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Introduction 

W Nelson Beyer and james P. Meador 

Ecotoxicology is the study of the movement of environmental contaminants through ecosystems 

and their effects on plants and animals. Examining tissue residues of these contaminants in biota 

is basic to ecotoxicology, both for understanding the movement of contaminants within organisms 

and through food chains, and for understanding and quantifying injuries to organisms and their 

communities. This book provides guidance on interpreting tissue concentrations of environmental 

contaminants. 

Tissue concentrations have long been used both to identify the cause of toxicity in animals and 

as a measure of the severity of toxicity. More recently, they have been incorporated into environ­

mental models, tying together exposure, kinetics, and toxic effects. Measuring tissue concentrations 

is basic to studies on the kinetics of contaminants, which entails characterizing the rates of uptake 

and elimination in organisms, as well as redistribution (organs, lipid, and plasma) within them. 

Tissue concentrations are also used in ecological studies examining the movement of contaminants 

between organisms and within biological communities. 

In monitoring programs, tissue concentrations tell us about the geographical distribution of 

contaminants and how they change through time. Measuring contaminants in tissue can also be 

important for defining the background, or the uncontaminated condition, as well as identification 

of hot spots and gradients from point sources. Although analyses of soils and sediments also pro­

vide information on the distribution of contaminants, analyses of tissues provide information that 

is more meaningful to ecotoxicologists. In some instances, chemical analyses of tissues gave the 

first hint of the global dispersion of chemicals. The environmental importance of polychlorinated 

biphenyls, tributyltin, and perftuorooctanesulfonic acid was not recognized until these compounds 

were found in tissues of widely distributed animals. Sometimes knowing simply that a contaminant 

is present in an organism is useful. For example, if an avian die-off has occurred and brain tissue 

shows greatly reduced activity of cholinesterase, then documenting the presence of an organophos­

phate or carbamate pesticide in the carcasses may be all that is required to find the cause of that 

die-off (Mineau and Tucker 2002). When pathologists examine toxicological cases, tissue analyses 

are usually essential to making a diagnosis. For the most part, however, this book provides guidance 

on relating tissue concentrations quantitatively to injury, which lies at the core of ecotoxicology. 

Thousands of research papers reporting tissue concentrations are published each year, and their 

value depends on ecotoxicologists being able to interpret the toxicological consequences of those 

concentrations. 

The logic for relying on tissue residues in wildlife toxicology was put forth by Bill and Lucille 

Stickel (1973), who explained how tissue concentrations may best be used in diagnosing poisoning 

of birds by organochlorine pesticides. Biologists had suspected that birds were being poisoned by 

applications of pesticides, but differences among species, the physiological condition of the birds, 

and extraneous factors made it difficult to establish the cause of death. Analyzing the contents of the 

digestive tract for the presence of a pesticide, the usual means of diagnosing poisoning in humans, 

failed because all of the birds in a sprayed area had some exposure to the pesticide. Live birds col­

lected at the site often had whole-body concentrations of pesticides that exceeded those of birds 

found dead. In a series of controlled studies on birds dosed with various organochlorine pesticides, 

the Stickels and colleagues demonstrated that because the lipids that store the pesticides are metab­

olized when a bird stops feeding (due to sickness caused by exposure to these pesticides), those 
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2 Environmental Contaminants in Biota 

pesticides in the body may be mobilized and then rapidly become lethal. Although various organs 

could be used to indicate sublethal exposure to pesticides, analyzing the brain was key to identirying 

those birds that had lethal residues. Unlike concentrations in other organs, lethal concentrati6ns in 

the brain were remarkably consistent, even in different species and in birds with different exposures. 

The brain is the logical organ to analyze because the organochlorine pesticides were neurotoxic, but 

the decision to rely on brain residues was a practical one. The reader is referred to Keith (1996) and 

to the following chapter in this book for a history of the use of tissue residues in evaluating hazards 

of contaminants to wildlife. 

Aquatic toxicologists also rely on tissue concentrations when interpreting hazards, although much 

of this research has been relatively recent. The underpinnings of tissue residue toxicity were consid­

ered in the early 1900s by Meyer and Overton, who addressed the narcotic effect of organic com­

pounds (Lipnick 1995) and by researchers who measured pesticides and metals in fish (Ferguson 

1939, McCarty et al. in press). As these sporadic papers touted the virtues of using tissue residues 

to assess toxic responses, they were largely ignored by aquatic toxicologists, who emphasized expo­

sure to contaminants in water and sediment. It was not until the early 1990s that a more in-depth 

analysis of tissue residue toxicity for a variety of chemicals and modes of action was considered 

(McCarty 1991, McCarty and Mackay 1993). After that, a flurry of research papers explored this 

topic in greater detail. These include published works on PAHs and other compounds at narcotic 

concentrations (Di Toro et al. 2000), chlorophenols (Kukkonen 2002), PCBs in salmonids (Meador 

et al. 2002a), tributyltin (Meador 2000, Meador et al. 2002b), mercury and DDT in fish (Beckvar 

et al. 2005), dioxins in fish (Steevens et al. 2005), and general reviews from Barron et al. (2002), 

Meador (2006), and Meador et al. (2008). At a Pellston workshop in 2007, 40 of the world's lead­

ing experts conducted a critical review of the tissue residue approach for toxicity assessment (see 

Integrated Environmental Assessment and Monitoring Jan. 2011). 

The wide assortment of terms used in the field illustrates how researchers have evolved different 

ways of thinking about tissue concentrations. We begin this discussion with terms based on a mech­

anistic approach, originally defined by a work,group on metals (Norberg 1976), although applic­

able to other contaminants as well. Several definitions are relevant here. The work group defines 

the "critical concentration" for a cell as the concentration at which undesirable functional changes, 

reversible or irreversible, occur in the cell. The "critical organ concentration" is defined as the mean 

concentration in the organ at the time any of its cells reaches critical concentration. The "critical 

organ" is that organ that first attains the critical concentration of a metal under specified circum­

stances of exposure and for a given population (Nordberg 1976). This approach is precise, assuming 

cause and effect. Cadmium's well-known effect on renal function seems to fit well into this frame­

work. In practice, however, this approach does not work well for many environmental contaminants. 

A toxicant, such as lead, may affect many organs and systems simultaneously, and the signs and 

lesions observed among lead-poisoned individuals may vary substantially. Because organochlorine 

compounds are stored in lipids, throughout the body, they are not associated with a single organ. 

Nor is identifying "that organ that first attains the critical concentration" as simple as it sounds. A 

histopathologist using electron microscopy may detect lesions not visible using light microscopy. 

Drawing on more sensitive measures, such as those used in genomics, a toxicologist may detect 

alterations at lower tissue concentrations and exacerbate the difficulty in differentiating a harmless 

response from an adverse response. Risk assessors try to select endpoints that they consider mean­

ingful to an assessment, which is not always the same as selecting the most sensitive endpoint. 

The expression "critical concentration" is often useful when generalizing about tissue concentra­

tions applicable to a taxon, as long as the effect and the circumstances are made clear. For example, 

based on studies conducted on several species ingesting lead shot, we might identify a critical con­

centration in livers of waterfowl expected to be associated with death. The term "threshold" means 

the concentration at which an effect is first observable. 

The terminology of tissue concentrations used commonly by aquatic toxicologists is based on the 

traditional toxicological expressions of exposure-LCp or LDp (lethal) and ECp or EDp (sublethal) 
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values, where C is the external concentration, D is the administered dose, and p is the percentage 

responding. In many cases aquatic toxicologists use LRp or ERp, where "R" denotes tissue residue 

(Meador 1997). There is a distinction between toxicity metrics that are expressed in terms of the 

amount of a toxicant that is delivered or administered to the organism and the actual tissue concen­

trations associated with the response. The dose is generally expressed as /lg or /lmol toxicant/gram 

body weight/day or as single-dose /lg/g or /lmol/g and is usually administered by feeding, injection, 

gavage, or bolus to determine the LD50 or other measures of toxicity. The acquired dose (tissue 

residue) is used to characterize adverse effects as a function of the measured or predicted tissue 

concentration, such as an LR50. The administered dose, as it is metabolized and excreted, may be 

very different from the tissue concentration associated with toxicity (Meador 2006). For aquatic 

toxicologists, "critical body residue" (CBR) is a general term often implying a whole-body concen­

tration that is related to an adverse effect. A CBR can be characterized by anyone of a number of 

toxicity metrics (e.g., LR50, ERlO, or LOER) depending on the application. These values are best 

expressed as a molar concentration, especially when comparing among toxicants. 

The terms "diagnosis" and "diagnostic" have well-established uses in veterinary science, and 

these terms can be applied in some instances to aquatic and wildlife toxicological studies. A diag­

nosis is a determination of the cause of an illness from its signs and lesions, through an examination 

by a trained diagnostician or pathologist. Making a diagnosis implies not only identifying a cause 

but also ruling out other potential causes of the observed signs and lesions. Consequently, ecotoxi­

cologists may determine that the probable cause of death is a contaminant, but they are not making 

a "diagnosis" unless other causes are ruled out. A diagnostic residue is a concentration in tissue that 

supports a diagnosis of poisoning if the signs and lesions observed in the animal are consistent with 

the poison in question. A diagnostician starts with observed effects and reasons back to a cause, 

establishing the diagnosis, whereas an ecotoxicologist usually starts with an exposure or tissue con­

centration and tries to deduce possible toxic effects. 

The need for screening values in ecological risk assessment has led to the use of "hazardous 

concentrations." For example, Aldenberg and Slob (1993) described a statistical method to calculate 

the lower confidence limit based on a percentile of a distribution of no-effect or lowest effect levels 

measured in different species within a taxonomic group. When calculated at the fifth percentile, 

the value is meant to be protective for 95% of the species or focal group. This threshold, or pro­

tection value, is lower than those derived from central tendency values (e.g., mean or median) that 

will protect far fewer organisms. The calculation of the HCs usually requires a large database from 

comparable studies. 

For a critical concentration to be credible, it must be based on substantial evidence. Well-designed, 

controlled toxicological studies establish a cause-and-effect relation between the administration of 

a poison and an effect. Some controlled studies also establish a cause-and-effect relation between 

whole-body or specific tissue concentrations and an effect on an organism or that specific tissue. 

More often, however, the relation between a tissue concentration and an effect is a correlation. If 

an observed relationship between tissue concentration and injury holds true in other experiments 

and is consistent with observations in the field, then the correlation becomes credible and useful. 

In some instances the relation cannot possibly be based on cause and effect. For example, in the 

classic toxicological example in which researchers related DDE residues in raptor eggs to eggshell 

thinning, the DDE that caused the eggshell thinning was in the female that laid the egg. The DDE 

in the egg could not have caused the thinning. The important point is that the relation was found to 

be consistently reliable and was based on well-designed studies conducted under both controlled 

and field conditions. Because the DOE in the egg was correlated at some level to ODE in the adult, 

the concentration in egg became a useful surrogate. In some cases such as these where the mechan­

ism is known, ancillary correlations may be useful as surrogate measures for the actual biologically 

effective dose at the receptor. 

The more evidence collected under variant conditions, the more credible the argument. Critical 

concentrations are least reliable when based on few data, when they are applied to species that are 
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not closely related, and when the timing or route of exposure is different from the conditions in the 

study used as a reference. Whenever animals are dosed under experimental conditions, concentra­

tions in many organs will increase and be correlated with each other and with effects, but most of 

those correlations will fail to be robust. Critical concentrations may be derived from field studies, 

but will be in error if an observed effect is incorrectly attributed to the contaminant or if the ani­

mals were subjected to additional stressors, lowering their sensitivity. Extrapolating from tissue 

concentrations to effects on populations or ecosystems is especially tenuous. To establish a credible 

relation between a contaminant and a population requires extensive work on several popUlations, as 

described by Ohlendorf and Heinz in Chapter 21 on selenium in this book. 

Tissue concentrations of some contaminants are especially challenging to interpret. 

Concentrations of polycyclic aromatic hydrocarbons (PAHs), for example, are difficult to interpret 

in higher animals because they tend to be rapidly metabolized and excreted (Eisler 2000). However, 

a recent study correlated the administered dietary dose of PAHs with biliary metabolites in fish 

(Meador et al. 2008). Even though the biliary metabolites are not tissue concentrations, these values 

do represent an internal dose that can be correlated to toxic effects and measured in field collected 

animals in a similar fashion to assess harm. Further, elements that are homeostatically regulated in 

an organism pose another difficulty. Sometimes a target organ, however, may be identified that does 

show a sharp increase in tissue concentrations as toxicity is approached, even though concentrations 

are still regulated in most tissues. For some other elements, such as mercury, the total concentration 

of the element may be misleading, because the element's toxicity is so dependent on its chemical 

form. 

The large number of poorly studied manufactured and natural chemicals is daunting. These 

industrial compounds, elements, pharmaceuticals, personal care products, pesticides, and others, 

are often best considered as chemical classes because of their overwhelming numbers. As shown 

for many toxicants, grouping chemicals by class and mode of action often results in similar toxicity 

metrics among several species and higher taxa, which is immensely helpful in our quest to char­

acterize toxicity and quantify the concentrations likely to result in adverse responses. The authors 

of the book chapters adeptly address the challenges. With patience, the relations between tissue 

concentrations and toxicity are becoming better understood and their use in ecotoxicology grad­

ually refined. 

The study of tissue concentrations rests entirely on the validity of the chemical analyses support­

ing them. In general, the ability of today's analytical chemists to provide reliable analyses of most 

important environmental contaminants surpasses the ability of ecotoxicologists to interpret those 

concentrations. There is a perception that some poisons leave no traces, especially among mystery 

readers. Consider, for instance: "I am assured that there are many poisons known only to afew chem­

ists in the world, a single grain of which is sufficient to destroy the strongest man and leave not the 

slightest trace behind. If the poisoner be sufficiently accomplished he can pursue his calling without 

the faintest risk of detection." Mr. Sabin sipped his wine thoughtfully (from E. Phillips Oppenheim, 

1903, The Yellow Crayon). Now, however, concentrations of almost all important contaminants or 

their metabolites may be detected in wine and in tissues, and, most importantly, they may be inter­

preted. Although uncovering the relation between concentration and effect requires considerable 

research and careful interpretation, the results are worthy, as the chapters of this book prove. 

We are excited to present this second edition. Many of the chapters in this book address chem­

ical classes that were explored in the first edition, which the authors have painstakingly updated 

with current data and, in some cases, with new ways of analyzing those data. We are also fortunate 

to have chapters that address tissue concentrations of some toxicants that have not been considered 

previously. Lastly, our second edition is illustrated with eighteenth-century engravings of fish, wild­

life, and invertebrates, to remind us of what ecotoxicology is about. They are taken from The Royal 

Natural History, edited by British naturalist Richard Lydekker, and published in six volumes by 

Frederick Warne, 1893-1894. 
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