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* >. Dynamic bifurcation theory in differential equations is concerned

with the changes that occur in the structure of the limit sets of solutions

as parameters in the vector field are varied. For example, if the vector

field is the gradient of a function with a finite number of critical points,

' then the i-limit set of each orbit is an equilibrium point. Thus, one must

be concerned with how the number of equilibrium points changes with the

parameters (this is usually called static bifurcation theory), how the

stability properties of the equilibrium points change and the manner in

which the equilibrium points are connected to each other by orbits. If the

vector field is not the gradient of a function, then other types of limiting

motions can occur; for example, periodic orbits, invariant tori, homoclinic

and heteroclinic orbits. The purpose of these notes is to give an introduc-

tion to the methods used in determining how these more complicated limit sets

change as parameters vary.
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INTRODUCTION TO DYNAMIC BIFURCATION

Jack K. Hale

Lefschetz Center for Dynamical Systems

Division of Applied Mathematics

Brown University

Providence, Rhode Island 02912

Introduction. Dynamic bifurcation theory in differential equations is concerned

with the changes that occur in the structure of the limit sets of solutions as para-

meters in the vector field are varied. For example, if the vector field is the

gradient of a function with a finite number of critical points, then the w-limit set

of each orbit is an equilibrium point. Thus, one must be concerned with how the

number of equilibrium points changes with the parameters (this is usually called

static bifurcation theory), how the stability properties of the equilibrium points

change and the manner in which the equilibrium points are connected to each other

by orbits. If the vector field is not the gradient of a function, then other types

of limiting motions can occur; for example, periodic orbits, invariant tori, homo-

clinic and heteroclinic orbits. Important questions in bifurcation theory are con-

cerned with the manner in which these more complicated limit sets change as

parameters va-.y.

A person being introduced for the first time to bifurcation theory may have the

impression that it consists of a collection of isolated results without an) unifying

principles. Furthermore, since bifurcations are a rare occurrence, perhaps they

could be avoided if one were clever enough. Neither of these statements are true.

As an illustration, suppose one has a one parameter family of vector fields X, de-

pending on a parameter A, 0 < X < 1, with the property that the phase portraits of

the flows for X - 0 and A = I are completely different. Then there must be some

point X0 in (0,1) where the structure of the flow changes in a neighborhood of X

that is, a bifurcation must occur. This shows bifurcations cannot be avoided. The

underlying piinciple In bifurcation theory for this illustration with one parameter

familes of vector fields is the following. Among all of the one parameter families

XX, 0 < A < 1, of vector fields, characterize those for which the bifurcations are

the most elementary. By most elementary, one generally means that a perturbation

of the one parameter family will have the same type of bifurcations as the unper-

turbed family. This implies that such a family is "transversal" to all of the

bifurcation surfaces in the class of all vector fields. If the family X depends

on two parameters X ( 21, 2), 0 < j < 1, then one can attempt in the same way to

* This research was supported in part by the National Science Foundation under con-

tract #MCS 8205355, in part by the Air Force Office of Scientific Research under

contract #*-AFOSR 81-0198, and in part by the U.S. Army Rescarch Office under

contract ODAAG-29-79-C-0161.
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classify those which are "transversal" to all the bifurcation surfaces. Two mani-

folds are transversal if the tangent spaces span the whole space. In Figure 1, we

have schematically indicated one and two parameter families X which are trans-

versal to the bifurcation surface S.

Figure 1

In the following, when we use the term codimension one (codimension k) singularity,

we mean an elementary bifurcation point for a one (k) parameter family of vector

fields. If the reader keeps this idea in mind as he studies the subject, he will

recognize that specific theorems are precise mathematical descriptions of the above

imprecise remarks. Of course, it should be clear that the same remarks apply to

vector fields which depend on two or more parameters.

The purpose of these lectures is to introduce the reader to some of the basic

ideas in bifurcation. The first lectures deal with applications of the Fredholm

alternative and the method of Liapunov-Schmidt to bifurcation near equilibrium and

the existence of homoclinic orbits. To illustrate the more global aspects of the

theory, we summarize the codimension one singularities in the plane and give some

examples of codimension two singularities.

Throughout the notes C (X,Y) denotes the set of functions from X to Y which arek

continuous together with derivatives up through order k. The space Cb(X.Y) is the

kbset in C (XY) with all derivatives up through order k bounded with the norm

being the sup of all derivatives up through order k.

1. The Fredholm alternative and Liapunov-Schmidt. Many problems in bifurcation

theory lead to the study of the zeros of a function in the neighborhood of a given

point. Often, the analysis consists of the following steps: firstly, analyze the

nonhomogeneous linear equation (referred to as the Fredholm alternative); secondly,

use this information to reduce the original problem to one of lower dimension by

obtaining a bifurcation function (referred to as the method of alternative problems

or the method of Liapunov-Schmidt); thirdly, analyze the bifurcation equation;

fourthly, relate the analysis to dynamical behavior.

The purpose of this section is to give an abstract version of the first two

steps.

If P is a continuous projection on any Banach space X. we let X denote the

range of P. If X,Z are Banach spaces, we let .'(N,) denote the space of bounded
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linear operators from X to Z. If A E. *X,Z), we let .4'(A) = [x Ax = 0), R(A) =

{z E Z : 3x E X 3 Ax = z). We shall also use the notation .A(A) = XU Q(A) = ZE

to denote that there are continuous projections U,E such that these equalities hold.

The assertion that -Q(A) - ZE is an important restriction on A if the space is

infinite dimensions.

Lemma 1.1. If A E_X,Z),.AVA),= XU,.Q(A) = ZE, then there exists a right inverse

K E.tZE,XI U) of A, AK = I on ZEKA = I - U on X. (see Fig. 1.1)

-o.X 1-u A R(A)- ZE

K

,4,(Ai. X
u  ZlI-E

Figure 1.1

Proof: Since A is one-to-one from XI_ U onto ZE' the existence of K is clear. The

fact that K is bounded follows from the open mapping theorem.

Suppose A is a linear operator as in Lemma 1.1, A is a Banach space denoting

the parameter space and N : X x A - Z is a C
1 

function satisfying

N(O,0) = 0, D xN(0,0) = 0 (1.1)

We want to discuss the solutions of the equation

Ax - N(x,X) (1.2)

for (x,X) in a neighborhood of (0.0).

Using the projection operator E in Lemma 1.1, we can rewrite (1.2) in the

equivalent form

EAx = EN(x,A), (I-E)Ax = (I-E)N(xX).

If we let x - y + z, y E XU, z E X1_U and use the fact that EA x A,(I-E)A=0, Ax = A:

and K is a right inverse of A on ZE' we obtain the equivalent equations,

z = KEN(y+z,X) (l.3a)

0 = (I-E)N(y+z, ). (l.3b)

One can use the Implicit Function Theorem to obtain a unique solution z*(y,A) of

(l.3a) in a neighborhood of zero, z*(0,0) = 0, Dyz*(0,O) = 0. For x = y + :*(v,X)

to be a solution of the equation (1.2), the pair (y,X) must satisfy

G(y,)) = 0
,. (1 .4)

; G(y,k) =(l-E)N(y~z*(y,A),X).

The function G(y,l) is known as the bifurcation function. The above procedure for

obtaining solutions of (1.2) is an application of the alternative method and is

known as the method of Liapunov-Schmidt (LS method). It is summarized in



Lemma 1.2. There is a neighborhood U of (x,) = (0,0) such that every solution of

(1.2) has the form x = y + z*(y,A) where z*(y,A) is the solution of (l.3a) and (y,))

satisfy (1.4).

Several specific illustrations of Lemma 1.2 will be given in these notes. At

the same time, we will discuss the solutions of the bifurcation equation and relate

the analysis to dynamical behavior.

An operator A : X + Z with closed range and having dim-.kA) < -, codim _(A) <

is called a Fredholm onerator of index dimA'(A) - codimg(A).

In the applications, Equation (1.2) often arises in the following manner. Sup-

pose M : X x A -* Z is a given smooth function and suppose it is known that the equa-

tion H(x,A) = 0 has a solution x = fp(A) for A in some open set. One can study the

solutions of (x,A) = 0 near w(A) by letting x -0(A) + x to obtain a new function

which we again call M such that (O,) = 0 for A in an open set. The Taylor series

for M is then

M(xA) = D(A)x + -(xA), ?(x,A) = o(ixi) as xi - 0.

If the operator D(A0) has a bounded inverse, then the Implicit Function Theorem im-

plies that M(x,X) = 0 has a unique solution x*CX) in a neighborhood of (0,A0),

x*( O = 0. Thus, no bifurcation can occur. If D(AO) does not have an inverse,

then there is the possibility of bifurcation near (0,A0). In this case, A =D(XO),

N(x,A) = [D(A)-D(Ao)]x + 1(x,X).

An important special case arises when A is a scalar parameter and D(1) = B - AC,

where B,C are bounded linear operators. The values AO where D(I0) is singular are

then eigenvalues of the pair of operators (D,C). For later reference, we say A is
0

a simple eigenvalue of (B,C) if B - 0C is Fredholm of index 0 with dim-*t(B-A 0 C) - 1=

codimAB-oC) and C.#(B-AoC) * B-AOC) = Z.

2. Stable and unstable manifolds. In this section, we show how the classical

method of obtaining stable and unstable manifolds for an hyperbolic equilibrium

point is a special case of the LS method for a Fredholm operator with A X - Z with

dim.AtA) < - and A(A) = Z.

Suppose A0 is an n x n constant matrix with RecO(A 0 ) V 0 where o(A 0 ) is the spec-

trum of A0 , f : n is a C function with f(O) = 0, fx (0) = 0. In order to con-

struct the local unstable manifold of

(Ax)(t) - f(x(t)), (Ax)(t) = i(t) - Aox(t), (
2

.l)f

we consider the.set Uf -{initial values of solutions of (2.1) which are defined and

remain in a "small" neighborhood of zero for t E (--,0]). The local stable manifold

Sf is defined similarly on (0.-). Let X= {bounded, uniformly continuous functions

n 1 0) 0
on (--,O] to R I with the sup topology and let X = fg C X g E X I with the C

topology. Then A in (3.1)f takes X to X0 and is contiuons and linear.

° . . • . .. - , .• • .
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If UO0S are the stable and unstable manifolds of (2.1)o, J- U 0 So l
n 0n , 1 o 0 0'

: n U1 I - R S 0n S are projections, then A - X
Aot

.-(A) = {g C X : g(t) = e Atg(O), t < 01.

Thus, dim A'A) < -. One can define a projection ; of X onto A(A) by the relation

(;g)(t) = e 0wg(0), t < 0. It is a classical result in differential equations and
easy to prove that A0(A) = X

0
. If x z y + z, y = eA0  E X! z E Xl = 0

then the LS method implies there is a unique solution x(,.) = y + z*(C.-) E XI of

(2.1)f in a sufficiently small neighborhood of zero and this function is CI in ,

z*(0,.) = 0, D z4(0.) = 0. The manifold Uf is defined by {x : x = + z(,o),

small). It can be shown that any solution with data in Uf approaches zero as

t - and thus, represents the local unstable manifold. A similar argument gives

the stable manifold S

Note that this is a good example of the application of the LS method, but

there is no bifurcation equation since codim M0(A) = 0, index A = dim.AI(A).

3. Equilibrium bifurcation. In this section, we consider the (n+l)-dimensional

system

= Cz + f(z,x) (3.1)

where X is a parameter in a Banach space A, f : n+l x A -R is continuous

together with derivatives up through order k > 1,

f(0,0) = 0, f(0,0)/az = 0 (3.2)

(0 0)(3.3)

and B is an n x n matrix with Re a(B) # 0, where o(B) is the spectrum of B. If

z = (x,y), f = (g,h), with x ER, g ER, Eq. (1.1) can be written as

= g(x,y,X)
(3.4)

= By + h(x,y,X).

Our objective is to discuss the bifurcation and stability of equilibrium

solutions of Eq. (3.1) in a neighborhood of (z,X) = (0,0). The equilibrium solutions

are easily obtained by the LS method applied to the equation Cz + f(z,X) = 0. This

is equivalent to applying the Implicit Function Theorem to obtain a solution P(x,X)

of the equation

cp + h(x,w,X) = 0 (3.5)

in a neighborhood of (x,X) = (0,0) which satisfies w(0,0) 0, atp(0,0)/ax = 0. The

equilibrium points of Eq. (3.1) in a neighborhood of (z,A) = (0,0) are then given by

(x,cP(x,X)) where (x,X) satisfy the bifurcation equation
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(3.6)

G(x,X) = g(xD(xA),X).

We remark that the function ko(x,X) depends only upon the vector field h(%,yN) [not

on g(x,yX)] and has the same smoothness properties as h(x,y,x).

The equilibrium points of Eq. (3.1) can also be expressed in terms of the

center manifold. In fact, there is a center manifold M, = {(x,y) : y = (xM), x

in a neighborhood of zero) for A in a neighborhood of zero. The flow on MA is

given by (x(t),y(t)) = (x(t),4,(x(t),X)) where x(t) satisfies the equation

(3.7)
6(xA) = g~x,ipCxA),).

The equilibrium points of Eq. (2.1) in a neighborhood of (z,X) = (0,0) are given by

(x, (x,A)) where G(x,.) = 0.

We remark that the function O(xX) depends on both of the vector fields

g(x,yX), h(x,y,X) and, generally, is not as smooth as g and h. In particular,

* will generally not be C or analytic even when g,h are C or analytic.

Since a center manifold has a hyperbolic structure (each point on M looks

like a saddle point), the flow on the center manifold gives a complete description

of the flow defined by Eq. (3.1) in a neighborhood of (zX) = (0,0). Even though

the bifurcation function G(x,X) in (3.6) was constructed without mentioning dynamical

behavior, it is an interesting fact (stated precisely in Theorem 3.1 below) that the

flow defined by the equation

x= G(x,) (3.8)

is equivalent to the flow defined by Eq. (3.7). Thus, the qualitative properties of

the flow can be determined without knowing the center manifold. The advantage of

this observation lies in the fact that G(x,X) is as smooth as the original vector

field and is easier to calculate approximately. Up to this point, the parameter

has played no role and it plays no role in the following theorem. However, it will

be used in a !ignificant way in the applications of Theorem 3.1.

Theorem 3.1. The vector fields G(.,X), G(.,X) are equivalent in a neighborhood of

zero for A in a neighborhood of zero; that is, there is a homeomorphism of a neigh-

borhood of x - 0 mapping the orbits of (3.7) onto the orbits of (3.8) preserving the

sense of direction in time.

Proof: The functions G(x,X), G(x,X) must have the same set of zeros in a neighbor-

hood of (x,X) = (0,0). The essential element of the proof of the theorem and the

only part that will be given is to show hat G(x,)), 6(x) have the same sign

I-
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between zeros. Suppose this is not the case; that is, there is an x0 such that

G(x01X) G(x0,X) < 0. By makcing a small perturbation of the vector f( .,X) in Eq.

(3.1), one obtains new functions G (x,X), (,)such that G(o xX <0

and the first zero x 1 before x 0 is simple. Now make another perturbation of f(*,')

in Eq. (3.1) by replacing g by g + c with e small > 0. The new bifurcation

function G 2(x,1,c) = G 1(x,X) + c. Also, using the theory of center manifolds, one

can show that the vector field on the center manifold G (x ,X,c) = G (x,).), +

c(x,X,c)F where o(x,X.E) > 0. Since x I is a simple zero of G 1(x,x), al (xX), this

implies there are functions x 2(XC)' x20.0, X2 (X,Ol) = x= i2(X '0). such that

G2 (X2(XC),1,C) - 0, 62 (i 2 (X,c),X,c) = 0 and such that [dx 2 X,0)/dc].fdR2 (P,0V/dE1

< 0, which implies x (A,c-) i(X,c), c > 0. But this is a contradiction since the
22

bifurcation function and the vector field on the center manifold must always have

the same zeros. This implies G(x,X) and G~,)have the same sign between zeros.

As a first application, we give a result on bifurcation from a simple ejAen-

value for one parameter families of vector fields. Suppose X E R, f(z,X) is C 1and

write f(z,A) as

f(z,X) = C (),)z + F(z,X)(3)

F(0,1) = 0, aF(0,X)Iaz =0 for all X

where C I(X) is an (n+l) x (n+l) matrix, C1C(0) =0. Suppose that

C1(1M = [0 B (1)] (3.10)

and B 1(X) is an n xn matrix. The bifurcation function G(x,X) for this special

case has the form

G(x,X) = a(X)x + 1G(x, X), (.1

where G(X.X) =O~jxil as x - 0, oi(0) - 0, a'(0) 1 from (3.9), (3.10). The

Implicit Function Theorem and Theorem 3.1 imply

Theorem 3.2. If A E1R, f is C 
2  

and satisfies (3.9), (3.10), then there is a neigh-
1--Rsuhta

boyhood V of z= 0, W of A= 0, U of x =0and a Cfunction X U-"scta

X( = 0 and, for A C W, the equilibrium solutions of (3.1) in V are given by

(0) U {(x,ko(xX)) : 1(x) = X). A solution (x,t(x,X)) is asymptotically stable

(unstable) on the center manifold if (x-i)G(x.X) < 0 (>0) near x.

The stability properties are easy to determine from the curve r : 1 x()

x 6 U. In fact, since DG(0,X)/ax = A + o(111) as X -~ 0, it follows that, for a

fixed X 0 0, sign xG;(x,X) = sign A for x near zero. This implies that the sign of

G is as indicated in Figure 3.1. This yields stability of all equilibrium points

immediately with the situation as shown in Figure (3.1). At the hifurcation points,
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there is always a transfer of stability on the center manifold.

G'O I G3O

I

G3-0 Is GcO

Figure 3.1
2

As another illustration suppose f in (3.1) is C and is a parameter in

and there is a 8 0 such that

G(x,O) Sx 2 o(Ixl) as x 0. (3.12)

Since p(0,0) = 0, aP(0,O)/ax = 0, it follows tha: 8 is given explicitly by

20 = a
2
g(0,0,O)/ax

2
. The Implicit Function Therem implies there is a unique C-

function a(A), a(O) = 0, such that aG(a(A),A)/dx = 0 for > small. Then

-- 2 -2
Ga(c() + X),) = yo(X) + y2 (2)x + oCixi ) as lxj - 0

00~where yo(O) = 0 and y.,(O) = 8 # 0. Theorem 3.1 therefore implies, near (:,X) =

(0,0), that

(i) yO(X) > 0 =t no equilibrium solution of (3.1).

(ii) yo(N) = 0 -, one equilibrium solution of (3.1) stable from one side

and unstable from the other side on the center manifold.

(iii) yO(X) < 0 implies two equilibrium solutions of (3.1), hyperbolic

with one stable and the other unstable on the center manifold.

The surface in A defined by r = ix : y0 (X) = 0) is called the bifurcation surface.

This bifurcation is referred to as the saddle-node bifurcation. The name comes from

the fact that, for z in R
2
, a saddle and node coalesce and disappear as r is

crossed.

3
As another illustration, suppose the vector field in (3.1) is C and there is

a B 0 such that

G(x,G) - x 
3 

+ o(Ixi ) as Ixl _ 0. (3.13)

Then there is a unique point ca(X), a(0) = 0, where 2G(x,X)/ax2 = 0 in a neighbor-

hood of zero. It x = ax(X) + x, then

G(cL() + XX) = Yo+X) + yCX)i + y3 C)X 
3 

+ G(X,)X) (3.14)

where U(X, A)= o( I x) as x
4 

0, 0'o[O) = YI(O) = 0, y3 (0) = 8 # 0.

It is no loss in generality to assume y3(X) = I in discussing the solutions of

(3.14) in a neighborhood of (x,x) = (0,0). Even in the case when ?;(x,X) = 0 in

(3.14), a complete discussion of the zeros (if the cubic requires two Iramcters.

:" " ,;- • .:-.• ....l ~ li'i ¢ " "'£ W* *i ' ''" ' k' 
Z ' ' ' '

"- - .. . .. . ..: ' _ - .



This corresponds to a codimension two bifurcation. A generic two parameter family

of parameters X = (XOX1) should satisfy det[3(-yO,'y)/D3.ox 1)] 0 at A = 0. If

we assume this is the case, then we can introduce new parameters i = I instead

of A to obtain the equation

H(xH) - Po  1x 1i + x + HCx,u) = 0 (3.15)

where H(x,) = o(jxj 3) as x * 0. The bifurcation curves in L-space correspond to

multiple solutions of (3.15); that is, H(x,u) = 0, aH(x,u)/lx = 0. In a neighbor-

7 hood of zero, this determines Uoi 1 as functions of x, pl = -3x
2 
+ o(jxj,

P0 = 2x 
3  

o(l x 3
) as x- 0. Eliminating x from these equations, one obtains a

cusp in u-space which is approximately given by i1 -(27/4)u2. The bifurcation

diagrams for Equation (3.15) are shown in Fig. 3.2 with the number of solutions as

indicated. I J 1 0

I i

3

I I

Figure 3.2

For some problems, one may have a parameter X E A for which rank [a(y 0 ,yl)/3a]

2 at X = 0. In this case, the bifurcation diagram will be different since the set

{(yO(X)YI(X)),XE A) will be a curve in (u0,u1 )-space. The number of solutions and

the bifurcations for Equation (3.14) will be determined by how this curve intersects

the bifurcation curve in Fig. 3.2 as A varies.

If G(x,O) = ex, + 0 (lx1q) as lxi - 0, where 8 1 0, then the two previous ex-

amples show that only one parameter is needed to describe all bifurcations when

q = 2 and two are needed to describe the bifurcations when q = 3. For q > 3. one

can show that q parameters are needed. The bifurcation surfaces are ex.remely

complicated and will not be discussed here.

Theorem 3.1 is valid for several types of partial differential equations and

functional differential equations. As is often the case, the theoretical results

are very simple to state, but there are many technical problems in making the

applications. We briefly indicate how this can be done for retarded functional

differential equations and for abstract evolutionary equations which include

parabolic equations.

Let A be the infinitesimal generator of an analytic semigroup T(t), t > 0,

on a Banach space X. Choose b real so that Re o(A) 0 0, A + bl. One can

define fractional powers A of A for any a E P. For a 0, 0 A is one-to-one and

a bounded linear operator on X. For a > 0, consider the set X1 a X consisting

of all x E X for which lAaxl . For x E X, define xK I' .A'x. Then
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" is a norm on Xa and X0 is a Banach space with this norm. Also, the inclusion

map taking X into X is continuous. Now suppose that f : X x A - X is a smooth

function for some 0 < a < I and consider the evolutionary equation

U + Au = f(u,X). (3.16)

Suppose that Eq. (3.16) generates a strongly continuous semigroup T, (t), t > 0, on

X
a
. The choice of a depends upon the specific function f.

Suppose 0 6 o(A) is a simple eigenvalue of A and there is a 6 5 0 such that

IRe[o(A) -, (011 > 6. Then the space Xc can be decomposed as a direct sum X
a = 

V 0 W'

with V,W invariant under T,(t) where V is one dimensional and spanned by a unit

vector u0 satisfying Au0 = 0. If u = v + w, v E V, w E W, f = g + h, g E V, h C W,

then (3.16) is equivalent to

v - g(v+wX)

(3.17)

w = -Aw + h(v+w,X).

The operator A restricted to W has a bounded inverse which we write as 
A
-I

taking X into X. Since D(A) c D(A
a
) fur 0 < a < 1, it follows that the equation

-AD + h(v+..o,X) - 0, tp E W, (3.18)

is equivalent to the equation

+ A- h(v+P,) 0, 0 E W. (3.19)

Consider the operator A I as mapping W into X
a
, 0 <_ a < . Then A- is a bounded

a. --l~a
linear operator from W to Xa since A is a bounded linear operator on X (-la<O)

and JA'lu I IA-lul * iaA-Iul + JA-Iul+IA-la(I-bA-l)ul for any u E D(A) n w.

The Implicit Function Theorem implies there is a unique function qp(v,X),

v(0,0) = 0, satisfying (3.19). The equilibrium points of (3.16) are therefore given

by u - v + tp(v,A), where u,X must satisfy the bifurcation equation

G(v,,) = 0, G(v,X) - g(v+to(v,1),1).

The flow on the center manifold of (3.16) is equivalent to the flow defined by the

scalar ordinary differential equation =G(v,).

As a specific example, consider the equation

3
Ut  =uxx + U - U , 0 X V (3.20)

u = 0 at x 0,".

Let X - L 2(0) ,2 (to C X tof X. 'o(o) 0(m) - 01 and define A40 - ..0 with
0.2(O' 2 0 x  

x

D(A) 0 n w
2 2

. One can show that the operator A generates an analytic semi-

1/2 1'' 112
group on X. It is also possible to show that D(A

l
) 1,= X

l/ 2  
the operator A

2 2
has compact resolvent and o(A) consists of simple eigenvalues (1,2

2
'
.. .

n ,... with
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1/2 .2 3
the eigenfunction (2/ri) sin nx corresponding to n

2
. If F(w,w)(x) 1jno(x) p (x),

o0 < x < i, then one can show that F :X
1
12 x -+ X is an analytic function of cp,p.

1/2
This is enough to conclude that, for any (pE X , there is a function u(t,x,),

defined on some interval 0 < t < t0, u(t,,p) E X
1 / 2

, 0 < t < t, u(0,.,() =,

* u(t,x,wP) is continuous in (t,x,p) and satisfies (3.20) for 0 < t < t'.

For Equation (3.20), there is a Liapunov function
Tr 1
"  

2

V(09) =- Jo[ X(x) - AH(P(x))]dx

for ip E X
1/ 2 

and H(u) = uu
2
/2 - u4/4. In fact,

V(u(t,')) = dV(u(t,.)) u (t,x)dx < 0.

0

One can use this inequality to show that u(t,x,w) is defined for t > 0; that is,

t -. If one now defines T (t)cp = u(t,'p) then T (t), t > 0, is a strongly

continuous semigroup on X2.

Let us now determine the nature of the bifurcation near the simple eigenvalue
2 2 1l/2,

In n 2. Let =n 2+ and, foruEX

2.112 def.2. 112 fux

u(x) = v sin nx + w(x). v u(x)sin nx dx

fJw(x)sin nx dx = 0.

If Uu = v sin nx, then U is a projection onto .A'(A-un) and (I-U)is a projection

onto 9(A-inI). With this decomposition, the equilibrium solutions of (3.20), that

is ut = 0, must satisfy the equations

1/2 3
XV sin nx- U[(2/n) v sin n • + w(.)] = 0

w + n
2
w + w - (1-U)[(2/7)1/2 sin n w(')] = 0,

with w - 0 at x = 0,i. This last equation has the solution w(v,X) E X
I/2 

satisfying

w(0,0) = 0, aw(0,0)/av = 0, w(v,X)(x)sin nx dx = 0. Therefore, the equilibrium

solutions of (3.20) near (unj? = 0,0) are given by

u(x) = (;) v sin nx + w(v,X)(x)

with (v,A) satisfying the bifurcation equation

G(v,X) = 0

- 1/2 2112 3
G(v,A) = Av 2 i (sin nx)[(

/
) v sin nx + w(v,X)(x)] dx.it 0

3 + 3
The function G(v,A) * y0 (A)v - y1 (X)v * o(Jvj ) as v * 0 where y0(0) = 1,

'l0 * 3/t
2
. Thus, the bifurcation curve I X*(v) satisfying G(v,X*(v)) - 0 is

1% - " : " ' - + ' i l 
:

: : ' J - : " . . : :' m ' . .
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2 2 2
given by A = (3/T2 )v + o(v2) as v - 0 (see Fig. 3.3). At each bifurcation, there

V
I

Figure 3.3

is a transfer of stability on the center manifold. However, for the complete flow,

the only stable equilibrium points are the ones that occur at the first bifurcation.

This is because the zero solution has an unstable manifold of dimension > 1 at the

other points.

As another illustration, we consider a retarded functional differential equa-

tion. Suppose r > 0 is a given constant, C = C([-r,01,R]n), L : C - Rn is a con-

tinuous linear operator, f : C x A o Rn is a given C -function, f(0,0) = 0,

D f(,A) = 0 when (tp,X) = (0,0). For a given function x : [-r,A) *R n and a fixed

t E 10,A), we let xt designate the function from [-r,O] to Rn given by xt(e) =

x(t+e), -r < e < 0, and consider the retarded functional differential equation

x(t) - Lxt + f(xt,)). (3.21)

If q E C, let x(p)(t) be the solution of (3.21) with x0 (;) = ip. We suppose all

solutions are defined on [-r,-) and define T (t)P = xt( ). Then T (t), t > 0, is a

strongly continuous semigroup.

An equilibrium point for (3.21) is a solution x defined for all t E R, x0 =

and TA(t)P = ' for all t ER. This is equivalent to x(t+e,o) = 0(e) for all t ER.

Since x(t,*) is continuously differentiable for all t E P (this is a consequence of

the fact that it exists for t ER), this implies i(t) = 0 for all t ER; that is,

x(t) = b, a constant, for all t EI and *(e) = b, -r < e < 0. Therefore, the

equilibrium points of (3.21) are constant functions s such that

LO + f(pX,) = 0
(3.22)

vde) = 0, -r < e < 0.

The linear equation

x(t) = L(xt) (3.23)

also generates a strongly continuous linear semigroup S(t), t > 0, on C. It can be

shown that the infinitesimal generator A of S(t) is given by (Aip)(e) =o(),

-r < e < 0, with D(A) = ((p C C :4O E C, (0) = L(p)). Also, o(A) consists only of

point spectrum, and, if L(P) .[d()]*( ) then 1 E o(A) if and only if

det 6(w) - 0, A p - hr epedn(O). (3.24)

.. -- ,.- - . - .. .. . . .. . . . . . ... - - - . .
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Also, if p E o(A), then #4(A- Il) is the span of the functions e b, -r < e < 0,

where A(w)b = 0.

Suppose 0 E oCA) is simple and Re u # 0 for v E O(A) ', {0}. Then it follows

imediately from (3.23) that there is a a > 0 such that IRe V1 > 6 for p E oCA)s(0){

Our first objective is to determine the equilibrium points of (3.21) near x = 0 for

A near zero.

To characterize the equilibrium solutions of (3.21) as the solutions of an

operator equation, we need to enlarge the space of functions that are being con-

sidered. Let X0 be the n x n matrix function on [-r,0] defined by X0 (e) = 0,

-r < 0 < 0, Xo(O) xI, the identity, and define PC = C 0 (XO ) where (X0 ) denotes

the space of XO. A function 0 E PC is represented by a pair ((p,b) where (p E C and

b ECn; the function * is uniformly continuous on [-r,0), p(e) = o(e), 6 E [-r,O),

and *(0) = 0(0) + b; that is, V has a jump of b at 0. Consider A as a map from

C to PC with D(A) = {ko E C : 0E C) and

(AID)(O) = (6), -r < 6 < 0

(A) (0) = Lw.

It is now easy to see from (3.22) that * is an equilibrium point of (3.21) if and

only if

A + Xof( ,X) = 0 (3.25)

We now apply the LS method to Eq. (3.25) under the assumption that 0 is a

simple eigenvalue of A. We know that ._W(A) E {D C : tV = to , tPO(8) = a, -r < 6 <0,

where a is a constant n-vector, A(O)a - 0}. To characterize the range of A, we

solve the equation AIo - 9, for * C PC. This relation is equivalent to kD(e) = 4(e),

-r < 0 < 0, and Li - 0(0); that is,

%P(e) - T(0) I,(s)ds,ff
L(0)ID(0) - 91(0) - [dn(6)] p(s)ds.

Let b be any nonzero row vector such that bA(0) = 0. Then 4 E_4A) if and only if

(00 = , o) = b, -r < 6 < 0

6" (3.26)

(C1,040) - b*(0) - b[dn(6)1 ,(s)ds."" -r0

Choose b so that (aOI0O) z 1 with a0 in (3.26) and ID0 a basis for ..4(A). The

space PC can be decomposed as

PC z AA) 0 _(A)

(3.27)
C, C PC, V - 0 + n, 8 (a0, 0 R,(aOn) 0.
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These same formulas also give a decomposition of C as C = P * Q, P = {f0c,8DEl},

Q {: (ao'() = 0).

The computations above show that A exists and is bounded as a map from R(A)

into Q. We can now apply the LS method.

If X . 6 = (ci0 X0), X = 0 - (P06, then (3.25) implies that = 0 +n

(ao~n)= 0, is an equilibrium point of (3.21) if and only if

bf (ko B+n,X) = 0

0 0
n A A'x~f(Po08.n,) 0 .

The last equation has a unique solution n(8,X) in a neighborhood of (,X) = (0,0),

n(.OO) - 0, an(0,O)/a$ = 0. The equilibrium solutions of (3.21) are given by

= *P n(S,X) where (B,X) satisfy the bifurcation equation

G($,X) = bf((0 B+n(B,),),X) = 0. (3.28)

One can also show that the flow on the center manifold of (3.21) is equivalent to

the flow defined by 8 =G(,X).

As an example, consider the linear equation

x~t) =-x~t) + x~t-l)

which has 8(X) = X-I-exp(-). Zero is a simple eigenvalue and (a0,1 =

b[(O) + [ *(s)ds]. If we choose 00(e) 2= 1, -r < 6 < 0, then (aO,%PO) = 1 if

b - 1/2. If we choose f(tP,X) = A+ (P (0), then the bifurcation equation (3.28)

is equivalent to X - (8+n(O,X)(0))
2 
= 0. Thus, there will be two equilibrium points

for X > 0 and no equilibrium points for X < 0. The same remark is true if f(o,X) =

X - o2 (-1).

4. Bifurcation from two purely imaginary roots. In this section, we consider the

equation

z = Cz + Z(zI) (4.1)

n+2 . . k_
where W E E is a parameter in a Banach space E, z E IR

n  
Z is a C -function,

k > 2, C is an (n+2) x (n+2) matrix satisfying

Z(0,w) = 0, aZ(0,0)/az = 0, for all ii,

C .[A 0], A=[o 1] (4.2)

with the eigenvalues of B having nonzero real parts (for much of the discussion

(e 2B-1) being nonsingular is sufficient).

Our objective is to discuss the periodic orbits of (4.1) in a neighborhood of

(z,u) - (0,0). These orbits must huave period approximately 2v and he close to the

p:
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2w-periodic solutions of the linear equation z = Cz. If t e-v Bt, where 2w/8 is the

period of the solutions to be determined, then B should be close to 1 and the new

equation for z is
z=8Cz + SZz,W). (4.3)

We will apply the LS method for 2w-periodic solutions of this equation. If
2

z = (x,y), Z=RMY), x,X ER
2
, then (4.3) is equivalent to

x- Ax = (8-1)Ax + BX(x,y,u)

(4.4)

y- By = (B-1)By + BY(x,y,'i).

Let p
0  

be the space of 2w-periodic (n+2-vector functions which are continuous with
2w 0

the sup topology and p-1 be those 2w-periodic (n+2)-vector functions in p whose
0 . 1 1 0 2

first derivatives are also in p2nwith the C topology. If .V: P2w * P2 is defined

on functions f = (g,h) by

Aff = (g-Ag,h-Bh)

then0is a continuous, linear operator and .A-, = {(e Atb,O), 0 EIlnn, b CIR2}. The

classical Fredholm alternative for linear periodic systems implies 0(u5 = {f=(g,h):
2we-Atg~t)dt = 01. Define E = diag{E,l), Eg = eAtD'Ij2 e Atg(t)dt, D = 2wI.fo 0 fO

Then .( a=) (I-E)p " ,.

One can now apply the LS method. Before doing this, it is convenient to ob-

serve that kvW is determined from a phase shift on the one dimensional subspace

a(cos t,-sin t,O), a E R. Since (4.4) is autonomous, we may therefore fix the

element in #V(A) as a(cos t,-sin t,O). An application of the LS method yields a

z*(B~aIJ)E p iw of the form

z* = z*(,a,u) = (a**x*(B,a,v),y*(B,a,u))

2we (4.5)

(D(t) = (cos t,-sin t), f x*(8,a,v)(t)dt = 0

and x* - x*(,a,u), y* = y*(B,a,u) satisfying x*(B,Oni) = 0, y*:.,0,j) = 0,

ax*(l,0,0)/aa = 0, ay*(l,0,0)/aa - 0 and the equations

- Ax = (J-E)[(8-+)A(ap4x) + 8X(aWx,y,u)

(4.6)

y- By = (B-l)By + BY(aw0+x,y,U).

The function z' will satisfy (4.1) if and only if EF[(-1)A(a'+x*) + 8X(akcDx*,y*,)]=0.

This latter equation is equivalent to

d~frz -At
G(,a,u) je [(B-1)A(a p(t)+x*(t))+,X(aq0(t) x*(t),y'(t),j)]dt = 0. (4.7)

TO

This represents two equations in the parameters (6,a,v). Kowever, it is easy to see
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that one of these equations can always be solved for 8 (this determines the period)

-Atas a function of aV. In fact a simple calculation shows that e Ap(t) = (0,-1).

Thus, if G (GI.G 2) in (4.7), then G2(BO,a,u) satisfies G2 (8,0,u) = 0, DG2 (1,0,0)/

2
3a - 0 and 3 G2 (l,0,0)/3a3B - -1. This implies that the function G2 (O,a)/a has

a unique solution 0 - O*(au) in a neighborhood of (8,a,p) = (1,0,0), 0*(0,0) = 1.

Thus, equations (4.7) are equivalent to the scalar equation

G(a,p) = 0

(4.8)
G(a,p) = G

We refer to the function G(a,v) as the bifurcation function for periodic orbits of

(4.1) near (z,u) = (0,0).

Summarizing the above remarks, we see there is a periodic orbit of (4.1) near

(z, U) = (0,0) if and only if

z = (a x*(8*(a, ),a,u),y*(8*(a,),a,)) (4.9)

where x*(B,a,u),y*(6,a,u) satisfy (4.6), and (a,p) satisfy (4.8). The period of

z is 2w/B*(a,u). All functions can be approximated to any accuracy desired by using

successive approximations.

It is useful to observe and not difficult to show that B*(a,p) = O*(-a,u) and

G(a, ) = -G(-a,j) for all a.

Even though the function G(a,u) was constructed only to obtain periodic orbits,

it contains also information about the dynamic behavior of (4.1). To see this, we

recall that there is a two dimensional center manifold of (4.1) given by y =

The flow on the center manifold is given by the equation

i a Ax + X(x,*d(x,ij),u). (4.10)

Any periodic orbit of (4.1) Must lie on this center manifold and is in one-to-one

correspondence with the periodic orbits of (4.10). Formulas (4.9) also give a one-

to-one correspondence of the periodic orbits of (4.1) with the zeros of G(a,w). One

can now state

Theorem 4.1. Let (aolu) satisfy G(aol) - 0 and let *(t) be the corresponding

periodic orbit of (4.10). Then the stability properties of J(t) as a solution of

(4.10) are the same as the stability properties of the solution a0 of the scalar

equation

-G(a,). (4.11)

Proof: We only indicate the proof. Since x - 0 is a solution of (4.10), we can

introduce polar coordinates x = (pcos 0,-psin e) and eliminate t to obtain

w e 0 edo

Swhere R(e,0,p) 0 , 3R(e,0,0)/ap 0 . One can apply the LS method to this equation
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U for 2w-periodic solutions to obtain

.21t

P - a + o*(a,Iw), Jo p(a.i)(t)dt 0

27w

= R(e,a.~=,.) - (,+*Ojd

2"'2•

and the bifurcation function (a,)) 2 R(Aap*(ap)(e),1J)d6. The 2w-periodic

solutions of (4.12) are in one-to-one correspondence with the solutions of G(a,i)= =0.

For the given function *(a,p) make the change of variables o r + o*((r,))d) in

(4.12). Then
dr -p, -(-

I + R(e)]aG(u)(

Since the coefficient of G(r,u) is positive for r,p small, it follows that the sta-

bility properties of the periodic orbits of (4.12) are the same as the correspond-

ing equilibrium point oi r = G(r,u). The remainder of the proof follows along the

same lines of the proof of Theorem 3.1.

It is now easy to give interesting applications of Theorem 4.1. For example,

suppose v E R and

Z(z,u) = c1 (,)z + O(1z1
2
)

C = C + Ci()

and C(p) has two eigenvalues aC() - iB(L), a(O) = 0, B(O) = 1, and da(O)/dv 0.

This latter condition is referred to as the Hopf condition and says that the curves

(a(p) ± iB(p),u small) are transversal to the imaginary axis in the complex plane.

Using the formula (4.7), one easily shows that

G(Ou) = 0, DG(0,0)/ap = 0, a 2G(0,0)/aaa = da(O)/dw.

Thus, the Implicit Function Theorem implies there is a unique function P*(a) defined

in a neighborhood of zero, p*(O) = 0, such that a- G(ao*(a)) = 0. Thus, for each

ao, equation (4.1) for p = I*(ao) has a periodic orbit given by (4.9) with

- u*(ao), a - aO. The stability properties of this orbit are determined by the

sign of G(a,u*(a)) near aO. The general situation is the same as the one in Fig.

3.1 if one assumes a(w) < 0 for p < 0, a(u) > 0 for p > 0. The result just stated

is referred to as the Hopf Bifurcation Theorem.

The Hopf Bifurcation Theorem is a consequence of an hypothesis on the linear

terms in z in (4.1). The specific form of the curve p*(a) depends on the nonlinear

terms in a in the function G(a,u). Since G(a,u) is odd in a, the simplest

situation is

3
G(av) Y(U)a + y (u)a

Yl(O) # 0.

If we again assume u is a scalar and yo(O) a'(0), where a(p) is the same as

r ................ . . . . . .



. . - . . . . . .

18

before, the curve P*(a) is given approximately by ii(a) = ['(O)J-I l(2)a
2

and there is a unique periodic orbit near a = 0. This parabola opens to the left

(right) if [CI(O)] Iyl(O) < 0 (> 0). Now suppose Re XB < 0 and a'(O) > 0. Then

the solution z = 0 of (4.1) is stable for W < 0 and unstable for U > 0. If

Yl(0) < 0, then the periodic orbit exists for v < 0 and is unstable (this is called

the subcritical case). If y1 (0) > 0, the periodic orbit exists for u > 0 and is

stable (this is called the supercritical case). This result is referred to as the

generic Hopf bifurcation theorem.

For one parameter families of vector fields, the generic Hopf bifurcation is

typical in the sense that the parameter is used to make the coefficient of a in

the Taylor expansion of G(a,v) vanish at some value of the parameter. For two

parameter families of vector fields, it is possible to use the parameters V to make

the first and third terms in the Taylor expansion vanish at say w = 0. It is then

natural to assume that G(a,O) = Bas . ..., 8 , 0. The analysis of the number of

periodic orbits (two at most) and their stability is easily discussed as above. The

one and two parameter bifurcation diagrams for Ba + Pa + •-- and Ba +I
a 3 

*

are illustrated, respectively, in Figures 4.1 and 4.2 with the number of periodic

orbits labeled. The coordinate a represents the amplititude of the orbit.

We remark that the same type of proof as given for Theorem 3.1 for the

ordinary differential equation (4.1) holds as well for the parabolic equations and

functional differential equations mentioned in Section 1.

a

0 I

Figure 4.1

"-.." HaI FL<0 
an oR 0

I.. .I

iI o

I I

00 0 x 0
I I I

Figure 4.2

5. Homoclinic and heteroclinic orbits. Suppose g E ck0Rn,n), k > 1, and the equa-

t ion

x = g(x) (5.1)

has an orbit r connecting an hyperbolic equilibrium point x0 to an hyperbolic equi-

librium point X1; that is, g(x0) = 0 = g(x1), Reo(gx 0)) # 0, Reo(gx 1)) # 0, and

there is a nonconstant solution p(t) of (5.1) such that p(t) 4 x0 as t 4 -
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p(t) * x1  as t *. The orbit T is called an heteroclinic orbit if x0 0 x1 andk k n

an homoclinic orbit if x0 = xI. If E is a Banach space, h E C kR x R
k 

x En),

k > 1, h(t,xO) = 0, and h is bounded in t, then the problem to be discussed in

this section is to determine the behavior of the solutions of the equation

x = g(x) + h(t,x,p) (5.2)

for t e R and (x,p) in a neighborhood of r x {o).

Since x0 ,x1 are hyperbolic, there are solutions xo(t,1), x (t,p), bounded

for t C R, existing for u small such that x 0(t,O) = xO , xI(t.0 ) = x1  and x0(toi),

x I (t~u) are hyperbolic. Let *,,Ad r-R xR n be the unstable manifold for Xo(',0

(x (-,v)) and SC.j' the corresponding stable manifolds. For v = 0, the hypothesis

that r connects x0 to x1 implies n00  _ 0 s. In fact, since the equation for

= 0 is autonomous, this intersection contains an orbit of (5.1). We want to deter-

mine the nature of the set * nlV for u 0 0.
0oi lii

Several problems motivate this type of investigation. For example, if the

perturbation h(t,x,u) is independent of t, then xo(), xl(U) are constant and one

often wants to determine conditions which ensure there is an orbit connecting x0(p)

to x1 (p). This is the typical problem of traveling waves in parabolic equations.

If x0 = xI and the perturbations are periodic in t of period T, and Ut =

{x : (t,x) E * ), that is Ut. is the cross section of *0,1 at t, then U =

Ut . Similarly, the cross section S of Y is T-periodic in t. If

%0 nO Y, 0 , then there must be a point q homoclinic to the point x0 (0,1) for
01in

the Poincari map n, which takes points in]Rn to the value of the solution of (5.2)

at time T. The sets U01(S o) are the stable (unstable) manifolds of x0 (0,u) for the

map iT and have nonempty intersection q. If they intersect transversally at q, then

it is well known that the dynamics near q can be described by the left shift

automorphism on doubly infinite sequences on a finite number of symbols (see Section

These two applications are sufficient motivation to investigate conditions on

h to ensure that n Y is nonempty. To carry out this investigation, we make
*O1 opi

a transformation from the continuous functions on R with range in a neighborhood of

r to continuous functions on R with range in a neighborhood of zero. More specifi-

cally, let

x(t) = p(t+a) + z(t+z), a E C ,

and choose z(0) to be orthogonal to p(O). If x(t) is a solution of (5.2) and t is

replaced by t - a, then z(t) satisfies

* A(t)z + f(t,z,u,a)

A(t) a g (P(t)), (5.3)

f(tz.1ja) * g(p(t)+z) - gx(p(t))z - g(p(t)) + h(t-ctp(t) + z,u)
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We consider (5.3) in a neighborhood oi (zp) f (0,0) as a perturbation of the

linear equation

(Lx)(t) = 0 Lx = d/dt - A(.). (5.4)

From the definition of A(t), we have A(t) - A = gx(x 1) as t * +=, A(t) - A-gx(x0)

as t - -- with Reo(A
+
) 0 0, Rea(A') J 0.

Note that p(t) is a nontrivial solution of (5.4), bounded onlR.

We consider the operator L as a continuous linear operator from C (IR 
n
) to

" 0 RA'). Our first objective 
is to characterize .V(L), b(L). To do this, the

following concept is useful.

Let X(t,s), X(t,t) = I, be the principal matrix solution (solution operator)

of (5.4). Equation (5.4) is said to have an exponential dichotomy on an interval J

with constants K,a if there are projections P(s), s E J, continuous in s, such that,

if Q(s) = I - P(s), then

(i) X(ts)P(s) = P(t)X(ts) t, s E J.

(ii) JX(t,s)P(s)i < Ke ts) t _> s in J (5.5)

(iii) (X(t's)Q(s)I < K s > t in J.

The operator P(t) is called the projection matrix function of the dichotomy.

This concept is equivalent to the existence of a projection P0 and constants

K,u such that

JX(tO)P0X-l(s,O) f Ke1 -a(t-s)
, 

t > s in J(5

1X(tO)QoX -(s,O)J < Ke
- (s't )

, s > t in J.

In fact, if (5.5) is satisfied, let P0 = P(O) and observe that (i) implies

X(t,O)P0X (s,0) = X(t,O)X-l (s,O)P(s) = X(ts)P(s).

Thus, (5.5) implies (5.6). Conversely, if (5.6) is satisfied and one defines

P(t) = X(t,O)P 0X 
1
(t,0), then one easily verifies (5.5).

Remark. Note that the projection P(t) is uniquely determined if J =1R, but is not

unique in other cases. Also, if 3 is finite, then there is always an exponential

dichotomy on J. One can choose any projection P0 on tn and define P(t) =
-l

X(t,O)P0X (t,O).

Remark. Definition (5.5) may be modified to apply to dynamical systems in infinite

dimensional spaces for which the solution operator X(t,s) is only defined for t > s.

Condition (i) is replaced by

(i)' X(t,s)P(s) - P(t)X(t,s), t > s in 3.

(i)" The restriction T(t,s) (Q(s)), t > s, is an isomorphism of

Q(Q(s)) onto 9(Q(t)) and we define T(s,t) as the inverse mapping.

The most interesting cases for the interval J in an exponential dichotomy are

• : i , '-i " i" ? i "i - . - ,- - . -: , , , - . • ; '
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R, = [0.-), _ = (--.0] and R.

Relation (5.5) has a very simple geometric interpretation. In fact, if J =R,

then, for each fixed s, there is a finite dimensional subspace of Rn given by

_Q(P(s)) and called the stable subspace at S such that solutions with initial value

in (P(s)) at s tend to zero uniformly and exponentially as t - -. If J = _

then 9(Q(s)) is the unstable manifold at s with solutions through points here tend-

ing to zero uniformly and exponentially as t - The fact that IP(t)I < K for

all t implies the angle between the subspaces -Q(P(t)), Q(Q(t)) is bounded. The

n
angle a(Y,Z), 0 < a(Y,Z) < w/2, between two subspaces Y,Z inR , Y N Z = {0),

Y,Z 0 {01 is defined as

Cos = suP{.) S t- :l y E Y -- 01, z E Z -{0}}.

o yjzI

If A is a constant n x n matrix with Reo(A) 0 0, then x - Ax = 0 has an

exponential dichotomy on P with projection PA = P(O) given by

I - (XI-A)-ldX- PA = f(

where y is a closed curve in C enclosing the eigenvalues of A with positive real

parts.

We need several fundamental lemmas. The first one is elementary and stated

without proof.

Lemma 5.1. Let A(t) be an n x n matrix function defined and continuous on R. Then

the equation (5.4) has an exponential dichotomy on P if and only if it has an

exponential dichotomy on both [0,-) and (--,0] andR
n 

in the direct sum of the stable

and unstable subspaces at zero.

Lemma 5.2. Let J be either R., F or R. If x = A(t)x has an exponential dichotomy

on J and B(t) is a continuous n x n matrix function on J with IB(t)J < 6, then

x (A(t) + B(t))x (5.7)

has an exponential dichotomy on J if 6 is sufficiently small.

Sketch of Proof. Consider first J = Ry For any xE R n and any y E C0 OR. Rn

define

(..9y)(t) X(t,s)P(s)x + f X(t,u)P(u)B(u)y(u)du - fX(t,u)Q(u)B(u)y(u)du.
s t

0 n
The operator .Yy is motivated by the following consideration. If f E C (R+,Rn),

b.

then one can show that the solutions x(t) of the nonhomogeneous equation

= A(t)x f(t) which are bounded on P must be given by

x(t) = X(t,s)P(s)x + X(t,u)P(u)f(u)du - X(t,u)Q(u)f(u)du.
s
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For 6 sufficiently small, it is easy to show that the operator 5 has a
0 n

unique fixed point in Cb0RJR ) which is a solution of (5.7) on P+, is continuous in

t,s,x and, for each fixed t,s, is linear in x. If the value of this fixed point at

t = s is denoted by P(s)x, then P(s) :]n - n is a continuous linear operator. If

Xs(t,s) is the principal matrix solution of (5.7), then the fixed point of F is

given by XB(ts)P(s)x. We will show that (5.7) has an exponential dichotomy on R+

with projection matrix P(s).

We need several elementary observations to prove that P(s) is a projection.

Since P 2(s) = P(s) and the fixed point of S is unique, it follows that P(s)P(s) =

P(s). From the definition of XB(t,s)P(s)x and 0(s)x, we have

P(s)x = P(s)x - J X(s,u)Q(u)B(u)XB(u,s)P(s)x du.
Operate with X(t,s)P(s) to obtain X(t,s)P(s)P(s)x - X(t,s)P(s)x. For t = s, this

implies P(s)P(s) = P(s) for all s. Operating on this last relation with P(s) and

using the fact that P(s)P(s) = P(s), one obtains p2(s) = 0(s) and F(s) is a projec-

tion.

Let Q(s) = I - P(s). Using the fact that XB(t,s)P(s)x is a fixed point of 9;

the variation of constants formula for XB(t,s) and the fact that X(t,s)P(s) =

P(t)X(t,s), P(t)P(t) = P(t),P(t)[I-P(t)] = 0, one obtains P(t)XB(t's)P(s)x =

P(t)XB(t,s)x. This implies P(t)XB(t,s)Q(s)x = 0 for all x. But then the fact that

X (t,s)P(s)x E .q(P(t)) implies that
8

XB(t,s)P(s)x = P(t)XB(ts)P(s)x + Q(t)X 8 (t,s)P(s)x =

= P(t)XB(t's)P(s)x = P(t)XB(t's)x.

Thus, XB(t's)P(s) = P(t)XB(t,s) for all t,s and (i) in (5.5) is satisfied.

After a few computations, one obtains

XB(t,s)Q(s)x

X(ts)Q(s)Q(s)x + fx(t'u)P(u)B(u)X (us)Q(s)x - ,fX(tu)Q(u)B(u)XB(us)Q(s)ds.
5 "t

If 0 = al K < 1/2, 8 = a(l26)1/2, & r-[1-(1-20)
11 2

], then one can obtain the

following estimate (it is nontrivial):

X B (t,s)P(s)l < PKe
"
0

( t
-

s ) ,  
t •s 0 .

IX (t,s)Q(s)J L oKe
"  ' )  

> t > 0.

Thus, estimates (ii), (iii) hold. This proves the lemma for J = R+. The same type

of argument applies to It and I.

Remark. In the proof of Lemma 5.2, one obtains the estimate

10(s) - P(s)l 6(' K
2
/(a+B)

"--."i . : - .. ; . '. . .. . -.. . . . . . . . .- , ; . , . - ., . > - _ "
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7.which -~0 as 8 0 uniformly in s.

We state the following lemma without proof since it is similar to the proof of

Lemma 5.2.

Lemma 5.3. If A~t) -A± as t *±,Reo(A) 0, then (5.4) has an exponential

dichotomy on~ N O with projection matrix P+ (t)(P-(t)) satisfyinga P±(t) P1 as

t*±.

Lemma 5.4. Let A(t) be an n x n matrix function, bounded and continuous on P such

*that equation (5.4) has an exponential dichotomy onlR and]R with projection

I n On)matrices P+(t),P-(t), respectively. Then L CbJ )- Cb(I )i rdomo

index dim -(P
4 

(0)) + dim M(P (0)) - n

* ..k(L) = g E C I OR n) i(t)-A(t)g(t) = 0, t E R, g(o) E (P+(o)) nA I-P-(o))}

f EC (RR -(tf~tdt= 0, *=transpose,

for all E C RJ satisfying the adjoint equation x +*(t)x = 0}

Remark, If A(t) satisfies the conditions of Lemma 5.3 and PA+' pA- are the projection

operators respectively for the dichotomies of x - A +x = 0, x -Ax = 0, then

*dimAP A+) - dim-(P(O)), dim -( A- dimg(P-(O)) and L in (5.4) has index

dimA..) + dim-(PA..) - n.

Sketch of proof of Lemma 5.4. If X(t,s) is the solution operator of (5.4), then

X- (t,s) = X(s,t) is the solution operator of the adjoint equation

(Lx)(t) = 0, L* = d/dt + A*(.). (5.8)

This implies (5.8) has an exponential dichotomy on P*, with projection matrix

Q *(t) =IP *(t) and on ]R with projection matrix Q (t) =I -P (t). The

fact that 41(L) = g ECIQR) g(t) - A(t)g(t) = 0, t CR, g(O) E V nl W} where

V =R(P"(O)), w = Il(Q-(O)), Q- I - P-, is clear. Also, -#(L*) = g EC1 (FtPn

i(t) + A*t)g(t) =0, t ECR, g (0) E v- n w-jL where V 4 (Q. * (0)) W, = Q ()

If f E. AL), then straightforward calculations show tha ,f (t)f(t)dt = 0

for all 0 E ,() Conversely, suppose f satisfies this orthogonality condition

for all W EChTL*. A solution of Lx(t) =f(t), f EC (]RJRn), is bounded on R if

n
and only if there is a C R such that

x(t) = X(tO)P+(O) + JX(t~s)P'(s)f(s)ds - X(t~s)Q(s)f(s)ds, t > 0

x(t) = X(t,O)Q-(O)& + ,ftX(t,s)Q-(O)f(s)ds + J X(t,s)P'(s)f(s)ds, t < 0

that is, if and only if

(P (0)-Q (O)& fX (s,)P(s)f(s)ds X Jx(sO)Q (s)f(s-)ds, or

I,0
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For this equation to have a solution, one must have the right hand side orthogonal

But, 6' E&(L*) if and only if

iP(t) = -X
1
(t, 0) (1-P+(0))n t > 0

X X (t,O)P (0)n t < 0

with P+*(0)n Q Q(0)n. This proves that _Q(L) is as stated in the lemma.

Thus L is Fredhoim of index dimA'(L) - dim(vL n w') . But dim (v-' n A

n-dim(V+W) =n-dim V - dim W - dim V n W. This proves the lemma.

We can now use Lemma 5.4 to apply the LS method to obtain the bifurcation

equations for bounded solutions of (5.3). In fact, let 0 = (pP 2 * q be a basis

for #(Q. Since z(0) is required to be orthogonal to j(0), this implies the pro-

jection of z onto #.-(L) must have value at zero given by O(0)b, b =(0,a), a ER-

If we let TV= ~ .. 4 be a basis for A(L*), (L* P)(t) - (t) -A*(t)x(t),
0 = 'V(t)'V(t)dt, (I-E)f = IYDlJY*(t)f(t)dt for f E Cb(JRn) then E is a

0 n
continuous projection on CbCR;R ) and M~(L) =.Q(E). Fix a E ~l1and apply the LS

method to obtain a functie~n z(a,iv,o) in C 1 ORI ) satisfying the equation

z-A(t)z = Ef(-,z,ti,a)
(5.9)

z*(a,0.a) (0) = O(0)b, b = (0,a).

This function z(a,w,a) will be a solution of (5.3) if and only if (a,vi,a) satisfy

(I-~f(,z~~ucx~l~o =0 which is equivalent to

G =~~a 0 (5.10)

=~~wa fY*t)f(t,z(aJic)(t)Ihjc1)dt 0.

For a fixed ui, this represents p equations for the q parameters (a,a).

As an illustration, consider the equation

X2 = g(x 1) - Ul x 2 + 12 f(t)

where 1i= (Ii1,' 2) CIR is a parameter, f(t) = f(t~l) is a continuous function,

g(0) =0, g'(0) < 0. These conditions imply that zero is a saddle point for the

system
x x 2 ' 2 = g(x 1 . (5.12)

r Suppose there is an orbit r = (p(t),p(t)), t C R) of (5.12) such that
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(p~t) (t) (0.0) as t t -; that is, r is an homoclinic orbit through x 0.

Since zero is a saddle point for (5.12), there is a unique hyperbolic periodic

solution o(t,ii) of (5.11) of period 1 for 1PI small, ko(t,0) - 0. Our objective is to

give necessary and sufficient conditions on (5.11) in order that there is a homoclinic

point to tp(O,Vi) in a small neighborhood of (0) x r foru i a small neighborhood of

zero. *From the definition, we must determine a solution x of (5.11) which remains

in a small neighborhood of r forlinear zero with the property that x(t) - kO(t'JJ) -~ 0

as t ±.The trajectory {(t,cP(t,1u)),t EIR) being a hyperbolic saddle implies that

we need only look for solutions of (S.11) which remain in a small neighborhood of

1R x r' for P near zero. Thus, for any solution x(t) of (5.11), we let x(t) =p(t+CL) +

z(t+ci), replace t by t -ato obtain the equation

Z
1  

2 (5.13)

22=-g'(p(t))z - uz -1 (t)+u~f(t-a,)-g(p(t)+:1 )+g(p(t))+g(P(t)) 1.

One can now apply the previous theory for small solutions z(t) of (5.13) for Ju in a

neighborhood of zero.

The Lnear variational equation around r is

1= x 2, x2 = -g'(P(t))x2 * (5.14)

The only solutions of this equation which are bounded on P must be multiples of

(j~t),i~t).This is proved by using the fact that a principal matrix solution has

determinant equal to one for all t. The adjoint equation

i g(p(t))x2. 2  1

has the solution (-P(t),(t)) bounded on and all other solutions bounded on . are

multiples of this one. In the terminology of the general setting for equation (5.1),

(5.4), we have shown that of(L) is spanned by ((t),(t))p =(L*) is spanned by

givetnecessar and L has index zero. Thus, when we apply the LS method, q = p - 1

and the vector a is not needed in (5.9). The bifurcation function in (5.10) is

given approximately by

G(u.o) f p torPnt) zef(t-c ldt + opet) (5.)

as u 0 0. This says that v /02)should be given approximately by

- h(az)
(S.16)

z2~~ ~~ I F
g (

.
t ) l  

l2UPt+2 
(t ) 'g (

.
) 

p
: l )g (t

-
)
d
+ ' t )) 1

The function h(a) is periodic of period 1. if n is given and satisfies
12

h(a) < nu < maxh(o), and h(ae) a then, if w is sufficiently small

there always eust an (),a(o) o. such that equation (5.11) has a solution which
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approaches the periodic solution T(t,u) as t * ±. This value a(u) corresponds to

the initial data near (p(ci(v)),j(a(iu))) for a solution x of (5.11) which lies on the

stable and unstable manifolds of the periodic solution tp(t,li) of (5.11) near zero.

Furthermore, one can show that the intersection of these manifolds is transversal

if h'(a O) 0 0. For the Poincare map w, this implies that the flow has a behavior

similar to the one shown in Fig. 5.1, where U, S are the unstable and stable mani-

folds of the fixed point P of Y near zero.

s#O
SAO,
Figure 5.1

In the next section, we discuss the implications of the existence of a trans-

verse homoclinic point.

If we make some further hypotheses on the function h(a) in (5.16), we can dis-

cuss the existence of homoclinic orbits for a full neighborhood of P = (PJiu2 ) =

(0,0). Suppose h(a) has an absolute maximum (minimum) at aam 
) 
and

h" aM ) < 0, h"(a) > 0. (5.17)

Then one can prove that there are C -curves CM, Cm in u-space with tangents at u = 0

respectively given by h(czM)/n, h(a )/n which divide a neighborhood of P - 0 into

sectors SI,S 2 as in Fig. 5.2, such that there are no homoclinic orbits in S1 and

homoclinic orbits in S2 ,

Figure 5.2

6. Transverse homoclinic points. To say more about the flow near a transverse

homoclinic point, we need some further results on exponential dichotomies. We

consider only periodic systems

- f(t,x) (6.1)

where f(t,x) is T-periodic in t. If w is the Poincare map taking points x0 C R n

into the solution through X0 at time T, then fixed points of 7r correspond to T-

periodic solutions of (6.1). Let T(t) be a T-periodic solution of (6.1). It is

hyperbolic if no characteristic exponents of the linear variational equation

- f (t,(P(t))x (6.2)

have zero real parts. This is equivalent to the statement that no elgenvalues of

1 . .
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diV(O)/dx are on the unit circle. From the Floquet theory, it is clear that k0 is

hyperbolic if and only if (6.2) has an exponential dichotomy. Let W (I), Ws P) be

the cross section of the stable and unstable manifolds of 4P at t = 0. Any

cE Wo(I) n Ws() is a homoclinic point of k0(0) and it is transversal if WU(Io)

intersects WS(0) transversally at E. If C E WU (0) n Ws(4D) and *(t,E) is the

solution of (6.1) through at zero, then *(t,&) - (P(t) + 0 as t . ±. Lemma 5.3

implies that the equation

x * fx(t,4(t,))x (6.3)

has an exponential dichotomy on R_ and R.+. Furthermore, Lemma 5.1 implies that

(6.3) has an exponential dichotomy or]R if and only if the stable and unstable sub-

space at t - 0 intersect transversally. We have proved the following

Proposition 6.1. If kp(.) is a hyperbolic T-periodic solution of (6.1), then C is a

transversal homoclinic point of kp(O) if and only if equation (6.3) has an exponen-

tial dichotomy.

We also need the following

Lemma 6.2. For each integer k, let AkK(t) be a bounded continuous n x n matrix

function such that the system

x = A k(t)x (6.4)

has an exponential dichotomy on an interval [tk-l,tkl with constants K,a (indepen-

dent of k) and projection matrix function Pk(t). Let A(t) = Ak(t), t E [tk-l,tk].

Also, suppose Ak(t)I <MI for all t.k. Then there exist T= To(K,a), 60 = 60(K,)

such that the equation

= A(t)x (6.5)

has an exponential dichotomy on R if t k - tk_ _ O _. IPk(tkl) - Pk l(tk l)1 < o0

Proof: Only the ideas will be given. The first step of the proof is to construct

n x n matrix functions Bk(t) which are close to Ak(t) and such that x = Bk(t)x has

an exponential dichotomy on (tkl't k] with constants 3K,a and projection matrix

function R(t) with Rk(tk-l) = Rkl(tk-l). If B(t) = Bk(t) and R(t) - Rk(t) on

[tk-l,tk0, and Y(t,s) is the principal matrix solution of x = B(t)x, then

Y(ts)R(s) - R(t)Y(t,s). One then shows that tk - tk- l > 2a n3K implies there is

an exponential dichotomy for this equation with constants 9K ,a/2 and matrix R(t).

The equation (6.5) then can be considered as a perturbation of x B(t)x to obtain

an exponential dichotomy of (6.5).

Let Xk(ts) be the principal matrix solution of x A K(t)x, tkl We

construct the Rk(t) by finding a nonsingular transformation of variables Sk(t) which

is close to the identify such that Yk(tO) - Sk(t)Xk(t,O) is a fundamental matrix
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of solutions for the equation i = Bk(t)x on [tk-l tkl and let Rk(t) =

Yk(tO)Pk(O)Ykl(t,O). The simplest form for Sk(t) is

Sk(t) I * (tk-tkl) t- )(J

where Jk+l is nonsingular. Using the fact that Xk(tO)Pk(O) P k(t)Xk(t,O), then

one sees that Rk(tk- 1) - \Pi~tk. ) if and only if Pk(tk- I)J z JkPk-P(tkl) and

J is nonsingular. The operator
k

k Pk(tk -l)k ltk- l (I'Pk(tk-l))(Pk-l(tk-l))

is a simple choice for J k To show Jk has an inverse, observe that

I - Jk * (Pk(tk-l) - (IPk(tk-l))][Pk(tk-1) Pk-l(tk-I)].

Thus, II-Jki ! 1/2 if 
6
0 = 1/4K and Jk has an inverse.

With the notation above, let B(t) = Bk(t), R(t) = Rk(t), t £ [tk letk) and let

Y(t,s), Y(s,s) - I, be the principal matrix solution of i = B(t)x. We show that

x B(t)x has an exponential dichotomy with constants 9K2,a/2 and projection matrix

function Q(t) if t - tk is > 2a-flog 3K. Let Q(O) = Q. For s < t, there are

integers k < j such that tkl _ s < tk, t. 1 < t < tj and the following estimates

hold

IY(t,s)Q(s)1
}-2

_ JY(t,t.j )Q(tj 1) j IYCti-.iti)(QCti)V .IY(tkls)Q(s)I

i-k

< (3K) Jk+le-
a
(
t -
s) < 9K

2
e

- 
a(ts)/2

since t - s > t_ - t (j-k-l)2o log 3K. If one supplies the details of these

computations, the proof is complete.

Theorem 6.3. Suppose f £ Cb0OR X IRn An), fx fC C
O
R x itnR

n
) nd fx is continuous in

x uniformly in t,x. For each integer k, suppose that the system

x = f(t,x) (6.6)

has a solution wk(t) defined on [tk-l'tk] such that

x f(t,w (t))x (6.7)

x k

has an exponential dichotomy on [tk ltk] with constants K,a and projection matrix

function Pk(t) and the following conditions are satisfied:

(i) IWkl(tkl) - wk(tk-l)I < 6

(ii) I P l(tk l) - Pk(tkl)I < 6

(iii) t k - tk. 1 > T.

Then there are psitive constants c0,T0 and a function 66) such that i 0

-. * ,,.* . -, . - *-. .- .-
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0 
< 

C 
< 

E0 and 6 < 60(c), then (6.6) has a unique solution x(t) satisfying

Jx(t)-wk(t)I c€ for tklC t < t k  for all k.

Proof: Only an outline of the proof is given. If -a(t) = wk(t), t E [tkltk],

then w is continuous except with small jumps 
8
k at t . Lemma 6.2 implies the

equation i s fx(tw(t))x has an exponential dichotomy on R if T is large enough

and 6 is small enough. The next idea is to approximate w(t) by a continuous

function z(t) by linear interpolation

z(t) a w(t) + (tk-tk .l)' lif t

z(f) = w(t) + (tk-tk-1) -l(t-Sk)k if sk < t < tk

where s= (tkltk)/2. Then jz(t)-w(t)f < 6,z(t)-(t)I _ 16, except at the

points tk. Since z(t) is close to w(t) and f (t,x) is continuous in x uniformly
k* x

with respect to t,x, the equation x = Cx(t,z(t))x has an exponential dichotomy on

R. One now considers the solutions of (6.6) as variations from z by letting x(t)

z(t) + v(t) to obtain

= f (t,z(t))v + g(tv)
(6.8)

g(tv) = [f(tz(t))-i(t)] + [f(t,z(t)+v) - f(tz(t)) - fx(t,z(t))v].

Now

Ig(t,O) < lf(t,z(t)) - f(t,w(t))f + li(t) - i(t)l < (const)6

except at the points tk. Also,

Ii (t,v)l - lfxCt,z(t).v) - f Ct,zCt))I- - (lv)

x x

where w is the uniform modulus of continuity of f . We have assumed that ,-(s) * 0x

as s -0 O. Since f = x(t,z(t))v has an exponential dichotomy on F, the equation
x

v= x(t,z(t))v + g(t)

where g is bounded on R and continuous except at the tk, has a unique solution Kg
0 n

bounded on R and supl(Kg)(t)l < (const) supjg(t)j. If we let F :PR x C $JRn)

t t b
cObQRRn) be defined by the relation F(t,v) = v(t) - K(g(',v(.))(t), then equation

(6.8) has a solution in Cb(RJR ) if and only if F(.,v) = 0. The function F(.,v) is

continuous together with its first derivative DvF(v) in a neighborhood U of v = 0

since fx(t,x) is continuous in x uniformly in (t,x). Furthermore, DvF(.,O) = I.

Also, F(.,tp) - 0, where ip = Klf(',z()) - i(')]. Since Itot _ (constant) *3, the

Implicit Function Theorem will imply that, for 6 sufficiently small, there is a

unique solution v* E Cb0]R .n) of F(.,v) = 0 in a neighborhood of v = 0 which is
b

o(1WI) as - 0. The function x*(t) v*(t) + z(t) is continuous and satisfies

x (t) * f(t,x*(t)) except perhaps at t = tk* But, since f(t,x) is continuons. it
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also Must satisfy the equation at tk' This proves the theorem.

Theorem 6.4. Suppose f(t,x) satisfies the smoothness properties in Theorem 6.3

and, in addition, is T-periodic in t. Suppose there is a doubly infinite sequence

uk(t)) of hyperbolic T-periodic solutions of (6.6) and another sequence {vk(t)}

of bounded solutions such that vk(t) - Uk.l(t) -* 0 as t - -- , vk(t) - uk(t) -, 0

as t . +- and the equation

X = fx(t Vk(t))x (6.9)

has an exponential dichotomy on]R with constants K,a inaependent of k. Then there

are co > 0 and a function M0(c) such that, for any 0 < c < E0 and any positive

integer m > M0 (c), system (6.6) has a unique solution x(t) defined on IR satisfying

lx(t+(2k-l)mT) - vk(t)l C_ C

for -rT < t < mT and all k.

Proof. Only an outline of the proof is given. Let Pk(t) be the projection matrix

function for the dichotomy of (6.9). Since vk(t) - uk(t) - 0 as t . -, the

equation 4t) = fx(t,uk(t))x has an exponential dichotomy on [0,-). Since uk(t) is

periodic in t, the Floquet theory implies this equation has an exponential dichotomy

onER. Let Qk(t) be the corresponding projection matrix function. An extension of

Lemma 5.3 implies IPk-(t)-Qkt)l -+ 0 as t --. iPk(t)-Qk-l(tjI - 0 as t -+

uniformly with respect to k. Let tk - 2kmT, wk(t) = vk(t-(2k-1)mT), Pk(t) =

P(t-(2k-l)mT), and apply Theorem 6.3 to complete the proof.

Figure 6.1 should assist the reader in understanding the meaning of the

hypotheses in Theorem 6.4 and also to feel intuitively why the conclusion is true;

that is, how one should be able to switch from comparing x(t+(2k-l)mT) to vk(t) on

[-mT,mT] to comparing x(t+(2(k+l)-l)mT) to vk~l (t) on [-mT,mT]; that is,

x(T+ (2k-l)mT) to vk l(-2mT+r) on [-mT,mT]. The hypotheses imply that

V k~l (-2mT+-)lm T = Vk+l(-mT) is close to vk(mT) if m is sufficiently large. Thus,

if x(r.(2k-l)mT) is close to vk(-r) on (-mT,mT], then x(mT*(2k-l)mT) =

x(-mT+(2(k~l)-l)mT) is close to vk l(-mT).

Ukk~l

UUk.

Figure 6.1
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We now use Theorem 6.4 to obtain informati n zhout the :.'i . .caa t -e i

homoclinic point. Iet h he a positi e intecer a:n i" < e',, ', '
N

infinite sequence, a ...,a _ , a , ., Ith E ' ..... I ,

put the product tolorgy )n S5 , that is, i -,eighhorho,.i - .,*: '

(. .... b 62,b b,b . . ~consists of the sets II :: a E_

The (right) Bernoulli shifi c' of SN is defined :t k  i •

Corollary 6.5. (Shadow'n lerni). j jse fIt.x s atsfi'.- thJ -'>,Lo; _,,:c,:

in Theorem 6.3, i_ T-oeri,.,c in t, has an hIterboltic 1-peniodi . t,, ,.. -o

another solution vit) such that kt - u(t) - (I as t - an,i tine e Ijoi o :

X f :t,x(t)x

X

has an exponential dichotomy on R (that 1,, Id is ransverse hrnoclinic to 1(:0 h"

Proposition 6.1).

Then there exists an 0 ad, for each positive inte r , funticiThen1-,! S there 1-ss a , b'

N(O) such that, toranv or an n c od tive .ntev er M r. "r ,

SN equat;on i o.( h:,s a unique solution x it) sati

a (t+2k-)m'l - v(t'a

'a

for -mT I t < mT and all k.

The mappinL toa) xa(O) is a homeoor hiso ont a c,,npact set of R
n 

on which

-' ~~th 2m- ___ ____
the 2m iterate -' of the P.incare ral - is invariant and 2 o =to oi where

is the right Bernoulli shift on SN .

Proof: Let Vk (t) vt+akT), uk(t) = ult). k = (, 1 .... and ap!ly Theorem, 6.4 to

obtain the existence of xa (t. Using the uniqueness of xa(t one can prove after

some computations that wo(a) is a homeomorphism. To show that 72m o V =D o , ob-

serve that

Ix a(t+(2(k+l)_I)mT) - v(t+ak+lT)j c

for -mT < t < mT for all t. Thus, uniqueness implies x (t+2mT) = X(a(t). Thus,

2ma
(D((a)) x a(2mT) = (W(a)).

Remark. The "shadowing lemma" for diffeomorphisms is usually proved by using horse-

shoes. In this type of proof, the symbols {0,1 ...,N-l occur as a specification of

whether or not iterates of a point belong to certain intervals.

7. Codimension one bifurcations in the plane. In previous sections, we have dis-

cussed various types of dynamic bifurcation for autonomous systems; for example, the

saddle-node bifurcation in Section 3 and the generic Hopf bifurcation in Section 4.

We also discussed some aspects of homoclinic bifurcation. for differential equations
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in the plane, much more information is available. In fact, one can completely

characterize all of the codimension one bifurcations. To make this more precise,

we need the concept of structural stability. We restrict the discussion to the

interior a of a closed curve r without contact to any of the vector fields to be

considered. Let 12 be the set of all such Cr vector fields. Two vector fields

X,Y in 92' r > 1, are equivalent if there is a homeomorphism on Q U r which maps

orbits of one onto orbits of the other and preserves the sense of direction in time.

This is an equivalence relation"'-' among vector fields. X is structurally, stable if

every Y in a neighborhood of X is equivalent to X.

The condition that the vector fields are nowhere tangent to r is very con-

venient since it makes the domain where the differential equations are being con-

sidered to be a compact set. It also avoids certain complications which can arise

at the boundary. Our hypothesis does put restrictions on the vector fields. Since

our objective is to present some of the basic ideas, the hypothesis seems justified

in view of the technicalities that arise in considering the noncompact case or flows

on manifolds.

The basic result on structural stability is the following.

Theorem 7.1. An f 6aZ is structurally stable if and only if every equilibrium

point and every periodic orbit is hyperbolic and there are no connections between

saddle points. The set of structurally stable systems is obviously open but is also

dense in

An X EQ is a bifurcation point (a vector field for which a perturbation could

lead to a bifurcation) if X is structurally unstable; that is, not structurally

stable. We now give an inductive definition of a bifurcation point of codimension k.

The vector field X is a bifurcation point of codimension 0 if it is structurally

stable. X is a bifurcation point of codimension I if it is not codimension zero and

there is a neighborhood of X which has only bifurcation points of codimension 0 or

ones which are equivalent to X. It is a bifurcation point of codimension 2 if it

is not of codimension zero or one and there is a neighborhood containing only bifur-

cation points of codimension 0 or I, or, ones which are equivalent to X. Similarly,

one defines bifurcation points of codimension k.

The following result is a classification of bifurcation points of codimension

one in the plane.

Theorem 7.2. A vecotr field f E 4 r > 3, is a bifurcation point of codimension 1

if and only if there is a neighborhood W of f and a submanifold r of codimension

one in W such that W - r - U1 U U2 where each g E U. is structurally stable but

g * h if g C U1,h C U2. For g f r, only one of the following situations prevails:

(i) g E r has an elementary saddle-node at x0, there are no equilibrium
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points of g near x if g E U1 and a saddle and node near x0 if g E U2.

(ii) g e r has an elementary focus at x0, there is no periodic orbit of g

near x if g E U1 and a periodic orbit near xi g EU 2 --the generic

Hopf bifurcation.

(iii) g E r has a periodic orbit y which is stable from one side, unstable

from the other, g E U1 has no periodic orbit near y and g EU bas
2

two hyperbolic periodic orbits near y.

(iv) o = tr af(x0 )/ax 0 0, g E r has a homoclinic orbit containing a

saddle point x0 , g E UI has a saddle near x0 and no periodic orbit

near y, g E U2 has a saddle point and a unique hyperbolic periodic

orbit near ywhich coalesce as g * r.

(v) there is a connection between distinct saddle points.

Each of the cases (i)-(v) is shown in Figure 7.1.

(V)

U, r

Figure 7.1

We do not give a proof of either Theorem 7.1 or 7.2. We only remark that we

have discussed the bifurcations that occur in cases (i) and (ii) in Section 3 and

4. Case (iii) can be discussed using the methods in Section 4 after the introduc-

tion of a coordinate system x i-* (6,p), x - p(o) + pv(o) where p(t) is a non-

hyperbolic periodic solution of a bifurcation point f 2 and v(o) is orthogonal

to P(O)- Case (iv) is the most difficult. Let us only motihate the condition $.
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R
2

Let us suppose that we have a vector field f(x,u) in R depending on a scalar

parameter v with the property that there is a hyperbolic saddle point at 0 with the

eigenvalues bounded away from zero for all p. Also, suppose there is a hyperbolic

periodic orbit P of period u(u) which has the property that dist(O,P 0 as

- 0. This creates a homoclinic orbit r at P = 0. For such a situation to occur,

the period w(u) must approach - as P - 0. If this one parameter family of vector

fields is generic, then one cannot expect to have other bad things happen as we

change the vector field since we use the parameter to make w(p) - as 0 * 0. In

particular, the rate of attraction or repulsion of the periodic orbit P

should be exponential and uniform in P. If we keep this uniformity as p * 0, then

the orbit r should have the property that it is either asymptotically stable or

unstable depending on whether P is stable or unstable.

To find a quantitative expression for this uniformity, let us recall the

formula for the characteristic exponents of the linear variational equation for a

periodic orbit in the plane. If P1 = {p 1(t) : 0 < t < w()} and x pL + y, then

the linear variational equation for pu is

Y = jx (pV(t),1J)y

The nontrivial periodic function k satisfies this equation and thus one charac-

teristic exponent may be taken to be zero. Let 
1
() be the other characteristic

exponent. The sum X(1)* 0 = X() of the characteristic exponents must be

1() = .tr .f.pL. (t),)/dx]dt.

0

Then one can show that

= 7()J [f(J/ tr afcp P(t),uj)/axgdt-. tr af(o,o)/ax

as P + 0. Consequently, the rate of attraction or repulsion of each P will be

exponential and uniform invif

def t af(O,0) = .

The fact that only two possibilities arise in a neighborhood of a bifurcation

point of codimension one suggests that this is the typical or generic situation that

arises in the discussion of one parameter families of vector fields. This is, in

fact, the case and one can prove

Theorem 7 .aLf . f(0 [0,1] __k cop Cck ),k > 3, and =k - (' E 0:((t) is

structurally stable except at a finite number~deendin on (P) points t. with f(t.)

a bifurcation noint of codimension one), then
k 

is a residual set in

The analysis of bifurcations of codimension greater than one are generally

!' .' ,i '.. . . : .- i. - i: :- ..,: -." .-. .-. , . / . .' " • .. . .
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much more difficult. For some cases, the ideas are clearly understood and it is

mainly a technical problem to do the complete analysis. This remark applies to the

situation where the linear variational equation near an equilibrium point has either

a simple eigenvalue zero or a pair of purely imaginary eigenvalues on the imaginary

axis. The ideas in Sections 3 and 4 apply to this situation. In the plane, the

methods necessary to analyze the bifurcations of higher codimension resulting from

the nonhyperbolicity of a periodic orbit are also clear. For other situations,

special difficulties arise and each problem is a challenge in itself. In the next

sections, we discuss some special codimension two bifurcations.

8. Two zero eigenvalues. In this section, we discuss a codimension two bifurcation.

The unperturbed system is taken to be

2+
x = -y, y = ax * 8xy (8.1)

where a- 0, 8 0 0. Without loss in generality, one can assume a < 0, 6 > 0. The

perturbed system will be

x y, y C Lix + c2y + x
2 
+ Bxy (8.2)

where c1 ,c2 are small parameters. The problem is to discuss the behavior of the

solutions of (8.2) in a neighborhood of (x,y) = (0,0) for (cl,C2) in a neighborhood

of (0,0). We remark that the conclusions below are valid for some higher order per-

turbations of (8.2) and that we omit such terms only for simplicity in notation.

We only discuss _1 > 0. since the other case is less intersting. The scaling

£l . 6
2

3 5 2 = u6
2 , 6 > 0

t"--1. 6-1 t, x ".--. 6 2 111X, y 1- 6311i-1 y

leads to new equations

x y, x s x - x
2 
+ U6Y + 6yxy (8.3)

where y = hal-l

For 6 = 0, Equation (8.3) becomes the conservative system

2
i - y, y - x - x (8.4)

with first integral

V(x,y) = + -- (8.5)
2 2 3

The equilibrium point (0,0) is a saddle with a homoclinic orbit through it while the

equilibrium point (1,0) is a center,

The parametrization of the phase space by the above scaling is suggested by
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the following. The orbits of the unperturbed equation (8.1) satisfy the equation
2+ydy - (alx xy)dx. The orbit which passes through the origin is given approximately

"i'. 3a

by y a x . Thus when one "blows up" the flow at the origin, it is natural to do
it by parametrizing the phase space with cusps. The orbits for (8.2) satisfy

dy , [(c1 + ax)xy- I + (E2+Sx)]dx.

For eI > 0, it turns out that the appropriate parameterization in parameter space is
to take c ,E 2,xofthe same order. This leads to the scaling used above. Notice that

the flows defined by (8.2) and (8.3) are equivalent for 6 > 0, but are not equivalent

for 6 = 0.

Our next task is to determine the curves in the (cl,e2)-plane (that is, the

values of 6,p) at which the topological structure of the trajectories of Equation

(8.3) changes. As we shall see, this structure can change only due to a homoclinic

orbit or a change in stability of the equilibrium point (1,0).

Let r = {(q(t),i(t)), t ER) U ((0,0)) be the homoclinic orbit of (8.4). We
may now apply the results of Section S to obtain the curve in (v,f)-space such that

(8.3) has a homoclinic orbit. In particular, from Eq. (S.4), we have this curve

corresponds to the zeros of the bifurcation function

= + yv + d(i,6)

V = 4/ i

where G(p,O) = 0. There is no a in G(U,6) since the equation is autonomous. One

can show that v = 6/7. The equation G(p,6) = 0 has a unique solution (v(6),6),

0 _ 161 60 6
0 > 0, ji(O) a u0 = -yv. Finally, the curve C in (E,£2)-space along

which there is a homoclinic orbit is given by

C ((EllE2) : £2 = U( 1/2)E1 lu(0) = -yvl

On the curve C . (0,) we have o0 = £2 < 0, where 00 is the number given in Theorem

7.2. From part (iv) of Theorem 7.2, this suggests there should be a periodic orbit

near this curve.

We now discuss the periodic orbits of (8.3). This part of the analysis in

problems of this type is the most difficult, especially the discussion of the number

of periodic orbits that can exist. One can prove the following lemma.

Le=mna 8.1. Every periodic orbit of Equation (8.3) must intersect the segment

(0,1) x {0) in the (x,y)-plane. There is a continuous positive function 6.

(0,1) -* R and a continuously differentiahle function W*(h,f), h E (0,1), !61 < 60(h)

such that there is a Periodic orbit of Equation (8.3) throug (h.O) if and only if

- u(b,6). Furthermore,

: , ? -' . ... - - . . . . . . - . .. - - - . .- -. . .. ..
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i*(b0) r -yB(b)/a(b)

~c(b) ~ c(b)
a(b) = ydx, B(b) = xydx > 0

S1 0, y,2 x2-b
2  

x
2
-b

3

y>, 2 2 3

2 2 3 3
c(b) > 1, c (b)-b c (b)-b =0

2 3

and du*Cb,0)/db < 0. Also, A*(b,O) - -y as b - 1, v*(b,0) - as b 0 0. Finally,

if ii =*ub,6) for a fixed b E (0,1) and 161 < 60 (b), then the periodic orbit through

(b,0) is the only one corresponding to this p,6.

Remark: The assertion du*(b,O)/db < 0 implies, for any b0, there is a 60 (b0) such

that along the curve el = P*(b 0 ,6)c2, 0 < 6 < 60 (b), there is a unique periodic orbit

of (8.3) which approaches the periodic orbit of (8.4) through (b0,0) as 5 - 0.

We give only an indication of the proof of Lemma 8.1. If V(x,y) is the deriva-

2
tive of V alodg thi solutions of (8.3), then 6(+yx)y

For a fixed (b,O), 0 < b < 1, and 6 sufficiently small, there are numbers

T = I (b,6,d) < 0 < T2 = T2 (b,6,u) such that the solution through (b,O) intersects

the x-axis at time t. at a point larger than 1. Furthermore, for t E (TlT2), the

orbit interects the x-axis only for t = 0. Let r = r(b,6,u) be that part of the

orbit through (b,O) corresponding to t E [ilT2]. For r to be a periodic orbit, it

is necessary and sufficient that Jrdt =0, which for 6 o 0, is equivalent to

F(b,Ip) d f f (+Y x)y
2 

= 0.

One can now apply the Implicit Function Theorem to this equation near the

point (bo,0lj0), u0 = -va(b0 )/a(b0). This will prove the first part of the lemma.

The fact that i*(b,0) approaches the limits indicated above require only elementary

computations.

The difficult part of the lemma is to show du*(b,0)/db < 0. If 2a = -b 4

2b /3, then 0 < b < I implies -1 < 6a < 0. Let b(a) be the inverse of this trans-

formation and put v(a) =s r(b(a)/a(b(a)). If we consider 8, as functions of a

and let " ' " be differentiation with respect to a, then the lemma is proved if

one shows that v' < 0, -1 < 6a < 0. To carry out this proof, one exploits special

properties of the elliptic integrals a,$. More precisely, one shows that a,8 and

a" ," can be expressed as linear combinations of o',B'. We are going to show that

So = 6aa' + 0', 358 1 6aa' + 6(l+Sa)8'
(8.6)

6a(l+6a)a" * -baa' - 8' , (16a)8" = 8' - c'

m~o_
"
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fc 1

We have already proved that $'(a) = Jxy"ldx. Using the fact that x

*yx + x
2
, y(b) =y(c) - 0, one obtains B'(a = x2y'ldx. Integrating by parts,

2 , b

using YYx =x x and the formula for 8', we have

a f ydx = xy x dx f x(X-x
2 
)y-

1
dx f Yxy-ldx. (8.7)

This relation and the formula for y imply that

d c 2- [
2  

2 3+ I
a b = Jby yyfdx = Jx - •3x + 2a]y dx

i 8' -
2
(a+S') + 2aa'

or, Sa = 6aal + 8'.

Integrating B by parts and using the formula for yy x we have

1 b b yx c
(x 
2/2)yxdX b

x 
cx

y
- ax +Jb yj l 1dx.

f
x = - = - b

Using (8.7), this implies + + (1/2)(a+8') = (112) x4YIdx. Using the formula for
2 Jy , (8.7) and this latter relation, one obtains

3 = = f 'rx + 2ax y dx = a + 8' - I - (a+B') + 2aB'

Simplifying this expression, one obtains 76 = a 8 8' + 6a8'. Using the previously
obtained expression for a in terms of a',B', one finds that 358 = 6aa' * 6(lSa)8'.

The expressions for a",B" are obtained from the relations for a,8. This completes

the proof of (8.6).

Using these relations, one now proves that, if v'(a) = 0 for some a,

-1 < 6a < 0, then

2
-6a(I+6a)av"/a' - (v * 6a) - 6a(l 6a) < 0;

that is, v"(a) < 0.

Next, one shows that v'(a) = 0 implies 7v2(a) + 6(2a-I)v(a) - 6a 0 0. This

implies that, if v'(a) = 0 and v(a) = 1, then 6a = -1. Since v(O) = 6/7, we have

v'(a) a 0 implies 0 < v(a) < 1.

Using the fact that PO(-1/6) = 1, tjoO) = 6/7, one easily concludes that

yl(a) < 0, -1 < 6a < 0 and the lemma is proved.

Using Lemma 8.1 and the remarks about the homoclinic orbit before the state-

ment of the lemma, Theorem 7.2 (iv) implies that for each point in the region below

the curve C., there is a unique periodic orbit. Next, we analyze the behavior of

the solutions of (8.3) near the equilibrium point (1,0). This point is a stable

focur if p < -y, and an unstable focus if w > -y,y = 1a1 The curve j = -Y is

.......................................%
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therefore a possible value for a Hopf bifurcation. One can apply the method of

Section 4 for the periodic orbits near (1,0) and obtain a bifurcation function

G(a,P,6) for 161 < 60. jai < aO, 1P + YI < n for some constants 60 > 0, a0 > 0,

0 0. Since Equation (8.3) for 6 = 0 has a center at (1,0), it follows that

G(a,u,0) = 0 for all a,u. Thus, the appropriate bifurcation function to consider

is H(a, ,6) - G(a,t,6)/6. This function satisfies H(0,ji,6) = 0, *aH(0,jj,O)/ a =

(u + y)/2. Lemma 8.1 implies for each U > -y and sufficiently close to -X, there

is a unique periodic orbit of (8.3) through (b,O) with b near 1. Thus, if b is

taken close enough to 1, this periodic orbit must correspond to a zero of the

bifurcation function H(a,u,6). This proves there is a Hopf bifurcation at 1 = -y

and the periodic orbit is asymptotically stable.

One thus obtains the complete bifurcation diagrams as shown in Fig. 8.1 with

the flow in each sector given in Fig. 8.2. We draw the curves in Fig. 8.1 as

straight lines but this is really only the first approximation.

Figure 8.1

Y Y

SECTOR I I SECTOR 2 SECTOR 3

Figure 8.2

9. Two zero roots with symmetry. In a planar system where the matrix of the linear

variational equation near an equilibrium point has both eigenvalues zero with non-

simple elementary divisors, the analysis in the previous section showed that the

vector field (8.1) with quadratic terms was a codimension two bifurcation. If there

is some symmetry in the vector field; for example, it is odd in (x,y), then the

quadratic terms in the Taylor expansion vanish. Thus, it becomes of interest to

know what additicaal nonlinear terms are needed in order to obtain a codimension two

bifurcation. In this section, we summarize some results with only brief indications

of the proofs.

Consider the equation

- y. 5 cix E 2y a x
3  

e Bx
2 
y(9.1)

with a ' 0, 8 < 0 and c1,c2 small parameters. The problem is to analyze the

. ..M

.-.



behavior of the solutions of (9.1) in a neighborhood of (x,y) =(0,0) for (c
1
.E

2
)

in a neighborhood of (cVE 2) =(010).

The bifurcation diagram is shown in Fig. 9.1 with the flow in each sector

given in Fig. 9.2.

3 4

2

6

Figure 9.1

REGION I REGION~ 2

~ REGION 3

REGION 4

Figure 9.2
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ON L,

~ REGION 5

ON L 2

REGION 6

Figure 9.2 (cont.)
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Let us give an idea of how these results are obtained for the case e1 
> 
0.

Firstly, one introduces scaling

6 = IE ll x, = I1 1 2 , 111/2 1, 621a1/2>y

t . /
- 

t

to obtain

3 + 2
=y, y= x+y-x + 6yx y (9.2)

where y = 8lac-1
1 2

. For u = 0, 6 = 0, this equation has the first integral

H(xy) = y 2/2 - x 2/2 + x 4/4. (9.3)

Some of the level curves H(x,y) = b of this function are shown in Fig. 9.3. For

b s 0, the curve is a figure of eight and for b > 0, it is a closed curve through

the point (x,y) = (0,(2b)
1
1
2
). For b < 0, the set H(x,y) = b consists of two closed

Figure 9.3

curves surroundingrespectively, the equilibrium points (1,0), (-1,0). These curves

pass through the point (O,c), 0 < c < 1, b = -c 2/2 + c 4/4. The derivative H(x,y)

along the solutions of (9.2) is given by H(x,y) = y + 6yx y .

The first step in the analysis is to determine the curve = Vj*(6) so that

(9.2) has a homoclinic orbit. This curve is obtained as in the example of Section 8

S-' and is shown to be

u*(6) - -(415)6y + 00 ) as 6 - 0.

The next step is to analyze the periodic orbits. There is the possibility of
two types: an orbit which contains only one equilibrium point in its interior or an

orbit which contains three points in its interior. These orbits will be close to a

curve H(x,y) = b for some b < 0 in the first case and some b > 0 in the latter case.

These two cases must be analyzed separately.

For b 0 0, let TI = 1 (wi,b,6) > 0 be the first positive value of t for

which the solution through (0,(2b)
1 /2

) crosses the x-axis, say at xl(Ij,b,6). Let

T = T 2 (,b,6) be the first negative value of t for which the solution through

(0,-(2b)
1 /2

) crosses the x-axis, say at x2 (,b,6). From the symmetry in the equa-

tion, it follows that (0,(2b)
1/ 2

) lies on a periodic orbit if and only if

H(x,(u,b,d),O) = I(x2(u,b,6),O). Using the expression for I(x,y), it is not diffi-

cult to show that this implies

.
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2
P i~(b,6) -yP(b)6 + O(S

f c 2 ydx(9.4)

P(b)=

4 2
Where c =c(b) is the positive solution of 4b =c -2c and H(x,y) =b. For P(b),

one can now prove the following basic result.

Lemma 9.1. P(b) -* as b *-and there is a unique minimum of P(b) ajt b =b, and

P" (b) > 0.

2_ 4 1/2 f~2r~.

V.Idea of the proof: If r(w) *(w -w 12 + 2b) , (b) = r8~w (b) = rwd,

4b 2 then P(b) SM(b/a(b). If a' = do/db,0' = dB/db, then one 'shows that

3a 4ba' + 8'

150 4ba' + (4+12b)81

after several computations.

Now, suppose that P'(b) 0. Then a(b )P"(b) 811(b)- P(b 1)0"(b 1  and

relations (9.5) imply that

4b~~~~~ ~ ~ (0+)11( )Pb)1( '(b )[P 
2
(b )+8b P(b )-4b1]

Thus, P"(b) has the same sign as P 
2
(b )+8b P(b )-4b.

On the other hand, P'(bg 0 and relations (9.5) imply that

SP 2(b )4.8b P(b )-4P(b )-4b1  0

which implies P(b) < 1 since b1 > 0. Using the fact that 8b P(b )-4b,
4P1' SP 

2
(b) wese that P"b has the same sign as P - 1 2 (bwhchi

>0 since P(b) < 1.

It is not difficult to prove that P(b) *- as b -~and F' (b) -- as b *0.

This will complete the proof of the lemma.

The graph of P(b) is illustrated in Fig. 9.4.

P(b

r Figure9.

K2
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From (9.4), the periodic orbits with b > 0 are given approximately by -u(y6) =

P(b). Thus, approximately, there should be no periodic orbit encircling the three

equilibrium points if -j(y6)
-I 

< min P(b) = P(bl), two periodic orbits if P(bI) <

-U(ya)
" 

< P(O) and one periodic orbit if P(O) < -jj(y6) . This can be made precise

since P"(b1) > 0 to confirm the part of the bifurcation diagram in Fig. 9.1 for the

periodic orbits which encircle three equilibrium points.

The analysis of the periodic orbits encircling only one equilibrium point uses

methods very similar to the ones in Section 8 and will not be given.

Notes

These notes are intended to relate the results stated in previous sections to

existing literature. No claim is made toward completeness nor even original sources.

Section 1. The methods in this section are very special cases of a much more gener-

al global procedure for discussing the zeros of functions. This procedure often is

called the alternative method and originated from some fundamental papers of Cesari

in the early 1960's (for references and an historical discussion, see Cesari [6],

Chow and Hale [
7D.

Section 3. Theorem 3.1 can be found in deOliveira and Hale [13] and can also be

obtained from a result in Golubitsky and Schaeffer [15]. Theorem 3.2 appeared in

the paper of Crandall and Rabinowitz [11], [12]. The saddle-mode and cusp bifurca-

tions can be found in Andronov et al [1]. The complete discussion of the case

G(x,0) = Bxq + O(1 xlq), B 0 0, belongs to the general theory of unfolding of singu-

larities (see, for example, Golubitsky and Buillemin [14]). For a full treatment

of the evolutionary equations of the form (3.17), see Henry [171. For functional

differential equations, see Hale [16].

Section 4. For a detailed discussion of the Hopf Bifurcation Theorem as well as

references, see Marsden and McCracken [21] and Chow and Hale [7]. Results and

references for parabolic equations may be found in Kielht5fer (20] and for functional

differential equations in [16].

Section 5. An excellent discussion of dichotomies is contained in Coppel [10].

Exponential dichotomies for parabolic equations are contained in Henry [17] and for

functional differential equations Pecelli [24]. Lemmas 5.3 and 5.4 are due to

Palmer [23]. The use of the Fredholm alternative to discuss Example (5.11) was

first given by Chow, Hale and Mallet-Paret [8]. The Mel'nikov function can also be

used to discuss (5.11) (see, e.g. Holmes [18]). Lemma 5.4 and its application to

obtain the function G(a,p,a) in (5.10) can be considered as a generalization of the

Mel'nikov function to n-dimensions.
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Section 6. The methods and results in this section are based on Palmer [23]. For

other references and approaches to the "shadowing lemma" and the symbolic dynamics

of Corollary 6.5, see Smale [27], Conley [9], Moser [22], Sil'nikov 126).

Section 7. Theorem 7.1 is due to Andronov and Pontrjagin [2] and Peixoto (25].

Theorem 7.2 is due to Andronov et al [I] and Sotomayor [28]. Theorem 7.3 is due to

Sotomayor (28].

Section 8. The bifurcation diagram for Eq. (8.2) was considered by Howard and

Koppell (19]. Arnol'd [3] and Bogdanov [4] considered an equivalent equation

2
= Y = 2 

+ 
EIx + 

ax 2 
+ Bxy. Bogdanov [4] has shown that every two parameter

family of vector fields close to x = y, y m ax 
2  

Bxy in the C
3 

topology is equiva-

lent to a member of the above two parameter family.

Section 9. The results in this section are due to Takens [29,30] and Carr (5].

Acknowledgement: The author is indebted to Giorgio Fusco for several stimulating

discussions during the preparation of these notes.
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