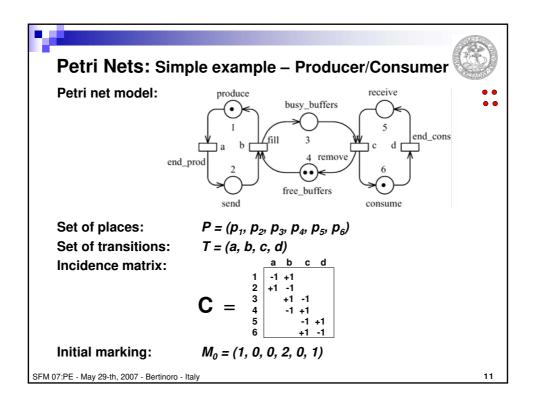
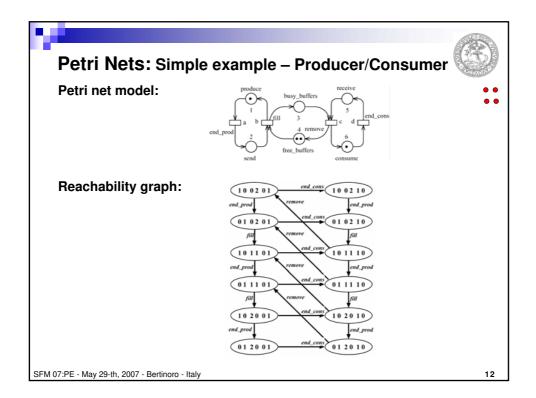
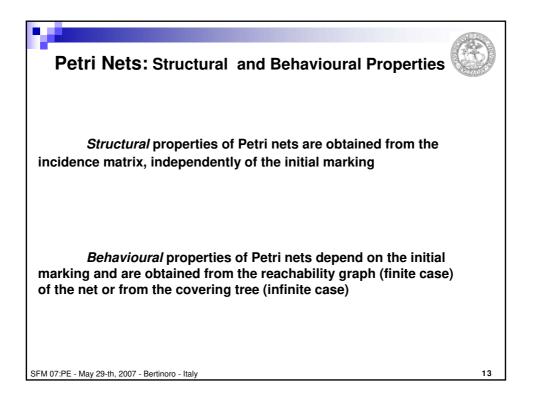


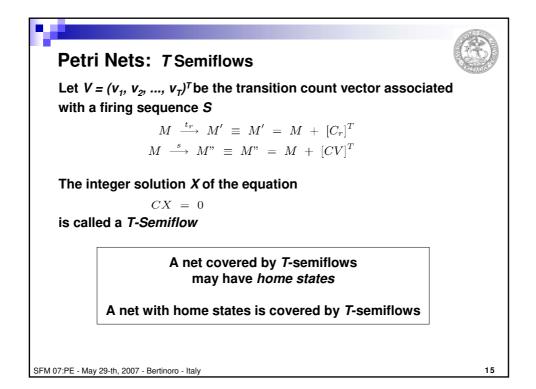
1	
Petri Nets: Basic Definitions	
$RS(M_0)$	Set of markings reachable from M_o
E(M)	Set of transitions enabled in marking <i>M</i>
$M \xrightarrow{s} M'$	<i>M</i> ' is reachable from <i>M</i> by firing a sequence <i>S</i> of transitions
a transitions t_r is enabled in marking M iff	
$M \geq \left[C_r^{-} ight]^T$	
$M \xrightarrow{t_r} M' \equiv M - \left[C_r^{-}\right]^T + \left[C_r^{+}\right]^T = M'$	
a marking <i>M</i> ' is said to be a <i>home state</i> iff	
$orall M \in RS(M_0), \; \exists s \; : \; M \stackrel{s}{\longrightarrow} M'$	
a transition t_r is said to be in conflict with transition t_s in marking M iff	
$t_r, t_s \in E$	$(M); \qquad M \xrightarrow{t_s} M'; \qquad t_r \notin E(M')$
SFM 07:PE - May 29-th, 2007 - Bertinoro - Italy	10

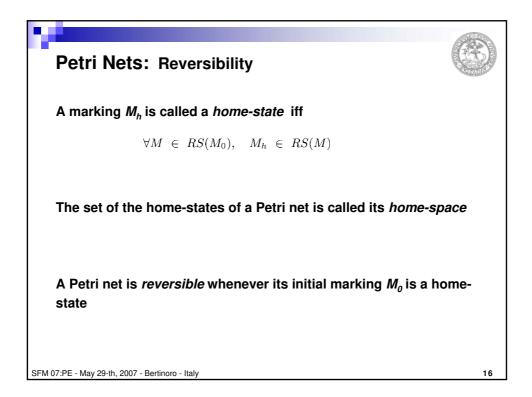


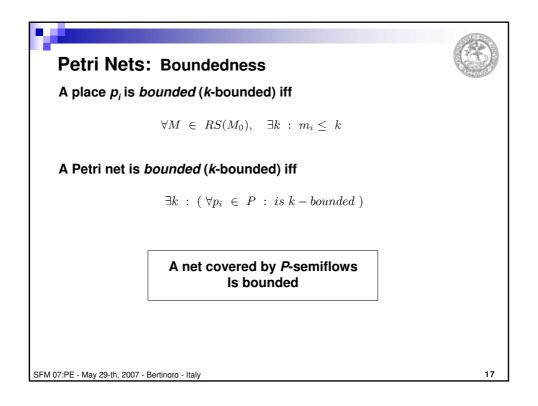




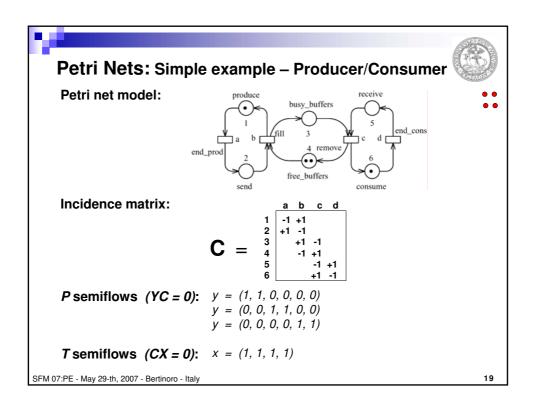
Petri Nets: *P* Semiflows A Petri net is *strictly conservative* (or strictly invariant) iff $\sum_{p=1}^{P} m_p = \sum_{p=1}^{P} m_{0p}, \quad \forall M \in RS(M_0)$ A Petri net is *conservative* (or *P* invariant) iff $\exists Y = (y_1, y_2, ..., y_P) > 0 \text{ such that}$ $\sum_{p=1}^{P} y_p m_p = \sum_{p=1}^{P} y_p m_{0p} \quad \forall M \in RS(M_0)$ from this relation it follows that $M \xrightarrow{t_r} M' \equiv M' = M + [C_r]^T$ $\Rightarrow Y[M']^T = Y[M]^T + Y[C_r]$ The integer solution *Y* of the equation YC = 0is called a *P* Semiflow

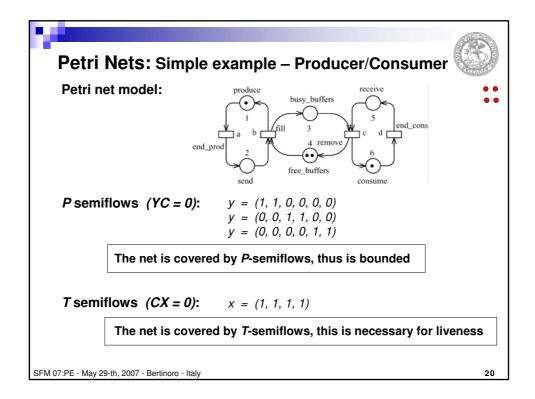


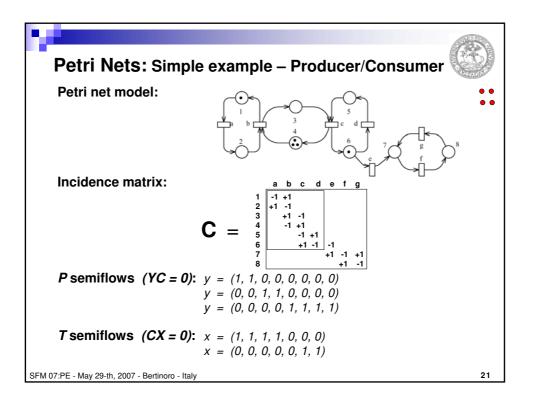


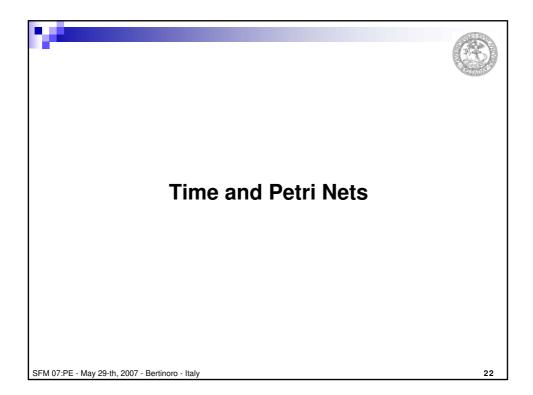


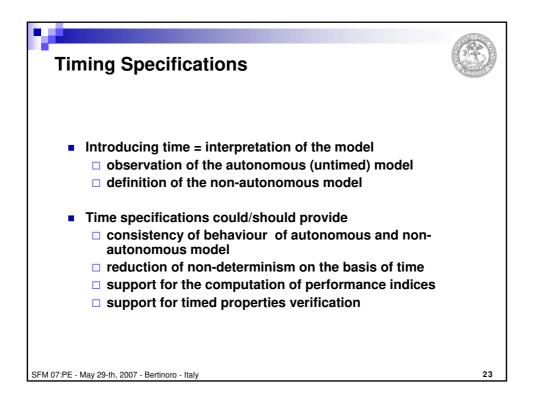
Petri Nets: Liveness A transition t, is *live* iff $\forall M \in RS(M_0), \exists M' : (M \stackrel{s}{\rightarrow} M' \bigwedge t_r \in E(M'))$ A Petri Net is *live* iff $\forall t_r \in T : t_r \text{ is live}$ A marking *M* is *live* iff $\forall t_r \in T, \exists M' : (M \stackrel{s}{\rightarrow} M' \bigwedge t_r \in E(M'))$ A Petri Net is *live* iff $\forall M \in RS(M_0) : M \text{ is live}$ SFM 07:PE - May 29-th, 2007 - Berlinoro - Italy

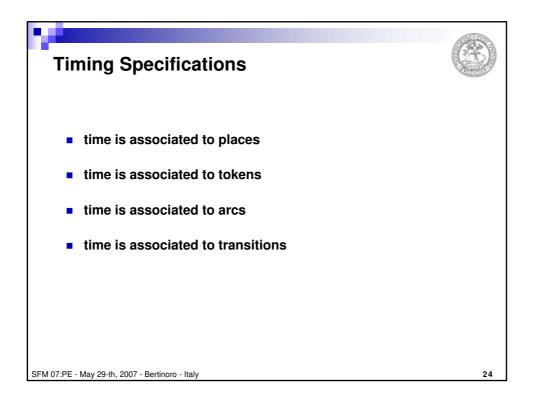


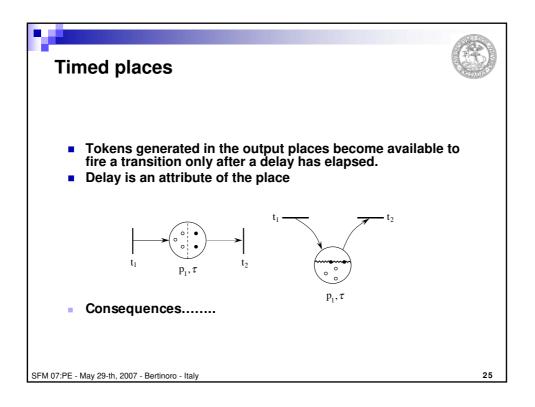


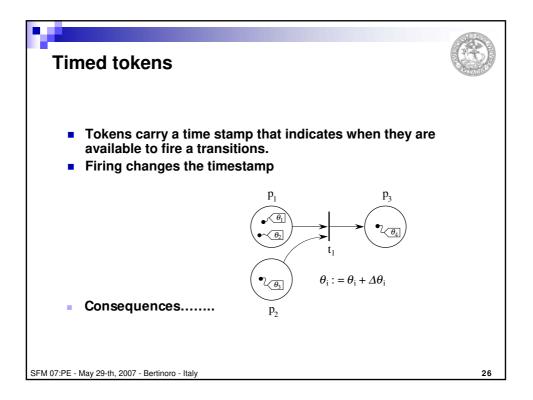


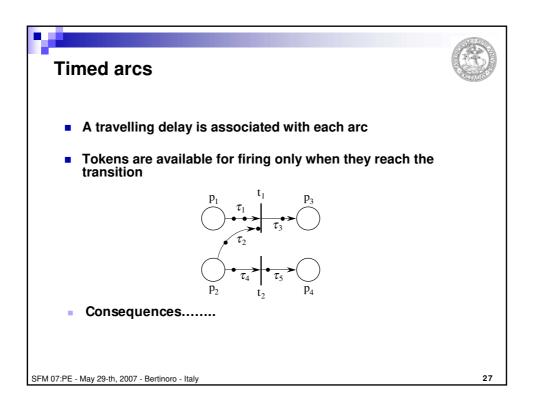


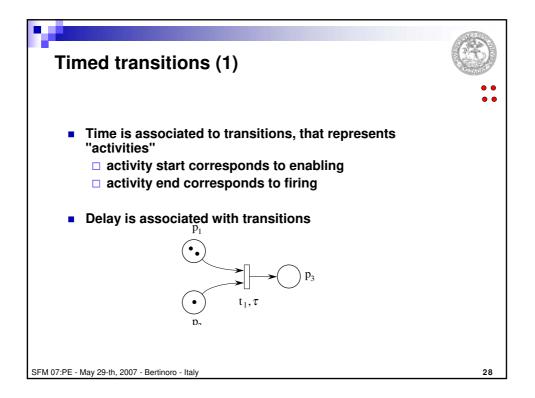


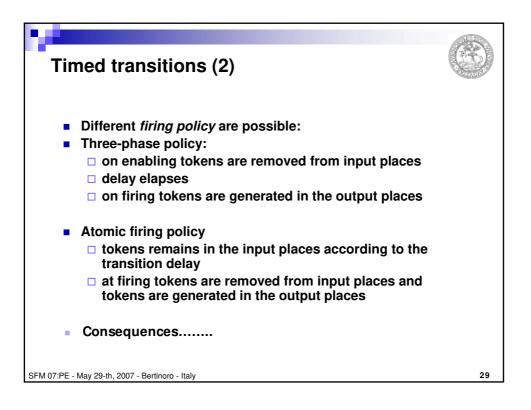


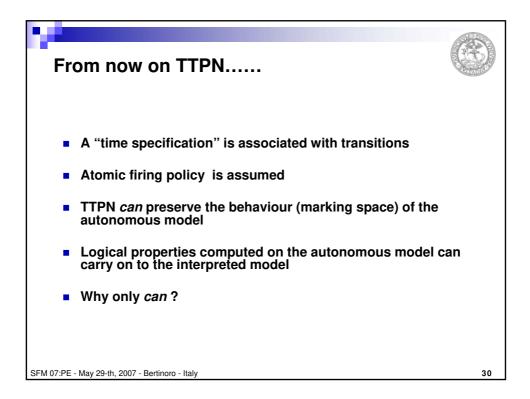


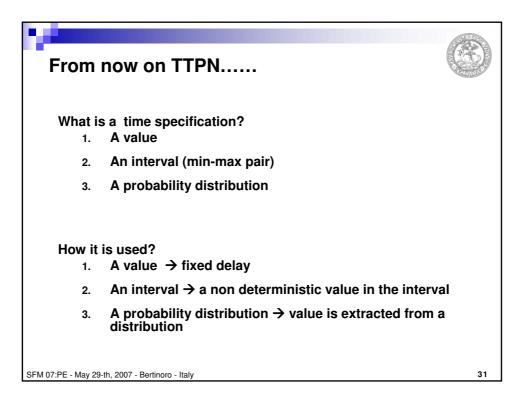


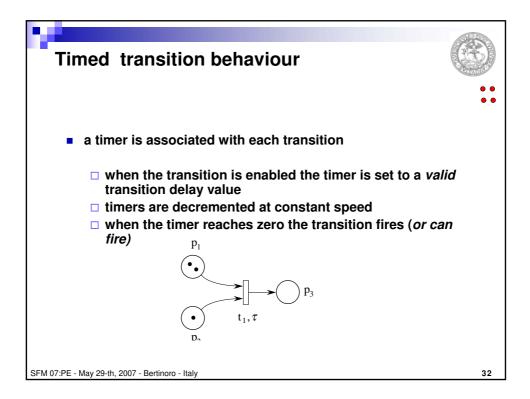


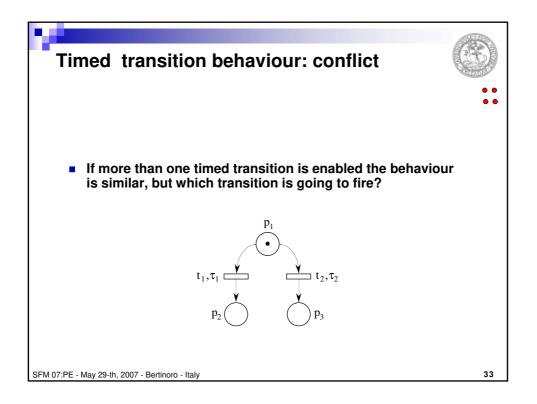


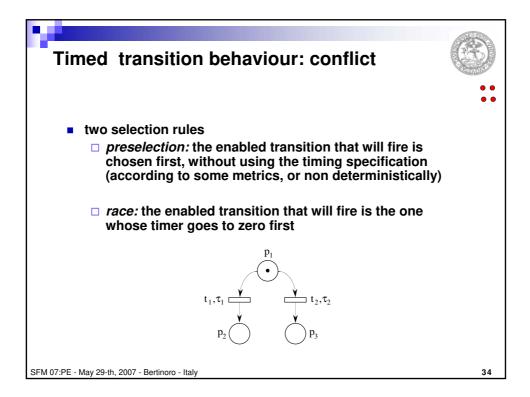


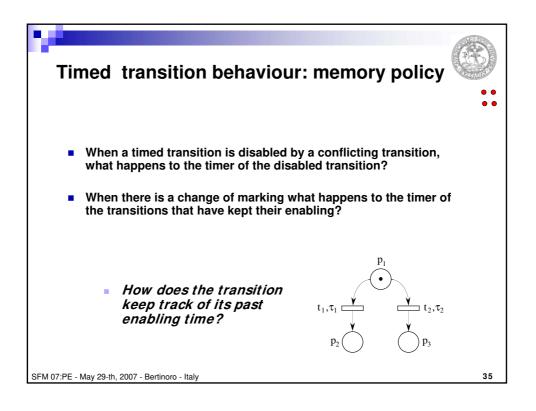


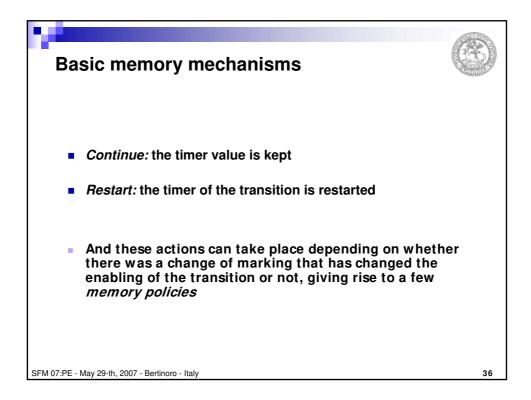


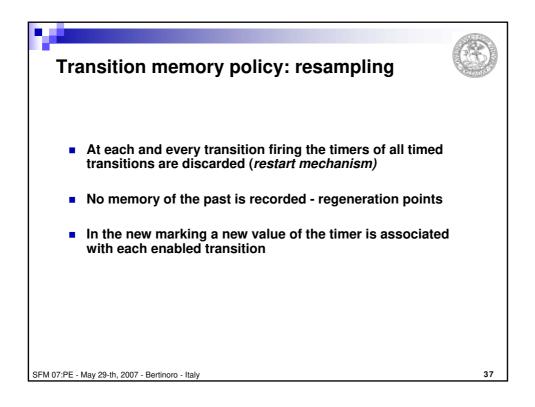


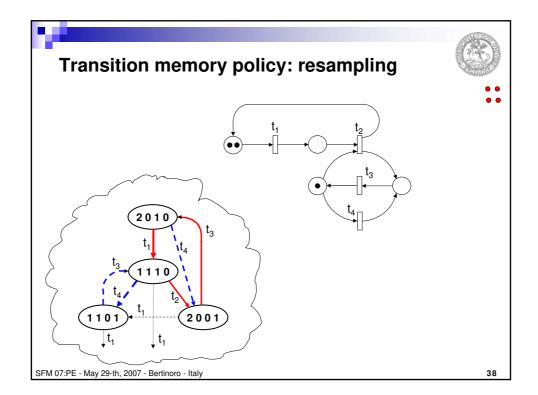


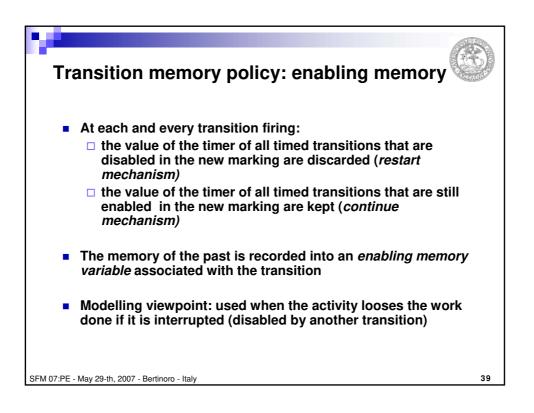


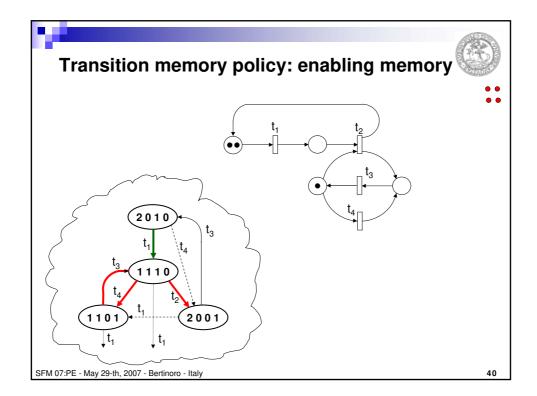


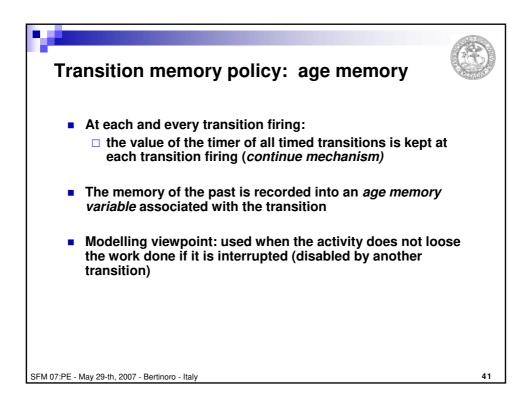


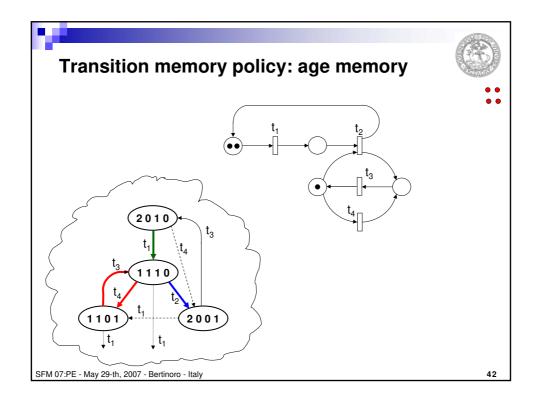


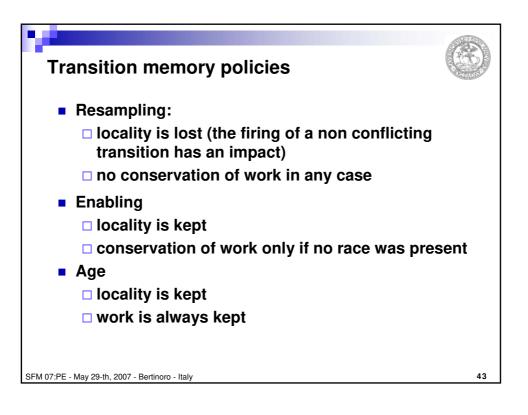


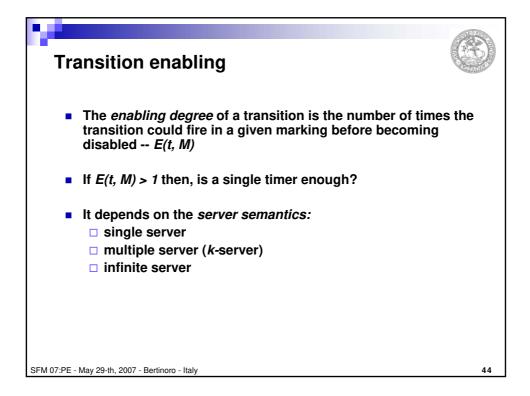


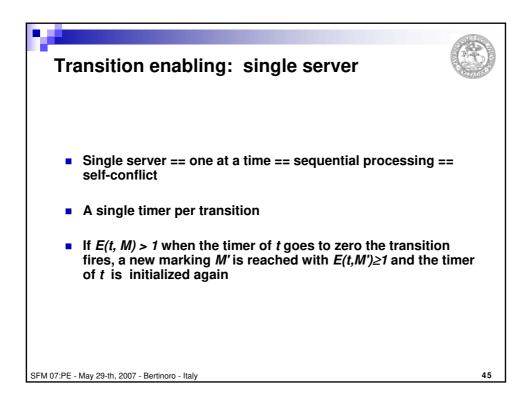


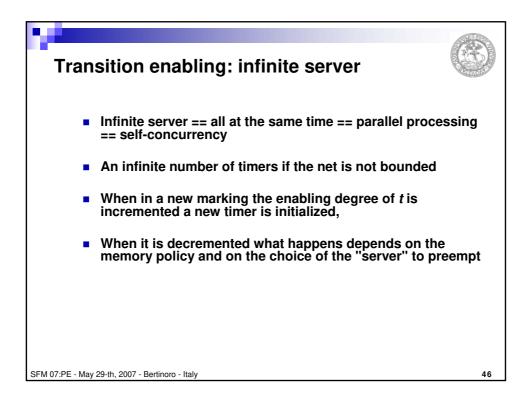


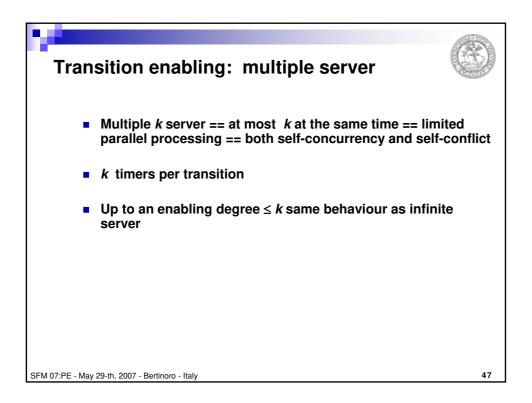


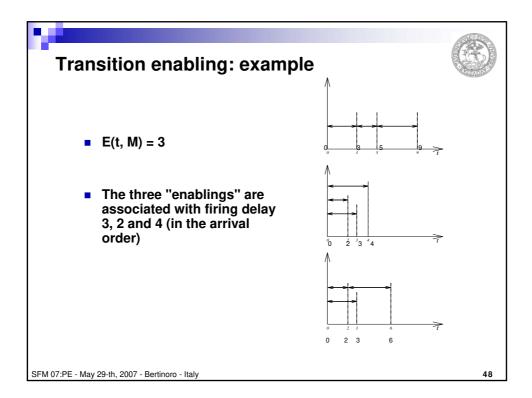


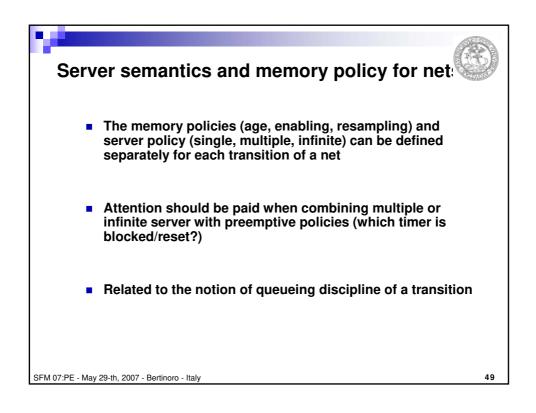


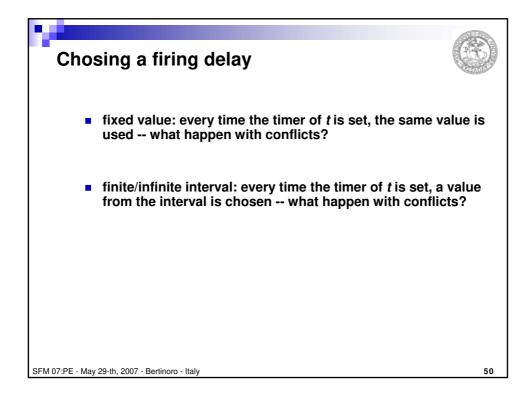


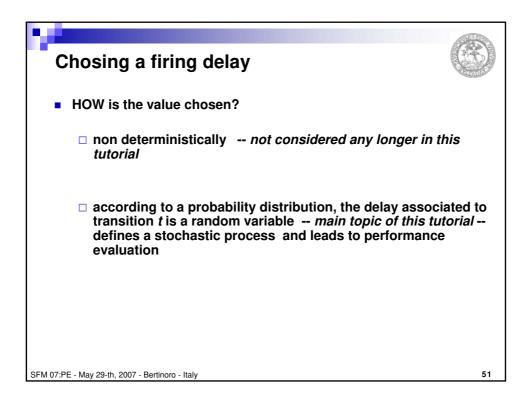


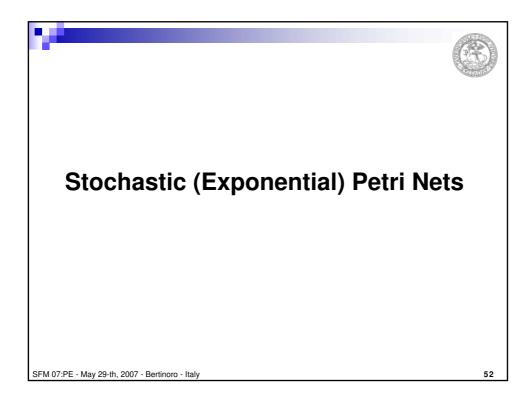


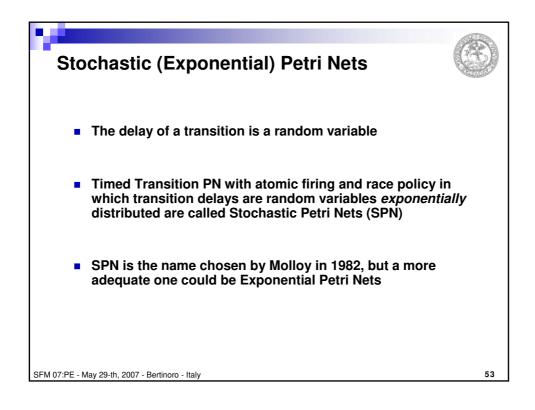


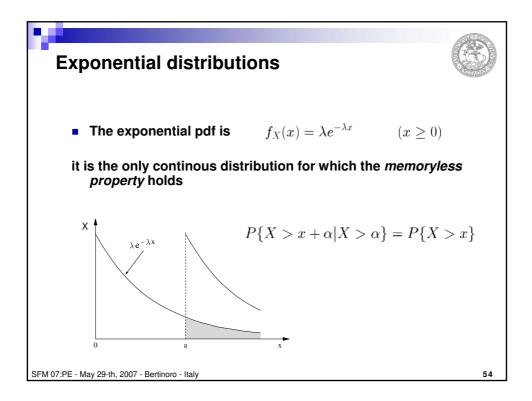


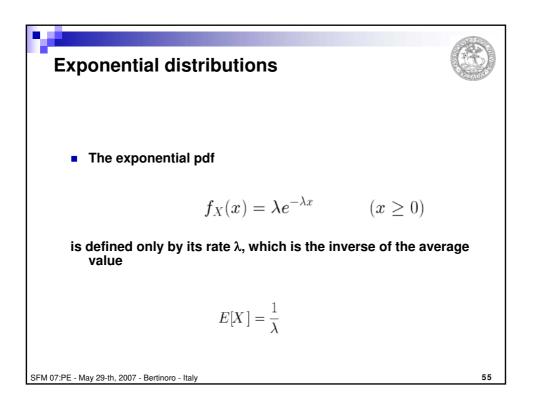


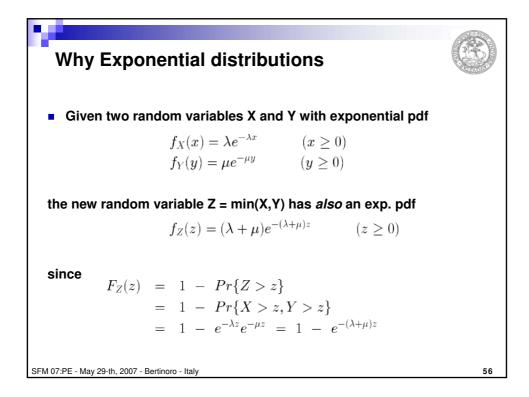


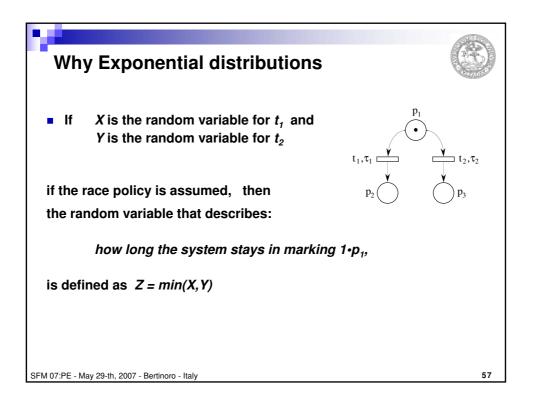


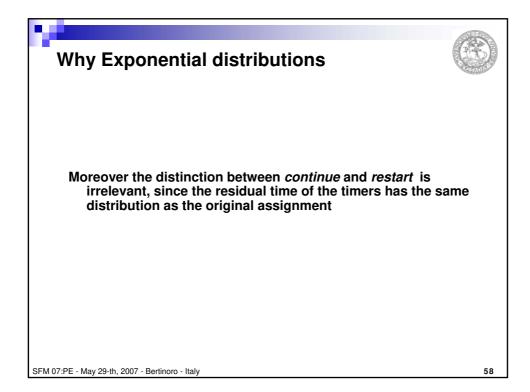


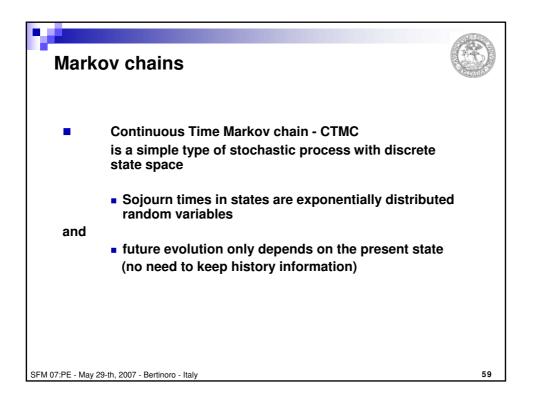


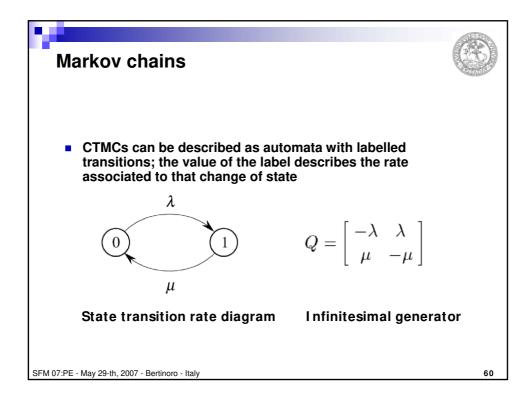


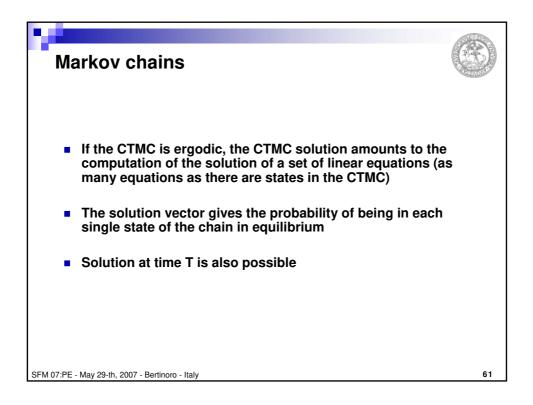


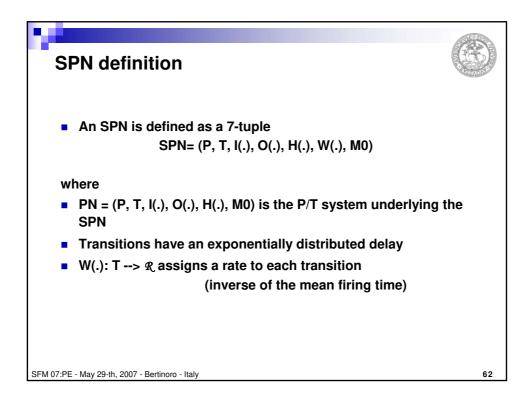


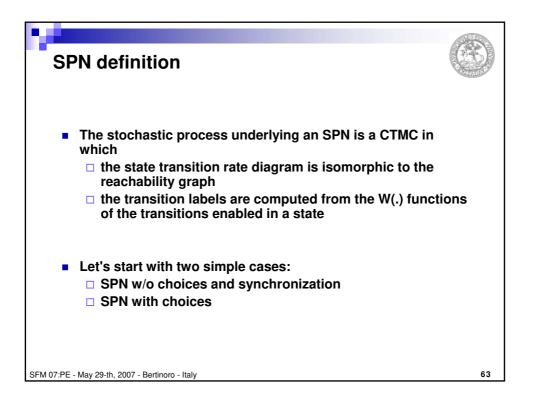


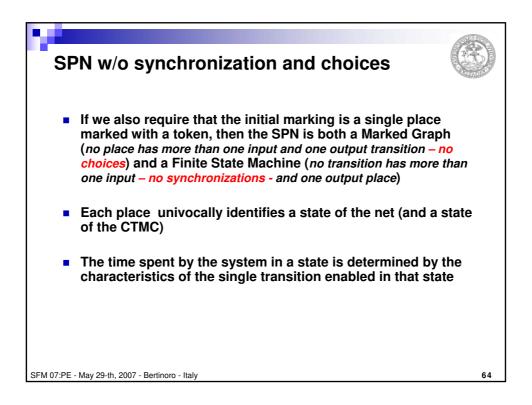


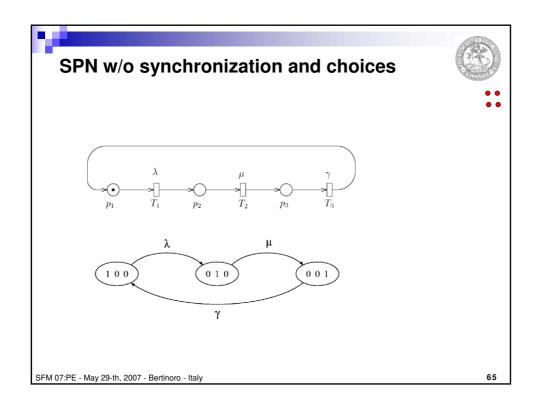


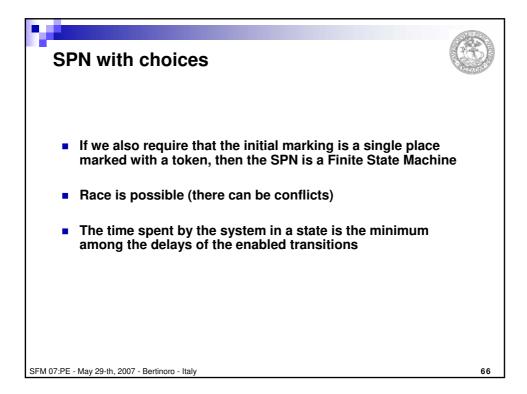


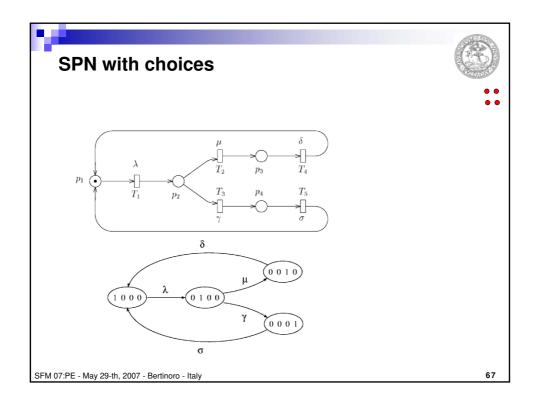


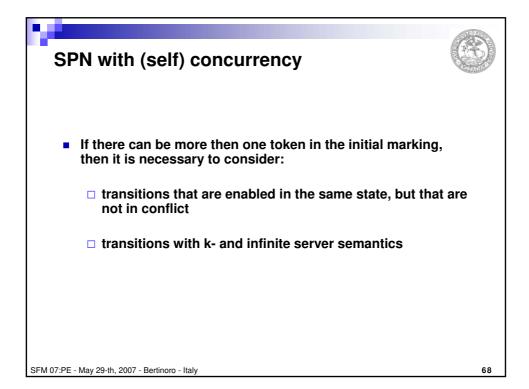


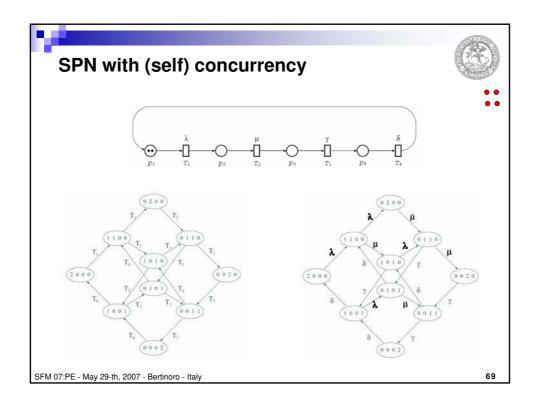


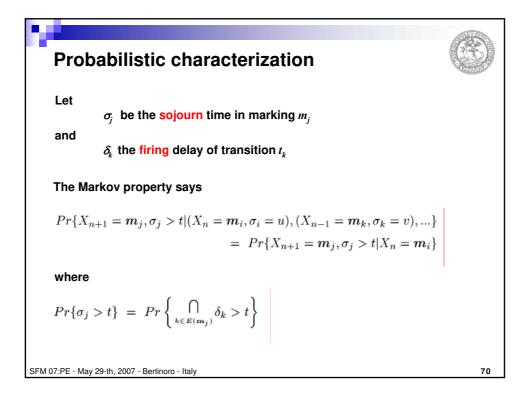


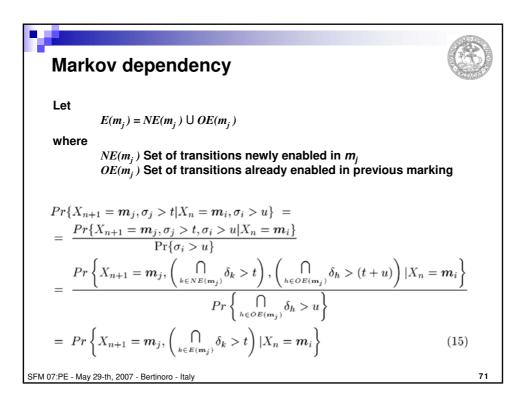


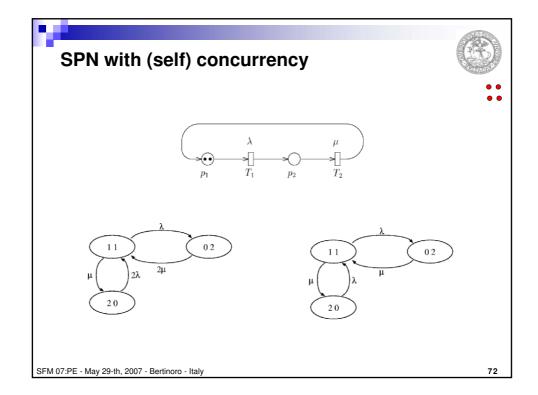


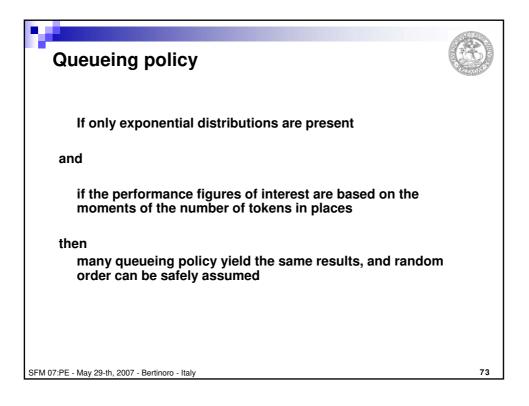


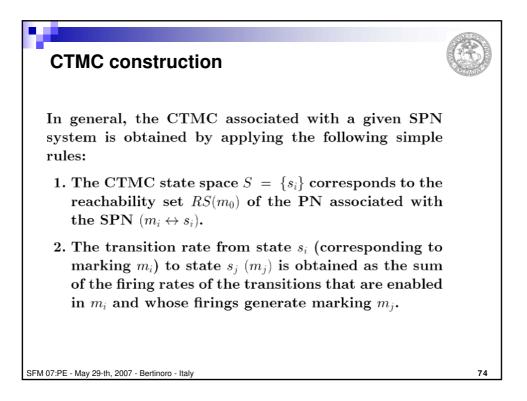


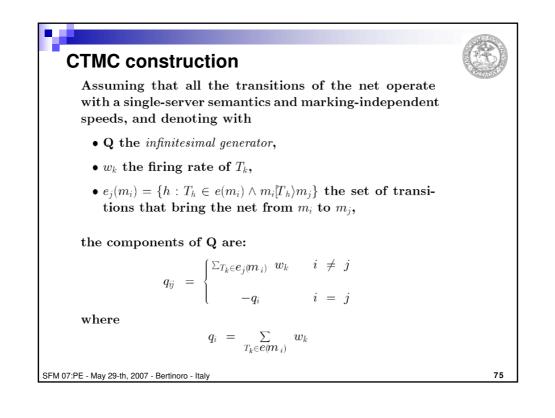


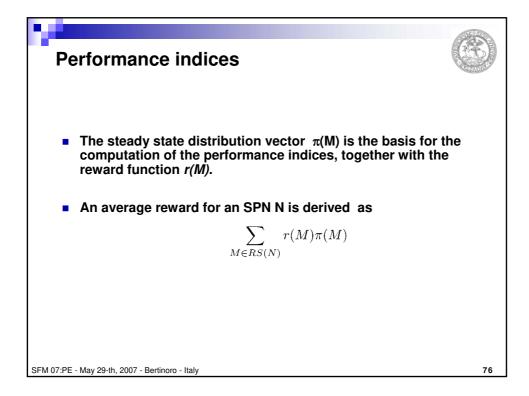


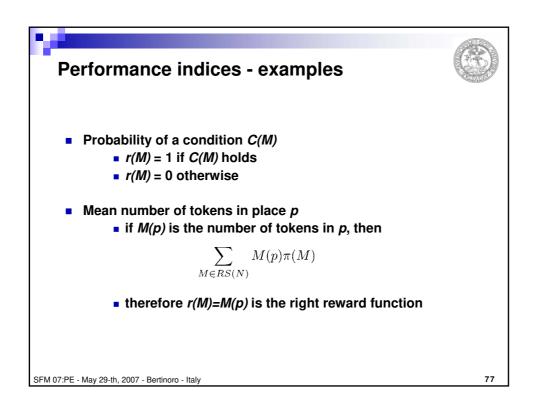


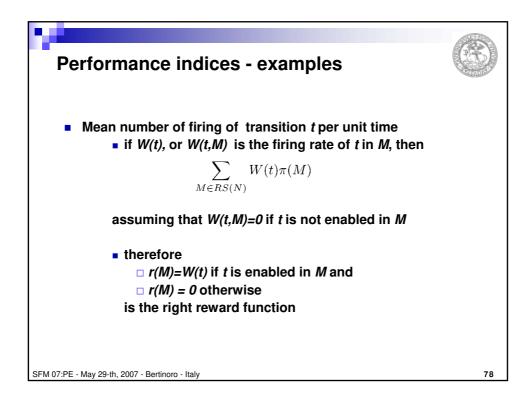


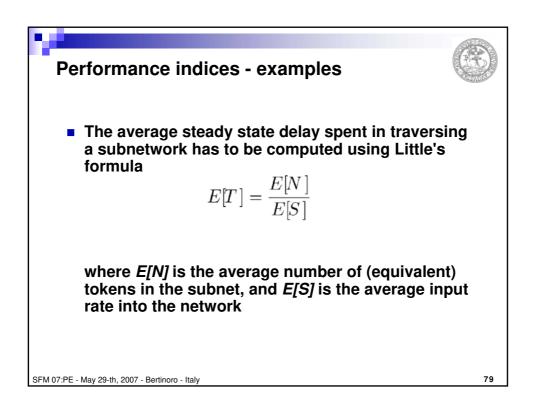


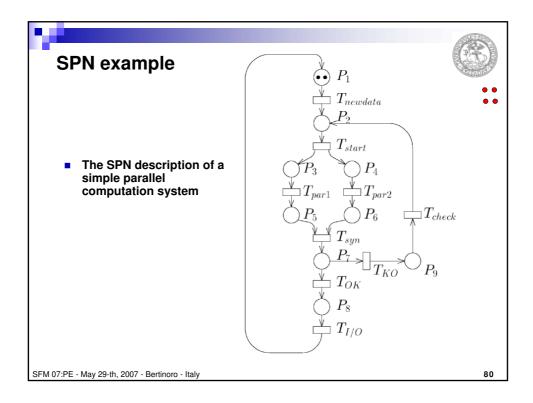


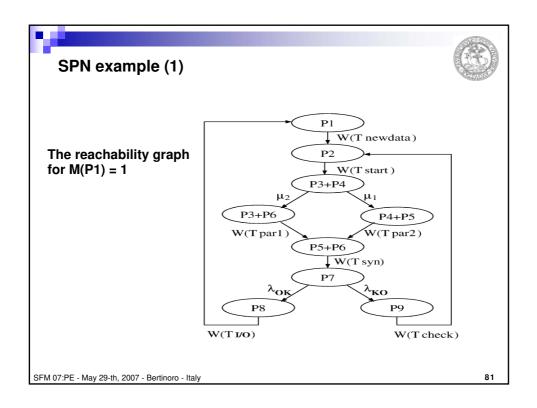




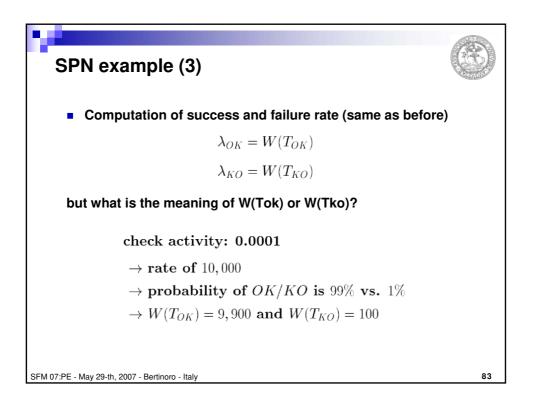




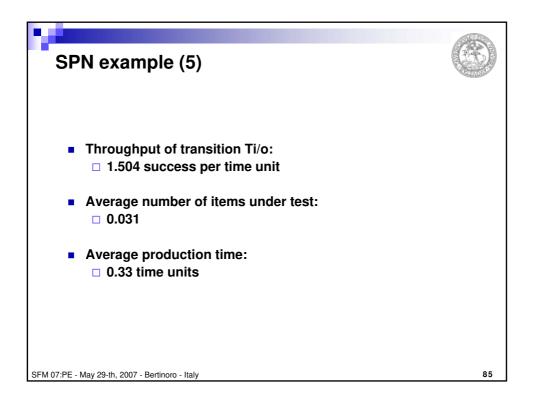


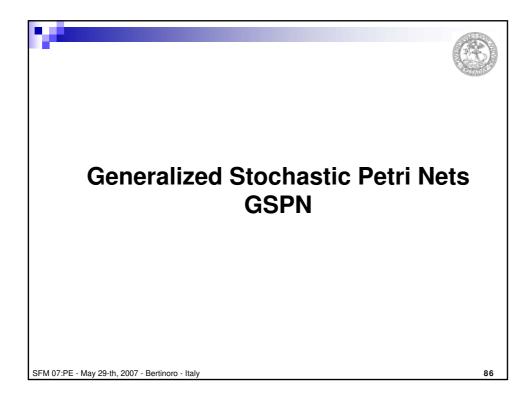


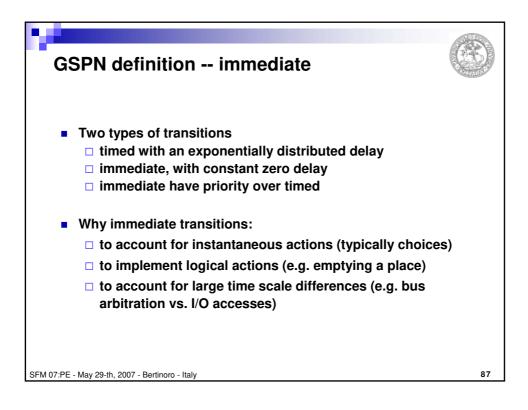
SPN example (2) Total rate out of P3 + P4 is: $W(T_{par1}) + W(T_{par2})$ With what probability T_{par1} is the first to fire? $\frac{W(T_{par1})}{W(T_{par1}) + W(T_{par2})}$ Therefore: $\mu_1 = (W(T_{par1}) + W(T_{par2})) \frac{W(T_{par1})}{W(T_{par1}) + W(T_{par2})}$ $= W(T_{par1})$

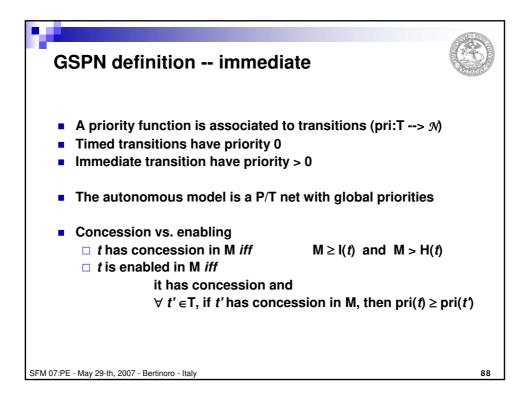


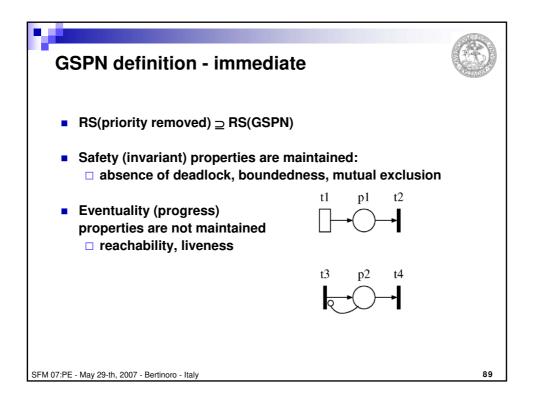
transition	rate	value	semantics
$T_{newdata}$	λ	1	infinite-server
T_{start}	τ	1000	$\mathbf{single} \cdot \mathbf{server}$
T_{par1}	μ_1	10	single-server
T_{par2}	μ_2	5	single-server
T_{syn}	σ	2500	$\mathbf{single} \cdot \mathbf{server}$
T_{OK}	α	9900	$\mathbf{single} \cdot \mathbf{server}$
T_{KO}	β	100	$\mathbf{single} \cdot \mathbf{server}$
$T_{I/O}$	ν	25	single-server
T_{check}	θ	0.5	single-server

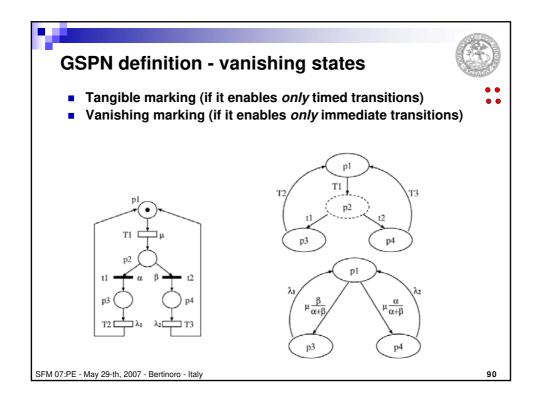


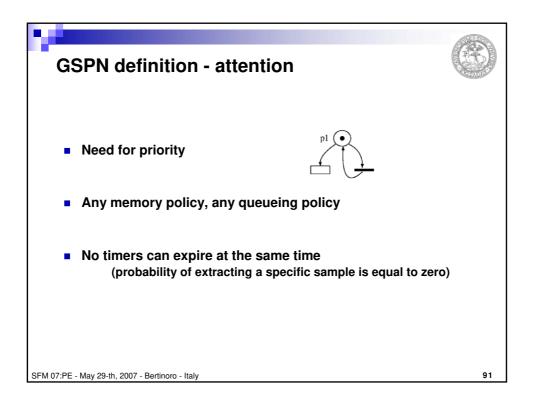


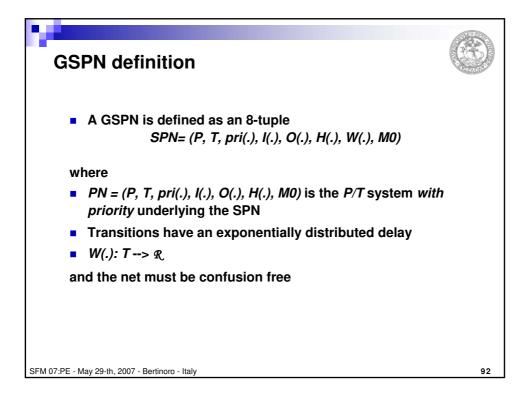


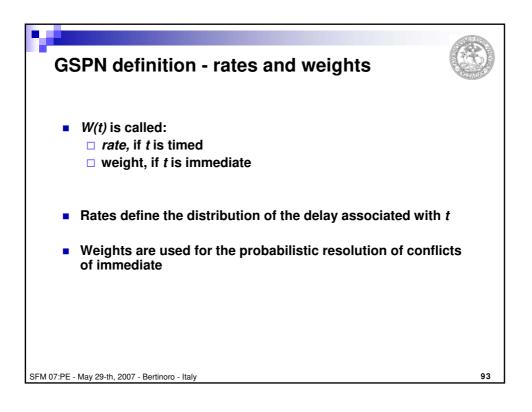


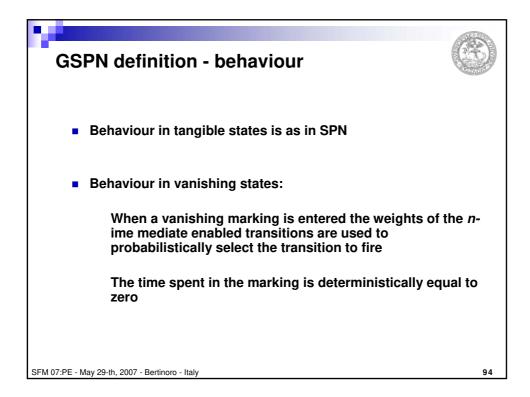


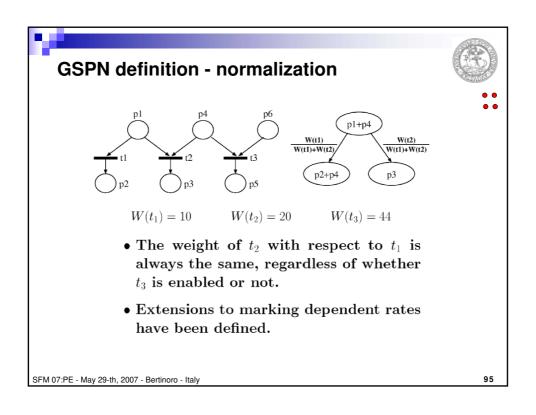


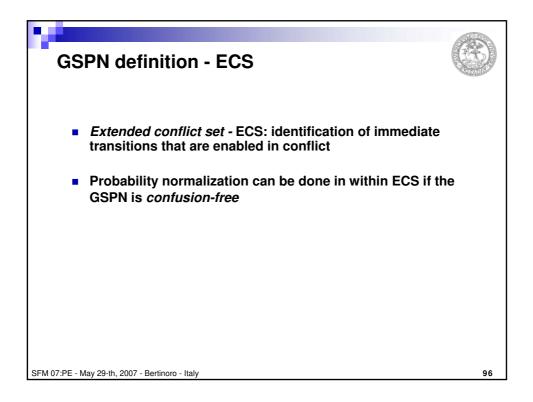


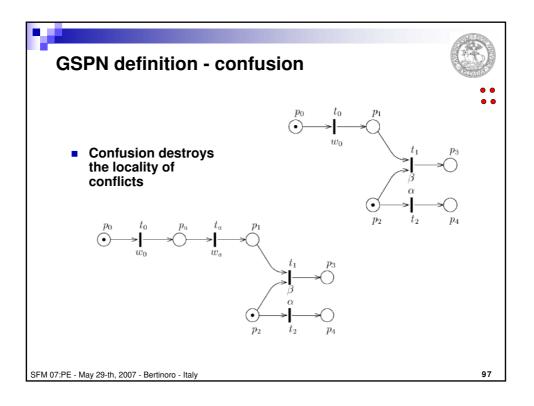


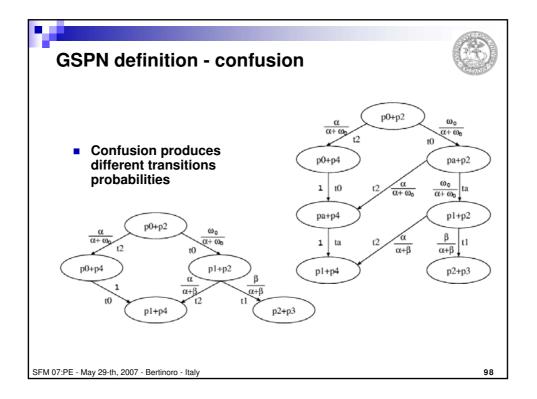


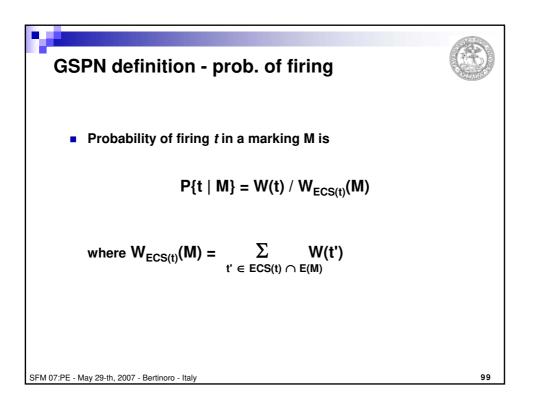


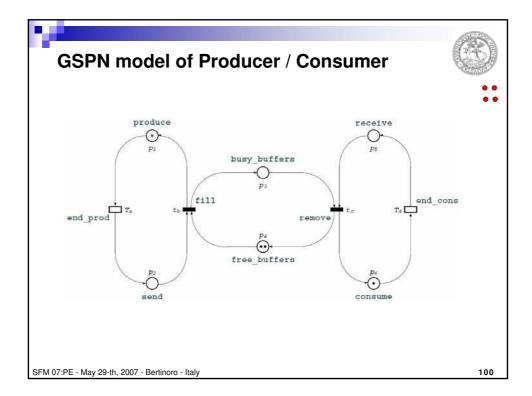


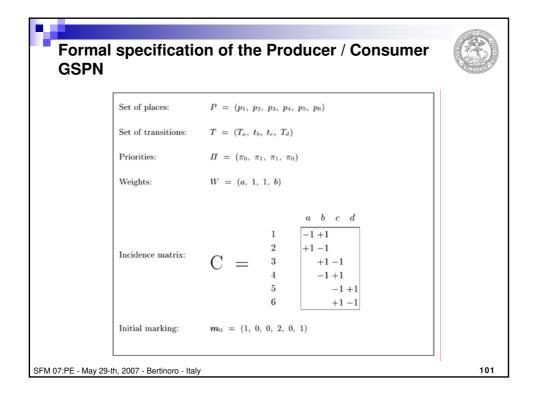


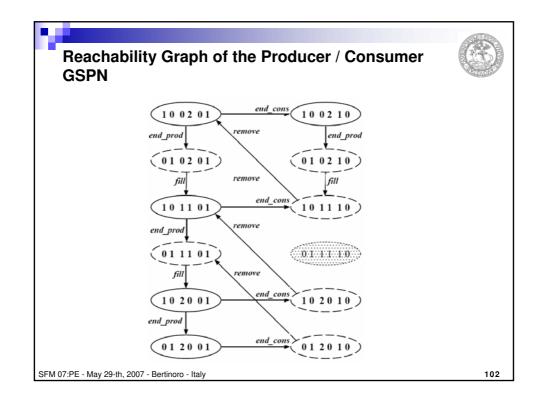


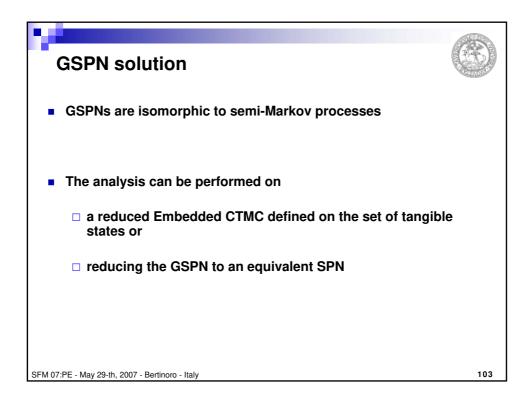


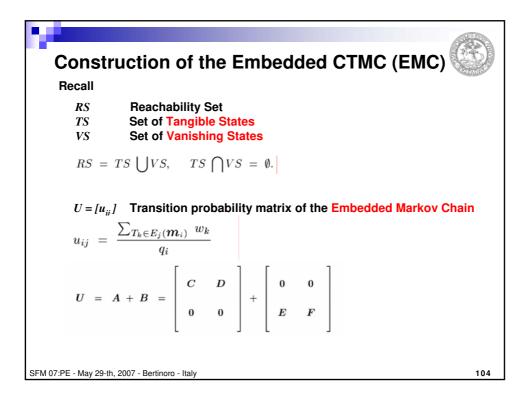


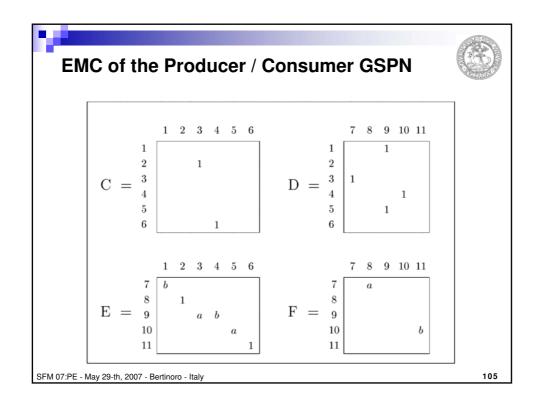




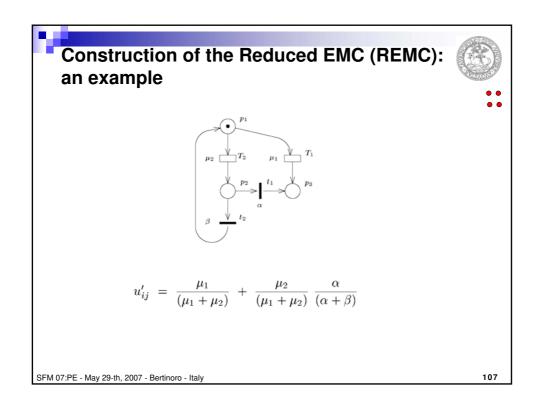


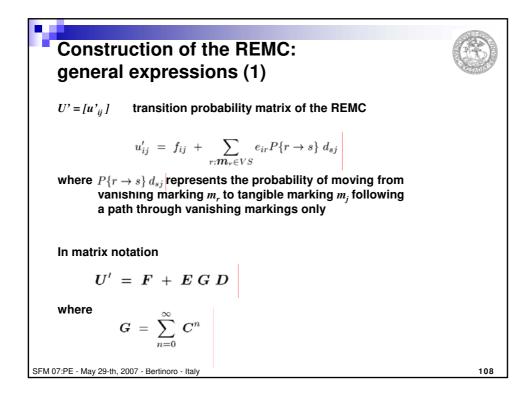


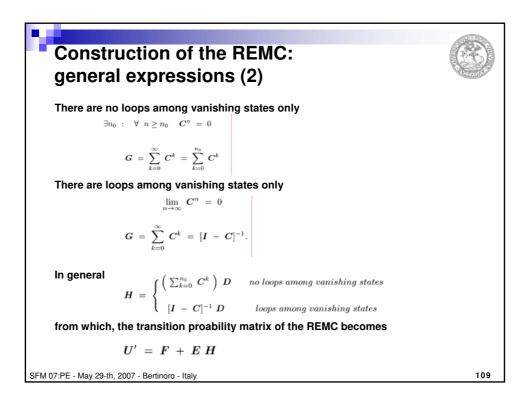


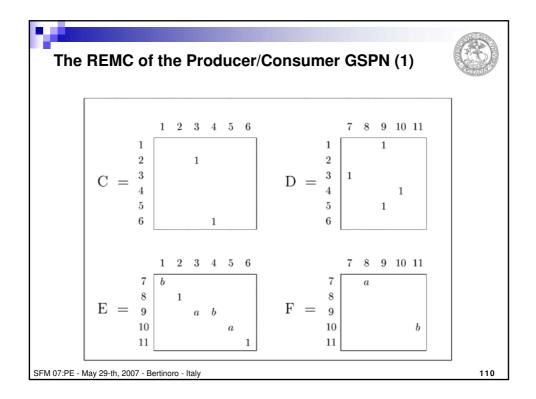


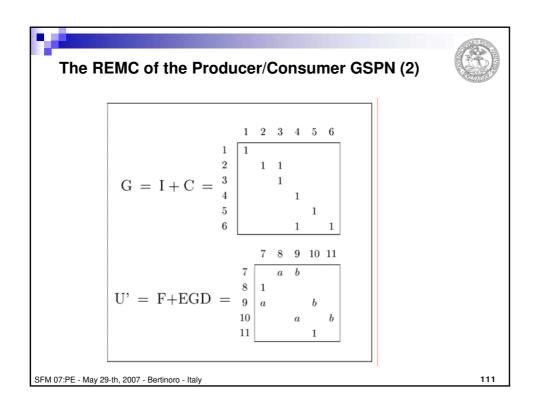
Solution of the EMC ψ Probability distribution vector $\psi(n) = \psi(0)U^n$ $\begin{cases} \psi = \psi U \\ \psi \mathbf{1}^T = 1 \end{cases}$ SFM 07:PE - May 29:th, 2007 - Berlinor - Italy 105

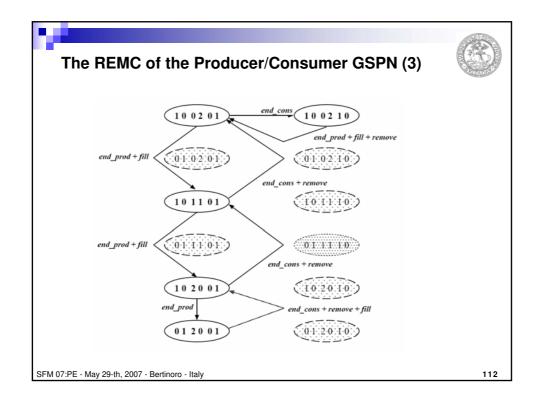


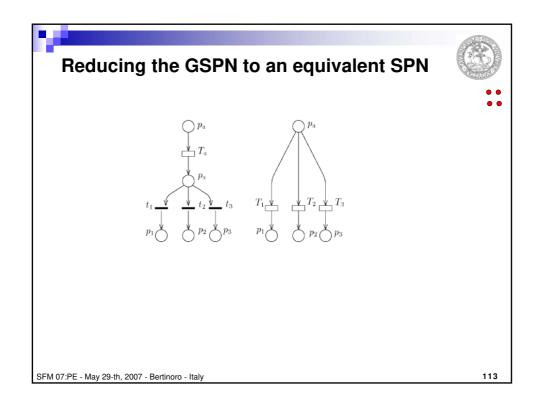


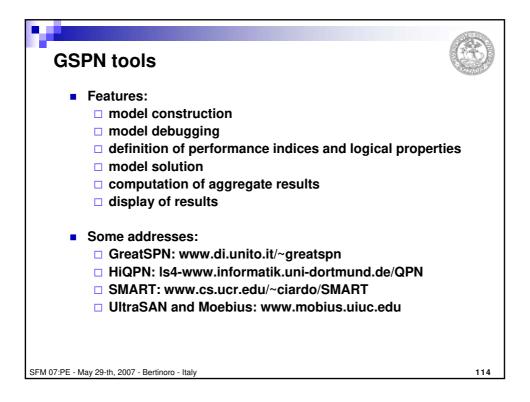


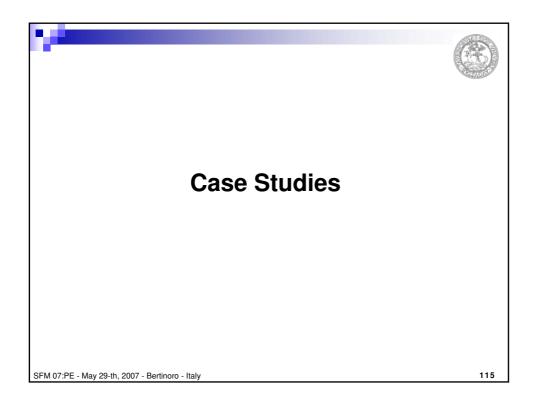




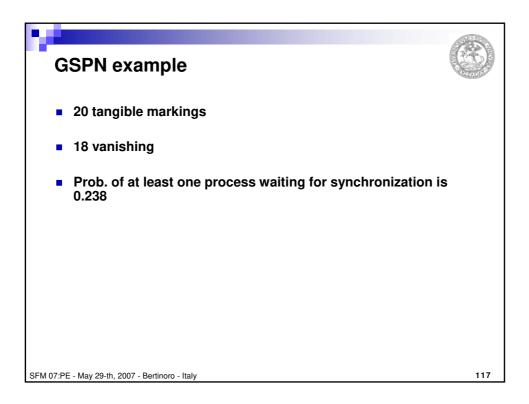


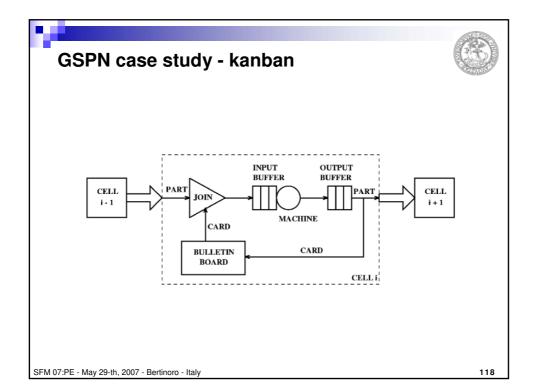


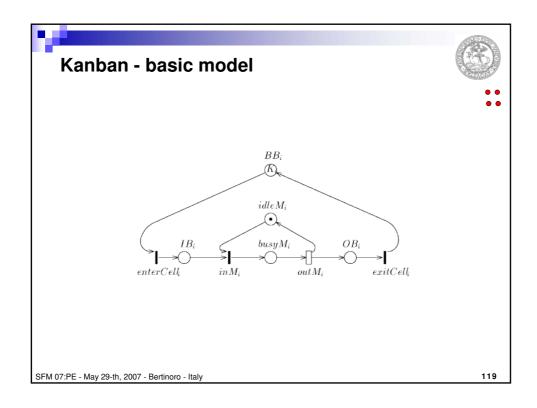


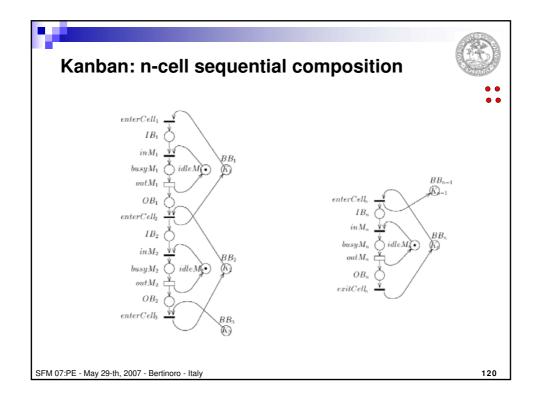


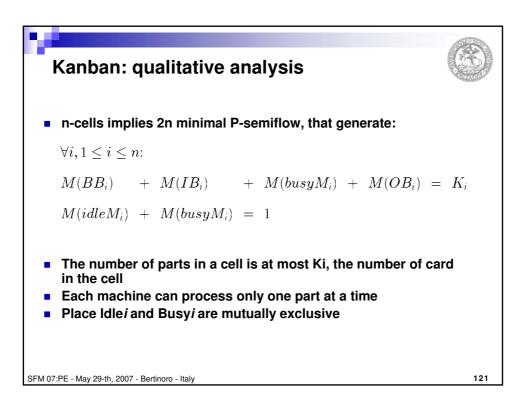
						((· ·	P_1	
								T_{newdat}	a
transition	rate	value	se	mantic	;		Č	P_2	
$T_{newdata}$	λ	1		nite-ser			\bigvee	+	
T_{par1}	μ_1	10		gle-serv				t_{start}	
T_{par2}	μ_2	5		gle-serv		($)P_3$	P_4	Į
$T_{I/O}$	ν	25		gle-serv			T_{par1}	$^{\vee}T$	ar2
T_{check}	θ	0.5	sing	gle-serv	er		V	V	
							$)P_5$	$\sum P_{6}$; 🗖
							V V	t_{syn}	
transition	weig	ht pri	ority	ECS			X	P_7	
t_{start}	1		1	1			\bigvee	\overline{t}	
t_{syn}	1		1	2			-	t_{OK}	
t_{OK}	99		1	3			Ľ	P_8	
t_{KO}	1		1	3			\sim	- 0	

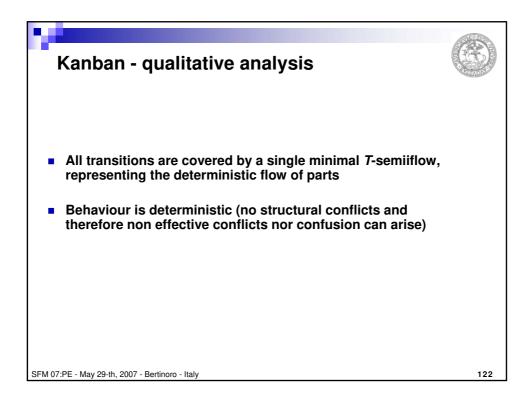




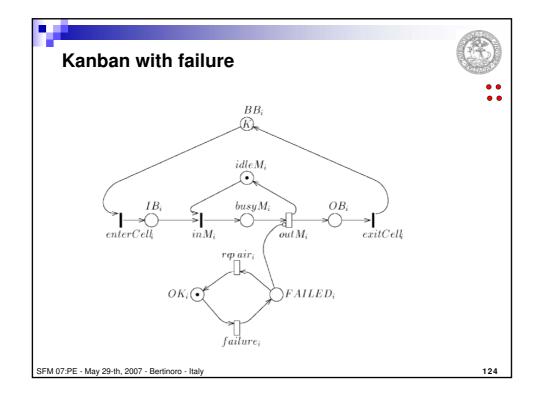


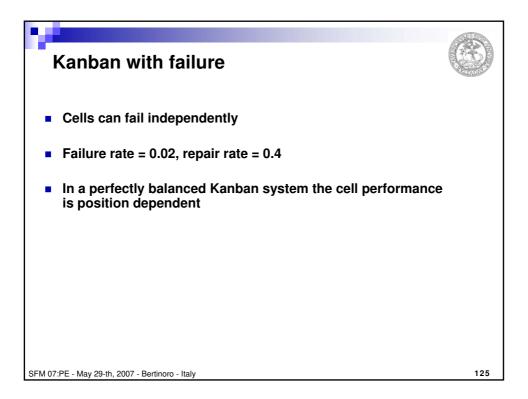


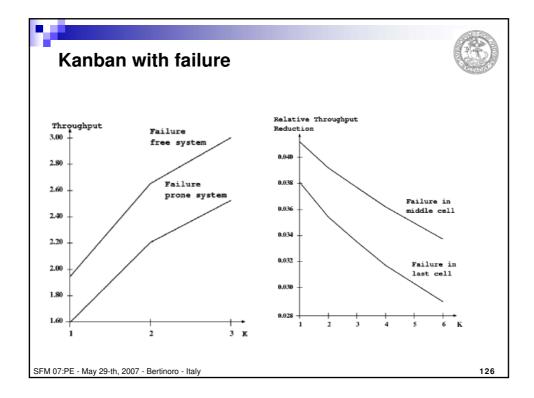


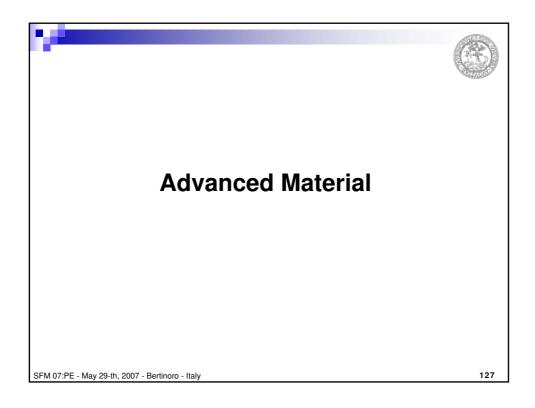


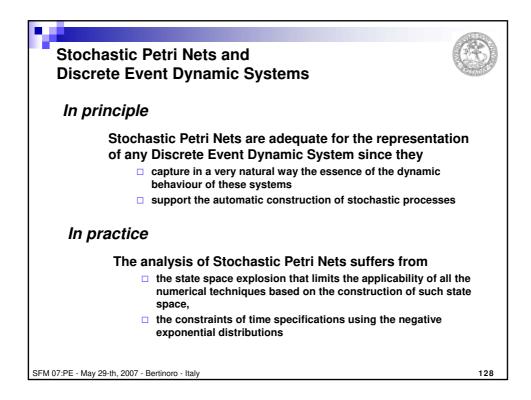
	Kanban - quantitative analysis									
K	card	ls, n=5 ce	lls of equa	al machine	time (rate	e = 4.0)				
Va	alue	of the inp	out and out	tput invent	ory					
_		Input	buffer in	ventory	Output buffer inventory					
C	Cell	-	2 Cards		-	2 Cards				
	1	0.486	1.041	1.474	0.514	0.958	1.526			
	2	0.486	1.040	1.470	0.383	0.713	1.131			
	3	0.486	1.047	1.478	0.282	0.524	0.811			
	4	0.486	1.056	1.490	0.170	0.316	0.472			
	4		1.073	1.515	0.0 00	0.0 00	000.0			



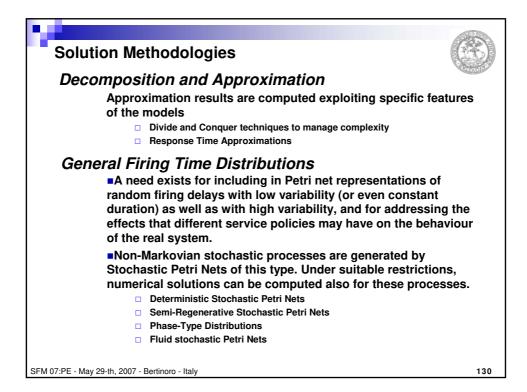


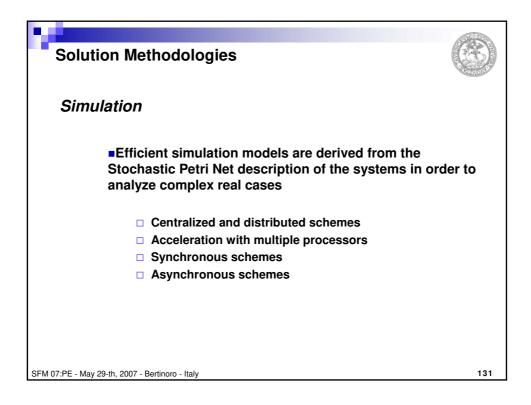


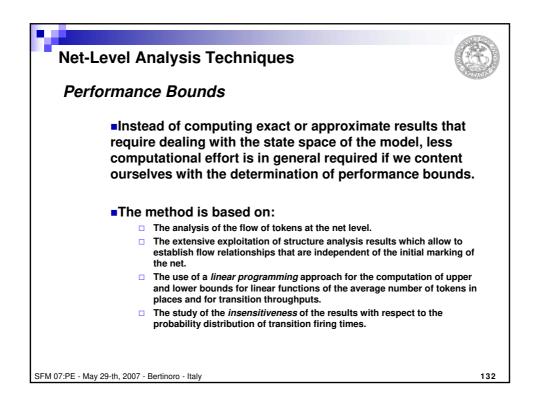


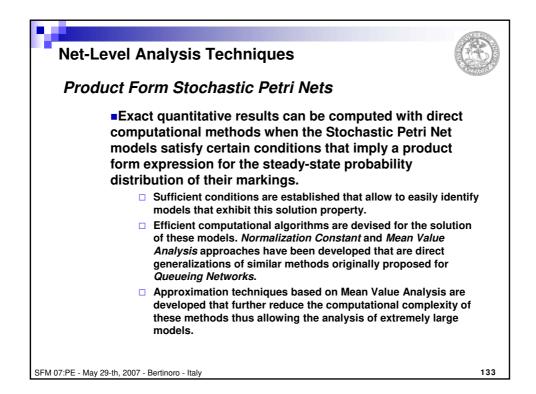


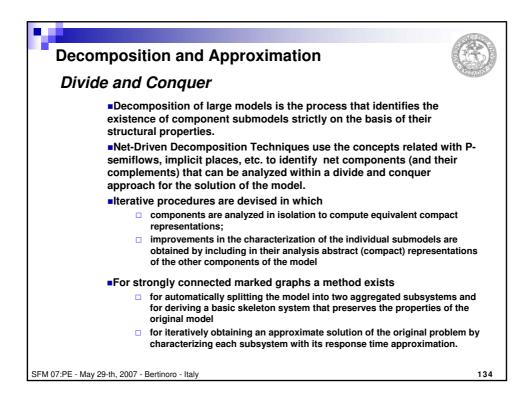
Solution Methodologies To overcome these problems, many differeny approaches can be adopted Net-driven Markov Chain Generation Reduced size Markov chains are generated exploiting structural features of the model such as submodels and symmetries Net structure allows a ``clever'' Markov Chain generation Tensor-based methods: Decomposability □ Symmetries and exact lumping (= quasi-lumpability) Combination of Symmetries and Decomposition Compositional aggregation (using ideas from SPA) Net-level Analysis Techniques Subclasses of models are identified for which the quantitative evaluation can be performed with direct methods that avoid the construction of the state space No Markov Chain generation: Analysis at net-level Performance Bounds Product Forms SFM 07:PE - May 29-th, 2007 - Bertinoro - Italy 129

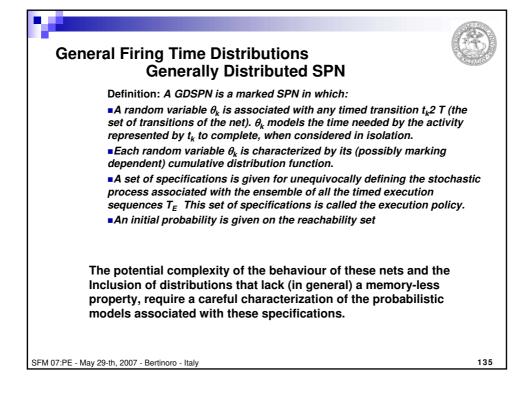


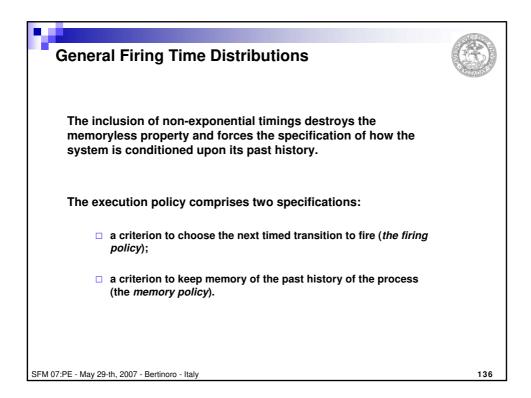


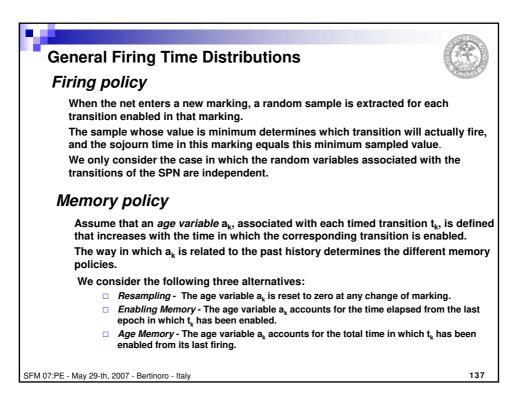


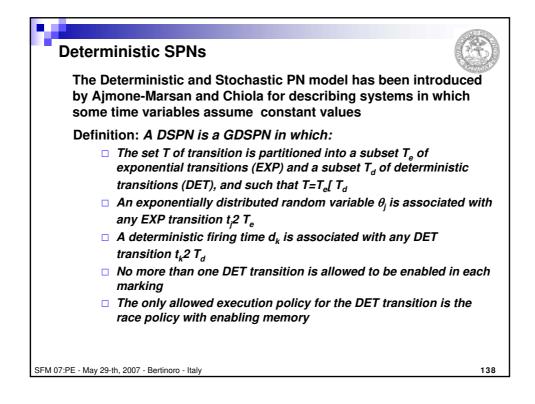


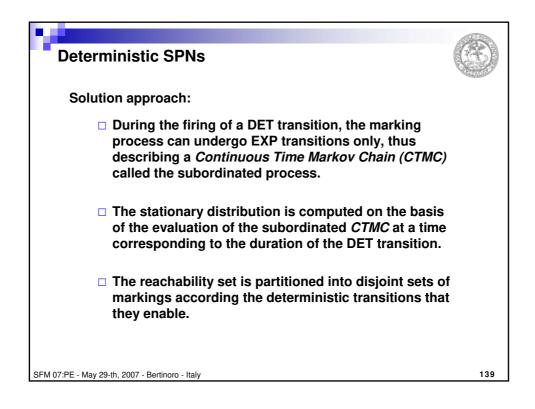


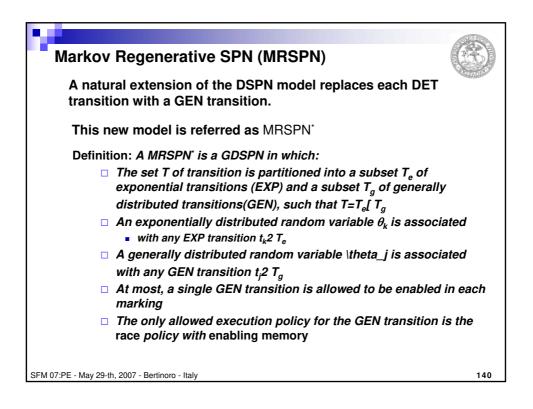


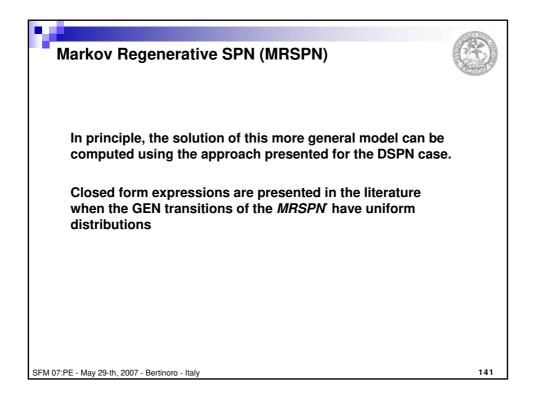


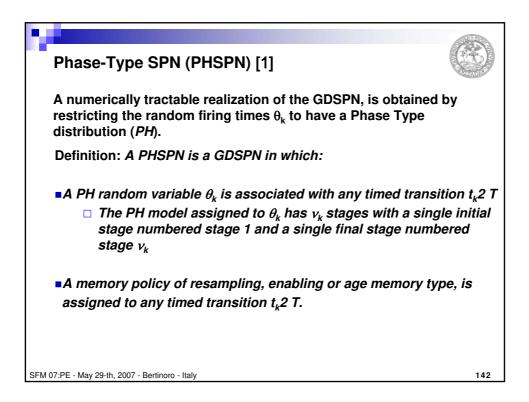


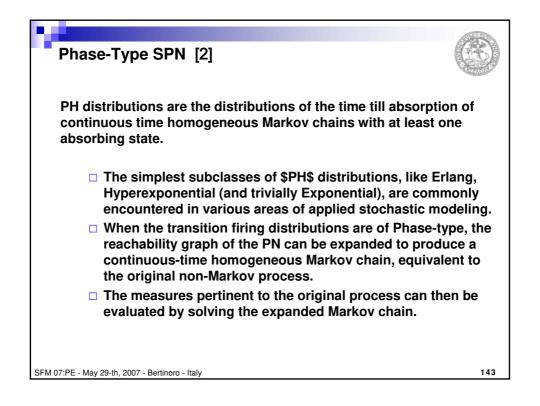


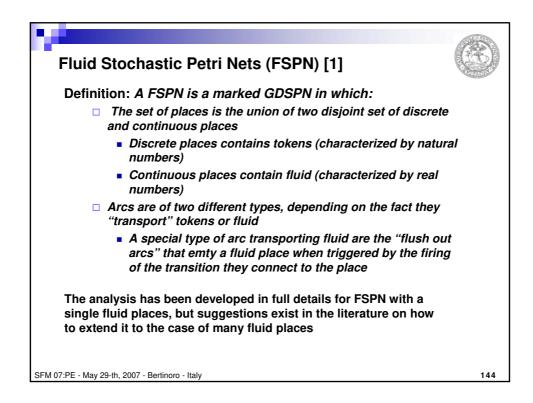


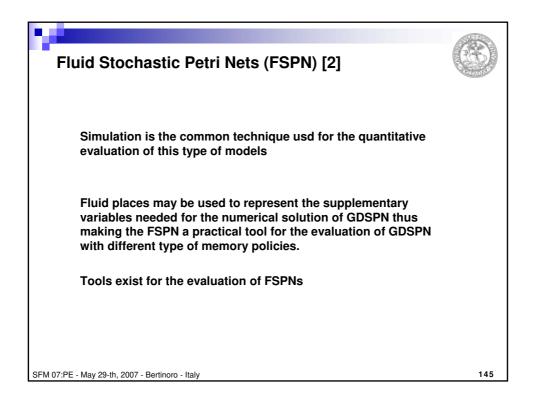


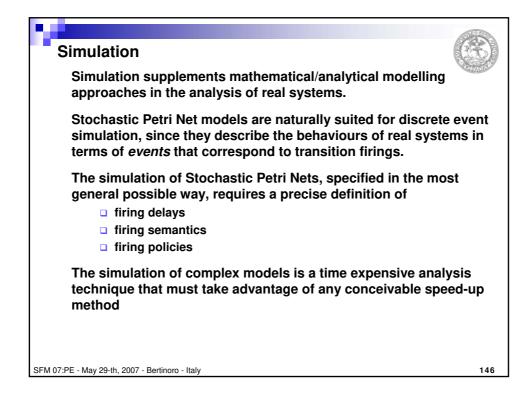


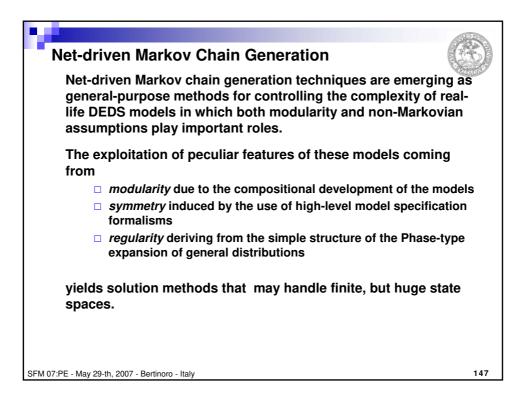


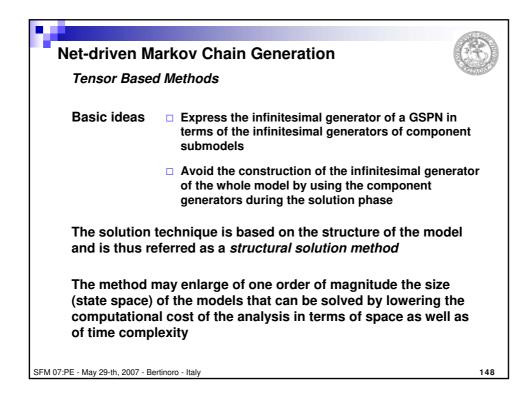


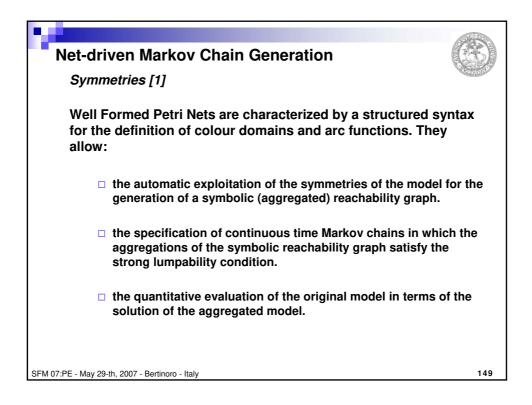


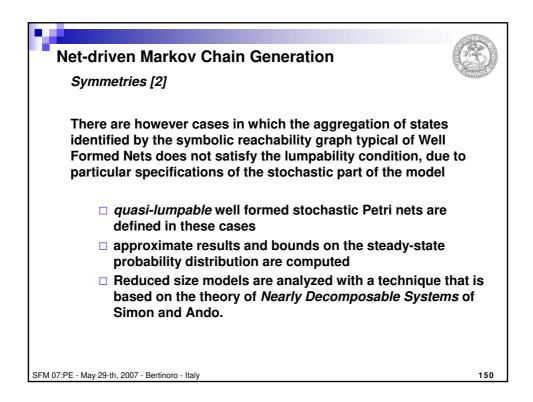


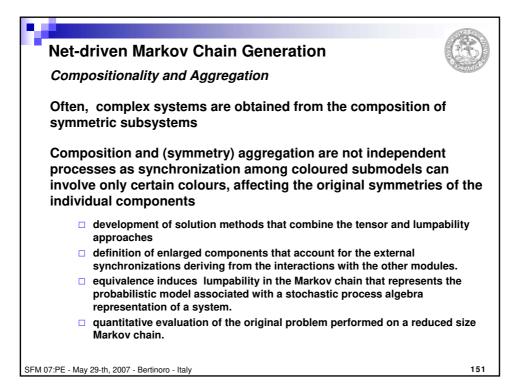


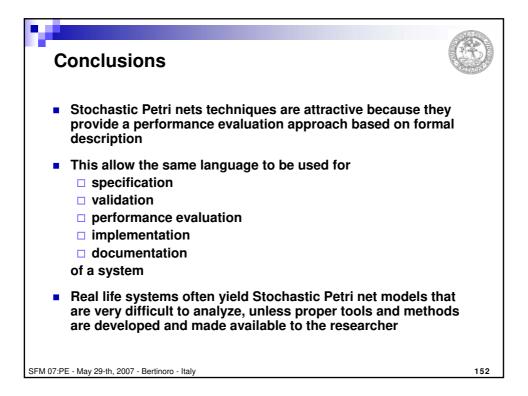


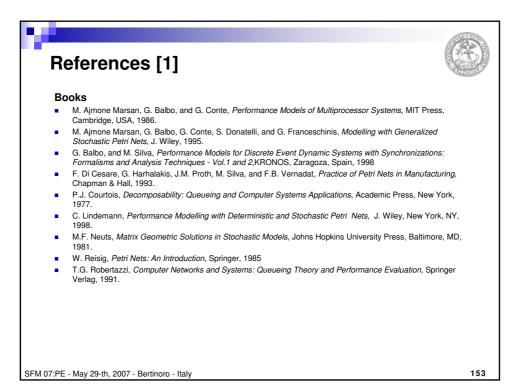


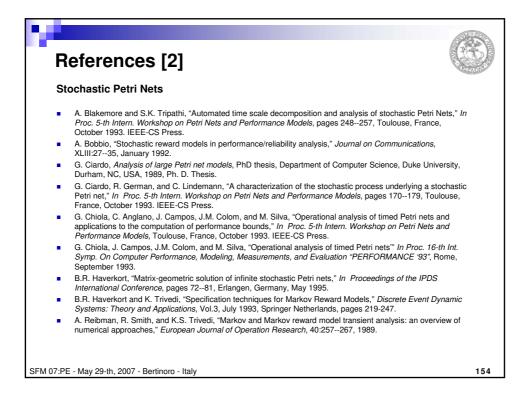


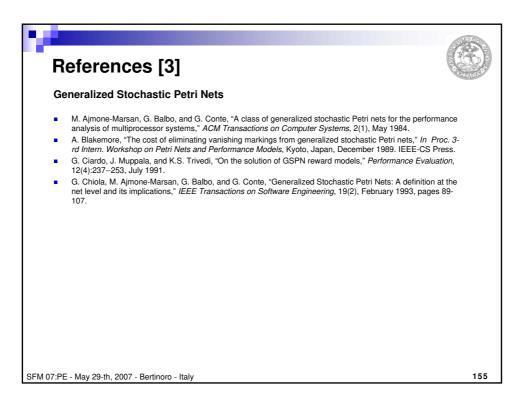


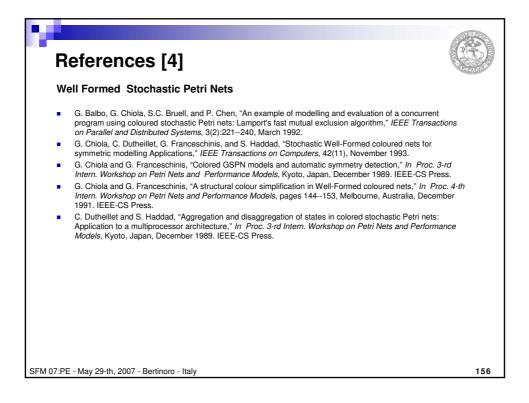


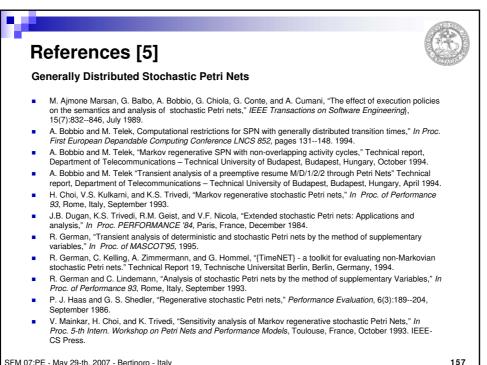












SFM 07:PE - May 29-th, 2007 - Bertinoro - Italy

