown

in Figure 7 exist and bo A b\ is initial (respectively preinitial).

Observe that if the square in Figure 8 commutes, then certainly X is preinitial. Thus,

if there is a largest preinitial with a map to both A and B, that will be the pullback.

When the category is quasi-solid, this largest preinitial exists and is P(A) x P(B). This

means that coproducts are quasi-disjoint. The converse is also true, as the final preinitial

is necessarily the pullback of the coproduct embeddings of 1 + 1.

Proposition 3.7. A distributive category is (quasi-) solid if and only it has (quasi-) disjoint

coproducts.
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Fig. 9.

Pr(Y)

F1(X)

—Solid(Y)

Fl ^Solid(X)

Pr(Y) -Solid(Y)

Fig. 10.

3.4. Solidification

To adjoin an initial object to a distributive category is trivial: one simply adds a new

object 0 together with a unique map to each object (the composition is then forced).

However, adding a final preinitial is considerably more delicate. I shall now describe how

this can be done using the general version of solidification.

Suppose that X is an arbitrary distributive category and F : X —> Y is a distributive

functor to Y, a quasi-solid distributive category. As Y can be subdirectly decomposed, we

have the diagram in Figure 9. If F1(X) is the reflection of X to prelattices and Solid(X) is

the reflection to solid distributive categories, we can factorize FoP and FoS , respectively,

through these categories (Figure 10).

The quasi-solid completion of X can be constructed as the smallest full distributive

subcategory of F1(X) x Solid(X) containing all objects of the form (PX(X),SX(X)), for

X €X, and the final preinitial (Px( l) ,0) .

Notice that this shows that the preinitial lattice of the quasi-solid completion of X is

equivalent to the flattening of X by reflection to preorders. This indicates the information

the preinitial prelattice of a distributive category may contain.

It remains to construct Solid(X). This construction has two stages. First, an initial object

0 is adjoined (as discussed above). Second, all maps of the form b0 : X —>• X + P (where

P is preinitial), called thin detachments, are formally inverted to obtain a calculus of left

fractions (Gabriel and Zisman 1967).

Now, let £ denote the class of thin detachments of a distributive category X, which has

an initial object. It is easy to check that the following proposition holds.
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Proposition 3.8. In any distributive category, S admits a calculus of left fractions.

It follows that Sj£ : ^ —* X(S~1) preserves finite colimits and X(Z~') has coproducts.

It is also easily seen that S^ preserves and X(X~') has finite products and is distributive.

Also, as each bo : 0 —• Q + P is inverted, it is clear that X(S~1) has a strict final preinitial

object, and so is solid.

In general, the category of fractions construction can turn a locally small category into

one that is not locally small. This does not happen in this case, because of the following

lemma.

Lemma 3.9. If / : X —> X + P and g : X —> X + P', and P and P' are preinitial, then

there is a g' : X —> X + P such that, in X(E"'), g.b^ = g'-b^1.

Proof. Define g' by g' = (f,g).y.(pi + Po), where y : (X + P) x (X + P') ^ (X x X) +

(P x P') is the evident isomorphism. It is easy to check that g' has the desired property. •

Sx : X —> X(Z~') is faithful, as all inverted maps are bijections. Furthermore, X(Z~')

is the "solidification" of X, as clearly any such process must at least invert the maps of

Z. This gives the folowing theorem.

Theorem 3.10. S x : X —• X ^ " 1 ) = Solid(X) is a faithful distributive functor to a solid

distributive category, and is such that given any distributive functor

F : X —> Y,

where Y is a solid distributive category, there is a unique functor F" : Solid(X) —• Y

with S^ ° F* = F.

If X already has a final preinitial object 0, then Solid(X) is equivalent to the full

subcategory of solid objects, as bo : X —> X+0 is in S, and any bo : X+0 —* (X+0)+P

is already an isomorphism.

Corollary 3.11. If X has a final preinitial, Solid(X) = X(I" ' ) = 0/X.

If F : X —* Y is a faithful distributive functor and f.b^\g.b^ : A —> B in Solid(X),

then, using the lemma above, we may alter g to a g' having the same codomain as / in

X. If f.bo1 ± g . V , then f.b^ j= g ' -V- B u t n o w SY(F(/)) + SY(F(g')), so that certainly

Solid(F)(/.bo') =/= Solid(F)(g.bo'). showing that Solid(F) is faithful whenever F is.

Corollary 3.12. If F : X —* Y is a faithful distributive functor between distributive

categories, then Solid(F) : Solid(X) —• Solid(Y) is faithful.

In case one is tempted to believe that solid distributive categories have a simple

structure, consider the following example, which provides a solid distributive category

that cannot be embedded in a topos.

Example: D[g] cannot be embeded in a topos.

Consider the free distributive category D[g] generated by the condition that g : X —>

Y + 1 equa l i ze s i + bo,i + bi : 7 + 1 — > Y + (1 + 1) ( tha t is, g.(i + b0) = g.(i + b{)).

This category is non-trivial and has no preinitial objects. This can be seen, as there is a

model in Setj x 2 (where Set^ is the category of finite sets without the empty set and 2 is

! : 0 —* 1) given by g = (bQ,!) : (1,1) —> (1,0) + (1,1). Notice that there is no map from

(1,1) to (1,0), and the distributive category Set^ x 2 has no preinitials.

As D[g] has no preinitials, adjoining an initial object 0 makes this category solid.
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X

pb

T
1 + 1

Fig. 11.

However, in any topos it is easy to see that such a g must factor through the embedding

bo- Therefore, D[g] does not have a full and faithful embedding into a topos.

4. Embedding theorems

In general, when one has an elementary condition, such as the distributive law, it is

traditional to consider the effect of requiring it to hold in the slice categories as well as the

category itself. One then says that the category locally satisfies the condition. A variant

of this is to ask that the condition be satisfied in some specific slices.

The object 1 + 1 in distributive categories forms a boolean algebra and is a natural

candidate from which to build an internal boolean logic. The subobjects that can be

described in this logic should be thought of as the "recursive" subobjects of the setting.

More precisely, they are subobjects for which there is a recognizer, where a subobject

a : A —> X has a recognizer Xa '• X —• 1 + 1 whenever the square in Figure 11 is a

pullback. Here T = bo,±. = b\ : 1 —> 1 + 1. The recognizer of a subobject is distinct

from the characteristic map. The latter is a map to a subobject classifier, which always

exist: recognizers, of course, will not always exist. As 1 + 1 is a subobject of any (more

general) subobject classifier, this internal logic will always be a restriction of any more

general logic.

This "recognition" logic will only give information about the subobject structure of the

category if subobjects corresponding to recognizers actually exist. We may guarantee this

by requiring that the distributive category is local at 1 + 1, that is X/l + 1 is distributive.

Such a category has the necessary subobject structure to carry this logic and is called a

recognizable distributive category.

4.1. Local properties

A map / : X —> Y is quarrable if one can pullback along it. If, in addition, this

pulling back preserves coproducts, that is /* : X/Y —> X/X preserves coproducts, then

/ is said to be coproductive. Pullbacks and compositions of coproductive maps are also

coproductive.

An object X is said to be distributive if slicing at that object gives a distributive category,

X/X. An object is distributive if and only if every map into that object is coproductive.

Subobjects of distributive objects are distributive.
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Fig. 12.

(2)

In any distributive category, the final object 1 is always distributive. As mentioned above,
to secure the correspondence between recognizers and subobjects, it suffices to require
that 1 + 1 be distributive. We shall interpret this as a requirement on that coproduct.

A coproduct (A + B,bo,b\) is quasi-extensive when the embeddings are quarrable, and
given any diagram of the form shown in Figure 12, where (1) and (2) are pullbacks, the
top row (Z,x,y) is a coproduct. It is said to be extensive if, in addition, whenever (Z,x,y)
is a coproduct, (1) and (2) must be pullbacks.

If every coproduct is extensive, the category is said to be extensive: this situation will
be discussed in the next sections.

Notice that if (A + B,b0,bi) is a quasi-extensive coproduct, then certainly the top row
of the diagram will also be a quasi-extensive coproduct. I shall refer to (Z,x,y) as the
coproduct induced by h over (A + B,bo,bi).

Lemma 4.1. A + B is distributive if and only if (A + B,bo,b\) is quasi-extensive, bo and b\
are coproductive, and A and B are distributive.

If A + B is distributive, then certainly A and B will be, as they are subobjects. The
maps bo and b\ are coproductive, as any map to a distributive object is. Finally, pulling
back bo + b\ along any map to A + B shows that (A + B,bo,b\) is quasi-extensive.

To obtain the reverse implication, it is necessary to show that any map into A + B is
coproductive. To show this, we certainly need to show that such a map is quarrable. The
pullback along such a map is formed by using the coproduct components induced over
(A + B,bo,b\). This gives two pullbacks over A and B: as these objects are distributive,
these pullbacks may be formed. The sum of these pullbacks is then a pullback for the
whole. This construction of the pullback shows how the coproductivity of the component
maps can be reconstituted into the coproductivity of the whole.

We note that, in general, pulling back / + g along bo does not quite recapture the first
component. This is the essential subtlety that we are being careful to capture.

Lemma 4.2. If the embedding bo : A —• A + B is locally coproductive and / + g :
X + Y —> A + B, then b0 A (/ + g) = X + P, where P is a preinitial.

4.2. Recognition properties

recognizable distributive category has a final preinitial given by the pullback T A l .
hus, the category has quasi-disjoint coproducts.Thus, the category has quasi-disjoint coproducts.
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A subobject a : A —• X is detachable if there is another subobject b : B —* X with

(a|fr) : A + B —• X an isomorphism. It is complemented if it is detachable and (preinitial)

saturated, that is any preinitial P with P —• X has P —• A As there is a final preinitial,

a : A —> X is saturated if and only if P(A) ~ P(X). A subobject of X can always be

saturated by adding P(X).

Lemma 4.3. In a recognizable distributive category, if a : A —> X is detachable, there is

a unique (to isomorphism) complemented subobject, ->a : -<A —> X, such that {a\-<a) :

A + ^A —* X is an isomorphism.

If (a\b) : A + B —> X is an isomorphism, we may form the square in Figure 13

by pullback. (->A, ->a) is both saturated and detachable (the latter because A -\—<A =

A+(B+P) = X). Furthermore, -<a : ->A —> X is independent of the choice of b : B —> X,

so any b : B —> X with A + B = X factors uniquely through -<a : ->A —> X. In fact, as

-•/I = B + P for any such B, we have -<A = B when B is saturated.

This shows that the lattice of complemented subobjects of X, subc(X), is a boolean

algebra. In fact, we have all but shown the following proposition.

Proposition 4.4. In a recognizable distributive category X, 1 + 1 is a boolean algebra, and

T* : X(X, 1 + 1) —> Sub cp0 is an isomorphism of boolean algebras.

This means complemented subobjects are represented by unique recognizers, recog-

nizers are represented by unique (to isomorphism) complemented subobjects, and these

representations are mutually inverse. The logic based on recognizers makes subobject

sense when this happy coincidence reigns.

4.3. Characterizations of recognition

A coproduct (A + B,bo,bi) is saturated when each of its components is. Every such

coproduct occurs as a splitting of !+! over (1 + 1,T,J_). This immediately gives the

following lemma.

Lemma 4.5. In a recognizable distributive category all saturated coproducts have locally

coproductive embeddings and are quasi-extensive.

Notice, now, that all components of a coproduct that contain an element (map from

1) are necessarily saturated. Thus, in a recognizable distributive category, any coproduct

of final objects is locally distributive by the following structural induction: 1 is locally
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X/A + B = X/A + B

XIA x X/B

Fig. 14.

distributive and ( l+ . . .+ l )+( l+ . .+ l ) is locally distributive if and only if its components are

locally distributive (inductive assumption), its embeddings are locally coproductive, and

the coproduct is quasi-extensive. The latter two properties are given by the previous lemma

and the remark which started this paragraph. This leads to the following proposition.

Proposition 4.6. If X is distributive, the following are equivalent

(i) X is recognizable,

(ii) (1 + 1,T, _L) is quasi-extensive, with each embedding locally coproductive,

(iii) every saturated coproduct is splitting, with each embedding locally coproductive,

(iv) X/l +... + 1 distributive for all non-empty coproducts of the terminal object.

A coproduct is quasi-extensive if and only if the diagram in Figure 14 commutes to

equivalence. When this is the case, {b'0,b\) includes X/A + B into X/A x X/B as the full

reflexive subcategory with objects saturated pairs {X, Y), that is, having P(X) = P(Y).

This gives the following proposition.

Proposition 4.7. If X is distributive, the following are equivalent:

(i) X is recognizable distributive,

(ii) (T*,±*) : X/ l + 1 —• X x X is a coproductive inclusion of a reflexive subcategory,

(iii) for every saturated coproduct, {bQ,b\) : X/A + B —• X/A x X/B is a coproductive

inclusion of a reflexive subcategory.

4.4. Extensive categories

A recognizable distributive category still does not necessarily have every detachable map

complemented, as not every detachable map need be saturated. This defect can be remedied

by passing to the solid full subcategory. A solid recognizable distributive category is an

extensive distributive category. However, this is not the preferred definition.'

* Gordon Monro (Sydney Category Seminars 1988), following the work of Schanuel, explicitly studied the
properties of distributive categories satisfying the extensive property without the assumption of finite com-
pleteness. He realized that they had very attractive properties, especially from the point of view of studying
recursive properties, exactly because detachable and complemented coincide. In 1990. I talked at the Sydney
Category Seminar about the recognizable completion and Gordon, realizing the connection, made his notes
available. The current treatment is greatly influenced by those notes.

https://doi.org/10.1017/S0960129500000232 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129500000232


Introduction to distributive categories

X ^ • Z

(1)

293

(2)

A + B

Fig. 15.

An extensive distributive category is a cartesian category with binary coproducts such

that for any A and B

This can be simplified to the equivalent requirement that

. + . : X x X ^ > X / l + l.

These conditions can be reexpressed as: (A + B,b0,b\) is an extensive coproduct for any A
and B; and (1 + 1,T, _L) is an extensive coproduct, respectively. For proving things about
extensive distributive categories, the former condition is more useful, while, for proving
that something is an extensive distributive category, the latter condition is the more useful.

Diagrammatically, the former condition is shown in Figure 15, where (1) and (2) are
pullbacks if and only if the top row, (Z,x, y), is a coproduct. This condition was, for
example, used explicitly in the development of Mackey functors by Dress (1973) and
Lintner (1976). However, it was also assumed that the categories were finitely complete,
making them Schanuel/Lawvere distributive.

If X is a solid distributive category, then, whenever A + B is locally distributive,
(A + B,bo,b\) will be extensive. If 1 + 1 is locally distributive, then, as every coproduct
is obtained as the coproduct induced by !+! : A + B —> 1 + 1 over (1 + 1,T, J_), every
coproduct will be extensive. Thus, a solid recognizable distributive category is an extensive
distributive category.

Proposition 4.8. When X has finite products and binary coproducts, the following are
equivalent:

(i) X is extensive,

(ii) X is solid recognizable distributive,

(iii) X is solid and has every coproduct quasi-extensive,

(iv) every coproduct is extensive,

(v) (1 + 1,T,_L) is extensive.

One should not forget that the squares shown in Figure 16 are always pullbacks. The

left square can be used to show that when coproducts are quasi-extensive, the category

is automatically distributive. Also observe that if every coproduct is extensive, pullbacks

will preserve and be created by coproducts. More precisely, we have the following lemma.

Lemma 4.9. In an extensive distributive category, the pullbacks in Figure 17 exist if and
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Fig. 17.

only if the pullback in Figure 18 exists, where Figure 19 holds, with x'0.x = xo and

The proof of this is straightforward and simply uses the fact that any map to Ao + A\

results in the domain being split into a coproduct.

A coproduct is extensive if and only if the two functors (b'a,b\) and _ + _ are adjoint

equivalences. In this case (b*Q,b\) is forced to be coproductive, and this allows the results

to be stated in terms of this functor.

Proposition 4.10. When X has finite products and binary coproducts, the following are

equivalent:

(i) X is a solid recognizable distributive category,

(ii) X/A x X/B ~ XIA + B for every A and B by _ + ^

(iii) X x X ~ X / l + l by _ + _

X

pb

Fig. 18.
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These are the forms of the extensive property introduced by Steve Schanuel.'

In an extensive distributive category, a coproduct can be characterized as a regular epic

family of mutually disjoint monic maps. Furthermore, monic maps from coproducts are

given by mutually disjoint monic families.

Proposition 4.11. The map (ao\a\) : Ao + A\ —> X is monic if and only if ao and a\ are

monic and disjoint.

Notice that we are not guaranteed that the pullback ao A a\ exists in an extensive

distributive category. The fact that it does is a component of the lemma. This makes the

result a little more delicate than it may seem at first sight.

If (ao|ai) is monic, then certainly ao and a\ must be monic and disjoint. For the

converse, we should consider the pullback of {ao\a\) over itself. This exists only as the

pullbacks over each component do and

(a0 A a0) + (a0 A ax) + (a, A a0) + (ax A a{) = Ao + 0 + 0 + A{ = Ao + Au

from which the result is immediate.

As equalizers are pullbacks over diagonals, when an extensive distributive category has

all diagonal maps detachable, it is finitely complete, and, therefore, is a Schanuel/Lawvere

distributive category.

Proposition 4.12. An extensive distributive category with all objects decidable is finitely

complete.

A functor of extensive categories should preserve the ingredients of the extensive prop-

erty. In particular, a functor must preserve pullbacks along detachments. The following

lemma contains a nice observation.

Lemma 4.13. A distributive functor between extensive distributive categories preserves

pullbacks over detachable subobjects.

Thus, we take the appropriate 2-category to be extensive distributive categories with dis-

tributive functors. It should be noted that we do not therefore guarantee the preservation

of arbitrary finite limits: a fact to which we will return.

In fact, both Schanuel and Monro demanded that there be an initial object and X/0 ~ 1 (which is the
requirement that 0 is a strict initial object). Both requirements are redundant: the initial object is T A _L, and
it is necessarily strict.
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4.5. Recognizable completion

The purpose of this section is to describe the construction of the free recognizable

distributive category from a distributive category. The construction has a number of

important ramifications. Its purpose in this discussion is to provide the crucial link

between distributive and extensive categories.

Let X be a distributive category, then denote by Rc(X) the following category:

Objects: The objects are maps x : X —> 1 + 1 of X,

Maps: The maps are "almost commuting" triangles (see Figure 20), where (x,g.y). =>= T,

where => is Boolean implication.

Define rcx(g) := (x,g).do.(pi + \). Then two maps gi,g2 : / —* h are equivalent if and

only if rcx(gi) = rcx(g2).

Notice that the equivalence is to ensure that two maps are identified when their

behaviors over the characterized parts are the same.

Theorem 4.14. For any distributive category X, the recognizable completion Rc(X) is a

recognizable distributive category that includes X distributively, fully, and faithfully by

RX :X^Rc(X);X—>\X.T.

Furthermore, given any distributive functor F from X to a recognizable distributive

category Y, there is a unique to unique equivalence recognizable distributive functor

F : Rc(X) —> X

such that R o F ~ F.

The construction is actually a limited equalizer completion, and there are various

reasons for considering this restriction. The main reasons derive from the economical

nature of the construction.

If X is a category whose map equality predicate is decidable (externally), then Rc(X) also

has a decidable map equality predicate. This can be seen directly from the construction:

two maps gi,g2 : x —> y are equal precisely if rcx(gi) = rcx(g2) in X. This gives the

following corollary.

Corollary 4.15. X has a decidable map equality predicate if and only if Rc(X) has its map

equality predicate decidable.
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The "only if" arises because X can be fully and faithfully embedded in Rc(X). This

direction is particularly useful in proving the undecidability of X, as one can often obtain

such a proof more easily using the recognizable completion. The positive direction is also

useful as the constructive decidability of X will often be easier to obtain than for the

completion.

The proof of the main theorem may be accomplished in two stages. First by forming the

category X/^, where M is the boolean algebra on 1 + 1 regarded as an internal cartesian

category. This is certainly a distributive category. Next one quotients this category by the

relation g\ ~ r c gi '• x —> y if and only if rcx(g\) = rcx(g2). Checking that this results

in a category of the desired form is lengthy but straightforward. To obtain the desired

universal property, one uses X//8$ to obtain a functor, and notes that this functor factors

uniquely through (X//&)/ ~ rc.

In fact, a good deal more can be taken through this construction: for example, if X

has list-arithmetic, then Rc(X) will have list arithmetic. This will be reported in detail in

a later paper, and is beyond the scope of this introduction.

A useful observation, which is needed in the construction of X//^1, is that the functor

from the initial distributive category, that is finite sets without the empty set Set̂ , preserves

all the finite colimits and limits that exist. The latter fact is the more surprising and useful,

as this assures us that i$ is indeed an internal cartesian category. Furthermore, it is a

consequence of a quite general result.

Proposition 4.16. If Y is a distributive category with all regular monies coretractions and

all objects decidable, then any product preserving functor from Y preserves all limits.

As has been mentioned already, an object is decidable in a distributive category if its

diagonal map is detachable. A distributive category with every regular monic either an

isomorphism or detachable will have every regular monic a coretraction when every object

is inhabited (has an element). Clearly Setj is such a category. Also, distributive categories

formed as full subcategories generated by inhabited subsets of a natural number object

have this property.

To prove this result, we shall use the following technical lemma.

Lemma 4.17. If e'.x = x.e, where x is monic and e' and e are idempotent, then the square

in Figure 21 is a pullback.

Proof. Let (X, (/, g)) be such that f.x = g.pe=l, then f.x.e = f.x, so f.e'.x = f.x, giving
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f.e' = / , as x is monic. Thus, / factors through pe'~' uniquely, showing that this is a

pullback. D

The point of the lemma is that equalizers of idempotents with identities are always

preserved by any functor (they are absolute limits). So, provided the fact that x is monic

is preserved by a functor, this pullback will necessarily be preserved.

Corollary 4.18. If, in the above, x is a section, the above square is an absolute pullback.

This can now be used to obtain the proof of the proposition.

Proof, (of 4.16) As finite products are preserved, it suffices to show that equalizers

are also preserved. The equalizer of / and g can be expressed by requiring the square in

Figure 22 to be a pullback.

Notice that both {f,g,i} and {po,Po,Pi) are sections. pf=g is certainly regular monic, as

it is the equalizer of / and g, so, by assumption, we have a retraction of p^=g, and an

associated idempotent on e' : X —* X. Define e : Y x Y x X —> Y x Y x X by the

diagram in Figure 23, where (Y x Y,(i,i),c) is the coproduct giving the detachment of

the diagonal. Clearly e splits through (po,po,Pi).
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I claim (f,g,i).e = e'.(f,g,i), so the lemma above can be applied. To see this, follow
through the maps on / = g and ->/ = g. •

Thus, we have that 0& is an internal cartesian category, whence we can prove that every
distributive category has a faithful embedding in an extensive distributive category. The
argument is as follows: the completion procedure allows us to pass fully and faithfully
to a recognizable distributive category, whence, by solidification, faithfully to the full
subcategory of strict objects. This full subcategory is extensive distributive, and we obtain
the faithful passage from distributive to extensive distributive.'

It is worth noting that the recognizable completion of Set/ is Set/. The recognizable
completion of Set/, however, adds a new final preinitial object. This means that the
procedure is nowhere idempotent (except on the degenerate category).

4.6. Topos embedding

If X is an extensive distributive category, it forms a site with covers given by finite co-
product decompositions. These covers contain the identity, and are stable and composable
(Barr and Wells 1985), so they form a Grothendiek topology.* This topology is called
the decomposition topology on X and is denoted d. The fact that coproducts are disjoint
makes it immediate that the representable functors are sheaves; that is, d is subcanonical.

The embedding <& : X —> Setj is certainly full and faithful and preserves any limits
that happen to be present in X. Coproducts are also preserved, as, being covers, they
become jointly epimorphic families of subobjects that are mutually disjoint (the empty
set is a cover of the initial object). Furthermore, in order for the embedding to preserve
coproducts, these families must certainly provide covers in the saturated topology.

Clearly, any topology stronger than d will result in Y being a distributive functor.

' This faithful passage can be used to obtain many less than obvious results on distributive categories. A
personal favorite is as follows:

"No non-trivial distributive category has enough fixed points."
A map g : X —• Y has a fixed point if there is an element fix(g) : 1 —• X with fix(g) = fix(g).g. Consider
-> : 1 + 1 —> 1 + 1 and suppose that fix(->) : 1 —• 1 + 1 exists. Embed into an extensive distributive category
and form

pb

fix(-0

Now, j + j ~ 1, yet !.6o =!.fix(-i) =!. fix(-i).-i =!.fco~1 =!-&i. which means that j is preinitial. However, this

means 1 is preinitial, which means that the distributive category is trivial (in the sense of every object being

preinitial).

The result is of some classical importance, as it has often been assumed that "sensible computer science"

settings should have enough fixed points. Yet forcing fixed points to be present implies one cannot have

sensible coproducts: I am not alone in believing this is sheer stupidity!

+ This a pretopology in the terminology of Johnstone (1977).
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In particular, the canonical topology will have this property. This gives the following

proposition.

Proposition 4.19. If X is extensive distributive, the Yoneda functor

9 : Set —> Setj^"

is a distributive functor if and only if j is stronger than d. Furthermore, d is a subcanonical

topology.

This result shows that extensive distributive categories can be embedded in a topos

and, furthermore, shows that the unit of the 2-adj unction to topoi is full and faithful.

Now every distributive category can be embedded fully and faithfully into a recognizable

distributive category, which, in turn, can be decomposed as a subdirect product of an

extensive distributive category and prelattice (with possibly no lower bound). Finally an

extensive distributive category can be embedded into a topos, so we have the following

corollary.

Corollary 4.20. Any distributive category has a full faithful distributive embedding into a

product of a topos and a prelattice.

5. Familial distributive categories

An important problem for computer science applications is that of generating free dis-

tributive categories. One aspect of this problem concerns freely generating distributive

categories from cartesian categories corresponding to equational theories. Surprisingly,

the construction is simply the free coproduct completion, ignoring the cartesian structure:

this was observed by Shu-Hao Sun and Bob Walters (Sydney Category Seminars 1990).

The generalization of this, which follows the ideas in Yves Diers thesis, is to consider

categories that have familial products and equalizers. The coproduct completions of these

more general categories are also distributive categories. They are characterized by each

object having a finite coproduct decomposition into indecomposables, and are called

familial distributive categories. Surprisingly, every familial distributive category is already

extensive.

The fibration functor, which counts components, always preserves coproducts. However,

it is not necessarily distributive, as it may not preserve products. Indeed, it preserves

products only if products of indecomposables are indecomposable. In other words, the

category is the coproduct completion of a cartesian category.

The category of G-Set/ is a good example of a familial distributive category. The

product of two indecomposable G-sets is not indecomposable. Indeed, it is well known

that the Burnside rig, which describes the behavior of isomorphism classes of G-sets

under the multiplication given by the product, provides useful information concerning the

structure of the group.

5.1. Indecomposable objects

An object A is indecomposable in a category if, whenever (Z,x, v) is a coproduct, any

/ : A —> Z factors through either x or y, but not both. If the category has coproducts,
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this means, in particular, that indecomposables are not preinitial. In general, we have the

following characterization.

Proposition 5.1. A is indecomposable if and only if \(A, —) : X —• Set preserves coprod-

ucts.

If the category is extensive, there are a number of other characterizations of indecom-

posables. The following result is well known (Diers 1985).

Proposition 5.2. In an extensive distributive category, the following are equivalent:

(i) A is indecomposable,

(ii) Subc(A) = 2,

(iii) any map / : A —> 1 + 1 factors through T or _L, but not both,

(iv) whenever A ~ X + Y, either X or Y is 0, but not both,

(v) X(/l, —) : X —> Set is a distributive functor.

The following analogue of the Krull-Schmidt lemma for modules of a ring is true.

Lemma 5.3. In an extensive distributive category, if A is indecomposable and (co|ci) :

A + C-^*A + B, then B ~ C.

This can be obtained by examining the diagram in Figure 24. Each row and column is

a coproduct. Either bo A Co ^ A or c\ A bo ̂  b\ A CQ ^ A. In either case, B ~ C.

An indecomposable (coproduct) decomposition of an object X is given by a pair

([A\,...,An],a), consisting of a list of indecomposable objects together with an isomorphism

a : A\ +... + An —> X given by the detachments a, : At —> X. As is the case for modules,

we can now prove the following corollary.

Corollary 5.4. In an extensive distributive category, if ([A\,...,An],x) and ([Bi,-,Bm],P)

are indecompsable decompositions of X, then n = m and there is a permutation a and

isomorphisms p, : A, —> BaU) such that a, = p,.j8CT(,).
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pb / pb

T
1 + 1

_L

Fig. 25.

Thus, any two decompositions to indecomposables in an extensive distributive category

are equivalent.

If X is a distributive category with an initial object in which every object has a finite

indecomposable decomposition (including the empty decomposition), we shall call it a

familial distributive category. In particular, note that the decomposition of 0 is (Q,00),

and there can be no other preinitials non-isomorphic 0, as they would have the same

decomposition, and so would be isomorphic. Thus, a familial distributive category is

certainly solid.

Proposition 5.5. Familial distributive categories are extensive.

To prove this, it suffices to prove that (1 + 1,T, ±) is splitting. However, any / :

X —• 1 + 1 can be decomposed as (/i|...|/n) : -X'I + - + Xn —• 1 + 1, where each

Xj is indecomposable. This means that each / , : X, —• 1 + 1 factors through either

T or ±. Suppose X\,...,Xr factor through T, and Xr+l,...,Xn factor through _L, then

I claim the diagram in Figure 25 holds. Certainly each square commutes. Considering

any map h : Z —> X, it is determined by the maps from its indecomposables in

its decomposition /i, : Z —• X. However, each such map must factor through one

indecomposable component of X. If h.f =!.T, each component must factor through one

of Xi,...,Xr, and thus the left square is a pullback. Similarly, the right square is a pullback.

5.2. The family construction

Let y : Do —> Set denote the initial functor of distributive categories with an initial

object to Set. Thus, £f gives an equivalence to Set/. We may take Do as also being

initial in the category of elementary distributive categories with functors that preserve

designated coproducts so that the objects of Do are coproduct "shapes" of the form

(1 + 1) + (1 + (1 + 1)).
Given any category X, the internal categories of X form a 2-category cat(X). In

particular, the objects of X form discrete categories, so that, given any internal category

^ , one may form the category whose objects are functors from discrete categories to

%, and whose maps are pairs (t, a) : / —> g, where t is a functor between the discrete

categories (i.e. a map between the objects) and a : / => t.g is a natural transformation.

This category is denoted Xf/W, and is called the double slice category over (€. It is an
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Fig. 26.

example of a "super comma category" (Mac Lane 1971), and it gives rise to a fibration

over X (Schumacher and Street 1988).

We may further refine this by considering any functor F : Y —• X. Then, by F / /<& is

meant the category whose discrete objects are in Y but whose natural transformations are

given in the obvious manner in X.

If A is a small category, it is an internal category in Set, so we may form £f//A.

Explicitly, the objects of this category are maps x : £f(X) —• Ao, while the maps are

given by pairs (/o,/i), where /o : X —• Y and f\ : SC —> A[ such that the diagram in

Figure 26 holds, x = /i.<5o and ^{fo)-y = fi-Si-

This category is also sometimes denoted Fam(A), and is called the category of families

of A. Notice that each object of 5?//A may be regarded as consisting of a shape, together

with a labeling of the leaves of that shape by the objects of A. As such, there is a natural

extension of any functor of A into a category with designated coproducts that takes these

labeled shapes to the designated coproducts, and the maps to the obvious coproduct

comparison maps. This gives the following proposition.

Proposition 5.6. .S'V/A is the free coproduct completion of A.

A category A is said to have familial finite products if for every A\,...,An, the category

of discrete cones A/(A\,..., An) has finitely many connected components and a final object

in each component. I shall call each such final object a familial product of A\,...,An in A.

In particular, the components of A/() are the components of A, each of which must have

a final object, each of which I shall call a familial final object of A.

A has familial finite products if and only if £f//A has actual finite products. It can be

seen that this product distributes over the coproduct in two ways. First, the coproduct

completion is a full faithful subcategory of Set and the products are preserved in

this embedding, so they certainly distribute over the coproduct. Second, notice that

the familial products of A give a functor — x — : A x A —• ^ 11 A, which can be

extended "bilinearly" to the coproduct completion in each coordinate. This functor
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( - x -)* : Sf//K x Sf I Ik —• ^1 Ik gives the products in .97/A, and, by construction,
it preserves coproducts in each coordinate, showing that y / / A is distributive.

Proposition 5.7. if 11 k is a distributive category if and only if A has familial finite products.

There is an obvious coproduct preserving functor 5 : £f//k —> y that simply forgets
the structure given by A. This allows one to regard the situation as a fibration (Schumacher
and Street 1988). In particular, the category A can be recaptured as the fibre over 1. This
also allows the observation that each object of A becomes indecomposable in £f//k,

as 1 is indecomposable in Do and Ind(y//A) (the full subcategory of indecomposables
in £f//k) is simply A. Furthermore, each object in y / / A has, by definition, a finite
indecomposable decomposition, which leads to the following corollary.

Corollary 5.8. If A has familial products, then .97/A is extensive distributive.

If A is cartesian, so that it has finite products, then certainly it has familial products.
Furthermore, any functor H : A —• X of A to a distributive category X having an initial
object that preserves products has its extension H+ : £f//k —> X a functor that preserves
coproducts. This gives the following corollary.

Corollary 5.9. If A is cartesian, the free distributive completion is <?//k*.

Furthermore, observe that in this case products of indecomposables are indecomposable,
so that we have the following corollary.

Corollary 5.10. A is cartesian if and only if

(i) products of indecomposables are indecomposable in if / / k,

(ii) 5 : y//A —> S is distributive.

While 5 is distributive for cartesian A, it will not in general preserve all finite limits.
o _

For example, we may take A to be an algebraic theory with two distinct elements 1 = r £ A

(e.g. the theory of rings). In Of 11 k the map (0|l) : 1 + 1 —> A is monic. It is easily seen
that 5 does not preserve this monic by counting components. This should be a sharp
reminder that distributive functors between extensive categories need not behave well on
arbitrary limits.

So far we have seen that every y / /A , where A has familial finite products, is familial
distributive. In fact, the converse is also true (to equivalence).

Theorem 5.11. X is familial distributive if and only if X ~ ,9"//A, where A has familial
finite products. Furthermore, A ~ Ind(X).

Clearly, as each object has an indecomposable decomposition, it can be regarded as
a family of indecomposable objects. Furthermore, the maps between objects can also be
represented familially, and this shows <9*// Ind(X) ~ X. Any equivalence of categories
will carry indecomposables onto indecomposables, so the A of the theorem is always
equivalent to Ind(X).

This means that, in discussing familial distributive categories, one can equivalently deal
with categories with familial finite products. This alternative view of familial distributive
categories is sometimes fruitful.
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5.3. Object decidability

y / / A is distributive with finite limits, and so is Schanuel/Lawvere distributive if and only

if A has familial finite limits. Alternatively, X is a finitely complete familial distributive

category if and only if Ind(X) has familial finite limits. We have noted that one way

in which a Schanuel/Lawvere distributive category arises naturally from an extensive

distributive category is when every object is decidable. Familial distributive categories in

which every object is decidable have a number of interesting properties.

Notice that equalizers are detachable when every object is decidable. This means that

maps to indecomposables must either be epic or initial. Similarly, considering the equalizer

of two maps from an indecomposable: either they are equal everywhere or nowhere. A

rather striking observation is that graphs of maps are detachable, giving the following

lemma.

Lemma 5.12. In an internally decidable familial distributive category there are only finitely

many maps between any two objects.

In particular, considering an endomorphism / : A —> A of an indecomposable object

A, because there are only finitely many endomorphisms, it follows that / " = fm for some

n ± m. Using the fact that / is epic, we obtain f"~m = i, so / is an isomorphism. This

provides an analogue of Schur's lemma.

Proposition 5.13. In internally decidable familial categories, all endomorphisms of inde-

composables are isomorphisms.

This has the following rather surprising consequence.

Corollary 5.14. A category A with familial products has all objects £f//A decidable if and

only if A has no non-trivial idempotents.

If y / / A is internally decidable, every idempotent of an indecomposable must be an

isomorphism, whence the identity. Conversely, consider the component of the product

into which the diagonal map embeds: the composition of a projection and the diagonal

map provide an idempotent on that component. If it is trivial, this component must be

the diagonal, giving decidability of the object.

5.4. The Burnside rig

The isomorphism classes of objects of any elementary distributive category under the

sum and product form a (commutative) rig which is called the Burnside rigJ A rig is a

quintuple, R = (RQ,0, 1,+, X), where RQ is the underlying object, 0 and 1 are constants

and identities for + and x, which are associative binary operations with + commutative

and x distributing over +. A rig is commutative if x is commutative, and cancellative if

x + z = y+z => x = y. Notice that in a cancellative rig axO = 0, as 0 + a x O = oxO+axO.

There is a reflection of rigs into rings, which uses the following construction.

' This name is due to Steve Schanuel and Bill Lawvere: it is a ring without negatives.
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Let R be a rig and define the following rig structure on 2%{R) = R x R/ ~ :

(x, y) x (x', y) = ( x x x ' + j ' x / , x x / + j ; x x'),

with equivalence relation given by

(x,y) ~ ( x i j i l o j t l j i + z = y + xi + z,

for some z. Clearly $(R) is a ring and gives the reflection of rigs to rings. It is imme-

diate from this construction that cancellative rigs can be embedded faithfully into their

enveloping ring.

It is of some interest to uncover conditions under which the Burnside rig of a distributive

category is cancellative. Clearly we must have X + A ~ Y + ^ => X ~ Y. However, notice

that this is a version of the Krull-Schmidt lemma, and is clearly satisfied by any A

that is a finite coproduct of indecomposables. An immediate observation is the following

proposition.

Proposition 5.15. The Burnside rig of a familial distributive category is cancellative, and

so embeds faithfully into the Burnside ring.

The Burnside rig of a familial distributive category is the free additive semi-group

generated by indecomposables with multiplication given by equations of the form

a x a' = a\ + ... + an

derived directly from the familial products.
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