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ABSTRACT 

Simulation is a powerful tool for the evaluation and analy-
sis of new system designs, modifications to existing sys-
tems and proposed changes to control systems and operat-
ing rules.  Conducting a valid simulation is both an art and 
a science.  This paper provides an introduction to discrete-
event simulation and the main concepts – system state, 
events, processes – underlying simulation.  It discusses the 
major world views used by simulation software.  It in-
cludes a brief discussion of a number of other important 
issues:  the advantages and disadvantages of using a simu-
lation model, the skills required to develop a simulation 
model, the key steps in conducting a simulation study,  as 
well as some project management guidelines and pitfalls to 
avoid. 

1 DEFINITIONS AND CONCEPTS 

There are many types and kinds of simulation.  In this tuto-
rial we limit ourselves to discrete-event, stochastic process-
oriented simulation.  This covers almost all simulations 
discussed at the Winter Simulation Conference.  It ex-
cludes Monte Carlo-type simulations in a spreadsheet 
(sampling studies, financial and risk analyses, and so on).  
It also excludes equation-based numerical solvers, for ex-
ample, differential equation solvers and other equation-
based models.  Although not explicitly discussed, it may 
include training simulations and man-in-the-loop simula-
tions such as many conducted by the military. 

1.1 Simulation Concepts 

A model is a representation of a system or process.  A 
simulation model is a representation that incorporates time 
and the changes that occur over time.  A discrete model is 
one whose state changes only at discrete points in time, not 
continuously. 

A model may incorporate logical, mathematical and 
structural aspects of the system or process.  A discrete-
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event model, the type discussed in this paper and the type 
represented by the great majority of papers at the Winter 
Simulation Conference, is one based on the concepts of 
state, events, activities and processes.  Time is a critical 
component.  A discrete-event model is one whose state 
changes only at discrete times called event times.  When an 
event occurs, it may trigger new events, activities and 
processes. 

In concept, a model’s state is a (long) vector, that is, a 
list of values that are sufficient to define the complete state 
of the system at any point in time.  In practice, a model’s 
state is defined implicitly by the internal status of all the 
entities used in the simulation software package. 

An event is an instantaneous occurrence that changes 
the model’s state.  Examples include an arrival event for a 
customer at a bank, and a service completion event for the 
same customer.  An activity is a duration of time, such as a 
service time or interarrival time, that is initiated by an 
event in conjunction with the model being in a certain 
state.  For example, when arrivals are defined by a prob-
ability distribution of interarrival times, then when one ar-
rival occurs (an event), the model generates a new interar-
rival time (an activity) which in turn will cause the next 
arrival event. 

Primary events are those driven by data.  Examples in-
clude arrival times and service completion times.  In simu-
lation terms, the primary events are scheduled to occur at 
some future time, calculated from data and statistical as-
sumptions.  For example, if we assume that inter-arrival 
times are exponentially distributed with a mean of 10 min-
utes, then at the time of an arrival, the model draws a new 
exponential sample, adds it to the current time, and sched-
ules the resulting future time as the time of the next arrival 
event. 

Secondary events are those generated internally by 
model logic.  For example, in a waiting line model, when a 
server becomes available and there is a waiting entity (per-
son or product) at the front of the queue, then a “service 
begin” event is scheduled to occur immediately. 
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An entity is an object in the model.  Dynamic entities 
are created at time zero or at other times by an arrival 
event.  Dynamic entities usually represent some real-world 
object that is flowing through a system.  Examples include 
automobiles in a manufacturing model, pallets or cases in a 
warehouse model, passengers in an airport model, and 
telephone calls in a communications model.  Entities have 
standard and customized attributes that individualize the 
entity. 

A resource is an entity that provides a service to dy-
namic entities.  A resource usually has a finite capacity 
representing some system constraint.  Examples include a 
worker or a team of workers doing a task, a machine, or a 
vehicle.  In some models, resources may have user-defined 
resource states and special characteristics such as down-
times and availability schedules. 

Almost all discrete-event models are stochastic.  That 
is, they contain some components that are modeled as a 
statistical distribution.  This introduces random variation 
into a model, making it into a statistical or sampling ex-
periment.  More precisely, when one or more components 
are stochastic (for example, interarrival or service times), 
then model outputs are stochastic, necessitating some kind 
of statistical analysis to draw valid conclusions. 

Virtually all simulation software packages include 
automatic collection of performance statistics, and easy 
collection of custom statistics. 

1.2 Simulation Worldviews 

Simulation modeling software usually takes one of three 
worldviews:  event scheduling, process interaction, or ac-
tivity scanning.  As their names suggest, each puts its main 
focus on the events, the processes, or the activities in a 
simulation, respectively.  When following an event sched-
uling perspective, a model developer must define the 
model logic and system state changes that occur whenever 
any event occurs. 

A process is a sequence of events, activities and other 
time delays associated with one entity as it flows through a 
system.  For example, a customer process at a bank con-
sists of an arrival event (to the lobby, perhaps), joining and 
waiting in a queue (a delay), a service time by a teller , and 
finally a service completion event.  In terms of concepts 
discussed earlier, the service time is an activity and the 
teller is a resource.  Simulation software based on the 
process interaction perspective, or worldview, provide a 
way for a user to define a process for each entity in the sys-
tem. 

Activity scanning provides a way to define model 
logic by focusing on activities from the point of view of a 
resource, defining resource state changes depending on 
various events.  For example, in the bank, the teller serves 
one customer until completion, then looks at the queue.  If 
the queue is not empty, the teller “takes” the first entity out 
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of the queue, changes its own state to “busy” and begins a 
new service activity.  If the queue is empty, the teller 
changes its own state to idle. 

For a more in-depth look at simulation concepts and 
worldviews, see Carson (1993) and Banks et al. (2005). 

2 HOW IS SIMULATION USED? 

A simulation model is a descriptive model of a process or 
system, and usually includes parameters that allow the 
model to be configurable, that is, to represent a number of 
somewhat different system or process configurations.  
Simple examples include parameters that allow a user to 
vary the number of workers at a workstation, the speed of a 
machine or vehicle, the timing characteristics of a con-
veyor control system, and so on. 

As a descriptive model, you can use a simulation 
model to experiment with, and evaluate and compare, any 
number of system alternatives.  Evaluation, comparison 
and analysis are the key reasons for doing simulation.  Pre-
diction of system performance and identification of system 
problems and their causes are the key results. 

3 WHEN SHOULD SIMULATION BE USED? 

Simulation is most useful in the following situations: 
 
1. There is no simple analytic model, spreadsheet 

model or “back of the envelope” calculation that 
is sufficiently accurate to analyze the situation. 

2. The real system is regularized; that is, it is not 
chaotic and out of control.  System components 
can be defined and characterized and their interac-
tion defined. 

3. The real system has some level of complexity, in-
teraction or interdependence between various 
components, or pure size that makes it difficult to 
grasp in its entirety.  In particular, it is difficult or 
impossible to predict the effect of proposed 
changes. 

4. You are designing a new system, considering ma-
jor changes in physical layout or operating rules 
in an existing system, or being faced with new 
and different demand. 

5. You are considering a large investment in a new 
or existing system, and it represents a system 
modification of a type for which you have little or 
no experience and hence face considerable risk. 

6. You need a tool where all the people involved can 
agree on a set of assumptions, and then see (both 
statistically and with animation) the results and ef-
fects of those assumptions.  That is, the simulation 
process as well as the simulation model can be 
used to get all members of a team onto a (more) 
common understanding. 
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7. Simulation with animation is an excellent training 
and educational device, for managers, supervisors, 
engineers and labor.  (Don’t tell me, show me.)  In 
fact, in systems of large physical scale, the simu-
lation animation may be the only way in which 
most participants can visualize how their work 
contributes to overall system success or creates 
problems for others. 

 

4 THE ADVANTAGES AND VALUE OF 
SIMULATION, AND THE DISADVANTAGES 

Simulation allows experimentation with a model of a sys-
tem.  Without a model, you either experiment with a real 
system (if it exists) – probably causing major disruptions – 
or proceed without such experimentation and analysis – at 
some potential risk.  Simulation allows the identification of 
problems, bottlenecks and design shortfalls before building 
or modifying a system.  It allows comparison of many al-
ternative designs and rules of operation.  Evaluation and 
comparisons can take place before committing resources 
and investment to a project. 

Simulation allows study of the dynamics of a system, 
how it changes over time and how subsystems and compo-
nents interact.  A simulation model provides about the only 
method to study new, non-existent complex dynamic sys-
tems for which analytic or static (spreadsheet) models pro-
vide at best a low fidelity model with correspondingly low 
accuracy. 

On the other hand, often simulations are time-
consuming, data is not available or costly to obtain, and the 
time available before decisions must be made is not suffi-
cient for a reliable study.  In some companies, an early 
success with simulation has evolved into simulation be-
coming a “checklist” item on every project whether it is 
justified or not for the project at hand.  In some situations, 
the animations and other visual displays, combined with 
the time pressure present on all projects, may mislead deci-
sion makers into premature conclusions based on insuffi-
cient evidence.  In addition, inexperienced simulation ana-
lysts, or those too focused on (and in love with) the 
simulation software and technology may add too much de-
tail to a model and spend too much time in model devel-
opment, resulting in the original goals and project time-
lines being forgotten.  This often leads management to 
conclude that simulation, while a promising and interesting 
technology, is too costly and time-consuming for most pro-
jects. 

A good simulation model provides not only numerical 
measures of system performance, but provides insight into 
system performance.  Insight comes from a tacit under-
standing of system behavior, an understanding that can be 
developed by intelligent use of animation and other visual 
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aids, and an intelligent set of valid experiments together 
with a good statistical analysis. 

5 THE SIMULATION TEAM 

Simulations are conducted by in-house specialists at many 
companies as well as by many engineering, consulting and 
services companies.  A few companies specialize in offer-
ing simulation services.  These groups or companies may 
supply the simulation expertise and model development 
experience, but the whole team must be broader based. 

5.1 The Team 

Simulations are almost always conducted by a simulation 
team, not an isolated individual.  Sometimes one individual 
plays several roles.  The various roles include: 

 
• The customer’s executives and managers who 

“own” the problem, the decision-makers, 
• The customer’s engineers, staff, plant and line 

managers, and others who are involved in the 
problem, know key portions of the day-to-day op-
erations and will live with implemented solutions, 

• In-house or outside systems designers, who are 
designing a new system or changes to the existing 
system, and 

• The simulation analyst. 
 
People who know and understand the actual system 

are a key resource for project success.  Even if the system 
itself is new and not yet built or operational, there will be 
people who understand the business, the processes and the 
end product or service; their expertise is absolutely needed.  
It is quite infrequent that one person alone understands the 
whole system in sufficient detail to provide all the informa-
tion needed; rather, a number of different people are 
needed, each providing a bit of expertise for one small part 
of the system. 

The project team must include all those with questions 
that they expect the model to address.  These questions 
need to be identified and specified up front at project initia-
tion, and not sprung upon the team at a final presentation 
where they will most likely go unanswered leading to mis-
understanding and failure in the minds of some partici-
pants. 

5.2 The Simulation Analyst: Skills and Software 

For a simulation analyst, simulation is both an art and a 
science.  As with any art, one learns by training and educa-
tion but more importantly by practice and mentoring.  
Good communication skills are a necessity; a willingness 
not to assume anything, not to be afraid to ask “stupid” or 
“obvious” questions, and a willingness to ask the same 
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question of many team members is a key to understanding 
and making accurate assumptions.  For the science portion, 
programming, modeling, and a working knowledge of 
probability and statistics are important skills to attain.  
Knowledge of a simulation package, while necessary, by 
itself is not sufficient to be a good simulation analyst.   

Models should be developed in a suitable, commer-
cially available and supported simulation package.  There 
are many simulation packages, some more or less general 
purpose, and some that specialize in either one or a few 
application domains (such as manufacturing, material han-
dling, call centers, medical, transportation, logistics or 
other limited area of applicability).  Packages offer differ-
ing levels of detail, ease of use, and skill required for effec-
tive use, as well as differing levels of user customization 
capability.  Some have minimal or no programming, em-
phasizing ease of use and quickness of model development 
for small to medium-size models with minimal complexity.  
Other packages offer total customization but usually at the 
cost of programming skill, time and effort as well as gain-
ing a knowledge of the selected package.  Large complex 
models with unique rules and algorithms cannot be devel-
oped in most (or possibly any) “no-programming” pack-
ages.  On the other hand, many simpler simulation models 
can be developed most efficiently and quickly in the sim-
pler “point & click” environments based on flow charting. 

The actual choice of software used is beyond the scope 
of this introduction, but is often heavily influenced by what 
the simulation analyst has used in the past.  This is a valid 
consideration, as learning a new simulation package can be 
time-consuming, and becoming an expert in it takes a 
number of projects and an openness for self-education. 

A new simulation analyst with a programming back-
ground may think, on seeing the price range of simulation 
packages, that a model can be developed in a general pur-
pose non-simulation programming language, such as C or 
C++ or Visual Basic, with less expense and in about the 
same time.  This judgment is based on inexperience; in the 
author’s experience, using a general purpose language, 
even with a library of simulation routines, generally takes 
from 4 to 10 times the amount of analyst time for model 
development as using a good simulation package; main-
taining or extending such a model usually requires the 
original developer, and can be a challenge (to put it nicely). 

To be successful with most simulation packages, a 
new analyst needs training from an expert and ongoing 
mentoring for a period of time.  Self-education is some-
times possible, but usually results in a “spotty” knowledge 
with learning gaps if used as a total solution. 

6 STEPS IN A SOUND SIMULATION STUDY 

Every simulation project proceeds through a set of phases 
and steps whose goal is a successful project.  Here are 
some guidelines. 
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6.1 Project Initiation 

In the first phase, projects begin with a kickoff meeting, 
problem formulation, objectives setting, determination of 
measures of performance, and details of modeling assump-
tions and data requirements, followed by a project plan 
with time and cost estimates and project timelines.  The 
end results of this phase are the Assumptions Document 
and a project plan. 

6.1.1 Problem Formulation and Setting of Objectives 

All modeling activities should be focused on the objective.  
Often, the actual problem may be unknown or little under-
stood, and problem formulation may initially be stated in 
terms of observed symptoms (for example, product 
throughput less than desired or expected).  During the 
study, as the nature of the problem becomes clearer, prob-
lem formulation may be restated and clarified with the pro-
ject team. 

During this phase, the simulation team should develop 
a list of specific questions that the model should address, 
and develop a list of measures of performance that will be 
used to evaluate or compare the alternatives being mod-
eled.  Often, the customer has a goal in mind; for example, 
that the new system under a certain level of resources and 
manning will achieve an expected throughput.  This means 
that if the study finds that the proposed system design or 
set of operating rules does not achieve the expected 
throughput, then the model is expected to provide informa-
tion and insight into the causes, so that the simulation ana-
lyst and team can develop intelligent alternatives that have 
a better chance of achieving desired goals. 

At this phase, the simulation analyst (or project leader) 
needs to ask questions of all participants and develop a set 
of working assumptions that will form the basis for model 
development.  Three important overall considerations are: 

 
• Model boundary and scope, 
• Level of detail, 
• Project scope. 
 
The model boundary or scope determines what is in 

the model, and what is out.  The model level of detail 
specifies how in-depth one component or entity is mod-
eled; it is determined by the questions being asked and data 
availability.  Think of model boundary as “width” and 
level of detail as “depth”.  Overall project scope deals with 
the breadth of the questions that the model will be used to 
address; that is, it deals more broadly with how the model 
will be used during the experimentation and analysis 
phase.  As more and more questions can be asked of a 
given model (especially a parameterized one), the team 
needs a common understanding of project scope to avoid 
scope creep and a project with no end. 
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6.1.2 Overall Project Plan 

With the information developed during problem formula-
tion, the simulation analyst should develop time estimates 
and project timelines for model development, verification 
and validation, and experimentation and analysis – all the 
steps in a simulation. 

With these time (and cost) estimates in hand, man-
agement can decide whether to proceed with the simulation 
study, or possibly to expand or limit its scope. 

6.1.3 Conceptual Model and Assumptions Document 

The set of agreed-upon assumptions and data is, in essence, 
the conceptual model.  These assumptions and data re-
quirements should be detailed in an Assumptions Docu-
ment or Functional Specifications Document. 

The Assumptions Document should be written in the 
language of the real system and the people who work in 
that system.  It should not use modeling language or jargon 
peculiar to any particular simulation software or language.  
After all, its purpose is to communicate a set of assump-
tions and data requirements among all members of the 
simulation team, not all of whom will be, or even need to 
be, simulation experts.  With this common document, the 
team can revise the assumptions until all members agree to 
a common set of working assumptions, or at least to note 
disagreement until agreement can be reached. 

In summary, project initiation has these essential ac-
tivities: 

 
• Get all interested parties involved in project kick-

off, initial problem formulation and meetings dis-
cussing model assumptions.  If a person on the 
customer or client side will be present at any re-
view meetings or final presentations, that person 
must be present at these initial meetings.  If a per-
son expects the model to address certain ques-
tions, that person must put the questions on the 
table at project initiation. 

• Put all assumptions and data requirements into 
writing.  Include objectives, specific questions to 
address, and measures of system performance.  A 
written Assumptions Documents is essential.  A 
reviewed, and signed-off, Assumptions Document 
is critical. 

 

6.2 Project Work 

The project “work” consists of model development and 
data collection.  The end result is a working model with 
customer-provided and validated data.  The working model 
is subjected to verification and validation in the next phase. 
20
6.2.1 Model Development 

Model development consists, in a nutshell, of two major 
activities: (1) development of data structures to represent 
the data needed by the model, and (2) translation of the 
modeling assumptions in the Assumptions Document into 
the language or representation required by the simulation 
package.  The simulation analyst must design data struc-
tures that represent the data and its inter-relationships as 
well as fit into those allowed by the simulation software.  
For example, almost all packages allow variable arrays, 
most allow tabular displays of data (and referencing of that 
data by model entities and processes), and some allow lists 
of objects and data. 

6.2.2 Data Collection, Cleansing and Analysis 

The customer or client usually collects the agreed-upon 
data.  If data is not available or (subjective) estimates are 
being used, then the customer should review these data as-
sumptions internally with people knowledgeable in the 
processes involved. 

Data sources include databases, manual records, auto-
matic data collection systems, sampling studies and time 
studies.  Unfortunately, it seldom happens that all or even 
much of the needed data is readily available, or when 
available that it is of the desired quality.  In these circum-
stances, much effort and expense may be required to col-
lect the data or extract it from existing databases.   

After collecting it, a further effort may be required to 
validate and “cleanse” the data.  Even data in customer da-
tabases, surprisingly to some, may be suspect.  Often sim-
ple tests or audits may show that what appears to be data 
availability is data garbage.  For example, when simulating 
a distribution center and using actual customer orders to 
drive the model, we found that order files were indeed 
quite accurate (after all, the company is paid by customers 
who receive what they order!).  In contrast, the master 
SKU list had many inaccuracies.  For each SKU, the mas-
ter SKU list was supposed to give pallet weight and pallet 
height, but these were inaccurate in up to 50% of the 
100,000 SKUs listed.   The reason was simple: in the exist-
ing manual system, the forklift drivers did not use this data 
to decide where to store a pallet; no one used it.  In the 
proposed computer-controlled new building which we 
were simulating, this data was essential as all storages and 
retrievals of pallets into rack were under software control.  
A great deal of effort was required to cleanse the data to 
make it accurate; on the positive side, this effort was re-
quired before the new system could be put into operation. 

When data on an activity is available, and the data ex-
hibits random variability, that is, variability for which no 
immediate cause is evident, then the activity duration is 
usually modeled by a statistical distribution.  Sometimes 
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the empirical distribution of the data is used; sometimes a 
statistical package is used to fit a distribution to the data. 

With some types of data, the analyst may decide to use 
the actual data itself as input to the simulation.  This may 
be done at customer request, or because it is too difficult to 
represent the data as a statistical distribution.  For example, 
we often use customer order files as input to a model of a 
distribution center or order fulfillment center.  Each cus-
tomer order may consist of a number of line items, and 
each line item has a quantity of one or more.  There is al-
most always a correlation between number of line items 
and quantity, a correlation that would be difficult to char-
acterize and represent with a statistical distribution.  In this 
and similar situations, we have decided to use actual order 
files to drive models.  To get representative variation, we 
ask the customer to provide several different samples of 
order files (that is, orders from several different days).  If 
there is a need to experiment with greater demand (more 
orders), we can combine different order files into a single 
order file.  If there is a need for a different order profile 
(perhaps more small orders and fewer large orders), we 
partition the order file appropriately and sample or re-
combine to get a desired profile. 

6.3 Model Verification and Validation 

In this phase the simulation analyst verifies the model, and 
working with the customer, validates the model.  If prob-
lems are found, the model or the data, or both, are cor-
rected.  The end result of the V&V phase is a verified, 
validated model that is judged to be accurate enough for 
experimentation purposes over the range of system designs 
contemplated. 

6.3.1 Model Verification 

In model verification, the simulation analyst checks the 
model, using a number of different techniques, to verify 
that the running model agrees with the Assumptions 
Document.  This is more than debugging in the program-
ming sense.  All model outputs should make sense and be 
reasonable over a range of the input parameters. 

Numerous techniques should be applied, including but 
not limited to: (1) stress testing, or testing with a wide 
range of parameters and different random numbers; (2) a 
thorough review of all model outputs, not just the primary 
measures of performance, but numerous secondary meas-
ures; (3) using the software’s debugger, animation and any 
other tools provided; (4) using selective traces, especially 
for complex portions of the logic; and (5) review by a more 
senior simulation professional (especially valuable for the 
relatively new practitioners). 

A valuable attitude to take is the one of a true scientist.  
First, make an hypothesis:  the model is “correct”.  Second, 
try as hard as you can to prove the hypothesis is false; that 
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is, try to prove that the model is “bad” in some way.  If 
only after great effort, you have only confirmations and no 
evidence of a faulty model, then conclude (tentatively) that 
the model is verified.  From a scientific perspective, the 
best that can be achieved is a tentative verification; a future 
test, or a change in conditions or data, may detect a prob-
lem with the model requiring changes.  Simply put, there 
are virtually an unlimited number of potential tests that 
could (theoretically) be carried out to test a model’s valid-
ity; in practice, we have the time for only a certain number 
of them.  So the best we can achieve is a “failure to reject” 
the hypothesis of a “correct” or valid model. 

6.3.2 Model Validation 

Model validation gets the customer involved.  After the 
simulation analyst is convinced that the model is accurate 
and verified, the analyst should conduct a thorough model 
review with the customer team.  It is important to have all 
members of the customer team who may have an interest 
or “investment” in the model, and who expect the model to 
answer their questions.  If a team member will be present 
at meetings to present model results, that team member 
should be present at validation review meetings (and, in-
deed, at earlier project kickoff meetings). 

Numerous techniques, similar to those used during 
verification, may be used during model validation, includ-
ing (1) use of animations and other visual displays to 
communicate model assumptions, (2) output measures of 
performance for a model configuration representing an ex-
isting system or an initial design, so that team members 
may judge model reasonableness.  If sufficient data has 
been collected on a real-world system that matches one of 
the model’s possible configurations, more formal tests may 
be conducted comparing the real system to the model. 

For more discussion of V&V, see Carson (2002); in 
addition, a subsequent talk on model verification and vali-
dation in the introductory tutorial track will provide more 
detail on appropriate techniques and issues. 

6.4 Experimentation, Analysis and Reporting 

The purpose of this phase is to meet initial project objec-
tives: to evaluate and compare system performance, and to 
gain insight into the system’s dynamic behavior and, in 
particular, into any problems or bottlenecks identified by 
the analysis. 

6.4.1 Experimental Design 

Before conducting simulation experiments, the analyst 
must decide a number of issues: 

 
1. The input parameters to be varied, their range and 

legitimate combinations, 
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2. Model runlength (how long to run the simulation), 
3. For steady-state analyses, the model warm-up pe-

riod, 
4. Number of statistical replications. 
 
Earlier informal experimentation during model devel-

opment and the V&V phase should assist the analyst in 
making intelligent decisions regarding these questions:  
For steady-state simulations, what is a reasonable warm-up 
or transient period?  What is a reasonable runlength?  How 
many statistical replications are needed?  In earlier phases, 
the analyst should explore inherent model variability – the 
range of short-term behavior – which should provide at 
least initial insight into appropriate model runlength and 
number of replications needed for later experiments. 

Model runlength may be dictated by the nature of the 
system or the available data, such as when simulating one 
day’s operation of a distribution center, one sort tour for a 
sortation hub for overnight packages, a one-shift ramp-up 
of a manufacturing line, or any other data-driven model 
where the data represents a fixed period of time.  In one 
project we had a production schedule for a packaging line 
for one week, and hence the model runlength was one 
week based on this customer-supplied data.  In contrast, 
inherent and high system variability together with a desire 
for a certain level of statistical accuracy (width of confi-
dence intervals) combined to require upwards of 100 statis-
tical replications for each point in the experimental design 
(each system configuration).  Other models with less in-
herent variability have required only 3 to 5 replications.  In 
other models, model runlength may be under the analyst’s 
control, for example, for the future operation of a new port 
design or a 24/7 manufacturing system. 

There is no rule of thumb for runlength or number of 
replications.  Each is model dependent.  The number of 
replications affects statistical accuracy of performance 
measures; specifically, it affects the width of any confi-
dence interval estimators.  Other talks in the introductory 
track address these and other statistical issues. 

6.4.2 Experimentation 

The project plan developed during project kickoff and ini-
tiation provides the initial guidelines for a set of experi-
ments.  Usually simulation models are used to compare a 
large number of alternatives, and perhaps to evaluate in 
greater detail a small number (1 or 2) of recommended al-
ternatives.  The Assumptions Document should include a 
description of expected model variations, including the 
range of each model input parameter, to be simulated to 
represent the alternatives of interest. 

In practice, initial model experiments often raise new 
questions and may change the direction of the study after 
initial experiments are run and analyzed.  For example, ini-
tial experimentation may establish that a proposed new de-
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sign or set of operating rules leads to major bottlenecks or 
other problems, and some major re-thinking of system de-
sign is required.  At the very least, initial experimentation 
may change the direction of subsequent experiments. 

In each phase of the experimentation, actual model 
configurations should be guided by an experimental design 
that lays out the model parameters being varied, the range 
of each parameter, and the parameter combinations that 
make sense. 

6.4.3 Analysis 

Analysis is based on the agreed-upon measures of system 
performance.  Typically in manufacturing and logistics ap-
plications, there are measures of throughput, resource utili-
zation, queuing and bottlenecks. 

It often happens that initial experiments produce out-
puts that identify a problem, or symptoms of a problem, 
but do not readily provide the causes of the problem or 
provide enough information to give insight into the nature 
of the problem.  Such insight is critical if the team is to de-
velop suggestions for design or operating improvements 
that have a good chance of solving the identified problem. 

In this perplexing situation, the experienced simulation 
analyst will use the model as a basis for forming hypothe-
ses regarding the causes of any identified problems.  Then 
the analyst may need to add auxiliary measures of per-
formance to further pinpoint the cause, and most impor-
tantly, to confirm that the hypothesis is correct.  In any 
number of simulation projects over many years, the author 
has seen the need to use a model to dig into problem causes 
that are not obvious at first sight and to devise new meas-
ures of performance to confirm hypotheses regarding the 
causes of system failure.  The insight gained is invaluable 
when it comes to suggesting changes to improve system 
performance in order to meet a goal. 

6.4.4 Reporting 

Reporting of the results of experimentation and analyses 
usually includes one or more presentations and a written 
report.  It is wise to have both. 

Presentations allow question and answer and expan-
sion of explanations.  The response to the presentation 
should be used to finalize the report and to address issues 
and questions that arose during the presentation. 

The final report should include the Assumptions 
Document, appropriately revised to include any changes 
that arose during the course of the project, as well as, of 
course, the key results and recommendations of the study. 
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7 MANAGING A SIMULATION PROJECT 

When managing a simulation study through its various 
phases, a good manager should follow these guidelines and 
watch for a number of potential pitfalls. 

 
• Have clearly defined and achievable goals.  Keep 

the goals in mind during the whole project. 
• Allocate adequate resources.  Be sure that key 

personnel have proper skills. 
• Get upper management support and buy-in. 
• Have periodic review meetings with all key peo-

ple present.  Keep communications open. 
• Don’t be afraid to ask obvious or “stupid” ques-

tions.  It’s always better to confirm than to assume. 
• Assume nothing.  Confirm everything. 
• Develop a common understanding on project 

scope and goals, questions to be addressed, and 
just as importantly, questions not to be addressed. 

• Documents assumptions and all changes to as-
sumptions. 

 
Potential pitfalls and causes of project failure include: 

 
• Scope creep, 
• Time slippage/project overrun, 
• Too much detail, 
• Wrong skill sets, 
• Key people showing up for the first time at the fi-

nal presentation and asking questions that have 
not been addressed. 

 
The pitfalls can be avoided by following the guidelines 

presented here and in more detail in Musselman (1994). 

8 FURTHER STUDY 

Banks (1998) provides a comprehensive, up-to-date over-
view of simulation.  Standard textbooks that are not soft-
ware-specific include Banks et al. (2005) and Law and 
Kelton (2000). 

There are numerous texts and references for general 
simulation education as well as software-specific informa-
tion and training.  See, for example, the papers in the intro-
ductory tutorials and software tracks in this and past year’s 
proceedings of the Winter Simulation Conference, avail-
able via <www.wintersim.org/pastprog.htm>.   
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