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Abstract 

LiFi is networked, bi-directional wireless communication with light. It is used to 

connect fixed and mobile devices at very high data rates by harnessing the visible 

light and infrared spectrum. Combined, these spectral resources are 2600 times 

larger than the entire radio frequency (RF) spectrum. This paper provides the 

motivation behind why LiFi is a very timely technology especially for 6
th

 generation 

(6G) cellular communications. It discusses and reviews essential networking 

technologies such as interference mitigation and hybrid LiFi/Wi-Fi networking 

topologies. We also consider the seamless integration of LiFi into existing wireless 

networks to form heterogeneous networks across the optical and RF domains and 

discuss implications and solutions in terms of load balancing. Finally, we provide the 

results of a real-world hybrid LiFi/Wi-Fi network deployment in a software defined 

networking (SDN) testbed in a school and show that LiFi networks can improve Wi-Fi 

network performance significantly by offloading traffic.  

 

1 Introduction – a historical perspective  
Before Alexander Graham Bell invented the telephone, he had already demonstrated the 

photophone where he used sunlight to transmit voice over more than 200 m1 in 1880. The 

sunlight was reflected by a vibrating mirror which was connected to a microphone. At the 

receiver, a parabolic mirror with a selenium cell in the center captured the intensity 

variations of the reflected light and converted them into an electrical signal that was 

connected to a loudspeaker. The intensity variations were proportional to the fluctuating 

current generated by the microphone – so he was able to transmit analog voice signals 

wirelessly using sunlight. About 20 years later the era of light emitting diodes (LEDs) 

                                                            
1
 Bell thought the photophone was his greatest invention, and he went as far as wanting to name his second 

daughter ‘Photophone’ – but, eventually got overruled by his wife! 
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started[1], and 100 years later researchers developed the first wireless data communication 

systems based on artificial light using LEDs  ̶ predominately at Bell Labs [2] and IBM research 

labs [3]. Researchers at IBM developed the first networked infrared light-based wireless 

networks as interconnects between distributed computers in the 1980s [3]. Barry [4], [5] 

laid the theoretical foundations of indoor communication with infrared LEDs. In the 

meantime, huge efforts had begun to develop the blue LED after Holonyak invented the first 

light red LED in 1962 [6]. However, it  took 31 years until Nakamura and colleagues were 

able to demonstrate the first blue LED [7],[8]. This was the final piece of the jigsaw towards 

the white LED, a development that drastically changed the application landscape of LEDs 

from mere signaling devices to illumination devices, replacing the highly energy-inefficient 

incandescent light bulb. Bell’s vision to use light for wireless communications, but now 

artificial white light for digital wireless communication and at very high transmission speeds 

got significantly closer to reality. Nakagawa and colleagues at the Visible Light 

Communication Consortium (VLCC) started to use white high-brightness LEDs for data 

communications around the year 2000 – they referred to it as visible light communication 

(VLC) [9], and concentrated their research efforts on application studies [10]. Other research 

in this area focused on the development of new techniques to enhance the data rates of the 

bandlimited phosphor-coated white LEDs [11], and the first experimental results on the 

exploitation of the high crest factor of orthogonal frequency division multiplexing (OFDM) 

for intensity modulation / direct detection (IM/DD) were reported in [12]. A different class 

of free-space light communication is optical camera communication (OCC) which uses 

embedded camera sensors as receivers [13]–[15]. OCC typically is one-way (simplex) 

communication with the main use case being indoor positioning and navigation [16]–[19]. 

LiFi is a special form of  VLC and describes an entire wireless network which supports user 

mobility, handover and multiuser access, and is part of the existing heterogeneous wireless 

networks [20] (see Figure 1).  

 

Figure 1: Here we illustrate a LiFi network. Each light acts as an optical access point, which serves multiple user equipment 

(UE) within its illumination area/cell. Users can also move and they will be served by different light bulbs as they roam. This 

change of serving access point happens seamlessly. Several cells form a cluster, UEs at the cell edges can be served by 

multiple access points to avoid interference. This technique is referred to as cooperative multipoint (CoMP) transmission.  

This LiFi network is also referred to as an optical attocell network [21]. An optical attocell 

network aims to address the looming spectrum crisis in radio frequency (RF) 

communications [22] where the important metric is not link data rate, but data density. This 
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is defined as the bits per second per unit area. It was shown that a LiFi network can increase 

the data density by three orders of magnitude while completely avoiding interference with 

existing RF based networks [23]. This means that the LiFi network simply adds capacity to 

the existing RF networks. Most importantly, it can use the existing lighting infrastructure. 

From a lighting industry perspective, this development has been welcomed because the 20-

30-year lifetime of an LED light bulb means that business models inevitably have to move 

from volume sales to services, and light-as-a-service (LaaS) has become the dominating 

business theme in the lighting industry.  The LiFi network in wireless communication exploits 

the lighting system and turns lighting into a wireless communication network that allows 

hundreds of services.  

There has been notable progress in the commercialization of LiFi technology. An important 

factor is the ongoing development of a standard within the IEEE 802.11bb Task Group [24]. 

The target date for a first standard release is 2021. This new standard will ensure seamless 

integration of LiFi into the existing wireless standards. Furthermore, discussions on 6
th

 

generation (6G) technologies have started. There is a view that new spectrum is required 

which has put VLC and LiFi on the map for 6G [25].  

Contributions: 

1. This paper surveys networking techniques for LiFi. The major body of literature in 

VLC is on physical layer techniques, primarily modulation techniques, in conjunction 

with experimental point-to-point communication links in an ideal lab-bench 

environment. The VLC links are mostly perfectly aligned. In a LiFi network that 

supports user mobility and random orientations of mobile terminals these 

assumptions no longer hold. In addition, because there are multiple simultaneously 

active links in a network, interference degrades link performance. However, the 

characteristic of interference is different from RF networks. This paper 

comprehensively reviews techniques that have dealt with these issues. It 

demonstrates how LiFi can uniquely improve wireless networking performance. The 

paper specifically showcases that LiFi can advance area spectral efficiency by means 

of cell densification in a way that it is not easily possible in RF.  

2. The paper provides novel experimental results from a hybrid LiFi/Wi-Fi networking 

testbed which has been developed as part of the project TOUCAN (Towards Ultimate 

Convergence of All Networks).  

3. Lastly, the paper provides for the first time, to the best or our knowledge, 

experimental results of a real-world hybrid LiFi/Wi-Fi deployment in a school in 

Scotland. These results highlight the benefits of integrated LiFi networks which stem 

from their data traffic offload capabilities. 

We believe all these contributions are novel and distinct from existing literature on LiFi 

networking and VLC. The experimental networking results in this paper provide novel 

insights into key areas which could be optimized to improve wireless networking 

performance. We also note that other light communication technologies such as OCC, free-

space optical (FSO) and more general VLC are not the focus of this paper and the interested 
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point link [32]. The exact transfer function depends on the actual devices. Therefore, it is 

very difficult to characterize this element of the channel by generic models, unless good 

parametrized models are developed. This requires more research.  Many researchers have 

tried to use simple models using curve fitting techniques to approximate the characteristics 

of the front-end channel [27], [33], [34]. This approach shows acceptable accuracy 

compared to measured results, but is very time consuming and renders comparative studies 

difficult. Most of the existing studies on the optical wireless channel consider a Lambertian 

radiation pattern because it is simple to use and widely accepted by the VLC research 

community. However, a number of studies [35], [36] have shown that some LED lamps in 

practice produce radiation patterns that are very different from the Lambertian model. 

Moreover, these studies have shown that the channel characteristics in terms of pathloss 

and root mean square (RMS) delay spread are highly dependent on the LED radiation 

pattern.  

 

2.2 Impact of indoor free-space light propagation on VLC and LiFi channels 

Optical signals experience considerable attenuation when they travel in free space. In 

addition, the signal components arrive at the detector via different paths including physical 

effects such as reflection and scattering [37], [38]. These effects cause different time delays 

for the arriving signals, thereby leading to unique channel power delay profiles. The primary 

channel component in  free-space light propagation is the transmission via a line-of-sight 

(LoS) path, as shown in Figure 2(b), which can be characterized by a simple analytical model 

[28]. Because most of the detected signal power is from a LoS path and the calculation of 

the corresponding path loss is simple, the light propagation with only LoS transmission has 

been used in many VLC and LiFi studies. However, the detected signal power from non-line-

of-sight (NLoS) paths has been found to be significant in certain conditions [28], especially in 

small and reflective indoor environments. This NLoS channel is formed by a more 

complicated light propagation process. Most of the surrounding objects are not smooth 

relative to the wavelength of the optical signal. Consequently, the reflected optical signal is 

scattered, and this results in a countless number of reflected transmission paths, as shown 

in Figure 2(b). In addition, the delay and attenuation of the signal via NLoS paths depends 

significantly on the characteristics of the specified indoor environment, such as room size, 

reflectance and the properties of other objects. Many approaches have been proposed to 

simulate the responses of the NLoS channels [28], [39]. In a widely used ray-tracing-based 

deterministic method, an empty cuboid room with six internal reflective surfaces (walls, 

floor and ceiling) is assumed [28]. The surfaces are decomposed into small elements and the 

light propagation interaction between each pair of surface elements is considered and 

evaluated. This approach can offer accurate NLoS channel response results, but the 

calculation is recursive and therefore time-consuming. The calculation time is proportional 

to , where  is the number of surface elements and  refers to the highest order of 

reflections. Consequently, the computational complexity increases prohibitively with the 

order of reflections. Practically, only simulations with ≤ 3 can be conducted. To improve 

the computation efficiency and flexibility, a number of variants have been proposed [39]–
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[41]. In particular, a Monte-Carlo-based method is able to generate a NLoS channel 

response within a few minutes with any order of reflections. This is considerably shorter 

than the computation time required for the deterministic method. However, the issue with 

this method is that an extra simulation error will be introduced. This means that the 

simulated channel impulse response fluctuates around the actual response (it either 

overestimates or underestimates the channel impulse response). The significance of this 

fluctuation is determined by a relative cumulative error. With a sufficiently large number of 

500,000 rays, the relative cumulative error can be decreased to about 0.01 [42]. Recently, a 

frequency-domain calculation of the NLoS channel responses has been proposed [43], which 

converts the recursive operations into matrix inversion operations. Similar to the two 

methods mentioned above, this approach is able to deal with any indoor environment and 

transmitter/receiver configurations. By using the Jacobi algorithm, the number of 

operations is proportional to . Therefore, the calculation time is significantly shortened 

compared to the deterministic method. In order to define the NLoS channel with a simpler 

model, a NLoS channel response expression based on a sphere physical model has been 

proposed and the final expression interestingly is very simple [29]. However, it is found to 

be accurate in some indoor configurations, but inaccurate in a number of others [43]. This is 

because it does not cater for the effects of the actual transmitter and receiver 

configurations. In order to improve the simulation accuracy, a method based on a 

commercial optical design tool, Zemax, has been proposed [44].  

In several studies, special issues related to the VLC channel have been considered. For 

example, the VLC channel dependency on wavelength is considered [45]. A simple method is 

proposed to calculate the indoor free-space channel for a wide spectrum VLC system. In 

addition, the shadowing effect is considered, which has been investigated in several initial 

studies[46], [47], [48]. It has been found that the impact of the human body mainly depends 

on the data rate, body reflectance and receiver-to-body separation[47]. In [49], the authors 

show that random blockage events can be modelled by a Rayleigh distribution. It is also 

shown that angular diversity receivers referred to as ‘ fly-eye receivers’ [50] offer a good 

solution to link obstruction.  

3 LiFi networks  
 

LiFi falls under the larger umbrella of VLC. Much of VLC research focuses on point-to-point 

communication. Furthermore, most VLC research assumes that the visible light spectrum is 

used for both uplink and downlink communication. In contrast, LiFi encompasses broader 

networked systems, including multi-user, bi-directional, multicast or broadcast 

communication. While it uses the visible light spectrum for downlink, LiFi uses the infrared 

spectrum for the uplink. LiFi is enabled by an ecosystem of multi-user techniques, resource 

allocation algorithms and security strategies. These essential system LiFi components are 

illustrated in Figure 3. It was designed from the start to work seamlessly with RF wireless 

networks, e.g., Wi-Fi, to enable efficient, opportunistic load-balancing and augmented 

capacity in heterogeneous networks. 
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horizontal handover and vertical handover. Horizontal handover refers to a change of the 

serving AP from within the same radio access technology (RAT). Vertical handover refers to 

a change of the serving AP belonging to a different RAT. For example, mobile users may be 

transferred from a LiFi AP to a Wi-Fi AP when none of the LiFi APs are able to offer a reliable 

link or the speed of the user is too high so that the dwell time in a cell is too short to 

establish a meaningful communication link. When the user slows down and enters the 

coverage of a lightly loaded LiFi AP, it may be best to handover to that LiFi AP to relieve the 

Wi-Fi network for more efficient operation (e.g., ensuring less packet collisions) [60].  An 

initial study on the horizontal handover scheme in LiFi networks has been carried out by 

Vegni [61]. In addition to the horizontal handover, vertical handover is also necessary to 

guarantee continuous connectivity. A vertical handover scheme based on the prediction of 

uncertainty metrics has been proposed by Shufei [62], which shows a significant reduction 

in transmission delays. Additionally, due to the smaller cell size and blockage issues of LiFi 

networks, the frequency of handover increases significantly. Therefore, soft handover or 

handover skipping schemes have to be implemented [63]. Handover skipping refers to the 

techniques that enable handover between non-adjacent APs and omit APs causing 

unnecessary handovers. To improve the robustness of LiFi networks, fast link switching 

schemes with the use of pre-scanning and received signal strength (RSS) prediction have 

been proposed [64]. With the increased requirement on the capacity of wireless networks, 

dense spatial reuse of transmission resources is inevitable. Wireless links using the same 

transmission resource will interfere with each other. Firstly, the users in adjacent cells may 

share the same transmission resource. In this case, the interference is known as CCI. In 

some cases, the same transmission resource is reused by users within the same cell. The 

interference between these users is known as intra-cell interference. Generally, intra-cell 

interference is handled by using orthogonal multiple access techniques. CCI is alleviated by 

appropriate interference coordination techniques. Interference coordination techniques will 

be discussed in Section 4.  

Recently, the use of a cell-centric architecture to establish a multi-tier heterogeneous 

network to support extremely dense cells has been proposed [65],[66]. The cell-centric 

approach dynamically adjusts the network topology based on user demand. For example, if 

there is no user within the coverage of a LiFi AP, this AP could turn off its communication 

functionality and only act as an ordinary lightbulb. This would mean that interference to 

neighboring cells is avoided. The motivation for the cell-centric approach in LiFi stems from 

the radical shrinkage of cell sizes to the range of 1 m to 2 m in radius. Consequently, the 

load of an AP varies significantly in these systems [67]. Based on the user-centric 

architecture, the original cells centered at APs are turned into virtual cells centered on 

major clusters of users. This can be achieved by dynamically merging and disaggregating 

cells. In order to realize such user-centric architecture, the location of users must be known 

and user positioning has been considered by Feng [68], for example. In addition to pursuing 

improved communication performance, enhanced energy efficiency has also been 

considered by Li [69].  

To further boost the downlink transmission speed of LiFi networks, some research groups 

have considered optical wireless systems using one-directional coherent signal transmission 
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The appropriate allocation of orthogonal transmission resources, such as time, space, 

frequency and power, to users that contend for the same spectrum resource has been 

widely used in RF wireless cellular networks to achieve interference coordination. Several 

similar methods have also been considered in LiFi networks, including the additional 

wavelength dimension. One of the methods is known as static resource partitioning. In this 

method, the available transmission resources are split into multiple blocks. These resource 

blocks are assigned to the users in a fashion that adjacent APs always use different resource 

blocks, as shown in Figure 4(b). The transmission resources can be split in either the time 

domain [76], wavelength domain [79] or frequency domain [80]. The assignment of these 

resource blocks is predefined and the plan will not change during the operation of the LiFi 

system. This method can effectively avoid CCI with extremely low complexity. However, only 

a small fraction of the transmission resources can be used by each AP, which leads to 

significant reductions in system spectral efficiency [81]. An improved static resource 

partitioning method, known as fractional frequency reuse (FFR) [82], has been considered to 

mitigate the loss in spectral efficiency. In FFR, users are categorized as cell edge users and 

cell center users. All cell center users served by each AP share a single resource block as 

they experience low CCI, as shown in Figure 4(c). Different resource blocks are assigned to 

the cell edge users served by adjacent APs in an orthogonal fashion to avoid CCI. By 

increasing the proportion of the resource assigned to the center users, the overall system 

spectral efficiency is improved due to an increase of the reuse rate of the transmission 

resources. Despite the simplicity of the fixed resource partitioning methods, they exhibit 

inefficiencies when the load of APs is uneven. In order to avoid such a loss of resource 

allocation efficiency, dynamic resource allocation schemes have been considered [81], [83]. 

In one such study conducted by Ghimire, the transmission resources are split into multiple 

chunks in the time and frequency domains in an orthogonal frequency division multiple 

access (OFDMA) time division duplex (TDD) optical wireless network deployed in an aircraft 

cabin [81]. Each UE broadcasts a signal of fixed power, which is a parameter that is known 

network wide. This simple power signal is transmitted in a mini-slot, which is referred to as a 

‘busy burst’. The BB protocol exploits channel reciprocity in TDD. The advantage of this 

scheme is that any potential interferer can estimate the interference it would cause based 

on the received BB signal power. The potential interferer can use this information to 

develop an appropriate transmission strategy. Based on this BB signaling, the resource 

chunks are dynamically allocated to UEs. It has been shown that the BB approach can 

significantly improve user fairness and the achievable spectral efficiency when compared to 

static resource allocation methods. Bykhovsky considers a TDMA (time division multiple 

access)-discrete multi-tone (DMT) LiFi network with four APs and formulates the dynamic 

resource allocation as an optimization problem with a max-min criteria [83]. With 

appropriate simplifications, sub-optimal solutions of transmission power allocation and 

subcarrier scheduling can be obtained. Dynamic resource allocation schemes are able to 

adapt the allocation solution with the instantaneous AP load condition. However, it requires 

CSI at the AP side, and the computational complexity is higher than those of static resource 

partitioning approaches. 
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Apart from the methods borrowed from RF cellular techniques, unique approaches in LiFi 

networks exploiting angular diversity at both the transmitter and receiver side have also 

been considered [84]. On the receiver side, multiple PD detectors with small field-of-view 

(FoV) and different orientations can be mounted to function as an angular diversity receiver, 

as shown in Figure 4(d). The desired signal from the tagged AP and the CCI from other 

adjacent APs may incident to the receiver from different directions and are detected by 

different PD detectors. By using various combining techniques, the effect of CCI can be 

mitigated without loss of spectral efficiency. Using imaging receivers, it is also possible to 

achieve considerable spatial diversity to suppress CCI[85]. On the AP side, multiple light 

sources with narrow beamwidth can be mounted on the AP to form an angular diversity 

transmitter, as shown in Figure 4(d). In such a system, the light source oriented to the 

desired UE is active [86]. Due to the narrow beamwidth, the spread of CCI is confined to a 

very limited area. The performance improvements stemming from interference 

coordination using angular diversity techniques come at the expense of increased hardware 

and algorithmic complexity.  

Another promising interference mitigation approach is to coordinate transmissions from 

multiple APs so that a cell-edge user is served by multiple APs, as shown in Figure 4(e). This 

is known as cooperative multi-point joint transmission (CoMP-JT) in RF wireless systems. 

However, this concept can be more easily deployed in a LiFi network, as there are no fast 

fading effects in IM/DD-based systems. In addition to the benefit of the elimination of CCI 

and enhancement of the desired signal, the possibility of blockage is lower due to the 

existence of multiple LoS transmission paths[67], [87]. In particular, based on the concept of 

CoMP-JT, an improved user-centric vectored transmission technique with zero-forcing 

precoding has been proposed by Li to offer better bandwidth efficiency and flexibility[67]. 

On the other hand, CoMP-JT is based on coordination between adjacent APs which requires 

centralized control. 

5  LiFi network performance analysis  
In this section, the performance of LiFi networks is considered and evaluated. This is 

extended to hybrid LiFi/Wi-Fi networks. Finally, we report results from a real-world hybrid 

LiFi/Wi-Fi network deployed in a school. With appropriate cooperation between the two 

networks, the overall system performance can be significantly improved as there is no 

mutual interference. 

5.1 Capacity of cellular LiFi networks 

The wireless capacity is an important system performance metric in a LiFi network. Shannon 

has proposed a channel capacity bound for a general communication link [88] assuming 

Gaussian signals and noise. In the case of IM/DD-based optical wireless systems, additional 

constraints on the optical transmission system are imposed, which suggest new capacity 

bounds for an optical link whose signals are constrained to be real-valued and non-negative. 

A number of works have proposed more accurate capacity bounds of IM/DD-based optical 

wireless communication systems with average optical power and peak optical power 

constraints in the presence of noise [89], [90]. In particular, Ma has considered the 
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As discussed in section 2, the channel gain term ‖ ‖  does not only depend on the front-

end elements, it also depends on the indoor free-space channel, which is related to the 

spatial distribution of APs. Cheng has evaluated the downlink performance of LiFi networks 

studying various network deployment [21]. Hexagonal and Poisson point process (PPP) cell 

deployments have been used as the best and worst cases, respectively, in terms of CCI. This 

is because, on the one hand, the separation between APs is maximized in the case of a 

hexagonal cellular layout, which confines the occurrences of strong CCI within a limited 

region at the cell edges. On the other hand, there is no constraint on the separation 

between APs in a PPP cellular layout. Therefore, the resulting CCI is much more pronounced. 

Under the assumption that the LiFi network is deployed on top of an existing lighting 

network, the spatial layout of lamps in a practical case is unlikely to follow an optimized 

hexagonal grid or indeed a completely random PPP layout. Consequently, we consider two 

additional AP topologies which emulate more closely practical deployments. One is a square 

grid layout and the second is arandom layout following a hardcore point process (HCPP) 

[92], as shown in Figure 5(b). The downlink performance of a LiFi network with various AP 

layouts is illustrated in Figure 5(c). The presented results correspond to LiFi networks using 

spectral-efficient direct current optical – orthogonal frequency division multiplexing (DCO-

OFDM) modulation. The data rate calculation is based on a practical white LED [93]. The 

results show that the achievable average downlink data rate ranges from 180 Mbps to 530 

Mbps, and the systems with hexagonal and PPP cell deployment offer the highest and 

lowest data rate, respectively. The data rate achieved by the square-grid network is slightly 

worse than that achieved by the hexagonal network. The data rate achieved by the HCPP 

network is higher than the PPP network but lower than the square-grid network.  

The uplink in LiFi poses some extra challenges. First, the energy efficiency of the modulation 

technique is of key concern as the operation of mobile devices is constrained by batteries. 

Layered modulation techniques [94], [95], therefore, seem most appropriate as they enable 

almost zero direct current (DC)-bias which is a major energy consumer in high-speed IM/DD 

systems. Second, since the mobile terminal can take any orientation, directed transmission 

may yield significant signal-to-noise ratio (SNR) fluctuations. There have only been a few 

studies that focus on the uplink of LiFi networks [55], [56]. The main principle used to 

develop robust uplink communication is based on spatial diversity. The effectiveness of 

spatial diversity has also been demonstrated in industrial environments where reliability is a 

key concern [96]. In a recent study it is shown that it is possible to develop an omni-

directional transmitter for the uplink by considering transmitters on at least three sides of a 

mobile device [97].   
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allocation of transmission resources are adjusted to maximize a given objective function, as 

shown in Figure 6(d). The load balancing technique in a hybrid LiFi/Wi-Fi network aims at 

allocating the transmission resources of the LiFi and Wi-Fi systems jointly [100]. This forms a 

complicated optimization problem and various methods have been studied to solve this. 

Wang has formulated the load-balancing challenge as a mixed-integer non-liner 

programming (MINLP) problem [101]. A joint optimization algorithm and a separate 

optimization algorithm have been proposed, which can find the optimum solution, but the 

computational complexity is large. Li has carried out another load balancing optimization 

study in a VLC / Wi-Fi hybrid network, where the combined transmission and vectored 

transmission in the VLC network have been included [76]. However, the computational 

complexity is extremely high. In the follow-up study by Wang, a game theory based 

distributed approach has been proposed [102] which requires lower computational 

complexity, but offers a solution that is only asymptotic to the global optimum. This method 

is found to be very flexible in solving very complex cross-layer optimization problems. 

However, this heuristic approach has low tractability, which makes analytical evaluation and 

proof of optimality difficult. In recent studies, the load balancing in LiFi / Wi-Fi hybrid 

networks in dynamic conditions with UE movement and rotation is investigated [103]. It has 

been found that with optimal load balancing solutions, the user quality of service can be 

improved by up to 80% compared to arbitrary solutions [102]. Note that the quality of 

service refers to the user satisfaction level, which is defined as the ratio of acquired data 

rate to the required data rate. In addition to maximizing the system communication 

performance, energy efficient load balancing has also been considered. Kashef has carried 

out a study on the optimization of load balancing in a RF / VLC hybrid network in terms of 

energy efficiency [104]. It has been found that integrating LiFi in heterogeneous RF 

networks can significantly enhance energy efficiency, but more work is needed in this area.  

5.3 LiFi Integration into Hybrid LiFi/Wi-Fi software defined networking (SDN) 

Testbed 

In order to facilitate the experimental validation of networking algorithms such as handover, 

we have developed a testbed shown in Figure 7. The testbed is composed of six LiFi attocells 

and a Wi-Fi AP. The APs are interconnected through a switch to a centralized SDN 

OpenDayLight controller. This manages the SDN-enabled network through the southbound 

interface while supporting applications on its REST (Representational State Transfer) 

application program interface (API) on the northbound. A LiFi access and traffic engineering 

application is running on top of the testbed, which supports network monitoring and 

management, user mobility and network load balancing. The SDN controller has software 

agents running on the APs, which periodically send the state of APs to the controller. This 

exposes, in turn, the collected network state to the developed application to support the 

mentioned services.   
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Figure 7: Experimental SDN-enabled LiFi/WiFi network testbed diagram, LiFi R&D Centre, UoE 

The testbed platform generates data relating to users, network, traffic flows and supported 

services.  As the testbed supports vertical handover between the heterogeneous LiFi and 

Wi-Fi networks, it is possible to trace the data flows of users during transitions from LiFi to 

LiFi and LiFi to Wi-Fi. An example of a horizontal and a vertical handover of a high definition 

video service running on mobile device is shown in Figure 8. The mobile user slowly moves 

from the centre of a LiFi AP to another LiFi AP, passing through the overlapping region. It 

then moves from the LiFi AP to the WiFi AP.  

This preliminary result shows that the time for horizontal handover is shorter than the time 

for vertical handover, as shown in Figure 8. In both handover events the users experience 

short service disruption which, however, is not noticeable as the service is running in a 

buffered mode.  
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Figure 8: Measured average data rate during handover of user device from LiFi to LiFi and LiFi to WiFi. 

 

Figure 9: Simulation-based and measured SNR under varying distance under a LiFi attocell. 

In Figure 9, the SNR is plotted when the user moves away from the center of the LiFi AP. The 

SNR is determined via system level simulations and measurements. The LiFi AP provides a 

high SNR around the cell center which can be exploited to achieve very high data rates using 

adaptive modulation and coding techniques. It also shows the spatial confinement of the 

light signal which can be harnessed to build ultra-dense wireless networks (within one 1 m 

the SNR has dropped by 15 dB). In the next section, we provide results of a real-world LiFi 

network deployment in a school.  

 

5.4 Real-world use case: LiFi-enabled traffic offloading in classroom 

In this section we present the results of a real-world use case where a LiFi network was 

deployed in a classroom in addition to a Wi-Fi network. The network topology consists of 8 

LiFi attocell APs as shown in Figure 10. The LiFi attocell APs coexist with two additional Wi-Fi 

APs that serve 7 classrooms. The Wi-Fi APs are commercially available and based on the IEEE 

802.11ac standard. Each Wi-Fi AP can support data rates between 300 Mbps and 867 Mbps 

depending on the mode of operation and bandwidth. 
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Therefore, the user performance is expected to be variable depending on the user location. 

Ideally, the LiFi AP would replace the existing lighting infrastructure and would be optimized 

based on the room topology to provide the best trade-off between illumination and 

communication [105]. 

 

Figure 11: The CDF of the data rate for the Wi-Fi and LiFi users based on the 1 Mbps and 3 Mbps data rates targets. 

 

Figure 12: The CDF of the data rate for the Wi-Fi and LiFi users assuming no data rate targets. 

A measurement campaign was carried out with the aim to compare the performance of the 

LiFi and Wi-Fi networks and to assess the total aggregate data rate. The user data rate is 

used as a performance metric. A population of 22 pupils simultaneously accessed the LiFi 

network and each of the two neighboring classrooms was served by Wi-Fi only. The pupil 

population in the neighboring classrooms was the same. Two tests were conducted based 

on unconstrained best effort data rates for different target data rates:  

• A target data rate of 1Mbps per user 

• A target data rate of 3 Mbps per user 

The cumulative distribution function (CDF) of the user data rate achieved by the LiFi and Wi-

Fi network is shown in Figure 11 for the 1 Mbps and 3 Mbps data rate targets while in Figure 
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12 the data rate without a target is reported. The results in Figure 11 show that most of the 

users achieve the target data rate. However, some users fall short of the target data rate 

due to the suboptimum locations of the LiFi APs. Figure 12 demonstrates that there are 

some users in the LiFi network with considerably higher data rates up to 20 Mbps. It also 

shows that the user peak data rate is higher in the LiFi network despite the fact that the 

maximum data rate of the given LiFi AP is about 10 times lower than the maximum data rate 

of a deployed Wi-Fi AP. The average data rates for the LiFi and Wi-Fi networks are shown in 

Table 1. The results show that the LiFi network outperforms the Wi-Fi network in terms of 

‘best-effort’ average data rate as also shown in Figure 12. However, the results also 

highlight that the LiFi network slightly underperforms compared to the Wi-Fi network at the 

targeted data rate of 3 Mbps. This is due to the low data rate achieved by the 

underperforming user equipment that are located at LiFi attocell border regions and in 

dead-spot areas of the classroom.  

Table 1: Average data rates achieved for the Wi-Fi and LiFi networks 

Simulated User  

Target data rate  

LiFi users  

Average user data rate [Mbps]

 Wi-Fi users  

Average data rate [Mbps] 

Best effort 6.24 5.57 

1 Mbps 0.94 0.95 

3 Mbps 2.50 2.79 

 

An indirect, but rather significant result of this proof-of-concept study was that there was a 

surge of the data rates in the neighboring Wi-Fi-only classrooms. This is because of the 

offload of data traffic to LiFi. Data rate gains in the neighboring classrooms are plotted in 

Figure 13 for different target date rates.  

This shows the capability of a LiFi network to offload traffic. This feature is particularly 

beneficial in dense environments like schools and airports. The results also demonstrate 

that frequency reuse gains are achievable within a small area – in this case a classroom. Our 

future work will aim to adopt the SDN-based dynamic load balancing algorithms developed 

in the lab testbed described in Section 5.3 to real-world use cases such as the LiFi network in 

a classroom.  
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Figure 13: Surge in Wi-Fi aggregated data rate at neighbouring classrooms 

 

 

6 Conclusions 
This paper has shown that it is possible to build future cellular systems based on free-space 

light communication. In this context, it has highlighted that in order to achieve this 

objective, the focus in free-space light communications has to be shifted from point-to-point 

link-level data rate improvements in VLC to optimizing data densities in a wireless network. 

It was shown that LiFi can significantly improve Wi-Fi networks by offloading data traffic. 

This has the potential to extend data rates that are currently only possible in fiber-optic 

communication to the end users which are, of course, our mobile devices. To achieve this 

vision, however, new optical devices would be required. In the meantime, this paper has 

shown that it is possible to enhance the data density significantly using LiFi in combination 

with Wi-Fi. This is because LiFi allows for step-change improvements in cell densification, 

enabling a radical reuse of transmission resources. This is an important feature due to the 

increasing number of devices that will need to be connected to the Internet. Mobile devices 

which define the beyond-smartphone-era will require step-change improvements in data 

rate, latency and energy-efficiency , for example in augmented and virtual reality devices. 

However, there will be even more intelligent machine-type devices and a huge number of 

sensors in our future smart homes and smart cities, all of which will depend on reliable and 

high-speed wireless connectivity. In a commercial context, LiFi will enable the lighting 

industry to expand their business models into the telecommunications industry and vice 

versa. LiFi provides significant economic opportunities, but at the same time, there are 

many interesting scientific challenges to improve LiFi systems in order to fully leverage the 

vast amount of unlicensed spectrum in the infrared and visible light domains.  
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