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In tro d u c tio n  to g e n e ra liz e d  ty p e  s y s te m s

H E N K  B A R E N D R E G T
C a th o lic  U n iv e r s i ty  N i jm e g e n , T h e  N e th e r la n d s

A bstract

Programming languages often come with type systems. Some of these are simple, others are 
sophisticated. As a stylistic representation of types in programming languages several versions 
of typed lambda calculus are studied. During the last 20 years many of these systems have 
appeared, so there is some need of classification. Working towards a taxonomy, Barendregt 
(1991) gives a fine-structure of the theory of constructions (Coquand and Huet 1988) in the 
form of a canonical cube of eight type systems ordered by inclusion. Berardi (1988) and 
Terlouw (1988) have independently generalized the method of constructing systems in the 
A.-cube. Moreover, Berardi (1988, 1990) showed that the generalized type systems are flexible 
enough to describe many logical systems. In that way the well-known propositions-as-types 
interpretation obtains a nice canonical form.

Capsule review

This paper presents a possible classification for the simplest class of typed systems: only 
ß-reduction is considered, and the only type constructors are n  and First, various 
Automath-like typed systems are analysed, with a brief presentation of their main properties 
(subject reduction, unicity of types and strong normalization).

This analysis suggests rather naturally the notion of generalized type system s which provide 
a neat notation for describing the ‘propositions-as-types’ idea. The relevance of this notation 
is shown by the fact that it allows us to sharply express new problems, as the relative 
completeness of various interpretations, or to state concisely and precisely type-theoretic 
results (for instance, the exact formalism in which Girard’s paradox is derived).

1 Introduction

In several program m ing  languages types are assigned to  expressions (occurring in 

a p rogram ) in a  way th a t m ay be com pared to dim ensions assigned to  entities in 

physics. These dim ensions provide a partia l correctness check

2 V o lt+  3 A m père

is definitely w rong ; the equation  _
E =  me

is consistent a t least from  the po in t o f  view o f dim ensions, since bo th  sides are 

expressed in k g .m 2.sec-2.
The analogy betw een types and  dim ensions is no t perfect. A  physical entity always 

has a unique dim ension. Expressions in program m ing  m ay have m ore than  one type.

5 F P R  1
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This is the case when im p lic it  (or C u r r y  s ty le )  typing is allowed : the expression Âx.x

denoting  the identity  function obtains all types A for A an a rb itra ry  type. We

write ,, . , .  . .
( a x . x ) : ( A ^  A)

which should be pronounced  as ‘lam bda x do t x in A arrow  A ’, and  has as its 

in tended m eaning th a t ‘fo r each (elem ent) a in A the application  (Xx.x)a is also in 

A ’ (which is intuitively true, since (Àx.x) a  =  a). Exam ples o f p rogram m ing languages 

with this style o f  typing are M L (M ilner 1984) and  M iranda (T urner 1985).

There is also ano ther paradigm , the e x p l ic i t  o r C h u rch  s ty le  o f typing, in which each 

correct expression has exactly one type. N ow  there are several versions o f the identity 

function
IA =  Ax: A .x

and this one has as its unique type A -*■ A. Exam ples o f languages with explicit typing 

are L C F  (G ordon  e t al. 1979) and  T A L E  (B arendregt and  van Leeuwen 1985).

D uring  the last 20 years m any systems have appeared for typing lam bda calculi, 

bo th  in the style o f C urry  and  th a t o f  C hurch  (see B arendregt (1991) for a survey). 

In this paper we give some flavour o f  a class o f  systems à la C hurch using the 

following m ethodology : O n ly  th e  s im p le s t  vers io n s  o f  a s y s te m  a re  c o n s id e re d  ; th a t  is, 

o n ly  w ith  ß-r e d u c tio n , b u t  n o t  w ith , f o r  e x a m p le  r \-red u c tio n  \ o n ly  w ith  ty p e s  b u ilt  up  

u sin g  -> a n d  n, n o t u s in g , f o r  e x a m p le ,  x or  I .  As will be seen, the systems become 

com plicated anyhow . (F o r a discussion on types in program m ing languages see 

Cardelli and  W egner (1985); Reynolds (1985) and Barendregt and H em erik (1990).)

2 A finestructure of the theory of constructions

Recently a quite pow erful typed lam bda calculus has been in troduced by C oquand  

and H uet (1988). T he system is called ‘ the theory o f co nstruc tions’, and  is denoted 

here by À.C. By analysing the way in w hich term s and types are built up, a fine­

structure o f  this system is given, consisting o f eight systems o f typed lam bda calculi 

form ing under inclusion a n a tu ra l cube w ith oriented edges (see fig. 1). Each edge -> 

represents the inclusion relation  £ .  This cube is referred to  as the X -cube.

M ost o f  the systems in the >.-cube are know n, albeit in a som ew hat different form . 

The system X ^  is the simply typed lam bda calculus (Church, 1940). The system X2 

is the p o ly m o r p h ic  o r s e c o n d  o rd er  typed lam bda calculus, and  is a subsystem  o f the 

system F  in troduced by G irard  (1972). It has been in troduced independently  by
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Reynolds (1974). The system Xw  is essentially the system Fco o f G ira rd  (1972). System 

XP corresponds reasonably to  one o f the systems in the fam ily o f  a u t o m a t h  languages 

(see de Bruijn, 1980): System A.P also appears under the nam e L F  in H arper e t  al. 

(1987), System XP2 is studied by Longo and  M oggi (1988) under the sam e name. 

System A.C is one o f the versions o f the theory o f  constructions in troduced by 

C oquand  and H uet (1988), and system A.co is related to  the p o l y r e c  system studied 

by R enardel de Lavalette (1985). System APco seems n o t to  have been studied  before. 

(F or À.® and ÄPm read ‘w eak tao ’ and ‘w eak XPco’, respectively.)

Before defining the X-cube, it is useful to describe inform ally some ideas which play 

a role in the various systems.

The first inform al idea is the construction  o f function  space types. I f  A and  B are 

types, then A -> B is the type o f functions from  A to  B. So, if  F  : (A -> B) and  x : A, then 

(Fx):B .

The second idea is tha t o f  dependency. Types and  term s are m utually  dependent; 

there are

•  term s depending on  term  ;

•  term s depending on types ;

•  types depending on term s;

•  types depending on types.

Some explanation is necessary here. Term s depending on term s are extrem ely

com m on : ,
FM

is a term  tha t depends on the term  M. A term  depending on a type is the identity  on 

^  I A =  X x  : A . x.

A type depending on a term  is, for example,

An- B
(with n a natu ra l num ber) defined by

A ° ^ B  =  B;

A n+1 -> B =  A ^ ( A n ^ B ) .

A nd a type depending on a type is, for example,

A -* A
for A a given type.

Once there are types depending on term s one m ay in troduce cartesian  products. 

Suppose th a t for each a ; A a  type B., is given, and th a t there is an  elem ent b a : Ba, Then 

we m ay w ant to  form  the function
Xa  : A . ba

that should have as type the cartesian  p roduct

rTa: A . Ba

o f the Bas. Once these p roduct types are allowed, the function  space type o f  A and  

B can be w ritten as
( A ^ B )  =  IT a :A .B (=  BA, inform ally),

5-2
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where a is a variable not occurring in B. This is sim ilar to  the fact th a t a p roduct o f 
equal factors is a pow er n

n b i  becom es bn
i -1

provided tha t bj =  b for 1 ^  i ^  n. So by using products, the type constructo r -> can 

be elim inated.

The next idea has to  do with the form ation  o f  types. F o r som e simple systems the 

types are -  so to  say -  given in the m etalanguage. F o r exam ple, if one has inform ally 

constructed  a type A, then one can form ally derive

I— (A.a : A . a) : (A ->• A).

Since in the /.-cube term s and  types are m utually  dependent, one m oves the form ation 

o f types from  the metalevel to  the form al system itself -  the idea comes from  the 

a u t o m a t h  languages of de Bruijn (1970). To do this a constan t * is in troduced that 

is the s o r t  o f  all types; then ‘A : * ’ is a statem ent expressing ‘A is a ty p e ’. A sentence 

in the m eta language like

‘if  A is a type, then so is A -> A ’

now becom es a form al type derivation

A : * (— (A -> A ) : *.

H ere A stands for a variable, and  since it is in *, one can say th a t A is a type variable. 

F o r each o f the four dependencies one m ay w an t to  in troduce function abstraction

(X,m : A . Fm ) : (A ^  B) ;

(Xa : *. I„) : (ITa : *. (a -> a)) ;
(A.n:W .An^ B ) : f \ J ^ * ;

(tax: *. a -> a) :(*->-*).

N ow  w hat is * *? P robably  no t a type, because then one should have (* -» * ):*  and 

this m ay lead to  contradictions. Therefore, one in troduces a new ‘s o r t’ □ ,  the sort 

o f all k in d s , and  postulates th a t *: □  and ( * - > * ) : □ .  T he inhabitan ts o f *->*, like 

ou r F, are called c o n s tru c to r s . Similarly, one postu lates (N

The expression ( n a :* . ( a - > a ) )  being a cartesian  p roduct o f types will also be a 

type, so (Flot : *. (a  -> a)) : *. Since it is a p roduct over all possible types a , including the 

one in sta tu  nascendi (that is, (IToc:*.(oi^oi)) is am ong the types in *), there is an 

essential im predictativity here.

We now  sta rt to  define the cube o f type lam bda calculi.

2.1 D e fin itio n

(i) The system o f the tacube are  based on a set o f  pseudo-term s 3T  defined by the 

following abstrac t syntax

ST — x |cj 3~ 2T  |A.x : HT2T  j ü x  : 2T 2T  

where x is the category o f variables and  c th a t o f constants.

(ii) O n 2T  the notions of ß-conversion and  ß-reduction  and  defined by the following 

contraction  rule (tac : A . B) C B[x : =  C]
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(iii) A s ta te m e n t  is o f  the form  A :B  with A, B e  J .  A is the s u b je c t  and  B is the 

p re d ic a te  o f A :B . A d e c la ra tio n  is o f  the form  x :A  w ith A e J  and  x a variable. A 

p s e u d o -c o n te x t  T  is a finite ordered  sequence o f declarations, all w ith d istinct subjects. 

The em pty context is denoted by < ) . I f  T  =  ( x ^ A j ,  . . . ,x n:A n>, then

r ,x : B  =  <Xj: A j, . . . ,x n: A n,x :B > .

Usually we do no t w rite the < ) .

(iv) The rules o f type assignm ent will axiom atize the notion

r  H- A : B

stating th a t A : B can  be derived from  the context T. P ronounce F b- A : B as ' T yields 

A in B ’.

The rules are given in two groups: (1) the general rules, valid for all systems o f the 

À-cube ; and  (2) the specific rules, differentiating between the eight systems. Tw o o f 

the constan ts in C are selected and  given the nam es * and  □ .  These two constan ts are 

called so r ts . W rite S =  {*, □ }  and  let s, s1? s2 range over S.

(1) G eneral axiom  and  rules.

Axiom

S tart rule

T l—A :s
F  x A t—x 'A ’ w^ ere x ' s f-fre sh  (x does no t occur in T).

W eakening rule

r  I— A :B  r h C : s  , • r  e ,
---------------------------  where x is T-Iresh.

r ,x : C I —A :B  ’

r  1— F : (Fix : A . B) T h -a :A  

r H ( F a ) :B [ x :=  a] '

n —A :B  Ti—B : s B = ßB /

Tl—A :B '

(2) The specific rules are all in troduction  rules, and are param etrized  by two sorts. 

Let s15 s, e S. Consider the following pair o f rules

(Sj, s2) rules

n -ru le  D - A ^  r ,x : A h - B : s ,

A pplication rule

C onversion rule

À.-rule

r  I— (Fix : A . B) : s2

T h -A iS j r , x : A h b : B  r , x : A l —B :s, 

r  h- (X x  : A . b) : (Fix : A . B)

(v) T h e  e ig h t s y s te m s  o f  th e  X -cube  are defined by taking the general rules plus a 

specific subset o f the set of rule pairs {(*,*), (*, □ ) ,  ( □ ,* ) ,  ( □ ,  □ )}
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(*, *)

12 (*> *) (0 ,* )

A.ÇÛ (*, *)

A.C0 (*» *) ( □ ,* ) ( □ , □ )
XP (*, *) (* , □ )

XP2 (*» *) ( □ , =1=) (* , □ )

APco (*> *) ( 0 , 0 ) (* , □ )
ÀPco = À.C (*, *) ( □ ,* ) (* , □ )

The À-cube will usually be draw n in the following s ta n d a r d  o r ie n ta tio n  (see fig. 2). The 

inclusion relations are left implicit.

ÂPcq = XC

XPco

Fig. 2

N o ta t io n

(i) D erivability for a system ^  is denoted  by Tl—X.A :B . If  there is no danger o f 

confusion, o r if a statem ent holds fo r all systems, then we simply w rite T t— A :B .

(ii) (A ^*B ) =  ( I ïx :A .B )  w ith x<£FV(B). This follows the in tu ition  given before.

(iii) r  t -  A : B : C m eans T H  A : B and T I— B : C.

The rule pairs have the following m eaning, as will become clear after studying the 

exam ples in section 2.7

(*,*) allows form ing term s depending on term s;

( □ ,  *) allows form ing term s depending on types;

(*, □ )  allows form ing term s depending on term s;

( □ ,  □ )  allows form ing term s depending on types.

2 .2  D e fin itio n

C onsider derivability in one of the systems of the A.-cube.

(i) Let T I— A : B. Then A and  B are called (legal) te rm s  and  T is called a (legal) 

c o n te x t .

(ii) Let T l— A :B :* . T hen A is called an o b je c t and B a typ e .

(iii) Let T I- A : B : □ .  T hen A is called a c o n s tru c to r  and B a k in d .

It can be show n th a t a term  is an  object, a type, a constructor, a kind or a sort. The 

only overlap is tha t all types B are also constructors (indeed B :* : □ ) .

W e state some properties ab ou t the systems in the À-cube.
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2 .3  C h u r c h -R o s s e r  T h e o re m  f o r  ST 

Let A, B, Then

(i) [A -» B &  A -» B ']  => 3 C e ^ '[ B - » C & B '- » C ] .

(ii) A = pB = > 3 C e J r [A -» C & B -» C ] .

P r o o f

Proofs o f the C h u rch -R o sser theorem  for A generalize to - T  (see B arendregt and 

D ekkers, 1990). ■

The following generalizes a result due to C urry  e t  al. (1958); see de Vrijer (1975) and 

van D aalen  (1980) fo r the result in type systems.

2 .4  T h e o re m  (s u b je c t r e d u c tio n  f o r  th e  X -cube)

F o r any system in the X-cube one has

T 1— A :B & A -»p A ' => F  I— A ' : B.

P r o o f

See B arendregt (1991) o r G euvers and  N ederho f (1991). ■

The follow ing result is due to  C oquand. A nice m odular p ro o f using the edges o f  the 

X-cube is due to G euvers and  N ederhof (1991).

2 .5  T h e o re m  (s tro n g  n o r m a liz a tio n  f o r  th e  X -cube)

F or any system in the X-cube one has

T I— A : B => A and  B are strongly norm alizing,

th a t is all ß-reductions starting  with A or B term inate.

P r o o f

See B arendregt (1991) o r G euvers and  N ederhof (1991). ■

The following result is folklore.

2 .6  T h e o re m  (u n ic i ty  o f  ty p e s )

F or any system in the X-cube one has

rJ-A:B&rh-A:B'=>B =p B'.

P r o o f

See B arendregt (1991) o r G euvers and N ederhof (1991). ■

S o m e  d e r iv a b le  ty p e  a s s ig n m e n ts  in th e  X -cube

We end this subsection by giving for each o f the systems in the X-cube som e exam ples 

o f  type assignm ent. The reader is invited to carefully study these exam ples in o rder 

to gain some in tu ition  in the systems o f the X-cube. Some o f the exam ples are followed 

by a com m ent {in brackets}. In  order to  understand the intended m eaning for the 

systems on the right plane in the X-cube (tha t is, the rule pair (*, □ )  is present), some
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of the elements o f * have to  be considered as sets an d  some as propositions. The 

examples show th a t the systems in the X-cube are related  to logical systems and form 

a preview o f the propositions-as-type in te rp re ta tion  described in section 4. N am es o f 

variables are chosen freely, in o rder to  follow the intended in terpretation .

2 .7  E x a m p le s

(i) In X the following can  be derived

A : * I— (A A) :* ;

A : * (Xa : A . a) : (A -> A) ; 

A :* ,B :* ,b :B b - ( X a :A .b ) : ( A ^ B ) ;

A : *, b : A I— ((Xa : A . a) b) : A ;

A : *, B : c : A, b : B h- ((Xa : A . b) c) : B ;

A : B : * b- (Xa : AXb : B . a) : (A  -> (B ^  A)) : *.

(ii) In X2 the following can be derived

a  : * I— (Xa : cc. a) : (ce -> a )  ;

I— (Xa : *Xa : a . a) : (Fla : *. (a a)) : * ;

A  : * 1- (Xa : *X a : a . a) A : (A A) ;

A : *, b : A I -  (ko. : *Xa : a . a) A b : A ;

o f course the following reduction  holds

(Xa : *Xa : a . a) A b -*■ (Xa : A . a) b 

^ b .

The following two exam ples show  a connection  w ith second order proposition  logic

b- (Xß : *Xa : (IIoc : *. a ) . a ((IIa  : *. a) -> ß) a) : (I lß  : *. ( l i a : *. a) -* ß).

{For this last exam ple one has to th ink  twice to  see th a t it is co rrect; a sim pler term

o f the same type in the following ; write 1  =  (Fla : *. a), which is the second order

definition of falsum.}
/ H ( X ß :* X a :± .a ß ) : ( I I ß :* .± - * ß ) .

{The type considered as p roposition  says : ‘ ex falso sequitu r quodlibet ’ ; the term  in 

this type is its proof.}

(iii) In Xco the following can be derived

b- (Xa : *. a  -> a) :(* -> * ): □

{ (X a :*  . a ^ a . )  is a construc to r m apping types into  types};

ß : * I— (Xa. : *. a  -> a) ß : * ; 

ß : x : ß I— (Xy : ß . x) : (Xa : *. a  a )  ß

{note th a t (Xy \ ß . x) has type ß -*■ ß in  the given context}

a  : *, f  : * -> * I— f(fa) : * ; 

a  : * b- (Xf : * *. f(foc)) :(*->*)-*•*

{in this way higher o rder constructors are formed}.



(iv) In XP the following can be derived

A : * (A -> *) : Q

{if A is a type considered as set, then A -> * is the kind  o f predicates on  A}

A : *, P : (A *), a : A t— Pa : *

{if A is a set, a e A  and  P is a predicate on A, then  Pa is a type considered as 

p roposition  (true if inhabited  ; false otherwise)}

A : *, P : (A -> A *) I— (ITa : A . Paa) : *

{if P is a b inary predicate on the set A, then V ae A  P aa is a proposition}

A : *, P  : (A -> *), Q : (A -* *) I— ( l ia  : A . (Pa -> Qa)) : *

{this proposition  states th a t the predicate P considered as a set is included in the 

predicate Q) A ; . ,  P : ( A ^ . )  H (n a :  A . ( P a ^ P a ) ) : .

{this p roposition  states the reflexivity o f inclusion}

A : *, P  : (A -»■ *) I— (Xa : AXx : P a . x) : ( l ia  : A . (Pa -> Pa)) : *

{the subject in this assignm ent provides the ‘p ro o f’ o f  reflexivity o f  inclusion} 

A :* ,P : ( A ^ * ) ,  Q :*

H ( ( n a : A . P a - * Q ) ^ ( n a : A . P a ) - Q ) : *
A : *, P  : (A -> *), Q : *, a 0 : A

1- (Xx : (ITa : A . Pa ->■ Q) X y :(ria : A . P a ) . xa0(ya0)) :

(IIx  : (Lia : A . Pa Q) (I ly  : (Fla : A . P a ) . Q ) =  

( I I a : A . P a ^ Q ) ^  ( L I a :A .P a ) ^ Q

{this p roposition  states tha t the proposition  (Va6 A .P a -> Q )-> ( V a e A . P a ) i s  

true in non-em pty  structures. A ; notice th a t the layout explains the functioning o f 

the /.-rule; in this type assignm ent the subject is the ‘p ro o f’ o f  the previous true 

p roposition ; note th a t in the context the assum ption a 0:A  is needed in this proof.}

(v) In  Xco the following can be derived. Let a & ß  =  n y : * . ( a ^  ß-*y)-*-Y , then

ct: P : * I— a &  ß: *

{this is the ‘second order definition o f & ’ and  is definable already in X2}. Let 

A N D  =  X a : *Xß : *. a  & ß and K  =  Xa : *Xß : *Xx : aXy : ß . x, then

I— A N D  :(*->•*-**),

I— K  : ( l i a  : * Ilß  : *. a  ß ^  a).

{Note th a t cc&ß and  K  can be derived already in X2, b u t the term  A N D  cannot}

a  : *, ß : * t— (Xx : A N D  a ß . xa(K aß)) : (A N D  aß  -> a ) : *

{the subject is a p ro o f th a t A N D  aß  ^  a  is a tautology}.
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(vi) In XP2 {corresponding to second order predicate logic} the follow ing can be
derived . ^  .

A : * ,P : ( A ^  *) h- (Xa: A .P a ^ -  _L): A ->  *

A : * ,P :(A ~>  A ^  *) h- [(ITa : AITb : A . Pab ^  P b a _ L )  -^(IT a: A .P a a -^  _L)] : *

{the proposition  states tha t a b inary relation th a t is asym m etric is irreflexive}.

(vii) In XPra the following can be derived

A : * \— (XP : (A -> A -> *) Xa : A . Paa) : ((A -> A -> *) (A  *)) : □

{this constructo r assigns to a b inary predicate P  on A its ‘ d iagonalization  ’} 

l - ( X A :* X P : ( A ^ A ^ * ) X a :A .P a a ) : ( I T A :* n P : ( A - ^ A ^ * ) n a :A .* ) :n  

{the same is done uniform ly in A}.

(viii) In XPcu =  XC the following can be derived

h- (XA : *XP: (A -> *) X a:A . Pa _L) : (ITA : * . ( A  -> *) ->• (A  -> *)) : [J

{this constructor assigns to  a type A and  to  a predicate P on A the  negation  o f P}. Let 

A LL =  (XA : *XP : A — *. ITa : A . Pa) ; then

A : P  : (A ->• *) 1- A LL A P : * and  (A LL A P) = „ ( n a :A .P a )

{universal quantification done uniformly}.

Exercises
1. Define -i =  Xa : *. a  -> 1 .  C onstruct a term  M  such th a t in Xco

a  : *, ß : * H M  : ((a -> ß) -> (-> ß -> -■ a)).

2. F ind  an expression M  such th a t in XP2

A : *, P : ( A ^  A ^  *) h- M  : [(Ila  : AITb : A . Pab ^  P b a 1 ) ^  ( l ia :  A . P a a ^  ! ) ] :* .

3. F ind a term  M  such th a t in XC

A : P : (A ^  *), a : A I— M  : (A LL A P ^  Pa).

3 Generalized type systems

The m ethod o f generating the systems in the X-cube has been generalized 

independently by Berardi (1988) and  Terlouw  (1988). This resulted  in the no tion  o f 

a g e n e r a liz e d  ty p e  s y s te m  (GTS). M any systems o f  typed lam bda calculus à  la C hurch 

can be seen as GTSs. Subtle differences between systems can be described neatly  using 

the no ta tion  o f GTSs.

O ne o f the successes o f the G TS notion  is concerned w ith logic. In  section 4 a cube 

o f eight logical systems is introduced. The system s on this ‘ logic cu b e ’ are in a 

one-to-one correspondence with the systems on the X-cube. T here is a canonical 

translation  A [A] for sentences A such tha t for a  logic L s co rresponding  to  a system 

X, on the X-cube one has
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for some M canonically depending on the p ro o f o f  A in L t ; here T is som e natu ra l 

context corresponding to the signature o f  the language in which the logic L 4 is 

form ulated. This result is the so called ‘p ropositions-as-types’ in terp re ta tion . As was 

observed by Berardi (1988), the eight logical systems can each be described as a G TSs 

in such a way th a t the propositions-as-types in terp re ta tion  obtains a canonical simple 

form.

A nother reason for in troducing GTSs is tha t several propositions ab o u t the 

systems in the X-cube are needed. The general setting o f the G TSs m akes it nicer to 

give the required proofs.

The generalized type systems are based on the same set o f pseudoterm s 2T  for the 

X-cube. We repeat the abstrac t syntax for 3T

Let C be the set o f constants in . T .

3.1  D e fin itio n

A sp e c ific a tio n  o f  a G T S  consists o f  a triple S =  (S, A, R) where

1. S is a subset o f  C, called the so r ts .

2. A is a set o f a x io m s  o f the form  c :s , w ith c e C  and  s e  S.

3. R is a set o f rules o f  the form  (s1; s2,s 3), w ith Sj, s2, s3eS .

3 .2  D e fin itio n

The G TS XS determ ined by the specification (S, A, R), no ta tion  XS =  X(S, A, R), is 

defined as follows. S tatem ents and  pseudo-contexts are defined as for the X-cube. The 

notion  o f type derivation T I—xs A : B (we often ju s t write T I— A  : B) is defined by the 

following axiom  and rules

2T =  x |c| y  .T  |Xx : ST2T | fix  : 3T2/

Axiom
< > I— c :s , i f (c :s )e A .

Start rule

r t —A :s
where x is fresh.

F , x : A h x : A ’

W eakening rule

r  I— B :C  T h -A : s
, where x is fresh.

r , x : A H B : C

A pplication rule
r i —F :( r ix :A .B ) :s  T t -  a : A 

r i —(F a):(B [x :=  a])

Conversion rule

r  t— A : B r t - B ' : s  B ^ B '  

r i —A :B '

ri-ru le

F h  A :Sj r , x : A ! - B : s ,  

T f— (IIx  : A . B) : s3
, where (s j ,s2, s3) e R .
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A,-rule

D -A .-S j T, x : A I— B : s2 T, x : A I— b : B
, where (s1, s , , s 3) e R  for some s3.

T I— (X x  : A . b) : (ITx : A . B)

In the above we use the following conventions

s ranges over S the set o f so rts; 

x ranges over variables ;

‘x is fre sh ’ m eans that x does no t occur in T, A, B o r C.

The proviso B = p B' in the conversion rule is no t decidable. H ow ever, it can  be 

replaced by the decidable condition

B' -^ßß or B ^ p B '

w ithout changing the set o f derivable statem ents.

3 .3  D e fin itio n

(i) The rule (s^ s ,)  is an abbreviation  for (s1(s,, s,). In  the A.-cube only systems with 

rules o f this simpler form  are used.

(ii) The G TS X(S, A ,R ) is called f u l l  if

R  =  {(s1,s 2)|s1,s ,e S } .

(iii) If  T I— A : B : s, then we say that A is an e le m e n t o f  ty p e  B ; if  F I— B : s, then B is 

a ty p e  o f  s o r t  s.

3 .4  E x a m p le s

(i) ÀP2 is the G TS determ ined by

S =  {* , □ }

A =  {*, □ }

R  =  { (* ,* ) ,( □ ,* ) ,(* , □ )} •

Specifications like this will be given m ore stylistically as follow s: ÂP2 =  X.(S, A ,R) 

with XV2

S *, □

A * : □

R ( * ,* ) ,( □ ,* ) , ( * , □ )

(ii) X C  is the full G TS X(S, A, R) with 

XC

s *, □

A *, □

R (*> *), (d , *), (*, □ ), ( □ , □ )



(iii) A variant XC' of XC is the full GTS X(S, A, R) with 

XC'
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s *p, □

A : □ , *p □

R S2, that is all pairs

(iv) X-* is the GTS determined by

X—>

S *, □

A * : □

R (*, *)

(v) A variant of X,-*, called XT in Barendregt (1984— Appendix A) is the GTS 
determined by

X

s *

A 0 : *

R (*, *)

The difference with X-> is that in XT no type variables are possible. One only has 
constant types like 0 , 0 ^ 0 , 0 ^ 0 ^ 0 , . . .  and variables for elements in these types.

(vi) The system X* in which * is the sort o f all types, including itself, is specified by

X*

s *

A * ; *

R (*, *)

The system X* is ‘inconsistent’, in the sense that all types are inhabited. This result 
is known as G irard’s paradox (see for example, Barendregt, 1991). One may think 
that the inconsistency is caused by the circularity in *:*; however G irard (1972) also 

showed that the following system is inconsistent in the same sense

XU

S , A

A □  : A

R (*, *), (□ , *), (□ , □ ), ( A, □ ), (A, *)

Also, Coquand (1989) showed that XU minus the rule (A,*) is inconsistent.
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So far none of the rules was of the form (sx, s3, s3). In section 4 we encounter such 
rules (in order to represent first order but not higher order functions).

W ithout p roof we mention that the subject reduction theorem holds for all GTSs. 

The unicity of types theorem does not hold for trivial reasons: there may be two 
axioms c :sx and c :s2. The following examples show the flexibility o f the notion of 

GTS.

3.5  E xa m p le s  (van B en th em  Ju ttin g )

Leaving out the definition mechanism, several members o f the a u t o m a t h  family can 
be exactly described as GTSs. For a description of the systems, see van Daalen, 1980).

(i) The AUT-68 system is described by the following GTS

XAUT-68

The point is that one may form predicates over a set, but not abstract over them

A :* l - XAUT.<jg(A-»-*):A;

A • * )ia ut -68(A^A^-*):A;

A : *, a : A, P : (A -> A *) ? aa ; * !
A : * H ^ ^ X F  : ((A -  A) -  A ). F(Xx : A . x)) : (((A -> A) -> A) -> A).

Note the correspondence between XAUT-68 and X-*.

(ii) The AUT-QE system is exactly described by the following GTS

XAUT-QE

S *, □ ,  A

A *, □

R (*, *), (*, □ ),

( □ , *, A), (□ , □ , A),

(*, A, A), ( □ , A, A)

A : *, a : A >-xaut -q e(^p  : (A — *). Pa) : ((A -> *)->*) ;

N ote the correspondence between XAUT-QE and XP.

(iii) The PAL system, a subsystem of AUT-68, is exactly described as follows
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À.PAL

In this system À-abstraction is possible only in a restricted way at the ‘outside’. 
However, one may form arbitrary applications

A :* !“ âpa l (A-^ A): A;

A :* ,a :A ,F : ( A ^ A ) t - ,PALF a:A ;
A : *. G : (A — A ^  A), a : A, b : A f-^PAL G ab : A ;
A :* ,G : ( A ^ A ^ A )  l - XPALÀb: AÀa: A .G a b : ( A ^  A ^  A); 

A : * b \ PALÀ G :(A -> A -> A )À b :A À a :A .G a b :(A -* A ^ A )^ (A ^ A ^ A ).

4 Propositions-as-types

In this section eight systems of intuitionistic logic are introduced— four systems of 

proposition logic and four systems of many-sorted predicate logic. The systems are 
the following

PROP proposition logic;
PROP2 second order proposition logic;
PROPrn weakly higher order proposition logic;

PROPco higher order proposition logic;
PRED predicate logic;

PRED2 second order predicate logic;

PREDco weakly higher order predicate logic;
PRED® higher order predicate logic.

All these systems are minimal logics in the sense that the only operators are and 

V. However, for the second and higher order systems the operations &, V and 3, 
as well as Leibniz’s equality, are all definable. Also in these systems one may put in 
the context a :(IT a :* .- '- 'a ^ ac ) in order to obtain classical logics. Weakly higher 
order logics have variables for higher order propositions or predicates, but no 

quantification over them ; a higher order proposition has lower order propositions as 
arguments.

The systems form a cube as shown in fig. 3. This cube is referred to as the L-cube. 
The orientation of the L-cube as drawn is called the standard orientation. Each 
system L* on the L-cube corresponds to the system on the À-cube on the 
corresponding vertex (both cubes in standard orientation). The edges of the L-cube 
represent inclusions of systems in the same way as on the À-cube.

A formula A in the logic L, on the L-cube can be interpreted as a type [A] in the
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PROPco
/

PROP2

PROPœ 

P R O P -------

PRED2

PREDco

PREDco

PRED

Fig. 3

corresponding X4 on the X-cube. The transition Ai—► [A] is called the propositions-as- 

types interpretation of de Bruijn (1970) and Howard (1980), first formulated for 
extensions of PRED and XP. The m ethod has been extended by M artin-Löf (1984), 

who added to XP types Sx : A . B corresponding to (strong) constructive existence and 
a constructor = a :A — A -^*  corresponding to equality on a type A. Since M artin- 
L öf’s principle objective is to give a constructive foundation of mathematics, he does 

not consider the impredicative rules ( □ ,* ) .
This interpretation satisfies the following soundness result: if A is provable in 

PRED, then [AJ is inhabited in XP. In fact, an inhabitant of |A] in XP can be found 
canonically from a p roof o f A in PR ED ; different proofs o f A are interpreted as 
different terms of type [AJ.

The propositions-as-types interpretation has been extended to several other 
systems (for example, see M artin-L öf 1984 and Stenlund 1972). In Geuvers (1988) 
it is verified that for all systems Li on the L-cube soundness holds with respect to the 

corresponding system Xj on the X-cube : if A is probable in L4 then [AJ is inhabited in 

Xj. Barendsen (1989) verifies that a proof D of such A can be canonically translated 

to [D] being an inhabitant of [AJ.
After seeing Geuvers (1988), it was realised by Berardi (1988; 1990) that the 

systems in the L-cube can be considered as GTSs. Doing this the propositions-as- 
types interpretation obtains a simple canonical form. We first give a description of 

PRED in its usual form, and then in its form as a GTS.
The soundness result for the propositions-as-type interpretation raises the question 

whether one also has completeness in the sense that if given a formula A of a logic 

Lt is such that [A] is inhabited in Xt then A is probable in L4.
For the proposition logics this is trivially true, for PRED  completeness with respect 

to XP is proved by M artin-L öf (1970), Barendsen and Geuvers (1989) and Berardi 
(1990) (see also Swaen 1989). For PREDco completeness with respect to XC fails, as 

is shown by Geuvers (1989) and Berardi (1990).

M a n y  so r te d  p red ica te  logic

4.1 D efin ition

The notion of a m a n y  so r te d  s tru c tu re  is defined by an example. The following 
sequence is a typical many sorted structure

s J  =  <A, B,f, g, P, Q,c>
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with A, B are non-empty sets, the so rts  o f sé (we use the standard terminology ; in 
the context o f GTSs it would be better to call A and B 1 types ’) ; f  : (A -> (A A)) and 

g :A ^ B  are functions; P ç  A and Q £  A x  B are relations; and c e  A is a constant.

4 .2  D efin ition

Given the many sorted structure sé of Section 4.1, the language L v of minimal many 

sorted predicate logic over sé is defined as follows

(i) has the following special symbols

A, IB sort symbols;
P, O relation symbols ;

f ,g  function symbols;
c constant symbol.

(ii) The set of variables of is

V =  {xA I x variable} U {xB | x variable}.

(iii) The set of terms of sort A and of sort B, notation Term A and Term B respectively, 

are defined inductively as follows

xAeT erm A, xBeT erm B; 
ce T e rm A;
se  Term A and te T e rm A => f(s, t)eT e rm A; 
s e Term A => §(s) e Term B.

(iv) The set of formulas of L^, notation Form , is defined inductively as follows

seT erm A, te T e rm B => P(s), Q(s, t)e F o rm ; 

cp e Form , y  e Form  => (cp -> \|/) e  Form  ;
<p e Form  => (VxA. cp) e Form  and (VxB. cp) e Form.

4.3  D efin ition

Let sé be a many sorted structure. The minimal many sorted predicate logic over sé , 
notation PRED =  PRED rf, is defined as follows. If  A is a set o f formulas, then A I— cp 

denotes that cp is derivable from assumptions A. This notion is defined inductively as 

follows (C ranges over A and B, and the corresponding C over A , IB)

cpe r  => r  I— cp 
rH c p ^ -y ,  FI— cp =î> F I— \|/

r ,cp H v y = > ri— cp^vy
Tl— Vxc .cp ,teT erm c = > ri— cp[x:= t] 

r  I- cp, xc £ FV(r) => r  I- vxc . cp,

where [x:= t] denotes substitution o f t for x, and FV is the set o f free variables in a 
term, formula or collection of formulas.

For 0  I— cp one writes simply I— cp and one says that cp is a theorem .



These rules can be remembered best in the form of the following natural deduction 

form __________________________________________
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[<p]

tp—»I)/ <p ¥  .

V

VxC(p , t e TERMC ;
(p [X := t]

(D
. x f r e s h .

Vxc  cp

Some examples of terms, formulas and theorems are the following. The expressions 

xA, c,fl(xA,c ) and f(c, c) are all in Term A; g(xA) is in Term B. Moreover

VxAP(fl(xA,x A)), (1)

VxA[P (xA) ^ P ( f ( x A,c)], (2)

VxA[P(xA) -> P (f(xA, c)] VxAP(xA) P(f(c, c) (3)

are formulas. The formula (3) is even a theorem. A derivation of (3) is as follows

[VxA[lP(xffl) -> P (f(xA, c))]]2  [VxAP(xA)] 1 

P (c )-» P (f(c , c)) P(c)

______P(ff(c, c)_____

___________ VxAP(xA) -» P (f(c , c)) _________

VxA[P (xA) -> P (f (xA, c))] VxAP(xa) P (f (c, c))

the numbers 1, 2 indicating when a cancellation of an assumption is being made. A 
simpler derivation of the same formula is

[VxAP(xA)] 1 

P (f(c , c)

[VxA(P (xA)-> P (f(x A,c )]2  VxAP(xA) P (f(c , c)) ^

VxA(P (xA) -  P (f(xA, €)) VxA(P (xA) -> P (f(c , €)) 2

Now we explain, first somewhat informally, the propositions-as-types interpretation 
form PRED into XP. First one needs a context corresponding to the structure s$l. This 

is r rf defined as follows (later T d is defined as little differently)

Tjy =  A: *, B : *,
P : A ^ * ,Q : A ^ B ^ * ,  

f : A A -s- A, g : A ^  B, 
c: A.
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For this context one has

r ,h c :A  (O')
r rfH (fcc):A

1— [Fix : A . P(fxx)] : * (1')

r^ K [n x :A .(P x ^ P ( fx c ) ) ] :*  (2')
Ty h- [[Tlx : A . (Px -» P(fxc))] -  [(Fix : A . Px) P(fcc)]] : *. (3')

We see how the formulas (1) to (3) are translated as types. The inhabitants o f * have 
a somewhat ‘am bivalent’ behaviour, they serve both as sets (for example, A :*), and 
as propositions (for example, Px: * for x: A). The fact that formulas are translated as 

types is called the p ro p o sitio n s-a s-typ es  (or also fo rm u la s -a s -ty p e s )  interpretation. The 
provability of formula (3) corresponds to the fact that the type in (3') is inhabited. In 
fact

r ^ f - X p :  [Fix : A . (Px P(fxc))] Xq : (ITx : A . P x). pc(qc) : 

l ip  : [Fix : A . (Px — P(fxc))] ITq : (IIx : A . P x). P(fcc).

A somewhat simpler inhabitant o f the type in (3'), corresponding to the second proof 
of the formula (3), is

XP : [Fix : A . (Px P(fxc))] Xq : (Fix : A . P x). q(fcc).

In fact, one has the following result, which at the moment we state informally (and 
which in fact, is not completely correct; therefore, no number is given to the item).

T heorem  (soundness o f  the  p ro p o sitio n s-a s-typ es  in terpreta tio n )

Let sd  be a many sorted structure and let cp be a formula of L^. Suppose

l-pRED<P with derivation D ;
then

r^ l-^ p  [D] : [cp] : *,

where [D] and [cp] are canonical translations of cp and D, respectively.

Now we show that PRED  can be viewed as a GTS, and then it follows that the m ap 
cp [cp] can be factorized as a composition of an isomorphism PRED  -> XPRED and 

a canonical forgetful homomorphism XPRED ^ X P /

4.4 D e fin itio n  (B erard i 1988)
PRED considered as a GTS, notation XPRED, is determined by the following 
specification

XPRED

s *s, *p, *f, Ds, Dp

A *s : Ds, *p : mp

R (*P; *P), (*s, *P), (*s, d p),

*S5 (*S, *f)
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Some explanations are necessary here. The sort *s is for sets (the ‘sorts’ of the many 

sorted logic). The sort *p is for propositions (the formulas of the logic will become 
elements of *p). The sort *r is for first order functions between the sets in *s. The sort 

□ s contains *s, and the sort [I]p contains *p. (There is no otherwise it would be 

allowed to have free variables for function spaces.) The rule (*p, *p) allows the 
formation of implication of two formulas

cp : *p, i|/ : *p I— (cp -*■ y) =  (TJx : cp. <|/) : *p.

The rule (*s,* p) allows quantification over sets:

A : *s, cp : *p (— ‘ (VxA. cp) ’ =  (IIx : A . cp) : *p.

The rule (*s, D p) allows the form ation of first order predicates:

A :* s l—( A ^ * p) =  (Fix: A . *p): D p;

hence
A : *s, x : A, P : (A -> *p) t— Px : *p,

that is, P is a predicate over the set A.
The rule (*s, *s, *f) allows the form ation of a function space between the basic sets

in *s A : *s, B : *s I— (A -> B) : *r ;

the rule (*s, *f, *') allows the form ation of curried functions of several arguments in 

the basic sets A : *s H (A -> (A -> A)) : *f

This makes is possible to have, for example, g :A -> B  and f : (A ->■ ( A A ) )  in a 
context.

Now it is shown that A.PRED is able to simulate the logic PRED. Terms, formulas 

and derivations of PRED are translated into terms of À.PRED. Terms become 

elements, formulas become types and a derivation of a formula cp becomes an element 

of the type corresponding to cp.

4.5  D efin ition

Let s i  be as in Section 4.1. the ca non ica l c o n te x t  corresponding to s i ,  notation r y, 

is defined by =  A :* S,B :* S,

P :B -> * p, Q : A ^ B ^ * p,

f :A -+ (A -* B ) ,g :A ^ B ,
c.B .

Given a term t e r v , the canonical translation o f t, notation [tj, and the canonical 
context for t, notation Tt, are inductively defined as follows

t It] r t
x^ X X : C

s c ( )

f  (s, s') f  Is] [s'] r s u  r s-

g (s) g Is] r s
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Given a formula cp in L v, the canonical translation of <p, notation [cp], and the 

canonical context for cp, notation T are inductively defined as follows

<p Fcp
P(t) p[t] r,

Q (s, t) Q [s] t r s u  r t

Cpi —> CP2 I<PlJ —» ĉp, u  r<p2

>Ü>

nx:C . ]\|/j Fy- {x:C}

4.6  L e m m a

(i) te T E R M A => r ^ ,  Tt H->PRED |tj : A ; similarly for B.
(ii) <p 6 FORM  => r rJ, b->PRED ([cp! : *p.

P r o o f

By an easy induction. ■

In order to define the canonical translation o f derivations, it is useful to introduce 
some notation. The following definition is a reformulation of definition 4.3, now 

giving formal notations for derivations.

4 .7  D efin ition

In PRED the notation ‘D  is a derivation showing AI— tp’, notation D:Ab-cp, is 

defined as follows <p6 A=>P,:AI-cp;

D jiA l— <p->i|/, D ,: A I— cp => (Dj D 2):A I— y ;
D : A, cp I— y  => (Icp). D : A I- cp -> \\i ;

D : A I— Vxc . cp, t e T E R M C => (Dt) : AI— cp[x : =  t] ;

D  : A I— cp, xc FV(A) => (GxcA) : D h- Vxc . cp.

Here C is A or IB, P stands for ‘projection’, Icp stands for introduction and has a 

binding effect on cp, and G xc stands for ‘generalization’ (over C) and has a binding 

effect on xc.

4.8 D efin ition

(i) Let A =  {cpj, ...,cpn} £  FORM . Then the canonical translation of A, notation r 4, 
is the context defined by

r i  =  r 9 iU ... u r , n.x , i :[cp1l, . . . ,x (Pn:[cpnl.

(ii) For D :AHcp in PRED  the canonical translation of D, notation [D], and the 
canonical context for D, notation TD, are inductively defined as follows

D ID] r D

P<p X(p ( >

Dj D j ]Di] :d 2. I 'd ,  ^  r D2

Icp • D t kxcp:*<pV D i] I 'd , -  1 x(p: 19- 1

Dt ]D] it] I 'd  u  r t

Gxc . D Xx:C.]D] r D -{x :C }



4.9 L em m a

D : A 1 pRED *P ^  Fj,!, r 4 UFf U cpD I- iPRED [D] : [(pj.

P r o o f

By induction on the derivation in PRED. ■

The following lemma is a kind of converse lemma 4.9.

4.10 L e m m a  (K . F ujita  1989)
Suppose T I—, (>RED A : B : *p. Then there is a many sorted structure -sé, a set of formulas 
A £  L^, a formula cp e and a derivation D such that

r  =  r ^ ,  r 4 u r , u  r D,

A =  [D], B EE [cp]

D :A I—PREDcp. I

The following result gives the soundness of the interpretation [ 1. N ote, however, that, 

for example, a sentence cp, that is, FV(cp) =  0 ,  one has in general

PRED 9 ^  I- XPRED A : [Cp].

The reason is that logic is such that it assumes that the intended domains are non ­

empty. For example
(VxA. (Px -> Q)) ((VxA. Px) -> Q) 

is provable in PRED, but only valid in structures with A +  0 .

4.11 D efin ition

The ex te n d ed  c o n tex t r t /  is defined by =  F v, a : A, b : B.

So, explicitly states that the domains in question are not empty. Now one does 

have completeness.

4.12 C oro llary

(i) Let cp be a formula and A be a set o f formulas o f L^. Then

d  : a  h~pr ed  cp -<=> r * .  r Au r ^ u  r D h p̂r ed  P-)] • [<pl-

(ii) Let A U {cp} be a set of sentences o f La. Then

AI pRED cp <=> r ^ ,  Ta I xpRED M ■ IÎ Pl some M.

(iii) Let cp be a sentence of L ^ .  Then

PRED̂  F ̂  \ 'xpRED M  • Ĥpl•

P r o o f

(i) By definition 4.9 and 4.10, and the fact that []  is injective on derivation and 
formulas.
(ii) If the members of A and cp are without free variables, then

D : A I pr Ed <P U r D H-XPRED [D] : [cp]
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A statement in r D is of the form x:C . Since T ^l— a: A ,b :B one has 

AI pr Ed 9 ̂  D : A t~PRED cp

3D r s/, r Au r D i xPr ED P i  : i<pl
<=> 3M r ^ ,  F a I— XPRED M : [cp].

(For the last => take M =  [D ][x ,y :=  a,b]; for <= use lemma 4.10).

(iii) By (ii), taking A =  0 .  ■

The system XPRED is also flexible enough to cover so-called f r e e  log ic  with empty 

domains as developed by Peremans (1949) and Mostowski (1951); simply work in 
context instead of 

Now that it has been established that PRED and XPRED are isomorphic, the 
propositions-as-types interpretation from PRED to XP can be factorized in two 
simple steps : from PRED to XPRED via the isomorphism and from XPRED to XP 
via a canonical forgetful map.

4 .13 D efin itio n  (p ropo sitio n s-a s-typ es  in terpreta tion)

(i) Define the forgetful map 11 : term (XPRED) -» term (XP) be deleting all superscripts 
in * and □

*s I—► *
*p h-> *

□ Ŝ D
□ pi-*

for example, |Xx:*‘\ x |  =  Xx:*.x. Write |T| =  {xx: |Ax| , ...} for T =  {Xji A ls ...}.
(ii) Let s /  be a signature and let t, cp, A and D be, respectively, a term, a formula, a 

set o f formulas and a derivation in PRED formulated in L^. Write

[t] =  I [tj I ;

[<p] =  I [<pl I ;
[D] =  I [D] I ;
[A] =  |F+,|, |Fa|.

4.14  C oro llary  (Soundedness f o r  the p ro p o sitio n s-a s-tvp es  in terp re ta tio n )

(i) T I—xPRED A: B => [r| H-XP|A| : |B|.
(ii) For sentences A and cp in LA one has

D : A 1 pr Ed <P => [A] f-^p M : [cp], for some M.

P r o o f

(i) By a trivial induction on derivations in XPRED.
(ii) By corollary 4.12 (ii) and (i). ■

As was remarked before, the converse, completeness for the propositions-as-types 
interpretation holds for PRED and XP, but not for PREDco and XC.
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4.15 T heorem  (B erard i 1989; G euvers, 1989)

Consider the similarity type of the structure s é  =  <A>, i.e. there is one set w ithout any 

relations. Then there is in the signature o f s é  a sentence cp of PREDco such that

^PREDioV
but for some M one has

H xcM:[cp],
P r o o f  ske tch  (B ernard i)
Define

EXT s  n p  : * n p ' : *. [(p <-* p') -> n Q  : * -> *. (Qp -*■ Qp')] 
cp s  EXT 1A does not have exactly two elements ’

Obviously, (/-PREDu<p. Claim: interpreted in XC  one has

E X T i f  A is non-empty, then A is a type-free A-model’.

The reason is that if a: A, then

I— (Xx  : (A -> A ). a) : ((A -> A) A)

and always
(- (X y : A X z  : A . z) : (A (A A)),

therefore, ‘ A <-► (A -> A) ’ and since ‘ A =  A ’ (that is, there is a bijection from A to A), 

it follows by EXT that ‘A s  (A -+ A )’, that is, ‘A is a type-free X-model’.

By the claim A cannot have two elements, since only the trivial X-model is 

finite. ■

The counterexample of Geuvers is technically simpler, but intuitively somewhat 

more complicated; it is also related to the statement EXT.

The definition of the other systems in the /.-cube is now given. After having seen 
the equivalent between PRED and ÂPRED, each system is described directly as a 

GTS and not as a more traditional logical system.

4 .16  D efin ition

(i) Systems A.PROP, A.PROP2, XPROPra and XPROPco are the GTSs specified as 

follows
XPROP

s *P, DP

A *p : q p

R (*p, *P)

XPROP2 = /UPROP + (np, *p)

S *p, Dp

A *p : Dp

R (*P; *P)> (q P, *P)



XPROPço = XPROP + ( □ p, mp)

S *p, Dp 

A *p, Dp 

R (*p, *p), (Dp, Dp)

XPROPco = XPROP + (Dp, *p) + (n p, Dp)

S *p, Dp 

A *p, Dp

R (*p, *p), (Dp. *p), (Dp, Dp)

(ii) Systems XPRED, XPRED2, XPRED® and XPREDco are the GTSs specified as 
follows
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XPRED

s *p, *s, *f, D p, Ds

A *p, Dp, *s, n s

R (*p, *p), (*s, *p), (*s, Dp) 

(*s, *s, *f), (*s, *f)

XPRED2 = XPRED + (mp, *p)

S *p, *s, *f, D p, Ds

A *p, Dp, *S,D S

R (*p, *P), (*s, *P), (*s, nP) 

(*s; *s) *f); (*s5 **) 

( □ p, *p)

XPREDco = XPRED + (Dp, QP)

S *p, *s, *f, n p, d s

A *p, Dp, *s, Ds

R (*p, *P) (*s, *P), (*s, n p) 

(*s( *s; *f)5 (*s,*f, *f) 

( □ p, Dp)
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XPREDco = XPRED + ( d p, *p) + (Dp, D p)

S *p, *s, *f, mp, Ds

A *p, g p, *s, ms

R (*P, *P) (*s, *P), (*s, □ ?)

(*s5 *s; (*s; *f)

( □ p, *p), (Dp, Dp)

The eight systems form a cube as shown in fig. 4.

XPROP2

XPROPco
y /

XPRED2

XPREDco

XPROPco/  —

XPROP--------

-  XPREDco 
/

XPRED

Fig. 4

Since the description of these GTSs is more uniform than the original description 
o f the logical systems, this cube will be considered as the L-cube. In particular, fig.
4 displays the standard orientation of the L-cube, and each L, (ranging over XPROP, 
XPRED, etc.) corresponds to a unique system \  on the similar vertex in the X-cube 
(in standard orientation).

4 .17  Theorem  (soundness o f  the p ro p o sitio n s-a s-ty p es in terpreta tio n )
Let L, be a system on the L-cube, and let X{ be the corresponding system on the 
X-cube. The forgetful map 11 that erases all superscripts in the *s and D s satisfies the 
following

T I—L A : B : s : ■IH K  |A |:|B |:|s|. (4)

P r o o f

By a trivial induction on the derivation in L,. ■



In tr o d u c tio n  to  g e n e r a liz e d  ty p e  s y s te m s 151

As is well-known, logical deductions are subject to reduction (for example, see 

Prawitz 1965; or Stenlund 1972). For example, in PRED one has

\ D|
¥

(p—>\|/ m
------- 1-------- = (Xcp.DO D2

¥

and

—>ß D^cp — D2] =

¥

¥
Vx . i)/

¥ [ x  :=  t]

= (Gx . D)t

— Dj[x — t] =

If the deductions are represented in XPRED, then these reductions become ordinary 
ß-reductions

[(Xcp. D t) D J  =  (Xx : [cp]. [D J) [D2] [D J  [x : =  [D J] =  [D Jx : =  D J] ;

[(Gxc . D) t] =  (Xx : C . [D]) [t] [D] [x : =  [t]] =  [D[x : =  t]]

In fact, the best way to define the notion of reduction for a logical system on the 
L-cube is to consider that system as a GTS subject to ß-reductions.

Now it follows that reductions in all systems of the L-cube are strongly normalizing.

4.18 C oro llary

Deductions in a system on the L-cube are strongly normalizing.



P r o o f

The propositions-as-types map

11 : L-cube X-cube

preserves reduction; moreover, the systems on the X-cube are strongly norm al­
izing. ■

In Leivant (1989) interesting use has been made of the propositions-as-types 
interpretation concerning the representation of data types.

The following example again shows the flexibility of the notion of GTS.

4.19  E xa m p le  (G euvers 1990)
The system of higher order logic in Church (1940) can be described by the following 

GTS
XHOL

S *, □ , A 

A * : □ , □ :  A 

R (* ,* ) ,( □ ,* ) ,( □ , □ )

That is XHOL is Xco plus □  : A. The sound interpretation o f XPREDco in XHOL is 
determined by the map given by

*P (—► *

*si-» □

□ 8i-+A.

Geuvers (1990) proves that completeness holds for this interpretation.
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