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Series Preface 

Mathematics is playing an ever more important role in the physical and 
biological sciences, provoking a blurring of boundaries between scientific 
disciplines and a resurgence of interest in the modern as well as the classical 
techniques of applied mathematics. This renewal of interest, both in re
search and teaching, has led to the establishment of the series: Texts in 
Applied Mathematics (TAM). 

The development of new courses is a natural consequence of a high 
level of excitement on the research frontier as newer techniques, such as 
numerical and symbolic computer systems, dynamical systems, and chaos, 
mix with and reinforce the traditional methods of applied mathematics. 
Thus, the purpose of this textbook series is to meet the current and future 
needs of these advances and encourage the teaching of new courses. 

TAM will publish textbooks suitable for use in advanced undergraduate 
and beginning graduate courses, and will complement the Applied Mathe
matical Sciences (AMS) series, which will focus on advanced textbooks and 
research level monographs. 



Preface 

Symmetry and mechanics have been close partners since the time of the 
founding masters: Newton, Euler, Lagrange, Laplace, Poisson, Jacobi, Ha
milton, Kelvin, Routh, Riemann, Noether, Poincare, Einstein, Schrodinger, 
Cartan, Dirac, and to this day, symmetry has continued to playa strong 
role, especially with the modern work of Kolmogorov, Arnold, Moser, Kir
illov, Kostant, Smale, Souriau, Guillemin, Sternberg, and many others. This 
book is about these developments, with an emphasis on concrete applica
tions that we hope will make it accessible to a wide variety of readers, 
especially senior undergraduate and graduate students in science and en
gineering. 

The geometric point of view in mechanics combined with solid analy
sis has been a phenomenal success in linking various diverse areas, both 
within and across standard disciplinary lines. It has provided both insight 
into fundamental issues in mechanics (such as variational and Hamiltonian 
structures in continuum mechanics, fluid mechanics, and plasma physics) 
and provided useful tools in specific models such as new stability and bifur
cation criteria using the energy-Casimir and energy-momentum methods, 
new numerical codes based on geometrically exact update procedures and 
variational integrators, and new reorientation techniques in control theory 
and robotics. 

Symmetry was already widely used in mechanics by the founders of the 
subject, and has been developed considerably in recent times in such di
verse phenomena as reduction, stability, bifurcation and solution symmetry 
breaking relative to a given system symmetry group, methods of finding 
explicit solutions for integrable systems, and a deeper understanding of spe-



x Preface 

cial systems, such as the Kowalewski top. We hope this book will provide 
a reasonable avenue to, and foundation for, these exciting developments. 

Because of the extensive and complex set of possible directions in which 
one can develop the theory, we have provided a fairly lengthy introduction. 
It is intended to be read lightly at the beginning and then consulted from 
time to time as the text itself is read. 

This volume contains much of the basic theory of mechanics and should 
prove to be a useful foundation for further, as well as more specialized, 
topics. Due to space limitations we warn the reader that many important 
topics in mechanics are not treated in this volume. We are preparing a 
second volume on general reduction theory and its applications. With luck, 
a little support, and yet more hard work, it will be available in the near 
future. 

Solutions Manual. A solution manual is available for instructors. It 
contains complete solutions to many of the exercises, as well as other sup
plementary comments. For further information, see 

http://www.cds.caltech.edu/-marsden/books/. 

Internet Supplements. To keep the size of the book within reason, 
we are making some material available (free) on the Internet. These are a 
collection of sections whose omission does not interfere with the main flow of 
the text. See http://www . cds. caltech. edurmarsden/books/. Updates 
and information about the book can also be found at this website. 

What Is New in the Second Edition? In this second edition, the main 
structural changes are the creation of a solutions manual (along with many 
more exercises in the text) and the Internet supplements. The Internet 
supplements contain, for example, the material on the Maslov index that 
was not needed for the main flow of the book. As for the substance of the 
text, much of the book was rewritten throughout to improve the flow of 
material and to correct inaccuracies. Some examples: The material on the 
Hamilton-Jacobi theory was completely rewritten, a new section on Routh 
reduction (§8.9) was added, Chapter 9 on Lie groups was substantially 
improved and expanded. The presentation of examples of coadjoint orbits 
(Chapter 14) was improved by stressing matrix methods throughout. 

Acknowledgments. We thank Rudolf Schmid, Rich Spencer, and Alan 
Weinstein for helping with an early set of notes that helped us on our 
way. Our many colleagues, students, and readers, especially Henry Abar
banel, Vladimir Arnold, Larry Bates, Michael Berry, Tony Bloch, Dong-Eui 
Chang, Hans Duistermaat, Marty Golubitsky, Mark Gotay, George Haller, 
Aaron Hershman, Darryl Holm, Phil Holmes, Sameer Jalnapurkar, Edgar 
Knobloch, P.S. Krishnaprasad, Naomi Leonard, Debra Lewis, Robert Lit
tlejohn, Richard Montgomery, Phil Morrison, Richard Murray, Peter Olver, 
Oliver O'Reilly, Juan-Pablo Ortega, George Patrick, Oct avian Popp, Ma
son Porter, Matthias Reinsch, Shankar Sastry, Tanya Schmah, Juan Simo, 
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Hans Troger, Loc Vu-Quoc, and Steve Wiggins, have our deepest gratitude 
for their encouragement and suggestions. We also collectively thank all 
our students and colleagues who have used these notes and have provided 
valuable advice. 

We are also indebted to Carol Cook, Anne Kao, Nawoyuki Gregory Kub
ota, Sue Knapp, Barbara Marsden, Mamie McElhiney, June Meyermann, 
Teresa Wild, and Ester Zack for their dedicated and patient work on the 
typesetting and artwork for this book. We want to single out with special 
thanks Hendra Adiwidjaja, Nawoyuki Gregory Kubota, and Wendy McKay 
for their special effort with the typesetting, the scripts for automatic con
version of references, the macros for indexing, and the figures (including 
the cover illustration). We also thank the staff at Springer-Verlag, espe
cially Achi Dosanjh, Laura Carlson, MaryAnn Cottone, David Kramer, 
Ken Dreyhaupt, and Rudiger Gebauer for their skillful editorial work and 
production of the book. 
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