INTRODUCTIÓN TO INVERSE PROBLEMS IN IMAGING

Mario Bertero

Department of Computer and Information Sciences University of Genova

Patrizia Boccacci

Department of Physics University of Genova

Institute of Physics Publishing Bristol and Philadelphia

Contents

	Pre	`ace	xi
1	Introduction		1
	1.1	What is an inverse problem?	1
	1.2	What is an ill-posed problem?	5
	1.3	How to cure ill-posedness	9
	1.4	An outline of the book	11
	PAI	RT 1	
	Ima	ge deconvolution	17
2	Son	e mathematical tools	19
	2.1	The Fourier Transform (FT)	19
	2.2	Bandlimited functions and sampling theorems	22
	2.3	Convolution operators	27
	2.4	The Discrete Fourier Transform (DFT)	30
	2.5	Cyclic matrices	36
	2.6	Relationship between FT and DFT	39
	2.7	Discretization of the convolution product	42
3	Exa	mples of image blurring	50
	3.1	Blurring and noise	50
	3.2	Linear motion blur	54
	3.3	Out-of-focus blur	58
	3.4	Diffraction-limited imaging systems	60
	3.5	Atmospheric turbulence blur	67
	3.6	Near-field acoustic holography	69
4	The ill-posedness of image deconvolution		75
	4.1	Formulation of the problem	75
	4.2	Well-posed and ill-posed problems	77
	4.3	Existence of the solution and inverse filtering	79
	4.4	Discretization: from ill-posedness to ill-conditioning	81

.

vii

viii Contents

	4.5	Bandlimited systems: least-squares solutions and generalized solution	86
	4.6	Approximate solutions and the use of <i>a priori</i> information	
	4.7	Constrained least-squares solutions	90 94
5	Reg	ularization methods	98
	5.1	Least-squares solutions with prescribed energy	98
	5.2	Approximate solutions with minimal energy	104
	5.3	Regularization algorithms in the sense of Tikhonov	107
	5.4	Regularization and filtering	113
	5.5	The global point spread function: resolution and	
		Gibbs oscillations	119
	5.6	Choice of the regularization parameter	127
6	Iter	ative regularization methods	137
	6.1	The van Cittert and Landweber methods	137
	6.2	The projected Landweber method	147
	6.3	The projected Landweber method for the computation of	
		constrained regularized solutions	154
	6.4	The steepest descent and the conjugate gradient method	157
	6.5	Filtering properties of the conjugate gradient method	165
7		istical methods	168
	7.1	Maximum likelihood (ML) methods	168
	7.2	The ML method in the case of Gaussian noise	172
	7.3	The ML method in the case of Poisson noise	175
	7.4	Bayesian methods	183
	7.5	The Wiener filter	184
	PAF	PT 7	
		ear inverse imaging problems	189
8	Exa	mples of linear inverse problems	191
	8.1	Space-variant imaging systems	191
	8.2	X-ray tomography	194
	8.3	Emission tomography	200
	8.4	Inverse diffraction and inverse source problems	206
	8.5	Linearized inverse scattering problems	214
9	Sing	ular value decomposition (SVD)	220
	9.1	Mathematical description of linear imaging systems	220
	9.2	SVD of a matrix	225

9.3	SVD of a semi-discrete mapping	231
9.4	SVD of an integral operator with square-integrable kernel	234
9.5	SVD of the Radon transform	240

10		
10	Inversion methods revisited	247
	10.1 The generalized solution	247
	10.2 The Tikhonov regularization method	253
	10.3 Truncated SVD	256
	10.4 Iterative regularization methods	259
	10.5 Statistical methods	263
11	Fourier-based methods for specific problems	268
	11.1 The Fourier slice theorem in tomography	268
	11.2 The filtered backprojection (FBP) method in tomography	272
	11.3 Implementation of the discrete FBP	277
	11.4 Resolution and super-resolution in image restoration	280
	11.5 Out-of-band extrapolation	284
	11.6 The Gerchberg method and its generalization	289
12	Comments and concluding remarks	295
	12.1 Does there exist a general-purpose method?	295
	12.2 In praise of simulation	302
	PART 3 Mathematical appendices	309
A	Euclidean and Hilbert spaces of functions	311
B	Linear operators in function spaces	317
С	Euclidean vector spaces and matrices	322

D Properties of the DFT and the FFT algorithm 328

E	Minimization of quadratic functionals	335
F	Contraction and non-expansive mappings	339
G	The EM method	343

References	346
Index	347

.