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The topic of Lagrangian coherent structures �LCS� has been a rapidly growing area of research in
nonlinear dynamics for almost a decade. It provides a means to rigorously define and detect
transport barriers in dynamical systems with arbitrary time dependence and has a wealth of appli-
cations, particularly to fluid flow problems. Here, we give a short introduction to the topic of LCS
and review the new work presented in this Focus Issue. © 2010 American Institute of Physics.
�doi:10.1063/1.3278173�

The concept and study of Lagrangian coherent structures
(LCS) have evolved from a need to formally define intrin-
sic structures within fluid flows that govern flow trans-
port. Roughly speaking, LCS are distinguished material
lines or surfaces that delineate regions of fluid for which
the long-term evolution of a tracer particle is qualita-
tively very different. The challenge is to develop efficient
mathematical tools for identifying, and perhaps predict-
ing, the presence and form of these structures in complex
numerical and experimental data sets, which are nowa-
days commonplace in fluid dynamics research. This abil-
ity significantly advances our capability to both under-
stand and exploit fluid flows in engineering and natural
systems.

It has long been recognized that coherent structures are an
intrinsic property of all manner of fluid flows. Leonardo da
Vinci sketched the form of various flow fields over objects in
a flowing stream, providing the earliest reference to the im-
portance of vortices in fluid motion.1 More recently, ideas
concerning the decomposition of flow fields into a set of
basis coherent structures, and the consequent modeling of the
flow dynamics using low-dimensional models with the ac-
companying tools of dynamical systems theory, have pro-
vided fundamental breakthroughs in flow control and under-
standing the transition to turbulence.2 Nevertheless, until the
recent advent of LCS, there was still concern on how to
objectively define a coherent structure as commonplace as a
vortex, given that many of the existing criteria rely on Eule-
rian quantities that are not necessarily frame invariant.

A principle behind the development of the theory of LCS
is to establish frame-independent criteria that permit unam-
biguous definition of coherent structures based on their in-
fluence on flow transport. To that end, when defining LCS,
fluid motion is viewed from a Lagrangian rather than an
Eulerian perspective. Perhaps the simplest �but not always
the most reliable� tool for identifying LCS is the finite-time
Lyapunov exponent �FTLE�, which characterizes the rate of
separation of neighboring trajectories over a finite-time inter-
val. The FTLE is typically calculated by seeding a velocity
field with tracer particles and integrating their positions for-
ward in time. At each location, the FTLE is the maximum

eigenvalue in the Jacobian of the local flow map, which
maps initial to final particle positions over the finite-time
interval. LCS then generally coincide with maximum ridges
in the FTLE field, corresponding to structures responsible for
the greatest stretching of particle paths.

The concept and terminology for LCS were introduced by
Haller3,4 and Haller and Yuan,5 who presented mathematical
criteria for the existence of finite time attracting and repel-
ling material surfaces �i.e., finite-time hyperbolic invariant
manifolds� in flows with arbitrary time dependence. It was
shown that by integrating particle trajectories in both for-
ward and backward times, diagnostic quantities �such as
FTLE and hyperbolicity time� can be calculated, from which
repelling and attracting LCS can be extracted. The definition
of LCS was then refined to require that they be uniformly
hyperbolic.6 This led to a criterion that enables one to distin-
guish between FTLE ridges that are truly attracting or repel-
ling materials lines, and FTLE ridges that simply indicate
lines of high shear. It was also proven that LCS can be reli-
ably detected even in the face of large errors in velocity field
data, so long as those errors remain spatially and temporarily
localized. Thereafter, Shadden et al.7 showed that although
ridges of the FTLE field need not be exactly advected with
the flow, the net flux across a ridge is typically negligible,
and LCS can indeed be approximated by evolving maximum
ridges of FTLE fields with a sufficiently long integration
time.

With the theory of LCS on a sound mathematical footing,
there has been an explosion of related research. Significant
effort has been directed toward improving computational ef-
ficiency since the necessary computational time can be pro-
hibitively long. Notable improvements in computational time
have been found using adaptive mesh refinement.8 More ro-
bust criteria for extracting FTLE ridges have been developed
and applied to experimental data from turbulent fluid flows9

and LCS techniques have been extended to n-dimensional
flows.10 There have been a wealth of studies applying LCS to
such diverse problems as pollution control strategies in the
ocean,11 unsteady flow separation,12 blood flow,13 jellyfish
predation,14 and inertial particle dynamics in a hurricane,15 to
name but a few examples.
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This Focus Issue provides a timely opportunity to present
the state of the art in LCS, which has evolved to become one
of the most exciting avenues of research in dynamical sys-
tems. There is an established literature, yet the topic is still
quite new and only just entering the scientific mainstream, as
evidenced by recent feature articles in the New York Times16

and The Economist.17 The articles contributed to this Focus
Issue strike a balance between providing a review of the
topic and presenting the latest results in the field, the latter
covering everything from new theoretical developments and
improved algorithms for LCS computation to new and excit-
ing areas of application.

On computational matters, Brunton and Rowley18 present
new and efficient methods for computing FTLE in unsteady
flows. Their method approximates the underlying particle
flow map, which enables elimination of redundant particle
integrations when calculating time-evolving LCS. Lipinski
and Mohseni19 take a different approach and develop a ridge-
tracking algorithm for following LCS, taking advantage of
their spatial coherence and avoiding unnecessary computa-
tions away from the ridges. In both cases, an order of mag-
nitude in computational savings is reported over traditional
methods.

With regard to theoretical development, Lekien and
Ross20 generalize the concept of FTLE and LCS to arbitrary
Riemannian manifolds, which are the more natural math-
ematical setting for many dynamical systems. This facilitates
application of LCS concepts to transport along isopycnal sur-
faces in the ocean and large-scale mixing in the �curved�
atmosphere. The effect of spatial and temporal resolution and
random errors on LCS is investigated further by Olcay
et al.,21 and Ross et al.22 present a method for obtaining
dynamical boundaries using only trajectories reconstructed
from time series, applying the ideas to problems in muscu-
loskeletal biomechanics, thereby extending LCS ideas to
more general �nonfluid� problems that concern dynamical
boundaries in a phase space. This is also the case for the
study of Tang and Peacock,23 who extract LCS in the energy-
flux field of oceanic internal waves, seeking a means to iden-
tify internal wave attractors.

Several contributors to this Focus Issue have identified
important new flow problems where LCS provide new and
fundamental insight. Tang et al.24 recognize that locating
LCS on a spatially limited domain, which is usually the case
for geophysical data, presents a challenge because the do-
main boundaries inevitably appear as attractors. A finite-
domain FTLE method is therefore conceived and the tech-
nique apply to the analysis of velocity field data from aircraft
landing at Hong Kong International Airport. Eldredge and
Chong25 apply LCS ideas to biolocomotion problems, pro-
viding new insight into the vortex-shedding mechanisms that
play an important role in unsteady aerodynamics. Green et
al.26 also study bioinspired flows and demonstrate that dy-
namical changes in the downstream flow field behind pitch-
ing panels produce corresponding qualitative changes in
LCS, providing important evidence of the connection be-
tween the structure of LCS and the dynamic state of a fluid
system.

For biological systems, Lukens et al.,27 motivated by the
desire to understand the fluid flow within the airway surface
liquid of the lung, use LCS to observe ciliary transport. The

computed LCS uncover a barrier that separates a recircula-
tion region of fluid that remains near a beating cilium from
fluid that is advected downstream. Shadden et al.28 advance
their pioneering work on using LCS to improve insight into
the transport mechanics of blood flow downstream of a
valve, with the goal of aiding clinical decision making. Fur-
thermore, O’Farrell and Dabiri29 identify that LCS provide a
practical criterion for identifying vortex-ring pinch-off, being
indicated by the appearance of a new disconnected LCS and
the termination of the original LCS.

As research in LCS advances, there is inevitably evolu-
tion in the scope of the field. Beron-Vera et al.30 use the term
LCS to describe invariant tori in certain classes of two-
dimensional incompressible flows. Like stable and unstable
manifolds, these tori serve as transport barriers, and struc-
tures like these are often present in geophysical flows where
zonal jets are present. Sapsis and Haller31 investigate smooth
deformations of invariant tori in three-dimensional steady
and two-dimensional unsteady flows, both of which predict
inertial particle clustering due to inertial LCS. Finally,
Thiffeault32 takes a new approach and uses tools from Braid
theory and surface mapping to interpret the dynamics of par-
ticles and potentially uncovered LCS.

Exciting times lie ahead for the development of LCS and
their application to real-world problems. One area of interest
is to establish closer connections between the existence and
form of these structures and the dynamic state of fluids, with
perhaps the possibility of using LCS as building blocks for
the description of fluid flows. After nearly a decade of re-
search thus far, we look forward to the next decade with
great anticipation.
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