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as parameters in the vector field are varied. For example, if the vector

field is the gradient of a function with a finite number of critical points,
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then the ﬁ-fimit set of each orbit is an equilibrium point. Thus, one must
be concerned with how the number of equilibrium points changes with the
parameters (this is usually called static bifurcation theory), how the

stability properties of the equilibrium points change and the manner in

which the equilibrium points are connected to each other by orbits. If the
vector field is not the gradient of a function, then other types of limiting

motions can occur; for example, periodic orbits, invariant tori, homoclinic

and heteroclinic orbits. The purpose of these notes is to give an introduc-

4

tion to the methods used in determining how these more complicated 1limit sets

change as parameters vary.
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INTRODUCTION TO DYNAMIC BIFURCATION'
Jack K. Hale

! Lefschetz Center for Dynamical Systems
Division of Applied Mathematics
Brown University
Providence, Rhode Island 02912

Introduction. Dynamic bifurcation theory in differential equations is concerned
with the changes that occur in the structure of the limit sets of solutions as para-
meters in the vector field are varied. For example, if the vector field is the
gradient of a function with a finite number of critical points, then the w-limit set
of each orbit is an equilibrium point. Thus, one must be concerned with how the
number of equilibrium points changes with the parameters (this is usually called
static bifurcation theory), how the stability properties of the equilibrium points
change and the manner in which the equilibrium points are connected to each other
by orbits. If the vector field is not the gradient of a function, then other types
of limiting motions can occur; for example, periodic orbits, invariant tori, homo-
clinic and heteroclinic orbits. Important questions in bifurcation theory are con-
cerned with the manner in which these more complicated limit sets change as

parameters va.y.

A person being introduced for the first time to bifurcation theory may have the
impression that it consists of a collection of isolated results without any unifying
principles. Furthermore, since bifurcations are a rare occurrence, perhaps they
could be avoided if one were clever enough. Neither of these statements are true.
As an illustration, suppose one has a one parameter family of vector fields X\ de-
pending on a parameter A, 0 < A < 1, with the property that the phase portraits of
the flows for X = 0 and A = 1 are completely different. Then there must be some
point xo in (0,1) where the structure of the flow changes in a neighborhood of 10;
that is, a bifurcation must occur. This shows bifurcations cannot be avoided. The
underlying pfinciple in bifurcation theory for this illustration with one parameter
familes of vector fields is the following. Among all of the one parameter families
XA, 0 < X <1, of vector fields, characterize those for which the bifurcations are
the most elementary. By most elementary, one generally means that a perturbation
of the one parameter family will have the same type of bifurcations as the unper-
turbed family. This implies that such a family is "transversal" to all of the
bifurcation surfaces in the class of all vector fields. If the family X, depends
on two parameters A = (AI,AZ), 0 < Aj < 1, then one can attempt in the same way to

* This research was supported in part by the National Science Foundation under con-
tract #MCS 8205355, in part by the Air Force Office of Scientific Research under
contract #§F-AFOSR 81-0198, and in part by the U.S. Army Rescarch Office under
contract #DAAG-29-79-C-0161.
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classify those which are "transversal' to all the bifurcation surfaces. Two mani-
folds are transversal if the tangent spaces span the whole space. In Figure 1, we

have schematically indicated one and two parameter families Xx which are trans-

versal to the bifurcation surface S.

S

Xy

Figure 1 i;

In the following, when we use the term codimension one (codimension k) singularity,

we mean an elementary bifurcation point for a one (k) parameter family of vector
fields. If the reader keeps this idea in mind as he studies the subject, he will
recognize that specific theorems are precise mathematical descriptions of the above
imprecise remarks. Of course, it should be clear that the same remarks apply to
vector fields which depend on two or more parameters.

The purpose of these lectures is to introduce the reader to some of the basic
ideas in bifurcation. The first lectures deal with applications of the Fredholm
alternative and the method of Liapunov-Schmidt to bifurcation near equilibrium and
the existence of homoclinic orbits. To illustrate the more global aspects of the
theory, we summarize the codimension one singularities in the plane and give some

examples of codimension two singularities.

Throughout the notes Ck(X,Y) denotes the set of functions from X to Y which are
continuous together with derivatives up through order k. The space Ct(x.Y) is the
set in Ck(x.Y)'with all derivatives up through order &k bounded with the norm
being the sup of all derivatives up through order k.

1. The Fredholm alternative and Liapunov-Schmidt. Many problems in bifurcation

theory lead to the study of the zeros of a function in the neighborhood of a given
point. Often, the analysis consists of the following steps: firstly, analyze the
nonhomogeneous linear equation (referred to as the Fredholm alternative); secondly,
use this information to reduce thé original problem to one of lower dimension by
obtaining a bifurcation function (referred to as the method of alternative problems
or the method of Liapunov-Schmidt); thirdly, analyze the bifurcation equation;
fourthly, relate the analysis to dynamical behavior.

The purpose of this section is to give an abstract version of the first two
steps.

If P 1is a continuous projection on any Banach space X, we let xp denote the
range of P. If X,I are Banach spaces, we let &(X,2) denote the space of hounded

PN U PP Yy e v |




linear operators from X to 2. If A €¥(X,Z), we let A#{A) = {x : Ax = 0}, R(A) =
{z€2:3x€X3Ax =z}, We shall also use the notation A(A) = XU, RA) = ZE
to denote that there are continuous projections U,E such that these equalities hold
The assertion that P(A) = Z is an important restriction on A if the space is
infinite dimensions.

Lemma 1.1. If A €X,2), MA)\= Xu,ﬁﬁHA) = Zp, then there exists a right inverse
KEAZ,X ) of A, AK=1 on Z.,KA=1-U on X. (seeFig. 1.1)

X A Q(A)'ZE
— T
-—x

I(A).XU zl_c

Figure 1.1

Proof: Since A is one-to-one from xI-U onto ZE’ the existence of K is clear. The
fact that K is bounded follows from the open mapping theorem.

Suppose A is a linear operator as in Lemma 1.1, A is a Banach space denoting

the parameter space and N : X x A + 2 is a C1 function satisfying
N(0,0) = 0, DKN(O,O) =0 (1.1)
We want to discuss the solutions of the equation
Ax = N(x,1) (1.2}
for (x,A) in a neighborhood of (0.0).

Using the projection operator E in Lemma 1.1, we can rewrite (1.2) in the
equivalent form
EAx = EN(x,}2), (I-E)Ax = (I-E)}N(x,}).
If we let x =y + 2z, yE€ XU, 2 € xI-U‘ and use the fact that EA = A, (I-E)A=0, Ax = AZ
and K is a right inverse of A on ZE' we obtain the equivalent equations,
z = KEN(y+z,}) (1.3a)
0 = (I-E)N(y+z,)). (1.3b)
One can use the Implicit Function Theorem to obtain a unique solution z*(y,)) of
(1.3a) in a neighborhood of zero, 2*(0,0) = O, Dyz'(o,o) = 0. For x =y + z*(yv,})
to be a solution of the equation (1.2), the pair (y,\) must satisfy
G(y,2) = 0
(1.4)
G(y,\) = (T1-E)N(y+z*(y,2},2\).

The function G(y,}) is known as the bifurcation function. The above procedure for

obtaining solutions of (1.2) is an application of the alternative method and is
known as the method of Liapunov-Schmidt (LS method). It is summarized in
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Lemma 1.2, There is a neighborhood U of (x,2) = (0,0) such that everv solution of

(1.2) has the form x = y + 2*(y,\) where z*(y,1) is the solution of (1.3a) and (y,»)
satisfy (1.4).

Several specific illustrations of Lemma 1.2 will be given in these notes. At

the same time, we will discuss the solutions of the bifurcation equation and relate
the analysis to dynamical behavior.

An operator A : X + Z with closed range and having dim_A#(A) < =, codim P(A) <=,
is called a Fredholm operator of index dim_#(A) - codim(A).

In the applications, Equation (1.2) often arises in the following manner. Sup-
pose M : X x A + Z is a given smooth function and suppose it is known that the equa-
tion M(x,X) = 0 has a solution x = @(1) for 2 in some open set. One can study the

solutions of M(x,}) 0 near 9(1) by letting x & @()) + x to obtain a new function
which we again call M such that M(0,1) = 0 for X in an open set. The Taylor series
for M is then

M(x,2) = D(A)x + M(x,1), M(x,A) = o(]|x|) as |x] = 0.

1f the operator D(lo) has a bounded inverse, then the Implicit Function Theorem im-
plies that M(x,)A) = 0 has a unique solution x*(1) in a neighborhood of (O,XO),
x'(xo) = 0. Thus, no bifurcation can occur. If D(Ao) does not have an inverse,
then there is the possibi}ity of bifurcation near (O,Ao). In this case, A = D(AO),
N(x,A) = [D(A)-D(Xo)]x + M(x,1).

An important special case arises when X is a scalar parameter and D(}) = B - AC,
where B,C are bounded linear operators. The values AO where D(xo) is singular are
then eigenvalues of the pair of operators (B,C). For later reference, we say AO is
a simple eigenvalue of (B,C) if B - AOC is Fredholm of index 0 with dim,ATB-AOC) =]=
codim.Q(B-xOC) and CA(B-1C) oﬁ(s-ADC) =2,

2. Stable and unstable manifolds. In this section, we show how the classical

method of obtaining stable and unstable manifolds for an hyperbolic equilibrium
point is a special case of the LS method for a Fredholm operator with A : X » Z with
dim_A#A) < » and FA) = 2

0 is an n x n constant matrix with Re<(A0) # 0 where o(AO) is the spec-
trum of Ay, £ : R" +R" is a ¢! function with £(0) = 0, £.(0) = 0. In order to con-
struct the local unstable manifold of

Suppose A

(Ax) (1) = £(x(1)), (Ax)(t) = x(t) - A x(t), (2.1)¢

we consider the.set Uf = {initial values of solutions of (2.1) which are defined and
remain in a '"small" neighborhood of zero for t € (-»,0]}. The local stable manifold
Sf is defined similarly on [0,=). Let X0 = {bounded, uniformly continuous functions

o . )
on (-=,0} to R"} with the sup topology and let x! - {R€EX : g€ X'l with the ¢!

topology. Then A in (3.l)f takes X1 to X” and is continuous and linecar,
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If UO’SO are the stable and unstable manifolds of (2.1),, R" - U0 ] SO’

7 iR > U, I-n:R"+5S_are projections, then A : x1 —x°

0’ 0 . AOt

H(A) = {g € X" : g(t) = e~ mg(0), t < O}.
T?us, dim,dxg) < =, One caen define a projection ™ of x1 onto A(A) by the relation
(rg)(t) = e "mg(0), t < 0. It is a classical result in differential equations and
easy to prove that (A) = . If x - y+z, ys= eri € X% , 2 € Xi_i. y(0) = &,
then the LS method implies there is a unique solution x;(g,-) =y + z;(i,-) € X1 of
(2.1)f in a sufficiently small neighborhood of zero and this function is Cl in £,
24(0,%) = 0, Dﬁz;(o,-) = 0. The manifold U, is defined by {x : x = & + 21(5,0),

£ small}. 1t can be shown that. any solution with data in U_. approaches :zero as

f
t » -» and thus, represents the local unstable manifold. A similar argument gives

the stable manifold Sf.

Note that this is a good example of the application of the LS method, but
there is no bifurcation equation since codim HP(A) = 0, index A = dim_A(A).

3. Equilibrium bifurcation. In this section, we consider the (n+l)-dimensional

system
2 =Cz+ f(z,1) 3.1
where X 1is a parameter in a Banach space A, f : R, A »R™! s continuous
together with derivatives up through order k > 1,
£{0,0) = 0, 3f(0,0)/32 =0 (3.2)

0 0
C = ) (3.3)
6 B

and B is an n x n matrix with Re o(B) # 0, where o(B) is the spectrum of B. If
z = (x,y), £f= (g,h), with x €ER, g € R, Eq. (1.1) can be written as

g(x,y,1})

X
(3.4)

¥ = By + h(x,y,)).

Our objective is to discuss the bifurcation and stability of equilibrium
solutions of Eq. (3.1) in a neighborhood of (z,)A) = (0,0). The equilibrium solutions
are easily obtained by the LS method applied to the equation Cz + f(z,x) = 0. This

is equivalent to applying the Implicit Function Theorem to obtain a solution ©(x,1)

of the equation
Bp + h{x,p,)) = 0 (3.5)

in a neighborhood of (x,2) = (0,0) which satisfies ©(0,0) = 0, 3w(0,0)/3x = 0. The
equilibrium points of Eq. (3.1) in a neighborhood of (z,3) = (0,0) are then given by

{(x,9(x,1)) where (x,)) satisfy the bifurcation equation




]

Y .‘o-l‘,-'.’-‘y

‘s

>

1.

N

o

-y & wow
o &, Ay 08,

Ta
o

.
i’
v
3
"

e

LI AR
a%an' o

at e

. .
Pl . Y

N Ca e
NTATIE IS SRR

[

G(x,)}) =0
(3.6)
G(x,2) = g(x,0(x,1),1).

We remark that the function @(x,)) depends only upon the vector field h(x,y,)) [not
on g(x,y,2)] and has the same smoothness properties as h{(x,y,\).

The equilibrium points of Eq. (3.1) can also be expressed in terms of the
center manifold. In fact, there is a center manifold MA = {(x,y) : y = y(x,2), x
in a neighborhood of zero} for X in a neighborhood of zero. The flow on MA is
given by (x(t),y(t)) = (x(t),¥(x(t),))) where x(t) satisfies the equation

x = G(x,})
. (3.7)
G(x,2) = g(x,¥(x,1),A).

The equilibrium points of Eq. (2.1) in a neighborhood of (z,)\) = (0,0) are given by
(x,¥(x,1)) where G(x,}) = 0.

We remark that the function y(x,A) depends on both of the vector fields
g{x,y,1), h(x,y,}) and, generally, is not as smooth as g and h. In particular,
Y will generally not be C“ or analytic even when g,h are c® or analytic.

Since a center manifold has a hyperbolic structure (each point on My looks
like a saddle point), the flow on the center manifold gives a complete description
of the flow defined by Eq. (3.1) in a neighborhood of (z,}) = (0,0). Even though
the bifurcation function G(x,X) in (3.6) was constructed without mentioning dynamical
behavior, it is an interesting fact (stated precisely in Theorem 3.1 below) that the
flow defined by the equation

x = G(x,}) (3.8)

is equivalent to the flow defined by Eq. (3.7). Thus, the qualitative properties of
the flow can be determined without knowing the center manifold. The advantage of
this observation lies in the fact that G(x,)) is as smooth as the original vector
field and is easier to calculate approximately. Up to this point, the parameter ?
has played no role and it plays no role in the following theorem. However, it will
be used in a significant way in the applications of Theorem 3.1.

Theorem 3.1. The vector fields G(-,}), ﬁ(-,A) are equivalent in a neighborhood of
zero for A in a neighborhood of zero; that is, there is a homeomorphism of a neigh-
borhood of x = 0 mapping the orbits of (3.7) onto the orbits of (3.8) preserving the
sense of direction in time.

Proof: The functions G(x,}), é(x.X) must have the same set of :zeros in a neighbor-

hood of (x,X) = (0,0). The essential elemeat of the proof of the theorem and the
only part that will be given is to show t%at G(x,>»), 6(x,)) have the same sign
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between feros. Suppose this is not the case; that is, there is an X, such that
G(xo,x) G(xo,k) < 0. By making a small pefturbation of the vector f(:,l) in Eq.
(3.1), one obtains new functions Gl(x,x), Gl(x,x) such that Gl(xo.l) Gl(xO,X) <0
and the first zero X before X0 is simple. Now make another perturbation of f(-,3)
in Eq. (3.1) by replacing g by g + ¢ with € small > 0. The new bifurcation
function Gz(x,k,e) = G](x,k) + €. Also, using the theory of center manifolds, one
can show that the vector field on the center manifold Gz(x,x,c) = Gl(x,l), +
c(x,x,e)s where o(x,xne) > 0. Since Xy is a simple zero of Gl(x,x), Gl(x,k), this
1 ¢ xz(x,O). such that
Gy(x,(2,€),2,e) = 0, Gz(iz(x,e),x,e) = 0 and such that [dxz(l,o)/de]-[diz(‘»,O)/de]

< 0, which implies xz(x,c) # iz(k,e), ¢ > 0. But this is a contradiction since the

implies there are functions x,(%,¢), iz(x,c), x,(1,0) = x

bifurcation function and the vector field on the center manifold must always have
the same zeros. This implies G(x,)\) and G{x,2) have the same sign between zeros.

As a first application, we give a result on bifurcation from a simple eigen-

value for one parameter families of vector fields. Suppose X € R, f(z2,)) is Cl and
write f(z,X) as ]
f(z,x)

Cl(l)z + F(z,7)
(3.9)

F(0,X) = 0, 3F(0,))}/3z = 0 for all A

where Cl(k) is an (n+l1) x (n+1) matrix, Cl(O) = 0. Suppose that

X 0
Cl(l) = (3.10)
0 Blm

and Bl(x) is an n x n matrix. The bifurcation function G(x,X) for this special
case has the form

G(x,X) = a(A)x + G(x,}1), (3.11)

- 1]
where G(x,}) = O(lxlz) as x+ 0, a(0) = 0, o (0) = 1 from (3.9), (3.10). The
Implicit Function Theorem and Theorem 3.1 imply

Theorem 3.2. If A €R, f is C2 and satisfies (3.9), (3.10), then there is a neigh-

borhood V of z = 0, Wof A = 0, U of x = 0 and a C'-function A* : U + R such that
A*(0) = 0 and, for A € W, the equilibrium solutions of (3.1) in V are given by

{0} U {(x,0(x,2)) : A*(x) = A}. A solution (X,9(x,})) is asymptotically stable
(unstable) on the center manifold if (x-x)G(x,A) < 0 (>0) near X.

The stability properties are easy to determine from the curve I' : A = A*(x),
x € U. In fact, since 3G(0,2)/3x = A + o(|x]) as A ~ 0, it follows that, for a
fixed X # 0, sign xG(x,}) = sign » for x near zero. This implics that the sign of
G is as indicated in Figure 3.1, This yields stability of all cquilibrium points

immediately with the situation as shown in Figure (3.1). At the bifurcation points,
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there is always a transfer of stability on the center manifold.

Figure 3.1

As another illustration suppose f in (3.1) is C2 and ) is a parameter in A

and there is a 8 # 0 such that
2 2 < oga
G(x,0) = Bx° + o(|x|®) as x » 0. (3.12)

Since ¢(0,0) = 0, 39(0,0)}/3x = 0, it follows tha: g is given explicitly by
28 = azg(0,0,0)/axz. The Implicit Function Thecrem implies there is a unique Cl-
function a(1), a(0) = 0, such that 3G(a(1),A}/9x = 0 for X small. Then

Ga() + %20 = vy + v, 00X + o([%|%) as [x| =0

where yO(O) = 0 and YZ(O) = B # 0. Theorem 3.1 therefore implies, near (z,A) =
(0,0), that
(1) yo(X) > 0 => no equilibrium solution of (3.1).
(ii) yo(\) = 0 => one equilibrium solution of (3.1) stable from one side
and unstable from the other side on the center manifold.
(1ii) yo(l) < 0 implies two equilibrium solutions of (3.1), hyperbolic
with one stable and the other unstable on the center manifold.

The surface in A defined by T = {i : yo(l) = 0} is called the bifurcation surface.

This bifurcation is referred to as the saddle-node bifurcation. The name comes from

the fact that, for z in Rz, a saddle and node coalesce and disappear as T is

crossed.

As another illustration, suppose the vector field in (3.1) is C3 and there is
a 8 # 0 such that

G(x,0) = Bx> + o(|x|3) as |x| » o. (3.13)

Then there is a unique point u(}), «(0) = 0, where azc(x,x)/axz = 0 in a neighbor-
hood of zero. If x = a(A\} + X, then

G@) + KA = vg() + v ()X + v, + B (3.14)
where G(X,}) = o(lIIS) as x + 0, 7o(0) = v,(0) = 0, v,(0) = 8 # 0.

It is no loss in generality to assume yS(X) = 1 in discussing the solutions of
(3.14) in a neighborhood of (x,2) = (0,0). Even in the casc when G(x,A) = 0 in

(3.14), a complete discussion of the zeros of the cubic requires two parameters.
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This corresponds to a codimension two bifurcation. A generic two parameter family
of parameters ) = (xo,k ) should satisfy det[a(yo.yl)/aﬁko,xl)] # 0at »=0. If
we assume this is the case, then we can introduce new parameters . = (uo,ul) instead
of X to obtain the equation

H(X,u) = g u)X + % s Hxw) =0 (3.15)

where H(x,u) = o(];ls) as x - 0. The bifurcation curves in u-space correspond to
multiple solutions of (3.15); that is, H(x,u) = 0, 3H(x,u)/3x = 0. In a neighbor-

. . . - —2 -2
hood of zero, this determines yn as functions of x, v, = -3x~ + o(Ix|"),

01

_. _ _ _ 1
¥g = 2x3 + o(lxls) as x + 0. Eliminating x from these equations, one obtains a
cusp in u-space which is approximately given by u? = —(27/4)ug. The bifurcation
diagrams for Equation (3.15) are shown in Fig. 3.2 with the number of solutions as
indicated. e Fi Ho>0

Figure 3.2

For some problems, one may have a parameter A € A for which rank [a(yo.yl)/ax]
< 2 at % = 0. In this case, the bifurcation diagram will be different since the set
{(yo(x),yl(k)),l € A} will be a curve in (uo,ul)-space. The number of solutions and
the bifurcations for Equation (3.14) will be determined by how this curve intersects

the bifurcation curve in Fig. 3.2 as ) varies.

If G(x,0) = qu + 0(|x|q) as |x| + 0, where 8 # 0, then the two previous ex-
amples show that only one parameter is needed to describe all bifurcations when
q = 2 and two are needed to describe the bifurcations when g = 3. For q > 3, one
can show that q parameters are needed. The bifurcation surfaces are ex.remely

complicated and will not be discussed here.

Theorem 3.1 is valid for several types of partial differential equations and
functional differential equations. As is often the case, the theoretical results
are very simple to state, but there are many technical problems in making the
applications. We briefly indicate how this can be done for retarded functional
differential equations and for abstract evolutionary equations which include

parabolic equations.
Let A be the infinitesimal generator of an analytic semigroup T(t), t > 0,

on a Banach space X. Choose b real so that Re o(A) > 0, A = A + bl. One can
define fractional powers A” of A for any a € R. For a < 0, A% is one-to-one and
a bounded linear operator on X. For a > 0, consider the set x? c X consisting
of all x € X for which |A%x| < =. For x € X, define Ixf = Ix] + [A™x]. Then
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. a a . . . . :
|-|“ is a norm on X~ and X is a Banach space with this norm. Also, the inclusion

map taking x% into X is continuous. Now suppose that f : x*

x A+ X is a smooth

function for some 0 < a < 1 and consider the evolutionary equation

v v v N

u+ Au = f(u,}). (3.16)

Suppose that Eq. (3.16) generates a strongly continuous semigroup Tx(t). t>0, on

x®.  The choice of a depends upon the specific function f.

Suppose 0 € o(A) is a simple eigenvalue of A and there is a § > 0 such that
|Re[o(A) ~ {0}]] > 6. Then the space x® can be decomposed as a direct sum X*= V @ ¥
with V,W invariant under Tx(t) where V is one dimensional and spanned by a unit
vector “0 satisfying Auo =0. Ifu=v+w, veEV, w€EWNW, f=pg+h, g€V, hew,
then (3.16) is equivalent to

V= g{vew, 1) (3.17)

N W= -Aw + h(vew,1).
The operator A restricted to W has a bounded inverse which we write as A'1
taking X into X. Since D(A) € D(A®) fur 0 < a < 1, it follows that the equation
AP + h(v+p,)) = 0, P EN, (3.18)
is equivalent to the equation
©+ A hevep,d) =0, wEW. (3.19)
Consider the operator A™} as mapping W into X%, 0 <a < 1. Then A"! is a bounded

linear operator from W to x® since R'l‘u is a bounded linear operator on X (-1+a<0)
and |A-lu|a = IA-lul + Iiak-lul + IA-1u|¢|§-1‘u(I*bA-1)u| for any u € D(A®) N W,

The Implicit Function Theorem implies there is a unique function @(v,}),
v(0,0) = 0, satisfying (3.19). The equilibrium points of (3.16) are therefore given
by u = v + ¢(v,2), where u,x must satisfy the bifurcation equation

a G(v,2) = 0, G(v,2) = glvso(v,)),}).

The flow on the center manifold of (3.16) is equivalent to the flow defined by the
scalar ordinary differential equation v = G(v,)).

As a specific example, consider the equation

a u. =u + uu - u3 R 0<x<nm
‘ o (3.20)
u=0 at x = 0,m.

. Let x = t(0,"), ,,(1),2 «{@€X: 0 €X, 90) = O(r) = 0} and define A = -0, with

D(A) = "5,2 n NZ.Z_ One can show that the operator A generates an analytic semi-
o) 2

group on X. It is also possible to show that D(AI/Z) - Wé" = Xl/‘, the operator A
has compact resolvent and og(A) consists of simple eigenvalues (1.22,....n2,...) with
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- the eigenfunction (2/r)1/zsin nx corresponding to n2. If F(w,u)(x) = uo(x) - w3(x),

0 < x < 7, then one can show that F : X2 xR > X is an analytic function of ¢,u.
This is enough to conclude that, for any ¢ € Xl/z, there is a function u(t,x,9),
defined on some interval 0 < t < tw, u(t,-,9) € Xllz, 0<tx< tw, u(0,-,9) = @,

u(t,x,9) is continuous in (t,x,P) and satisfies (3.20) for 0 < t < to

For Equation (3.20), there is a Liapunov function

("2
V(o) = Oliwx(") - AH{o(x))]dx .

for ¢ € Xl/2 and H(u) = uu2/2 - u4/4. In fact,

™
Vu(t, ) = $o Ve, = -jo ul (t,x)dx < 0.

One can use this inequality to show that u(t,x,p) is defined for t > 0; that is,

t. = «, If one now defines Tu(t)w = u(t,,9), then Tu(t)’ t > 0, is a strongly

. (4 1/2
continuous semigroup on X' 7.

Let us now determine the nature of the bifurcation near the simple eigenvalue

Wy = n. Let b= n2 + % and, for u € Xl/z,

1/2 def

n
u(x) = (%q v sin nx + w(x), (%)1/2 Jou(x)sin nx dx

n
J w(x)sin nx dx = 0,
0

If Uu = v sin nx, then U is a projection onto JITA-unI)and (I-U)is a projection
onto 53{A-pnl). With this decomposition, the equilibrium solutions of (3.20), that

is u, = 0, must satisfy the equations

AV sin nx- U[(Z/W)I/ZV sinn . + w(-)]3 =0

LA now + aw - (I—U)[(Z/r)l/z sinn - + w(')]3 =0,

/2

with w = 0 at x = 0,x. This last equation has the solution w(v,)) € x! satisfying
w(0,0) = 0, 3w(0,0)/3v = 0O, J w(v,2)}(x)sin nx dx = 0. Therefore, the equilibrium

solutions of (3.20) near (u,u9 = 0,0) are given by

u(x) = (%)1/2 v sin nx ¢ w(v,2)(x)

with (v,)) satisfying the bifurcation equation

G(v,X) = 0

2,1/2

"
G(v,2) = Av - (%ol/zf (sin nx) ()% v sin nx + w(v,2) (x)]dx.

The function G(v,A) = y,(\)V - Yl(x)v3 so(v]®) as v+ 0 where yé(O) 1,
yl(o) » 3/w2. Thus, the bifurcation curve ) = A*(v) satisfying G(v,x*(v}) = 0 is
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given by A = (3/1r2)v2 + o(vz) as v -+ 0 (see Fig. 3.3). At each bifurcation, there
v
|

N\

Figure 3.3

Yot
%

-
—— e ——

is a transfer of stability on the center manifold. However, for the complete flow,
the only stable equilibrium points are the ones that occur at the first bifurcation.
This is because the zero solution has an unstable manifold of dimension > 1 at the
other points.

As another illustration, we consider a retarded functional differential equa-
tion. Suppose r > 0 is a given constant, C = C([-r,0], R, L:C- R" is a con-
tinuous linear operator, f : C x A + R" isa given Cl-function, £(0,0) = 0,
qpfﬁp,x) = 0 when (p,1) = (0,0). For a given function x : [-r,A) » R" and a fixed
t € [0,A), we let X, designate the function from [-r,0] to R" given by xt(e) =
x(t+8), -r < 8 < 0, and consider the retarded functional differential equation

X(t) = Lx, + f£(x.,2). (3.21)

If ¢ € C, let x(p)(t) be the solution of (3.21) with xoﬁo) = . We suppose all
solutions are defined on [-r,=) and define TA(t)w = xt(w). Then Tx(t), t>0, is a
strongly continuous semigroup.

An equilibrium point for (3.21) is a solution x defined for all t € R, Xg = Vs
and Tl(t)w = y for all t € R. This is equivalent to x(t+9,y) = ¢(8) for all t € R.
Since x(t,y) is continuously differentiable for all t € R (this is a consequence of
the fact that it exists for t € R), this implies x(t) = 0 for all t € R; that is,
x(t) = b, a constant, for all t €ER and y(8) = b, -t < 6 < 0. Therefore, the
equilibrium points of (3.21) are constant functions y such that

Ly + f(y,2) = 0
. (3.22)
y(®) =0, -r<e <0.

The linear equation
x(t) = L(x,) (3.23)

also generates a strongly continuous linear semigroup S(t), t > 0, on C. It can be

shown that the infinitesimal generator A of S(t) is given by (Ap)(e) = OF

> -r < 9 <0, with D(A) = {9 € C :@b €C, ®0) = Lp)}. Also, o(A) consists only of
- peint spectrum, and, if L(@) = [dn(0)]¥(8), then u € o(A) if and only if
L -r
0
det A(p) = 0, A(p) = wl - J euedn(e). (3.2%)

-r

B A S
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Also, if u € o(A), then A#(A-ul) is the span of the functions eueb, -r<e<0,
where A(u)b = 0.

Suppose 0 € o(A) is simple and Re v # 0 for u € g(A) ~ {0}. Then it follows
immediately from (3.23) that there is a § > 0 such that |Re y| > & for , € g(AY~ {0}
OQur first objective is to determine the equilibrium points of (3.21) near x = 0 for

A nhear zero.

To characterize the equilibrium solutions of (3.21) as the solutions of an
operator equation, we need to enlarge the space of functions that are being con-
sidered. Let Xo
-T < 8 <0, X3(0) = I, the identity, and define PC = C @ (XO) where (XO) denotes
the space of Xo. A function ¥ € PC is represented by a pair (p,b) where ¢ € C and

be the n x n matrix function on [-r,0] defined by Xo(e) = 0,

b €Rn; the function ¢ is uniformly continuous on [-r,0), v(8) = @©(8), 6 € [-r,0),
and ¥(0) = ©(0) + b; that is, ¢ has a jump of b at 0. Consider A as a map from
C to PC with D(A) = {9 € C : ® € C} and

. (A®Y(8) = @(8), -r<8 <0
(A9) (0) = Lo.

It is now easy to see from (3.22) that ¥ is an equilibrium point of (3.21) if and
only if
Ay + xof(w.x) =0 (3.25)

We now apply the LS method to Eq. (3.25) under the assumption that 0 is a
simple eigenvalue of A. We know that #(A) = {W€C : @ = Bwo. wo(e) =a, -r <6 <0,
where a is a constant n-vector, 4(0)a = 0}. To characterize the range of A, we
solve the equation AY = ¥ for ¥ € PC. This relation is equivalent to lb(e) = ¥(8),

-r <8 <0, and L = ¥(0); that is,

)
@(e) = ©(0) + J v(s)ds
0 8

0
4(0)9(0) = y(0) - I [dn(e)]f v(s)ds.
-r 0

Let b be any nonzero row vector such that bA(0) = 0. Then ¢ € gXA) if and only if

(uonw] = 0) 00(6) = bl -T : e i 0

0 0 (3.26)
(3g,¥) = b¥(0) - I b[dn(e)lf v(s)ds.

-T 0

Choose b so that (uo,wo) = 1 with a_ in (3.26) and wo a basis for A#(A). The

0
space PC can be decomposed as

PC = _#41A) @ AA)

vEPC, Ve 8o,

(3.27)
+n, 8= (aoiw) €R,(GO,V]) = 0.
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These same formulas also give a decomposition of Cas C=P @Q, P = (ckﬁwo,BGR),
Q= {0 : (uou‘D) = 0}.
The computations above show that A_1 exists and is bounded as a map from SP(A)

into Q. We can now apply the LS method.

1 . 2 N )
If X0 wod, § = (GO.XO), X0 X0 - woé, then (3.25) implies that ¢ = 80

(ao.n) = 0, is an equilibrium point of (3.21) if and only if

o *™
bf(woB*n,k) =0

n o+ A‘lng(wos+n.x) = 0.

The last equation has a unique solution n(B,X) in a neighborhood of (8,A) = (0,0),
n(0,0) = 0, 3n(0,0)/38 = 0. The equilibrium solutions of (3.21) are given by
LA n(8,1) where (B8,)) satisfy the bifurcation equation

G(B,2) = bf(WOB*n(B,X),X) = 0. (3.28)

One can also show that the flow on the center manifold of (3.21) is equivalent to
the flow defined by 8 = G(8,1).

As an example, consider the linear equation
x(t) = -x(t) + x(t-1)

which has a(X) = X-1-exp(-}). Zero is a simple eigenvalue and (GO,W) =

blv(0) + ¥(s)ds]. If we choose wo(e) =1, -7 < 8 <0, then (uo,wo) =1 if

b =1/2. "7 If we choose f(V,A) = 2 + w2(0), then the bifurcation equation (3.28)
is equivalent to A - (B*n(B,A)(O))2 = 0. Thus, there will be two equilibrium points
for A > 0 and no equilibrium points for X < 0. The same remark is true if f(¥,1) =

r - 9P (D).

4, Bifurcation from two purely imaginary roots. In this section, we consider the

equation
z = Cz+ Z(z,u) (4.1)

where y € E is a parameter in a Banach space E, z € Rn¢2’ Zis a Ck-function,
k >2, Cisan (n+2) x (n+2) matrix satisfying

Z{0,u) = 0, 32(0,0)/9z = 0, for all y,

C = [A 0], A= [ 0 ’] 4.2)
0 B 10

with the eigenvalues of B having nonzero real parts (for much of the discussion

(ezwa-l) being nonsingular is sufficient).

Our objective is to discuss the periodic orbits of (4.1) in a neighborhood of

{1,u) = (0,0). These orbits must havc period approximately 2r and he closc to the
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2n-periodic solutions of the linear equation 2 =Cz. Ift s> Bt, where 21/8 is the
period of the solutions to be determined, then 8 should be close to 1 and the new
equation for z is

z = 8Cz + 8Z(z,u). (4.3)

We will apply the LS method for 2n-periodic solutions of this equation. If
z = (x,¥) 2=(XY), x,X € Rz, then (4.3) is equivalent to

x - Ax

(8-1)Ax + BX(x,y,u)
(4.4)

y - By = (8-1)By + BY(x,y,u).
Let pg be the space of 2n-periodic (n+2-vector functions which are cont1nuous with
the sup topology and p; be those 2r-periodic (n+2)-vector functlons in p2 whose

first derivatives are also in p2 with the c! topology. If Qf: p," pgﬂ is defined
on functions f = (g,h) by
Af = (g-Ag,h-Bh)

then Qfis a continuous, linear operator and A#Qf) = {(eAtb 0), 0 € Rn b € RZ}. The

{f=(g,h) :
2nl.,

class:cal Fredholm alternative for linear periodic systemg 1mp11es RS
g(t)dt = 0}. Define E = diag(E,1), Eg-= ) IJ g(t)dt,
0

0
0
Then R () = (l-E)pzﬂ.

"

One can now apply the LS method. Before doing this, it is convenient to ob-
serve that #lgf is determined from a phase shift on the one dimensional subspace
a(cos t,-sin t,0), a € R. Since (4.4) is autonomous, we may therefore fix the
element in A#(A) as a(cos t,-sin t,0). An application of the LS method yields a

1
z*(8,a,u) € | of the form

z* = z*(B,a,u) = (a+x*(B,a,u),y*(8,a,u))

2 4.9%)
T LAt
®(t) = (cos t,-sin t), f e x*(8,a,u)(t)dt = 0

0

and x* = x*(B8,a,u), y* = y*(8,a,u) satisfying x*(8,0,u) = 0, y*i8,0,u) = 0,

9x*(1,0,0)/3a = 0, 3y*(1,0,0)/3a = 0 and the equations

x - Ax = (I-E)[(B-1)A(ap+x) + BX(a@*x,y,u)
(4.6)

y - By = (B-1)By + BY(a@+x,y,u).

The function 2* will satisfy (4.1) if and only if EI(B-I)A(au»x') + BX(a@+x*,y*u))=0.

This latter equation is equivalent to
def " -At
G(8,a,u)"¥ J e TT[(B8-1)A(ap(t)+x*(t))+B8X(a0(t)+x*(t),y*(t),u)])dt = O. (4.7)
0

This represents two equations in the parameters (8,a,u). However, it is easy to see
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that one of these equations can always be solved for 8 (this determines the period)
as a function of a,u. In fact a simple calculation shows that e'A‘Aw(t) = (0,-1).

Thus, if G = (GI'GZ) in (4.7), then 02(8.8.u) satisfies GZ(B.O,u) =0, 362(1,0,0)/

da = 0 and 3262(1,0.0)/3338 = -1. This implies that the function GZ(B,a.u)/a has

a unique solution B = B*(a,u) in a neighborhood of (8,a,u) = (1,0,0), 8*(0,0) = 1.

Thus, equations (4.7) are equivalent to the scalar equation

G(a,u) = 0

G(a,u) = Gl(s’(aru)’anu)'

(4.8)

We refer to the function G(a,u) as the bifurcation function for periodic orbits of
(4.1) near (z,u) = (0,0).

Summarizing the above remarks, we see there is a periodic orbit of (4.1) near
(z,w) = (0,0) if and only if

z = (a +x*(8*(a,u),a,v),y*(B*(a,u),a,u)) (4.9)

where x*(B,a,u),y*(B,a,u) satisfy (4.6), and (a,p) satisfy (4.8). The period of .
z is 2n/g*(a,u). All functions can be approximated to any accuracy desired by using -
successive approximations.
It is useful to observe and not difficult to show that B*(a,u) = B*(-a,u) and
G(a,u) = -G(-a,uy) for all a.

Even though the function G(a,u) was constructed only to obtain periodic orbits,
it contains also information about the dynamic behavior of (4.1). To see this, we
recall that there is a two dimensional center manifold of (4.1) given by y = ¥(x,u).
The flow on the center manifold is given by the equation

X = Ax + X{x,¥(x,u),u). (4.10)

Any periodic orbit of (4.1) must lie on this center manifold and is in one-to-one
correspondence with the periodic orbits of (4.10). Formulas (4.9) also give a one-
to-one correspondence of the periodic orbits of (4.1) with the zeros of G(a,u). One

can now state

Theorem 4.1. Let (ao,u) satisfy G(ao,u) = 0 and let wu(t) be the corresponding
periodic orbit of (4.10). Then the stability properties of wu(t) as a solution of
(4.10) are the same as the stability properties of the solution 8 of the scalar

equation

a = G(a,n). (4.11)

Proof: We only indicate the proof. Since x = 0 is a solution of (4.10), we can
introduce polar coordinates x = (pcos 6,-psin 9) and eliminate t to obtain

do
35 = R(8.0,) (4.12)

where R(6,0,u) = 0, 3R(8,0,0)/3p = 0. One can apply the LS method to this equation
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for 2n-periodic solutions to obtain

2w

o =a+p*(a,u), J p*(a,u)(t)dt = 0
0

. 1 2n

p* = R(8,a+p*,u) - 2—"J R{(8,a+p*(0),n)ds
0

- 2n
and the bifurcation function G(a,u) = E%f R(8,a+p*(a,u)(8),u)d0. The 2n-periodic
0

solutions of (4.12) are in one-to-one correspondence with the solutions of 6(a,u) =0.

For the given function p*(a,u) make the change of variables o = r + p*(r,u)(8) in
(4.12). Then

dr _ P* -1z

36 = [1* 5 (r.0)(0)] “G(r,m).

Since the coefficient of é(r,u) is positive for r,u small, it follows that the sta-
bility properties of the periodic orbits of (4.12) are the same as the correspond-
ing equilibrium point of r = G(r,u). The remainder of the proof follows along the

same lines of the proof of Theorem 3.1.

It is now easy to give interesting applications of Theorem 4.1. For exampie,
suppose u € R and

Z(zw) = ¢,z + 0|2}

Cw)

c+C

and C(u) has two eigenvalues a(u) * iB(u), a(0) = 0, B(0) = 1, and da(0)/du # O.
This latter condition is referred to as the Hopf condition and says that the curves
{a(p) + iB(u),u small} are transversal to the imaginary axis in the complex plane.

Using the formula (4.7}, one easily shows that
G(0,u) = 0, 3G(0,0)/3u = 0, 3°G(0,0)/2adu = da(0)/dy.

Thus, the Implicit Function Theorem implies there is a unique function u*(a) defined
in a neighborhood of zero, u*(0) = 0, such that a'IG(a,u'(a)) = 0. Thus, for each
a, equation (4.1) for y = u'(ao) has a periodic orbit given by (4.9) with

o= u'(ao), arxa,. The stability properties of this orbit are determined by the
sign of G(a,u*(a)) near 3, The general situation is the same as the one in Fig.
3.1 if one assumes a(u) < 0 for u < 0, a(u) > 0 for u > 0. The result just stated

is referred to as the Hopf Bifurcation Theorem.

The Hopf Bifurcation Theorem is a consequence of an hypothesis on the linear
terms in z in (4.1). The specific form of the curve u*(a) depends on the nonlinear
terms in a in the function G(a,u). Since G(a,u) is odd in a, the simplest
situation is

G(a,u) = Yolula + Yl(u)a3 4+ e
v,(0) # 0.

L
If we again assume u is a scalar and yO(O) = a'(0), where a(uy) is the same as

Snead
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before, the curve u*(a) is given approximately by u+*(a) = [a'(O)]'lvl(O)a2 + e
and there is a unique periodic orbit near a = 0. This parabola opens to the left
(right) if [a*(0)] 'y, (0) < 0 (> 0). Now suppose Re AB < 0 and a'(0) > 0. Then
the solution z = 0 of (4.1) is stable for u < 0 and unstable for u > 0. If

71(0) < 0, then the periodic orbit exists for u < 0 and is unstable (this is called
the subcritical case). If yl(O) > 0, the periodic orbit exists for u > 0 and is
stable (this is called the supercritical case). This result is referred to as the

generic Hopf bifurcation theorem.

For one parameter families of vector fields, the generic Hopf bifurcation is
typical in the sense that the parameter is used to make the coefficient of a in
the Taylor expansion of G(a,u) vanish at some value of the parameter. For two
parameter families of vector fields, it is possible to use the parameters u to make
the first and third terms in the Taylor expansion vanish at say u = 0. It is then
natural to assume that G(a,0) = sas 4+ «+-, B# 0. The analysis of the number of
periodic orbits (two at most) and their stability is easily discussed as above. The

one and two parameter bifurcation diagrams for Ba3 4+ ua+ +-- and eas + u133 LTI

are illustrated, respectively, in Figures 4.1 and 4.2 with the number of periodic

orbits labeled. The coordinate a represents the amplititude of the orbit.

We remark that the same type of proof as given for Theorem 3.1 for the
ordinary differential equation (4.1) holds as well for the parabolic equations and

functional differential equations mentioned in Section 1.

a
[}
v
0 (a | K
Figure 4.1
FT u: M<0 9 #.>0
I !
1

: M2 K
]
|

—— e ofln -

Figure 4.2

S. Homoclinic and heteroclinic orbits. Suppose g € CkafnR"), k > 1, and the equa-

tion

x = g(x) (5.1
has an orbit TI' connecting an hyperbolic equilibrium point X, to an hyperbolic equi-
1 that is, g(xo) = 0= g(xl), Rea(gx(xo)) £ 0, Rec(gx(xl)) # 0, and
there is a nonconstant solution p(t) of (5.1) such that p(t) » x, as t + o,

librium point x
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p(t) ~ X) as t > e, The orbit T is called an heteroclinic orbit if Xq ¢ X and

0 * *1° If E is a Banach space, h € Ck(ll ka x E,Rn),

k > 1, h(t,x,0) = 0, and h is bounded in t, then the problem to be discussed in

an homoclinic orbit if x

this section is to determine the behavior of the solutions of the equation
= g(x) + h(t,x,u) (5.2)
for t €E R and (x,u) in a neighborhood of I' x {0}.

Since x are hyperbolic, there are solutions xo(t,u), xl(t,u), bounded

X
0’71
for t € R, existing for y small such that xo(t,O) = Xg» xl(t,O) =X
X (t,u) are hyperbolic. Let @ou@lu] R xR" be the unstable manifold for xo(-,u)

(xl(-,u)) and _96“(,5{“) the corresponding stable manifolds. For u = 0, the hypothesis

and xo(t.u).

that T connects X, to X implies @00 n 5{0 # ¢. In fact, since the equation for
u = 0 is autonomous, this intersection contains an orbit of (5.1). We want to deter-

mine the nature of the set @Ou n '%u for u # 0.

Several problems motivate this type of investigation. For example, if the
perturbation h(t,x,u) is independent of t, then xo(u), X (u) are constant and one
often wants to determine conditions which ensure there is an orbit connecting XO(p)
to x; (u). This is the typical problem of traveling waves in parabolic equations.

If X =% and the perturbations are periodic in t of period 1, and Utu =

x : (t,x) 6@0 }, that is U is the cross section of Qo,u at t, then Ut, =
Ut”. . Similarly, the cross secuon S of _V is t-periodic in t. If

% nSg # ¢ , then there must be a pomt q homochmc to the point X, 0,u) for

the Po1ncare map m, which takes points in R" to the value of the solutlon of (5.2)
at time 1. The sets UOu(SO'u) are the stable (unstable) manifolds of xo(O,u) for the
map ® and have nonempty intersection q. If they intersect transversally at q, then
it is well known that the dynamics near q can be described by the left shift
automorphism on doubly infinite sequences on a finite number of symbols (see Section 6

These two applications are sufficient motivation to investigate conditions on
h to ensure that %u n .Sg“ is nonempty. To carry out this investigation, we make
a transformation from the continuous functions on R with range in a neighborhood of
T to continuous functions on R with range in a neighborhood of zero. More specifi-
cally, let

x(t) = p(t+a) + z(t*a), a € R,

and choose 2(0) to be orthogonal to f’(O). If x(t) is a solution of (5.2) and t is
replaced by t - a, then z2(t) satisfies

2= A(t)z + f(t,z,u,a)

A(t) = g, (p(r)), (5.3
f(t,z,u,0) = g(p(t)+z) - g (P(t))z - g(p(t)) + h(t-a,p(t) + z,u)
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We consider (5.3) in a neighborhood of (z,u) = (0,0) as a perturbation of the
linear equation
(Lx)(t) = 0 Lx = d/dt - A(-). (5.4)

From the definition of A(t), we have A(t) =+ At = gx(xl) as t » +, A(t) » A = gx(xo)
as t + -= with Rea(A’) # 0, Rea(A’) # 0.

Note that ﬁ(t) is a nontrivial solution of (5.4), bounded on R.

Abas

We consider the operator L as a continuous linear operator from C;GLR“) to
Cgﬂkjfﬁ. Our first objective is to characterize #(L), 4(L). To do this, the
following concept is useful.

P

Let X(t,s), X(t,t) = I, be the principal matrix solution (solution operator)
of (5.4). Equation (5.4) is said to have an exponential dichotomy on an interval J

with constants K,a if there are projections P(s), s € J, continuous in s, such that,
if Q(s) = 1 - P(s), then

(1) X(t,s)P(s) = P(t)X(t,s) t, s€J.
(i) |X(t,5)P(s)| < ke @S ¢ s s qn g (5.5)
(ii) [X(t,s)Q(s)| < ke @V 55 ¢ i 4.

The operator P(t) is called the projection matrix function of the dichotomy.

PUIPIT I S SU S .

This concept is equivalent to the existence of a projection P
K,a such that

0 and constants

[x(e,00p X (5,00 ke @ (t-8),

Ix(z, 000%™ (5,0

A

t

|v

s in J

Ke-a(s-t)’ (5.6} ]

1A

s>t in J.

In fact, if (5.5) is satisfied, let P0 = P(0) and observe that (i) implies
X(t,O)PoX'I(s,O) = X(t,olx'l(s,O]P(s) = X(t,s)P(s).

Thus, (5.5) implies (5.6). Conversely, if (5.6) is satisfied and one defines
P(t) = X(t,0)PX ! (t,0), then one easily verifies (5.5).

Remark. Note that the projection P(t) is uniquely determined if J = R, but is not
unique in other cases. Also, if J is finite, then there is always an exponential
dichotomy on J. One can choose any projection P0 on R" and define P(t) =
x(t,O)Pox"(c,OJ.

Remark. Definition (5.5) may be modified to apply to dynamical systems in infinite
dimensional spaces for which the solution operator X(t,s) is only defined for t > s.
Condition (i) is replaced by
(i)' X(t,s)P(s) = P(t)X(t,s), t>s in J.
(i)" The restriction T(t,s)®(Q(s}), t > s, is an isomorphism of
AQ(s)) onto A(Q(t)) and we define T(s,t) as the inverse mapping.

LR T W W R §

The most interesting cases for the interval J in an exponential dichotomy are
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R, = {0,#), R_ = (-=,0] and R,

Relation (5.5) has a very simple geometric interpretation. In fact, ifJ =R,

then, for each fixed s, there is a finite dimensional subspace of R" given by
M(P(s)) and called the stable subspace at S such that solutions with initial values

in @(P(s)) at s tend to zero uniformly and exponentially as t + w. If J =R_
then (Q(s)) is the unstable manifold at s with solutions through points here tend-

ing to zero uniformly and exponentially as t -+ -». The fact that ]P(t)l < K for
all t implies the angle between the subspaces RP(t)), RQ(t)) is bounded. The
angle a(Y,Z}, 0 < o(Y,Z) < n/2, between two subspaces Y,Z in Rn, Ynz-= {0},

Y,Z # {0} is defined as

cos a(Y,2) = sup{'—Lﬁ- ty€YN(0}, z€ZN {0}}.
yilz

If A is a constant n x n matrix with Reog(A) # 0, then x - Ax = 0 has an

exponential dichotomy on R with projection PA = P(0) given by

__1_[ -l
I PA-Z"i'v(” A) Tda

where Yy is a closed curve in L enclosing the eigenvalues of A with positive real
parts.
We need several fundamental lemmas. The first one is elementary and stated

without proof.

Lemma 5.1. Let A(t) be an n x n matrix function defined and continuous on R. Then

the equation (5.4) has an exponential dichotomy on R if and only if it has an
exponential dichotomy on both [0,~) and (-=,0] _ald_lln in the direct sum of the stable

and unstable subspaces at zero.

Lemma 5.2. Let J be either R*. R_orR. gi = A(t)x has an exponential dichotomy

on J and B(t) is a continuous n x n matrix function on J with [B(t)| < &, then
x = (A(t) + B(t))x (5.7)

has_an exponential dichotomy on J if 6 is sufficiently small.

Sketch of Proof. Consider first J =R, . For any x € R" and any y € Cgm‘ R,
define t -

(Fy)(t) = X(t,s)P(s)x + J X(t,u)P(u)B(u)y(u)du - J X(t,u)Q(u)B(u)y(u)du.
s t
The operator Fy is motivated by the following consideration. If f € cgm“n"),
then one can show that the solutions x(t) of the nonhomogeneous equation
x = A(t)x + f(t) which are bounded on R_ must be given by

t
x(t) = X(t,s)P(s)x + I X(t,u)P(u)f(u)du - J X(t,u)Q(u)f(u)du.
s t

o a e a
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For § sufficiently small, it is easy to show that the operator 4 has a
unique fixed point in Cgﬂhkn) which is a solution of (5.7) onR_, is continuous in
t,s,x and, for each fixed t,s, is linear in x. If the value of this fixed point at
t = s is denoted by P(s)x, then P(s) : R" + R" is a continuous linear operator. If
XB(t,s) is the principal matrix so}ution of (5.7), then the fixed point of 9 is
given by Xs(t.s)ﬁ(s)x. We will show that (5.7) has an exponential dichotomy on R,
with projection matrix P(s).

We need several elementary observations to prove that 5(5) is a projection.
Since Pz(s) = P(s) and the fixed point of . is unique, it follows that P(s)P(s) =
P(s). From the definition of XB(t,s)ﬁ(s)x and P(s)x, we have

P(s)x = P(s)x - f X(s,u)Q(u)B(u)xB(u,s)ﬁ(s)x du.
S

Operate with X(t,s)P(s) to obtain X(t,s)P(s)S(s)x = X(t,s)P(s)x. For t = s, this
implies P(s)ﬁ(s) = P(s) for all s. Operating on this last relation with P(s) and
using the fact that P(s)P(s) = P(s), one obtains Pz(s) = P(s) and P(s) is a projec-
tion.

Let Q(s) = 1 - P(s). Using the fact that xB(t,s)ﬁ(s)x is a fixed point of 5
the variation of constants formula for XB(t,s) and the fact that X(t,s)P(s) =
P(t)X(t,s), P(t)P(t) = P(t),P(t)[I-P(t)] = 0, one obtains P(t)XB(t,s)P(s)x =
P(t)XB(t,s)x. This implies ﬁ(t)XB(t,s)Q(s)x = 0 for all x. But then the fact that
xB(t,s)ﬁ(s)x € P(P(t)) implies that

u

xB(t,s)i(s)x P(6)Xg(t,)P(s)x + QUTIXG(L,9)B(s)x =

5(:)x8(t.s)?(s)x = PIOXg(t, 9)x.

Thus, xB(t,s)ﬁ(s) = ﬁ(t)xn(t,s) for all t,s and (i) in (5.5) is satisfied.
After a few computations, one obtains
Xg(t,$)Q(s)x

t - S .
= X(t,s)Q(s)Q(s)x + J X(t,u)P(u)B(u)Xg(u,s)Q(s)x - J X(t,u)Q(u)B(u)Xg(u,s)Q(s)ds.
s t
If6=a ks < 1/2, B =a(1-20)2/2, 5 = 073 [1-(1-20)1/2], then one can obtain the
following estimate (it is nontrivial):
-B(t-s).

-

n
v

(=]

[Xg(t,8)P(s)] < oke

[Xg(t,5)8(s)] < pke BSTD) o,

(ol
v
(=]

Thus, estimates (ii), (iii) hold. This proves the lemma for J = R _. The same type

of argument applies to R_ and R.

Remark. In the proof of Lemma 5.2, one obtains the estimate
[B(s) - P(s)] < 60K%/(asB)
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which + 0 as 6 -+ 0 uniformly in s.
. : We state the following lemma without proof since it is similar to the proof of
Lemma 5.2.

Lemma 5.3. If A(t) » At as t + tw, Reo(At) # 0, then (5.4) has an exponential
dichotomy on R (R ) with projection matrix P’(t)(P'(t)) satisfying P:(t) + pt as

t + o,

Lemma 5.4. Let A(t) be an n x n matrix function, bounded and continuous on R such
that equation (5.4) has an exponential dichotomy on R, and R_ with projection
matrices P*(t),P (t), respectively. Then L : Ctl)m,Rn) - Cg(R,R") is Fredholm of
index dim @(P*(0)) + dim (P (0)) - n,

A(L) = {8 € C;CR»R“) : g(t)-A(t)g(t) = 0, t €R, g(0) €RP'(0)) ﬂﬁ(I-P-(O))}
-.' r L ]
.. (L) = if € cgm.n“) : J-“W"(t)f(t)dt = 0, * = transpose,
for all v € c;at,n“) satisfying the adjoint equation x +A*(t)x = o}.
Remark. If A(t) satisfies the conditions of Lemma 5.3 and P,,,P,. are the projection
-f: . operators respectively for the dichotomies of x - Ax =0, x - A_x = 0, then
N dinPP,,) = dim P(P*(0)), dim Q(PA_) = dim4P(P7(0)) and L in (5.4) has index

dimmPA.) + dimQ(PA-) - n.

Sketch of proof of Lemma 5.4. If X(t,s) is the solution operator of (5.4), then

-~ x'l(t,s) = X(s,t) is the solution operator of the adjoint equation

A (L*x)(t) = 0, L* = d/dt + A*("). (5.8)

This implies (5.8) has an exponential dichotomy on R‘ with projection matrix
- -t
Q*"(t) = I - P*"(t) and on R_ with projection matrix Q (t) = I - P" (t). The

",-" fact that A#(L) = {g € ciaz,n") : g(t) - A(t)g(t) = 0, t €ER, g(0) € V A K} where
‘ v =R(P‘(0)), w=R(Q(0)), Q =1-P, is clear. Also, _#(L*) = {g € Cém,lln)
o g(t) + A*(t)g(t) = 0, t €R, g(0) € V' N w*} where Vi = @(Q"7(0)), W= @ (0)
. 1f f € AL), then straightforward calculations show that vr(t)f(t)dt = 0
~ for all ¢ € _#(L*). Conversely, suppose f satisfies this orthogonality condition
-:.-: for all ¥ €_#{L*). A solution of Lx(t) = f(t), f € CO(R,Rn), is bounded on R if
T__ and only if there is a £ € R" such that
< t 00
x(t) = X(t,00P*(0)¢ + Jox(t.s)v‘(s)f(s)ds - J X(t,s)Q (s)f(s)ds, t >0
t
t t
. x(t) = X(t,0)Q (0)¢ + J X(t,s)Q (0)f(s)ds + I X(t,s)P (s)f(s)ds, t < O
A 0 -

that is, if and only if

<0

0
(?*(0)-Q (0)]¢ = [ X Vs, 0P (s)F(s)ds + fox'l(s.mq’(s)f(s)ds, or
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0 ® _
(P*(0)-Q (0] = f P (0)x 1(s,00£(s)ds + L)Q )% 1 (s,0)f(s)ds.

For this equation to have a solution, one must have the right hand side orthogonal
- - -

to all vectors n € R" such that n'[P’(O)-Q (0)] = 0; that is, P (0)n = Q .(O)n.

But, y € #(L*) if and only if

i
b

vie) = XY, 0a-P T onn t 20

= x""Ye,00p " 0)n ¢

IA

0
with P*'(O)n = Q-'(O)n. This proves that (L) is as stated in the lemma.

Thus L is Fredholm of index dimA(L) - dim(v® A w5). But dim (v' n wh) =
n-dim(V+W) = n-dim V - dim W - dim V N W. This proves the lemma.
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We can now use Lemma 5.4 to apply the LS method to obtain the bifurcation

™
]

equations for bounded solutions of (5.3). In fact, let © = (i).wz..‘.wq) be a basis

for A#(L). Since z(0) is required to be orthogonal to ;3(0), this implies the pro-

\ e

jection of z onto #(L) must have value at zero given by ®(0)b, b = (0,a), a € Rq'l.
If we let V¥ = (wl,...,wp) be a basis for _#(L*), (L*y)(t) = ;((t) - A*(t)x(t),
o0
D= r ¥+ (2)¥(t)dt, (I-E)f = vn"‘[ yr(t)f(t)dt for £ € CORR"), then E isa
-

continuous projection on C%m,lln) and #(L) =HL(F). Fix a € Rq'l and apply the LS
method to obtain a functicn z(e,u,c) in C{,(R,Rn) satisfying the equation

z - A(t)z = Ef(-,z,u,a)
(5.9)
z*(a,0,a)(0) = ©(0)b, b = (0,a).

This function z(a,u,a) will be a solution of (5.3) if and only if (a,u,a) satisfy
(I-E)f(-,z(a,u,a),u,a) = O which is equivalent to

G(a,u,a) = 0

(5.10)
G(a,u,a) = r y*(t)f(t,z(a,y,a)(t),u,a)dt = 0.
For a fixed u, this represents p equations for the q parameters (a,a).
As an illustration, consider the equation
Xy = X
! 2 (5.11)

Xy = -g(xl) Tyt uzf(t)

where u = (“x'“z) GRZ is a parameter, f(t) = f(t+1) is a continuous function,
g(0) = 0, g'(0) < 0. These conditions imply that zero is a saddle point for the

system ) .
X = Xy Xy = -g(x)). (5.12)

Suppose there is an orbit T = {(p(t),p(t)), t €R} of (5.12) such that
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(p(t),ﬁ(t)) + (0,0) as t » t=; that is, I is an homoclinic orbit through x = 0.

Since zero is a saddle point for (5.12), there is a unique hyperbolic periodic
solution @(t,u) of (5.11) of period 1 for |u| small, @(t,0) = 0. Our objective is to
give necessary and sufficient conditions on (5.11) in order that there is a homoclinic
point to w(0,u) in a small neighborhood of {0} x T foruin a small nejghborhood of
zero. " From the definition, we must determine a solution x of (5.11) which remains
in a small neighborhood of T for u near zero with the property that x(t)} - @(t,u) ~ 0
as t + t=». The trajectory {(t,9(t,u)),t € R} being a hyperbolic saddle implies that
we need only look for solutions of (5.11) which remain in a small neighborhood of
R x I for u near zero. Thus, for any solution x(t) of (5.11), we let x(t) = p(t+a) +
z(t+a), replace t by t -ato obtain the equation

RS (5.13)
2, = -g' (P(t))z)- uy25m8 P+, f(t-0)-g(p(t)+z))+g(P(t))+a" (p(T)) 2.
One can now apply the previous theory for small solutions z(t) of (5.13) for u in a

neighborhood of zero.
The linear variational equation around T is

il = X5, iz = -g'(p(t))xz. (5.14)

The only solutions of this equation which are bounded on R must be multiples of
(p(t),p(t)). This is proved by using the fact that a principal matrix solution has
determinant equal to one for all t. The adjoint equation

X, = g (P()x,, X, = -x

has the solution (-ﬁ(t),ﬁ(t)) bounded on R and all other solutions bounded on R are
multiples of this one. In the terminology of the general setting for equation (5.1),
(5.4), we have shown that _#(L) is spanned by (ﬁ(t),ﬁ(t)), A(L*) is spanned by
(-ﬁ(t),ﬁ(t)) and L has index zero. Thus, when we apply the LS method, q = p = 1
and the vector a is not needed in (5.9). The bifurcation function in (5.10) is

given approximately by

Glu,a) = rﬁ(t)t-ulé(t)wzf(t-undt + o(fu) (5.15)
as u + 0. This says that ul/u2 should be given approximately by
u
n == = h(a)
2 (5.16)

n = Iw p2(t)dt, h(a) = flﬁ(t)f(t-a)dt.

-0 -0
The function h(a) is periodic of period 1. 1If nul/u2 is given and satisfies
ninah(u) < nul/u2 < maxah(a), and h(uo) = nul/uz, then, if u is sufficiently small
there always exist an a(p),a(0) = ag such that equation (5.11) has a solution which
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approaches the periodic solution @(t,u) as t + 2=, This value a(4) corresponds to
the initial data near (p(a(u)),ﬁ(a(u))) for a solution x of (5.11) which lies on the
stable and unstable manifolds of the periodic solution @(t,u) of (5.11) near zero.
Furthermore, one can show that the intersection of these manifolds is transversal

if h'(uo) # 0. For the Poincare map 7, this implies that the flow has a behavior
similar to the one shown in Fig. 5.1, where Uv, Su are the unstable and stable mani-
folds of the fixed point Pu of 7 near zero.

Plalu),plalu)))
# U
Su
Figure 5.1

In the next section, we discuss the implications of the existence of a trans-
verse homoclinic point.

1f we make some further hypotheses on the function h(a) in (5.16), we can dis-
cuss the existence of homoclinic orbits for a full neighborhond of u = (ul.uz) =

(0,0). Suppose h(a) has an absolute maximum (minimum) at aM(am) and
h"(GM) <0, h"(um) > 0. (5.17)

Then one can prove that there are Cl-curves CM’ Cm in u-space with tangents at u = 0
respectively given by h(a")/n. h(um)/n which divide a neighborhood of u = 0 into

sectors sl.s as in Fig. 5.2, such that there are no homoclinic orbits in S1 and

2
homoclinic orbits in Sz.

Figure 5.2

6. Transverse homoclinic points. To say more about the flow near a transverse

homoclinic point, we need some further results on exponential dichotomies. We
consider only periodic systems

x = £(t,x) 6.1)

where f(t,x) is T-periodic in t. If 7 is the Poincare map taking points X, €R"
into the solution through Xo at time T, then fixed points of = correspond to T-
periodic solutions of (6.1). Let ®(t) be a T-periodic solution of (6.1). It is

hyperbolic if no characteristic exponents of the linear variational equation

' £, (t,0(t))x 6.2)

have zero real parts. This is equivalent to the statement that no eigenvalues of

. T =
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dmp(0)/dx are on the unit circle. From the Floquet theory, it is clear that @ is
hyperbolic if and only if (6.2) has an exponential dichotomy. Let Huup), wsap) be
the cross section of the stable and unstable manifolds of ¥ at t = 0. Any

£ € Nuap) n Hsao) is a homoclinic point of ©(0) and it is transversal if Wuoo)
intersects Hsao) transversally at £, If § € Nucp) n Wscp) and $(t,£) is the
solution of (6.1) through £ at zero, then y(t,£) - ®(t) + 0 as t + 2, Lemma 5.3
implies that the equation

x = £ (t,9(t,6))x (6.3)

has an exponential dichotomy on R_ and R_. Furthermore, Lemma 5.1 implies that
(6.3) has an exponential dichotomy or R if and only if the stable and unstable sub-
space at t = 0 intersect transversally. We have proved the following

Proposition 6.1. If ¢(-) is a hyperbolic T-periodic solution of (6.1), then £ is a
transversal homoclinic point of @©(0) if and only if equation (6.3) has an exponen-

i tial dichotomy.

We also need the following

- Lemma 6.2. For each integer k, let Ak(t) be a bounded continuous n X n matrix

function such that the system

X = A (t)x 6.4)

has an exponential dichotomy on an interval [tk_l,tk] with constants K,a (indepen-
dent of k) and projection matrix function Pk(t). Let A(t) = Ak(t), t € [tk_l,tk].

Also, suppose lAk(t)l < M for all t,k. Then there exist T = TolKsa),s 85 = 6 (K,a)
such that the equation

x = A(t)x 6.5)

has an exponential dichotomy onR if t, - t, , > 7, and ka(tk-l) - Pk-l(tk-l)l hLp

Proof: Only the ideas will be given. The first step of the proof is to construct
n x n matrix functions Bk(t) which are close to Ak(t) and such that x = Bk(t)x has
an exponential dichotomy on [tk-l'tk] with constants 3K,a and projection matrix
function Rk(t) with Rk(tk-l) = Rk_l(tk_l). If B(t) = Bk(t) and R(t) = Rk(t) on
[ty_y.t;], and Y(t,s) is the principal matrix solution of x tls(t)x, then
Y(t,s)R(s) = R(t)Y(t,s). One then shows that tk - tk-l > 202
an exponential dichotomy for this equation with constants 9K”,a/2 and matrix R(t).

2n3K implies there is

The equation (6.5) then can be considered as a perturbation of X = B(t)x to obtain
an exponential dichotomy of (6.5).

Let X, (t,s) be the principal matrix solution of x= A, t st We
construct the Bk(t) by finding a nonsinguler transformation of variables 5, (1) which

is close to the identify such that Yk(t,O) = Sk(t)xk(t,O) is a fundamenta) matrix
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of solutions for the equation x = B, (t)x on [tk_l.tk] and let Rk(t) =
Yk(t,O)Pk(O)Y:I(t.O). The simplest form for §, (t) is

-1
S (1) = T e (g -t 4) "(t-t, )1, t st

where Jk#l is nonsingular. Using the fact that xk(t,O)Pk(O) = Pk(t)xk(t,O), then
one sees that R, (t, .) =R, ,(t, ) if and only if P (¢, ,)J, = J.P, ,(t, ;) and

Jk is nonsingular. The operator

T m Pt P ()« (R (8 DU (8 )))
is a simple choice for Jk' To show Jk has an inverse, observe that
=g = [Pt ) - (T-PL(t,  DIIPL (Y, ) - P (2 )]
Thus, lI-JkI < 1/2 if §) = 1/4K and J, has an inverse.
With the notation above, let B(t) = Bk(t)' R(t) = Rk(t)’ t € [tk l,tk) and let
Y(t,s), Y(s,s) = I, be the principal matrix solution of x = B(t)x. We show that

x = B(t)x has an exponential dichotomy with constants 9K%a/2 and projection matrix
function Q(t) if t t, is > 2u'llog 3K, Let Q(0) = Q. For s < t, there are

integers k < j suc: ihat :k-l s <, tj-l <tx< tj and the following estimates
hold
jY(r,8)Q()}
j-2
< lv(t.tj_,)o(:j-,)ligklv(ti,l.ti)(o(ti)l-lv(tk,s)qts)l
< (SK)j-ROIe-u(t-s) < 9KZe-a(t-s)/z

since t - s > tj_1 -t 2 (j-k-l)zillog 3K. If one supplies the details of these
computations, the proof is complete.

Theorem 6.3. Suppose f € cg(n * R°RM), £ € cgm xR" R") and £, is continuous in
x uniformly in t,x. For each integer k, suppose that the system

x = £(t,x) (6.6)
has a solution wk(t) defined on [tk-l'tk] such that
x = fx(t.wk(t))x 6.7)

has an_exponential dichotomy on [t k] with constants K,a and projection matrix

t
k-1°
function Pk(t) and the following conditions are satisfied:

(i) ]wk-l(tk-l) - wk(tk'l)l <$§
GO Py ) - Ryl <6

(ii) ¢ -t 2T

Then there are positive constants €0 %o and a fUBEIESELGO(*) such that, if © 2 T,
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0<ex< eo and 6 < Go(e), then (6.6) has a unique solution x(t) satisfying

Ix()-w ()} <e fore , <t<t  for all k.

k-1 - k

Proof: Only an outline of the proof is given. If wu(t) = w (1), t € (¢, ,.t],
then w is continuous except with small jumps By at t,. Lemma 6.2 implies the
equation x = fx(t,w(t))x has an exponential dichotomy on R if t is large enough
and & is small enough. The next idea is to approximate w(t) by a continuous

function z(t) by linear interpolation

) -1 .
z(t) = w(t) + (tk-tk_l) (t-sk)lsk_l if tk-l <t < Sk
_ -1 .
() = w(t) + (tk-tk_l) (t-sk)sk if S Lt
where s, = (t,_,+t,)}/2. Then [z(e)-w(t)] < &,]z(e)-w(t)| < ?-16, except at the

points tk. Since z(t) is close to w(t) and fx(t,x) is continuous in x uniformly
with respect to t,x, the equation X = fx(t.z(t))x has an exponential dichotomy on
R. One now considers the solutions of (6.6) as variations from z by letting x(t) =
z(t) + v(t) to obtain

= f (tz2{t))v + g(r,V)

. (6.8)
g(t,v) = [f(t,z(t))-2(t)] + [f(r,z(t)+v) - £(t,2(t)) - fx(t.z(t))VI-

Now
lg(t,0)] < [£(t,2(t)) - £(r,w(t))| + |w(t) - z(t)| < (const)s

except at the points - Also,
lg (e = fE (,20)0) - £ (2Nl w (VD)

where w is the uniform modulus of continuity of fx' We have assumed that w(s) - 0
as s + 0. Since v = fx(t,z(t))v has an exponential dichotomy on R, the equation

v = £ (t,2(t))v + g(v)

where g 1is bounded on R and continuous except at the t,, has a unique solution Kg

bounded on R and supl(Kg)(t)| < (const) suplg(t)| 1f w: let F : R x C° CR.R ) -
C (R.R ) be defmed by the relation F(t, v) = v(t) - K(g(,v(*))(t), then equation
(6 8) has a solution in C ®R" ) if and only if F(-,v) = 0. The function F(-,v) is
continuous together with 1ts first derivative DVF( ,v) in a neighborhood U of v = 0
since fx(t,x) is continuous in x uniformly in (t,x). Furthermore, DVF(-,O) = 1.
Also, F(-,9) = 0, where ¢ = K[{f(*,2(+)) - z(*)]. Since |®| < (constant) -5, the
Implicit Function Theorem will imply that, for & sufficiently small, there is a
unique solution v* € cgan.n“) of F(-,v) = 0 in a neighborhood of v = 0 which is
O(|@]) as |w| + 0. The function x*(t) = v*(t) + z(t) is continuous and satisfies

x*(t) = £{t,x*(t)) except perhaps at t = ¢t But, since f(t,x) is continuous, it

K
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also must satisfy the equation at t- This proves the theorem.

Theorem 6.4. Suppose f(t,x) satisfies the smoothness properties in Theorem 6.3

and, in addition, is T-periodic in t. Suppose there is a doubly infinite sequence
{uk(t)} of hyperbolic T-periodic solutions of (6.6) and another sequence (vk(t)}
of bounded solutions such that vk(t) - u.k_l(t) +0 ast+ -, vk(t) - u.k(t) -0

PP
a'a'a’ate e

as t + += and the equation

x = £ (t,v, (£))x (6.9)

has an exponential dichotomy on R with constants K,a incependent of k. Then there

are ¢, > 0 and a function Mo(e) such that, for any 0 < ¢ i€ and any positive

integer m z_Mo(e), system (6.6) has a unique solution x(t) defined on R satisfying

[x(e+(2k-DnT) - v, ()] <€

for -oT < t < nT and all k.

Proof. Only an outline of the proof is given. Let Pk(t) be the projection matrix
function for the dichotomy of (6.9). Since vk(t) - uk(t) +0 as t + =, the
equation +(t) = fx(t.uk(t))x has an exponential dichotomy on [0,»). Since uk(t) is
periodic in t, the Floquet theory implies this equation has an exponential dichotomy
onR., Let Q, (t) be the corresponding projection matrix function. An extension of
Lemma 5.3 implies |f>k(t)-Qk(z)| +0 ast -+ w, |l3k(t)-Qk_l(t)| +0 ast -+ -=

S ?nifornly with respect to k. Let tk = 2kmT, wk(t) = vk(t-(2k-l)mT), Pk(t) =
P(t-(2k-1)mT), and apply Theorem 6.3 to complete the proof.

Figure 6.1 should assist the reader in understanding the meaning of the
hypotheses in Theorem 6.4 and also to feel intuitively why the conclusion is true;
that is, how one should be able to switch from comparing x(t+(2k-1)mT) to vk(t) on
[-»T,mT] to comparing x(t+(2(k+1)~1)mT) to vk*l(t) on [-mT,mT]; that is,
x(t+ (2 x-1)mT) to vk*l(-ZmT¢1) on [-mT,mT]. The hypotheses imply that
Vo1 AT =
if x(t+(2k-1)aT) is close to vk(x) on [-aT,mT], then x(mT+(2k-1)mT) =
x(-mT+(2(k+1)-1)mT) is close to vk¢1GnT).

vk+1(-MT) is close to vk(mT) if m is sufficiently large. Thus,

ettt
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Figure 6.1
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We now use Theorem 6.4 to obtain nformation chout the fiow near a trunsverse

homoclinic point. Iet N be 3 positive inteper and leo <\ Petne o set o Gl 1oub
infinite sequences a = 1...,u»j,a‘},n“,u:.a;,...‘ with hk € 1, o Ny
put the product topolegy on SN' that ts, g neighborheod basis of o point ot
('"’b-2'b~]'b0’b1'b2“") consists of the sets U1 = {a € S\ Cay e "L for b
The fright} Bernoull: shift & of SN is defined as (.—\m“k IR

Corollary 6.5. (Shadowing lemma)l.

in Theorem 6.3, is T-periwdic in t, has ar hvperbolic T-perrodic selution uiti and
in ‘heorem 1 .-periodic in a5 dn ppertollc e Aot

another solution vit) such that vt} - u(t) = 0 as t - == and the ejuarion

has an exponential dichotomy on R (that 1, vi0. is transverse nemeclinic te uto) by
Proposition 6.1).

Then there exists an < > 0 apd, for each positive integer N, o tunition
p &l it —_— A g ——

Al

MN(E) such that, tor anv @« ¢ < ¢ and any positive integer o - V\(») and any

a € SN' equaticn iv.6' has a unigue solution x, (tl satistyving

' A o1imTY - v T
;xa(t+!-k 1)mT? \(t*ak Vi

for -mT < t < ml and al} k.

. . . . .n .
The mapping ©la) = xq(ﬁ) 1s a homeomorphism ont:: a compact set of R on whichk

th . m ; : A . Zm . .
the 2m " iterate +~ of the Poincare map - is invariant and -7 ow = @ o2, where ¢

is the right Bernoulli shift on SN'

Proof: Let vk(t) = v(t*akT), uk(t) = u(t), k = 0, 1,... and apply Theorem 6.4 to
obtain the existence of xa(t). Uising the uniqueness of xu{t\, one can prove after

some computations that ¢(a) is a homeomorphism. To show that Mo Q=@ o R, ob-

serve that

[x, (t+(2(k+1)-1)mT) - v(t+a, T < ¢

for -mT < t < mT for all t. Thus, uniqueness implies xa(t~2mT) = xa(a)(t). Thus,

©(8(a)) = x,(2nT) = 72" (0(a)).

Remark. The "'shadowing lemma" for diffeomorphisms is usually proved by using horse-
shoes. In this type of proof, the symbols {0,1,...,N-11 occur as a specification of

whether or not iterates of a point belong to certain intervals.

7. Codimension one bifurcations in the plane. In previous sections, we have dis-

cussed various types of dynamic bifurcation for autonomous systems;, for example, the
saddle-node bifurcation in Section 3 and the generic Hopf bifurcation in Section 4.

We also discussed some aspects of homoclinic bifurcation. tor differential equations
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in the plane, much more information is available. 1In fact, one can completely
characterize all of the codimension one bifurcations. To make this more precise,
we need the concept of structural stability. We restrict the discussion to the
interior Q of a closed curve I' without contact to any of the vector fields to be
considered. Let g!; be the set of all such C* vector fields. Two vector fields
XY in gz;, r > 1, are equivalent if there is a homeomorphism on 2 U T which maps
orbits of one onto orbits of the other and preserves the sense of direction in time.

This is an equivalence relation'~" among vector fields. X is structurally stable if

every Y in a neighborhood of X is equivalent to X.

The condition that the vector fields are nowhere tangent to T is very con-
venient since it makes the domain where the differential equations are being con-
sidered to be a compact set. It also avoids certain complications which can arise
at the boundary. Our hypothesis does put restrictions on the vector fields. Since
our objective is to present some of the basic ideas, the hypothesis seems justified
in view of the technicalities that arise in considering the noncompact case or flows
on manifolds.

The basic result on structural stability is the following.

Theorem 7.1. An f €£2; is structurally stable if and only if every equilibrium
point and every periodic orbit is hyperbolic and there are no connections between

saddle points. The set of structurally stable systems is obviously open but is also

dense in %

An X €£Z; is a bifurcation point (a vector field for which a perturbation could

lead to a bifurcation) if X is structurally unstable; that is, not structurally

stable. We now give an inductive definition of a bifurcation point of codimension k.

The vector field X is a bifurcation point of codimension 0 if it is structurally

stable. X is a bifurcation point of codimension 1 if it is not codimension zero and

there is a neighborhood of X which has only bifurcation points of codimension 0 or

ones which are equivalent to X. It is a bifurcation point of codimension 2 if it

is not of codimension zero or one and there is a neighborhood containing only bifur-
cation points of codimension 0 or 1, or, ones which are equivalent to X. Similarly,

one defines bifurcation points of codimension k.

The following result is a classification of bifurcation points of codimension

one in the plane.

Theorem 7.2. A vecotr field f 652:, r > 3, is _a bifurcation point of codimension 1

if and only if there is a neighborhood W of f and a submanifold T of codimension

one in W such that W~ T = Ul v UZ where each g € Ui is structurally stable but

g*hif g€ Ul'h € UZ' For g € T, only one of the following situations prevails:

(i) g €T has an elementary saddle-node at LI there are no equilibrium

P e e " o . . g - _a a W G ST ST W ST W WY T PSSR S )
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points of g near x, if g€ U1 and a saddle and node near X, ifge€u

2
(i1) g € T has an elementary focus at Xy there is no periodic orbit of g

near x, if g€ U1 and a periodic orbit near Xo if g € Uz --the generic

Hopf bifurcation.

(iii) g € I has a periodic orbit y which is stable from one side, unstable

from the other, g € U1 has no periodic orbit near v and g € U2

two hyperbolic periodic orbits near y.

(iv) o, = tr af(xo)/ax # 0, g €T has a homoclinic orbit containing a

0
saddle point X9 B € U1 has a saddle near xo and no periodic orbit

near vy, g € U2 has a saddle point and a unique hyperbolic periodic

orbit near ywhich coalesce as g + T.

(v) there is a connection between distinct saddle points.

Each of the cases (i)-(v) is shown in Figure 7.1.

(i) ———

\

:}:@ @@Jr

(iii)

S~
(ii) Q)
O

(iv)

)
o 4k

U,

®
©
0
-

Uz
Figure 7.1

We do not give a proof of either Theorem 7.1 or 7.2. We only remark that we
have discussed the bifurcations that occur in cases (i) and (ii) in Section 3 and
4. Case (1ii) can be discussed using the methods in Section 4 after the introduc-
tion of a coordinate system x = (8,p), x = p(6) + pv(8) where p(t) is a non-
hyperbolic periodic solution of a bifurcation point f ¢ 52{ and v(p) is orthogonal
to ﬁ(o). Case (iv) is the most difficult. Let us only mo;ivatc the condition n”# 0.

s B

o dind
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Let us suppose that we have a vector field f(x,u) in R2 depending on a scalar
parameter y with the property that there is a hyperbolic saddle point at 0 with the
eigenvalues bounded away from zero for all u. Also, suppose there is a hyperbolic
periodic orbit Pu of period w(¥) which has the property that dist(O,Pu) ~ 0 as
u »+ 0. This creates a homoclinic orbit T at u = 0. For such a situation to occur,
the period w(u) must approach @ as u -+ 0, If this one parameter family of vector
fields is generic, then one cannot expect to have other bad things happen as we
change the vector field since we use the parameter to make w{s) = as u +> 0. In
particular, the rate of attraction or repulsion of the periodic orbit Pu
should be exponential and uniform in u. If we keep this uniformity as u + 0, then
the orbit T should have the property that it is either asymptotically stable or
unstable depending on whether Pu is stable or unstable.

To find a quantitative expression for this uniformity, let us recall the
formula for the characteristic exponents of the linear variational equation for a
periodic orbit in the plane. If Pu = {pu(t) :0<t<wml}and x = P, * Y, then
the linear variational equation for P, is

. _ f
Y = 3% (P, (1), 1)y.

The nontrivial periodic function éu satisfies this equation and thus one charac-
teristic exponent may be taken to be zero. Let A(u) be the other characteristic
exponent. The sum A(b) + 0 = A(u) of the characteristic exponents must be

1 w(u)
A(u) = ) Jo [tr af(pu(t),u)/dx]dt.

Then one can show that
1 w(u)/2
Au) = J

oy [tr 3f(p, (t),1)/dx)dt~> tr 3£(0,0)/3x

~w(u)/2
as ¥ * 0. Consequently, the rate of attraction or repulsion of each Pu will be
exponential and uniform inuif
o def tr 3f(0,0) _ 0.
0 Ix

The fact that only two possibilities arise in a neighborhood of a bifurcation
point of codimension one suggests that this is the typical or generic situation that
arises in the discussion of one parameter families of vector fields. This is, in
fact, the case and one can prove

Theorem 7.3, If ¢ = (0 : [0,1] *Qg.weck).kzs.mékﬂweo“ D O(t) is

structurally stable except at a finite number (depending op @) points t. with @(t,)
a bifurcation point of codimension omel, mn.ék is a residual set in "ok )

The analysis of hifurcations of codimension greater than onc ure generally
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much more difficult. For some cases, the ideas are clearly understood and it is

mainly a technical problem to do the complete analysis. This remark applies to the

. situation where the linear variational equation near an equilibrium point has either

o a simple eigenvalue zero or a pair of purely imaginary eigenvalues on the imaginary
axis. The ideas in Sections 3 and 4 apply to this situation. In the plane, the
methods necessary to analyze the bifurcations of higher codimension resulting from

Li~ the nonhyperbolicity of a periodic orbit are also clear. For other situations,

< special difficulties arise and each problem is a challenge in itself. In the next

sections, we discuss some special codimension two bifurcations.

8. Two zero eigenvalues. In this section, we discuss a codimension two bifurcation

The unperturbed system is taken to be

X = -y, ¥ =ax® + Bxy (8.1)

’

where a=0, 8 # 0. Without loss in generality, one can assume a < 0, 8 > 0. The
perturbed system will be

2 X=y, y= €)X+ ey ¢ ax?® + Bxy (8.2)

where :1,52 are small parameters. The problem is to discuss the behavior of the
solutions of (8.2) in a neighborhood of (x,y) = (0,0) for (el.cz) in a neighborhood
of (0,0). We remark that the conclusions below are valid for some higher order per-

turbations of (8.2) and that we omit such terms only for simplicity in notation.

} We only discuss ¢, > 0, since the other case is less intersting. The scaling

1

2

=5, = u62, §>0

€ €2

1

t— 5§ 't, x s 52|u|']x, y > 63a] Yy

leads to new equations
X=y, ¥=x-x°euby+ byxy (8.3)
where y = Blal-l.
: For § = 0, Equation (8.3) becomes the conservative system
{5 X=y, y=x- 2 (8.4)
5 with first integral

= 2 2 3
Vixy) = & - 50 5o (8.5)

The equilibrium point (0,0) is a saddle with a homoclinic orbit through it while the
equilibrium point (1,0) is a center.

The parametrization of the phase space by the above scaling is suggested by
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the following. The orbits of the unperturbed equation (8.1) satisfy the equation
ydy = (uxzoexy)dx. The orbit which passes through the origin is given approximately
by y2 = uxs. Thus when one "blows up" the flow at the origin, it is natural to do
it by parametrizing the phase space with cusps. The orbits for (8.2) satisfy

dy = [(e1 + om):v(y'1 + (e,*8x)]dx.

For € > 0, it turns out that the appropriate parameterization in parameter space is
to take €)1€,5,X of the same order. This leads to the scaling used above. Notice that

the flows defined by (8.2) and (8.3) are equivalent for § > 0, but are not equivalent
for & = 0.

Our next task is to determine the curves in the (el.ez)-plane (that is, the
values of §,u) at which the topological structure of the traiectories of Equation
(8.3) changes. As we shall see, this structure can chﬁnge only due to a homoclinic
orbit or a change in stability of the equilibrium point (1,0).

Let T = {(q(t),q(t)), t €R} U {(0,0)} be the homoclinic orbit of (8.4). We
may now apply the results of Section 5 to obtain the curve in (u.8)-space such that
(8.3) has a homoclinic orbit. In particular, from Eq. (5.4), we have this curve
corresponds to the zeros of the bifurcation function

G(u,8) = u + yv + G(y,6)
J qdz/J §?

where G(y,0) = 0. There is no o in G(u,8) since the equation is autonomous. One
can show that v = 6/7. The equatienr G(y,8) = 0 has a unique solution (,(§),6),

<
[l

0< |8] <68y 85> 0, u(0) = Mo = -yv. Finally, the curve C_in (e),e,)-space along
which there is a homoclinic orbit is given by

c = {(e)rey) t ey = u(sll/z)cl, w(0) = -yv} .

On the curve C, ~ {0,0} we have Oy = €5 < 0, where % is the number given in Theorem
7.2. From part (iv) of Theorem 7.2, this suggests there should be a periodic orbit
near this curve.

We now discuss the periodic orbits of (8.3). This part of the analysis in
problems of this type is the most difficult, especially the discussion of the number
of periodic orbits that can exist. One can prove the following lemma.

lemma 8.1. Every periodic orbit of Equation (8.3) must intersect the segment

(0,1) x {0} in the (x,y)-plane. There is a continuous positive function 8g

(0,1) » R and a continuously differentiable function u*(h,8), be (0,1, :6| < 6n(h)
such that there is a periodic orbit of Equation (8.3) through (b,0) if and only if

v = u*(b,8). Furthermore,

'
b D .
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u*(b,0) = -yB(b)/a(b)

c(b) c(b)
a(b) = J ydx, g8(b) = J xydx > 0
b
2 2.2 3.3
Yy . x-b7 _ x"-b
yz 0. 3 ) 3
2 2 3 3
cd) > 1, < (g)‘b _ < (g)'b =0

6 .
and du*(b,0)/db < 0. Also, u*(b,0) + -y as b + 1, w*(b,0) » - Y as b + 0. Finally,
iﬁ u = u*(b,8) for a fixed b € (0,1) and |6| < Go(b), then the periodic orbit through
(b,0) is the only one corresponding to this y,§.

Remark: The assertion du*(b,0)/db < 0 implies, for any bo, there is a Go(bo) such

that along the curve g, = u‘(bo,é)ez, 0< 6§ < éo(b), there is a unique periodic orbit

1
of (8.3) which approaches the periodic orbit of (8.4) through (bO,O) as § + 0.

We give only an indication of the proof of Lemma 8.1. If V(x,y) is the deriva-
tive of V along thé solutions of (8.3), then V = 6(u+yx)y2.

For a fixed (b,0), 0 < b < 1, and § sufficiently small, there are numbers
= rl(b,s,u) < Q< T, = rz(b.é.u) such that the solution through (b,0) intersects
the x-axis at time Tj at a point.larger than 1. Furthermore, for t € (11,12), the
orbit interrects the x-axis only for t = 0. Let I' = I'(b,6,u) be that part of the
orbit through (b,0) corresponding to t € [11,12]. For I' to be a periodic orbit, it

is necessary and sufficient that vdt = 0, which for & # 0, is equivalent to
T

F(b,5,u) "Sf[ wryx)y? = 0.
T

One can now apply the Implicit Function Theorem to this equation near the
point (bo,O,uo), by = -yﬁ(bo)/u(bo). This will prove the first part of the lemma.
The fact that u*(b,0) approaches the limits indicated above require only elementary

computations.

The difficult part of the lemma is to show du*(b,0)/db < 0. 1If 2a = -b2 +
2b3/3, then 0 < b < 1 implies -1 < 6a < 0. Let b(a) be the inverse of this trans-
formation and put v(a) = g(b(a)/a(b(a)). If we consider 8, as functions of a
and let " ' " be differentiation with respect to a, then the lemma is proved if
one shows that v' < 0, -1 < 6a < 0. To carry out this proof, one exploits special
properties of the elliptic integrals a,B8. More precisely, one shows that a,3 and
a',B" can be expressed as linear combinations of a',8'. We are going to show that

Sa = 6aa' + 8' , 358 = 6aa' + 6(1+5a)g’
(8.6)
6a(l+6a)a'" = -baa' - g' , (146a)g" = g' - a’

PR A U S LA
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c
We have already proved that g'(a) = xy'lgx. Using the fact that x =
Yy + xz, y(b) = y(c) = 0, one obtains B'(a? = xzy'ldx. Integrating by parts,
using Yy, = % - x2 and the formula for B', we haee
c < c 2. -1 © 3
a = J ydx = -[ xyxdx = -I x(x-x")y “dx = -B* + J Xy “dx. (8.7)
b b b b

This relation and the formula for y imply that

c c c
J ydx = I yzy-ldx = I [x2 - %xs + Za]y-ldx
b

o =
b b
- v 2 L} +
= 8' - 3(&*8 ) + 2aa
or, Sa = 6aa' + B'.

Integrating B by parts and using the formula for YYyr we have

C < C <
g = J xydx = —J (x2/2)yxdx = - %J xsy'ldx + %{ xdy'ldx.
b b b b

C
Using (8.7), this implies 8 + (1/2)(a+8’) = (1/2)f x*y"ldx. Using the formula for

yz, (8.7) and this latter relation, one obtains

g8 = [:xyzy'ldx = f:(xs- %«4 + Zax]y'ldx =a+ B - %ﬁ - %(a*B') + 2ag'
Simplifying this expression, one obtains 78 = a + B' + 6aB'. Using the previously
obtained expression for a in terms of a',B8', one finds that 358 = 6aa' + 6(1+5a)8"'.
The expressions for a'",B" are obtained from the relations for a,8. This completes
the proof of (8.6).

Using these relations, one now proves that, if v'(a) = 0 for some a,
-1 < 6a < 0, then
-6a(l+6a)av’/a' = - (v + 6a)2 - 6a(l+6a) < 0;

that is, V''(a) < 0.

Next, one shows that v'(a) = 0 implies 7v2(a) + 6(2a-1)v(a) - 6a = 0. This
implies that, if v'(a) = 0 and v(a) = 1, then 6a = -1. Since v(0) = 6/7, we have
v'(a) = 0 implies O < v(a) < 1.

Using the fact that uo(-1/6) =1, uo(O) = 6/7, one easily concludes that

vy'(a) <0, -1 < 6a < 0 and the lemma is proved.

Using Lemma 8.1 and the remarks about the homoclinic orbit before the state-
ment of the lemma, Theorem 7.2 (iv) implies that for each point in the region below
the curve C_, there is a unique periodic orbit. Next, we analyze the behavior of

the solutions of (8.3) near the equilibrium point (1,0). This point is a stable

focus if y < -y, and an unstable focus if u > -y,y = Blul-l. The curve u = -y is
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therefore a possible value for a Hopf bifurcation. One can apply the method of
Section 4 for the periodic orbits near (1,0) and obtain a bifurcation function

G@,u,8) for |&§] < 84 Jal < a [u ¢+ v| < n for some constants §, > 0, a > 0,

. 0 0
e n > 0. Since Equation (8.3) for 6 = 0 has a center at (1,0), it follows that
G(a,u,0) = 0 for all a,u. Thus, the appropriate bifurcation function to consider
L - is H(a,u,8) = G(a,u,8)/8. This function satisfies H(0,u,8) = 0, 3H(0,n,0)/2a =

(W + Y)/2. Lemma 8.1 implies for each y > -y and sufficiently close to -y, there
is a unique periodic orbit of (8.3) through (b,0) with b near 1. Thus, if b is
taken close enough to 1, this periodic orbit must correspond to a zero of the

j bifurcation function H(a,u,6). This proves there is a Hopf bifurcation at u = -y
: and the periodic orbit is asymptotically stable.

One thus obtains the complete bifurcation diagrams as shown in Fig. 8.1 with
the flow in each sector given in Fig. 8.2. We draw the curves in Fig. 8.1 as
straight lines but this is really only the first approximation.

€,

I e

|
SECTOR | | SECTOR 2 ! secTor 3
Figure 8.2

9. Two zero roots with symmetry. In a planar system where the matrix of the linear

variational equation near an equilibrium point has both eigenvalues zero with non-
simple elementary divisors, the analysis in the previous section showed that the
vector field (8.1) with quadratic terms was a8 codimension two bifurcation. If there
is some symmetry in the vector field; for example, it is odd in (x,y), then the
quadratic terms in the Taylor expansion vanish. Thus, it becomes of interest to
know what additicaal nonlinear terms are needed in order to obtain a codimension two

bifurcation. In this section, we summarize some results with only brief indications
of the proofs.

Consider the equation

Xx=y, 9 ICTE IR P A axs . szy (9.1

with a < 0, B < 0 and €1:€5 small parameters. The problem is to analy:ze the
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behavior of the solutions of (9.1) in a neighborhood of (x,y) = (0,0) for (51,52)
in a neighborhood of (¢;»¢,) = (0,0).

The bifurcation diagram is shown in Fig. 9.1 with the flow in each sector

given in Fig. 9.2.
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. Let us give an idea of how these results are obtained for the case €, > 0.
O Firstly, one introduces scaling

6 = |slu'1|1/2, €, = |u|l/26u, X —> 8x, y > Gzlull/zy

t —s [ul'llzﬁ'l t
- to obtain
- : i 3 2
. X=y, y=Xx+uy--x +&/xy (9.2)
SR where vy = Blal-l/z. For u = 0, § = 0, this equation has the first integral

H(x,y) = y2/2 - x2/2 + x4/4. 9.3)

Some of the level curves H(x,y) = b of this function are shown in Fig. 9.3. For
b = 0, the curve is a figure of eight and for b > 0, it is a closed curve through

the point (x,y) = (0,(2b)1/2). For b < 0, the set H(x,y) = b consists of two closed

X0

Figure 9.3

curves surrounding, respectively, the equilibrium points (1,0), (-1,0). These curves
A pass through the point (0,c), 0 < c <1, b = -c2/2 + c4/4. The derivative H(x,y)

A along the solutions of (9.2) is given by ﬁ(x,y) = uy2 + vazyz.

- The first step in the analysis is to determine the curve u = u*(8) so that
(9.2) has a homoclinic orbit. This curve is obtained as in the example of Section 8
and is shown to be

W*(8) = -(4/5)6y + O(8%) as & = 0.

The next step is to analyze the periodic orbits. There is the possibility of
two types: an orbit which contains only one equilibrium point in its interior or an
orbit which contains three points in its interior. These orbits will be close to a
o curve H(x,y) = b for some b < 0 in the first case and some b > 0 in the latter case.
.: These two cases must be analyzed separately.

}{ For b > 0, let 11 = tl(u,b.é) > 0 be the first positive value of t for
. which the solution through (0,(2b)1/2) crosses the x-axis, say at xl(u.b,é). Let
1, 12(¥,b,6) be the first negative value of t for which the solution through
(0,-(2b) ) crosses the x-axis, say at xz(u,b.é). From the symmetry in the equa-
- tion, it follows that (o,(zb)l/2

) lies on a periodic orbit if and only if
H(x;(u,b,6),0) = H(x,(u,b,8),0). Using the expression for i(x,y), it is not diffi-
cult to show that this implies
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N O o(s%)
J x ydx (9.4)
P(b) = =
I ydx
0

where c = c(b) is the positive solution of 4b = c4 - 2c2 and H(x,y) = b. For P(b),

one can now prove the following basic result.

Lemms 9.1. P(b) + = as b + = and there is a unique minimum of P(b) at b = bl and
P"(bl) > 0.

2 4 1/2 ¢ €2
Idea of the proof: If r(w) = (w -w /2 + 2b) , a(b) = I r(w)dw, B(b) = J wor(w)dw,
0 0

4b = c4 - 2c2, then P(b) = g(b)/a(b). If a' = da/db,B' = dB8/db, then one 'shows that

3a = 4ba' + B’
(9.5)

n

158 = 4ba' + (4+12b)R'

. after several computations.
Now, suppose that P'(bl) = 0. Then a(bl)P"(bl) = B"(bl) - P(bl)a"(bl) and
relations (9.5) imply that

4b, (46 +1) (8" (b)) -P (b )a" (b;)] = a’ (b)) [P*(b,)+8b P(b))-4b,].

Thus, P"(b)) has the same sign as Pz(b1)+8blP(bl)-4b1.

On the other hand, P'(bl)s 0 and relations (9.5) imply that
2
SP (bl)«-ablP(bl)-4P(bl)-4b1

which mplxes P(b ) <1 since b 0. Using the fact that 8b P(b ) - 4b
4P(b ) - SP (b )}, we see that P"(b ) has the same sign as P(b ) - P2(b wh1ch is
>0 since P(b ) <1,

It is not difficult to prove that P(b) + « as b+ «» and P'(b) » ~» as b + 0,
This will complete the proof of the lemma.

The graph of P(b) is illustrated in Fig. 9.4,

P(b)l
|
|

..-...+-...‘.-._... b
l

I
Figure 9.4
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From (9.4), the periodic orbits with b > 0 are given approximately by -u(yé)'1 =
P(b). Thus, approximately, there should be no periodic orbit encircling the three
equilibrium points if -u(ys)-l < min P(b) = P(bl). two periodic orbits if P(bl) <
-u(ycs)'l < P(0) and one periodic orbit if P(0) < -u(yd)'l. This can be made precise
since P"(bl) > 0 to confirm the part of the bifurcation diagram in Fig. 9.1 for the
periodic orbits which encircle three equilibrium points.

The analysis of the periodic orbits encircling only one equilibrium point uses

methods very similar to the ones in Section 8 and will not be given.

Notes

These notes are intended to relate the results stated in previous sections to

existing literature. No claim is made toward completeness nor even original sources.

Section 1. The methods in this section are very special cases of a much more gener-
al global procedure for discussing the zeros of functions. This procedure often is
called the alternative method and originated from some fundamental papers of Cesari

in the early 1960's (for references and an historical discussion, see Cesari [6],
Chow and Hale [7]).

Section 3. Theorem 3.1 can be found in deOliveira and Hale [13) and can also be
obtained from a result in Golubitsky and Schaeffer [15]. Theorem 3.2 appeared in
the paper of Crandall and Rabinowitz [11], [12]. The saddle-node and cusp bifurca-
tions can be found in Andronov et al [1]. The complete discussion of the case
6(x,0) = gxd + o(lxlq), B # 0, belongs to the general theory of unfolding of singu-
larities (see, for example, Golubitsky and Buillemin [14]). For a full treatment
of the evolutionary equations of the form (3.17), see Henry {17]. For functional
differential equations, see Hale {16].

Section 4. For a detailed discussion of the Hopf Bifurcation Theorem as well as
references, see Marsden and McCracken [21] and Chow and Hale [7]. Results and
references for parabolic equations may be found in KielhSfer [20] and for functional
differential equations in [16].

Section 5. An excellent discussion of dichotomies is contained in Coppel [10].
Exponential dichotomies for parabolic equations are contained in Henry [17] and for
functional differential equations Pecelli [24]. Lemmas 5.3 and 5.4 are due to
Palmer [23]. The use of the Fredholm alternative to discuss Example (5.11) was
first given by Chow, Hale and Mallet-Paret [8). The Mel'nikov function can also be
used to discuss (5.11) (see, e.g. Holmes [18]). Lemma 5.4 and its application to
obtain the function G(a,u,a) in (5.10) can be considered as a generalization of the

Mel'nikov function to n-dimensions.
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Section 6. The methods and results in this section are based on Palmer [23]). For

other references and approaches to the "shadowing lemma" and the symbolic dynamics
- ’ of Corollary 6.5, see Smale [27], Conley [9], Moser [22], Sil‘'nikov [26].

Section 7. Theorem 7.1 is due to Andronov and Pontrjagin [2] and Peixoto [25].
Theorem 7.2 is due to Andronov et al [1] and Sotomayor [28]. Theorem 7.3 is due to
Sotomayor [28].

o Section 8. The bifurcation diagram for Eq. (8.2) was considered by Howard and

-j Koppell {19]. Arnol'd {3] and Bogdanov [4] considered an equivalent equation

: X=y,y= £y ¢ gyX ¢ ax” « Bxy. Bogdanov {4] has shown that every two parameter
family of vector fields close to x = y, y = ax2 + Bxy in the C3 topology is equiva-

- lent to a member of the above two parameter family.

: Section 9. The results in this section are due to Takens [29,30] and Carr [S].
Acknowledgement: The author is indebted to Giorgio Fusco for several stimulating
discussions during the preparation of these notes.
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