INTRODUCTION TO MODERN THERMODYNAMICS

Dilip Kondepudi

Thurman D Kitchin Professor of Chemistry Wake Forest University

John Wiley & Sons, Ltd

CONTENTS

PART I THE FORMALISM OF MODERN THERMODYNAMICS

1	BASIC CONCEPTS AND THE LAWS OF GASES	3
	Introduction	3
	1.1 Thermodynamic Systems	4
	1.2 Equilibrium and Nonequilibrium Systems	6
	1.3 Biological and Other Open Systems	9
	1.4 Temperature, Heat and Quantitative Laws of Gases	11
	1.5 States of Matter and the van der Waals Equation	19
	1.6 An Introduction to Kinetic Theory of Gases	29
	Appendix 1.1 Partial Derivatives	37
	Appendix 1.2 Elementary Concepts in Probability Theory	39
	Appendix 1.3 Mathematica Codes	41
	References	44
	Examples	44
	Exercises	45
2	THE FIRST LAW OF THERMODYNAMICS	49
	The Idea of Energy Conservation amidst New Discoveries	49
	2.1 The Nature of Heat	50
	2.2 The First Law of Thermodynamics: The Conservation of Energy	55
	2.3 Elementary Applications of the First Law	64
	2.4 Thermochemistry: Conservation of Energy in Chemical Reactions	68
	2.5 Extent of Reaction: A State Variable for Chemical Systems	76
	2.6 Conservation of Energy in Nuclear Reactions and Some	
	General Remarks	79
	2.7 Energy Flows and Organized States	81
	Appendix 2.1 Mathematica Codes	87
	References	88
	Examples	88
	Exercises	92
3	THE SECOND LAW OF THERMODYNAMICS AND THE	
	ARROW OF TIME	97
	3.1 The Birth of the Second Law	97
	3.2 The Absolute Scale of Temperature	106

	3.3 The Second Law and the Concept of Entropy	108
	3.4 Entropy, Reversible and Irreversible Processes	116
	3.5 Examples of Entropy Changes due to Irreversible Processes	125
	3.6 Entropy Changes Associated with Phase Transformations	128
	3.7 Entropy of an Ideal Gas	129
	3.8 Remarks about the Second Law and Irreversible Processes	130
	Appendix 3.1 The Hurricane as a Heat Engine	132
	Appendix 3.2 Entropy Production in Continuous Systems	135
	References	136
	Examples	137
	Exercises	139
4	ENTROPY IN THE REALM OF CHEMICAL REACTIONS	141
	4.1 Chemical Potential and Affinity: The Thermodynamic Force	
	for Chemical Reactions	141
	4.2 General Properties of Affinity	150
	4.3 Entropy Production Due to Diffusion	153
	4.4 General Properties of Entropy	155
	Appendix 4.1 Thermodynamics Description of Diffusion	158
	References	158
	Examples	159
	Exercises	160
5	EXTREMUM PRINCIPLES AND GENERAL	
	THERMODYNAMIC RELATIONS	163
	Extremum Principles in Nature	163
	5.1 Extremum Principles Associated with the Second Law	163
	5.2 General Thermodynamic Relations	173
	5.3 Gibbs Energy of Formation and Chemical Potential	176
	5.4 Maxwell Relations	179
	5.5 Extensivity with Respect to N and Partial Molar Quantities	181
	5.6 Surface Tension	183
	References	187
	Examples	187
	Exercises	189
	RT II APPLICATIONS: EQUILIBRIUM AND	
NC	DNEQUILIBRIUM SYSTEMS	

6	BASIC THERMODYNAMICS OF GASES, LIQUIDS AND SOLIDS	195
	Introduction	195
	6.1 Thermodynamics of Ideal Gases	195
	6.2 Thermodynamics of Real Gases	199

	 6.3 Thermodynamics Quantities for Pure Liquids and Solids Appendix 6.1 Equations of State Reference Examples Exercises 	208 211 211 212 213
7	THERMODYNAMICS OF PHASE CHANGE	215
	 Introduction 7.1 Phase Equilibrium and Phase Diagrams 7.2 The Gibbs Phase Rule and Duhem's Theorem 7.3 Binary and Ternary Systems 7.4 Maxwell's Construction and the Lever Rule 7.5 Phase Transitions References Examples Exercises 	215 215 221 223 229 231 235 235 236
8	 THERMODYNAMICS OF SOLUTIONS 8.1 Ideal and Nonideal Solutions 8.2 Colligative Properties 8.3 Solubility Equilibrium 8.4 Thermodynamic Mixing and Excess Functions 8.5 Azeotropy References Examples Exercises 	 239 239 243 250 255 259 260 260 262
9	 THERMODYNAMICS OF CHEMICAL TRANSFORMATIONS 9.1 Transformations of Matter 9.2 Chemical Reaction Rates 9.3 Chemical Equilibrium and the Law of Mass Action 9.4 The Principle of Detailed Balance 9.5 Entropy Production due to Chemical Reactions 9.6 Elementary Theory of Chemical Reaction Rates 9.7 Coupled Reactions and Flow Reactors Appendix 9.1 Mathematica Codes References Examples Exercises 	265 265 266 273 278 280 285 288 295 298 298 300
10	FIELDS AND INTERNAL DEGREES OF FREEDOM The Many Faces of Chemical Potential 10.1 Chemical Potential in a Field 10.2 Membranes and Electrochemical Cells	305 305 305 311

ix

	10.3	Isothermal Diffusion	319
	Refer	ence	324
	Exam		324
	Exerc		325
11	INTF	RODUCTION TO NONEQUILIBRIUM SYSTEMS	327
	Intro	duction	327
	11.1	Local Equilibrium	328
		Local Entropy Production, Thermodynamic Forces and Flows	331
	11.3	Linear Phenomenological Laws and Onsager Reciprocal	
		Relations	333
	11.4	Symmetry-Breaking Transitions and Dissipative Structures	339
	11.5	Chemical Oscillations	345
	Appendix 11.1 Mathematica Codes References Further Reading		352
			355
			356
	Exer	0	357

PART III ADDITIONAL TOPICS

THERN	MODYNAMICS OF RADIATION	361
Introdu	ction	361
12.1 E	Energy Density and Intensity of Thermal Radiation	361
12.2 T	The Equation of State	365
12.3 E	Entropy and Adiabatic Processes	368
12.4 V	Vien's Theorem	369
12.5 C	Chemical Potential of Thermal Radiation	371
12.6 N	Aatter-Antimatter in Equilibrium with Thermal Radiation:	
Т	The State of Zero Chemical Potential	373
References Examples		377
		377
Exercise	es	377
BIOLO	GICAL SYSTEMS	379
13.1 T	The Nonequilibrium Nature of Life	379
13.2 C	Gibbs Energy Change in Chemical Transformations	382
13.3 C	Gibbs Energy Flow in Biological Systems	385
13.4 E	Biochemical Kinetics	399
Referen	nces	406
Further	Reading	406
Examp	les	406
Exercis	es	409
	Introdu 12.1 E 12.2 T 12.3 E 12.4 W 12.5 C 12.6 M T Referen Example Exercise BIOLO 13.1 T 13.2 C 13.3 C 13.4 E Referen Further Example	 12.2 The Equation of State 12.3 Entropy and Adiabatic Processes 12.4 Wien's Theorem 12.5 Chemical Potential of Thermal Radiation 12.6 Matter-Antimatter in Equilibrium with Thermal Radiation: The State of Zero Chemical Potential References Examples Exercises BIOLOGICAL SYSTEMS 13.1 The Nonequilibrium Nature of Life 13.2 Gibbs Energy Change in Chemical Transformations 13.3 Gibbs Energy Flow in Biological Systems

CONTENTS		xi
14	THERMODYNAMICS OF SMALL SYSTEMS	411
	Introduction	411
	14.1 Chemical Potential of Small Systems	411
	14.2 Size-Dependent Properties	414
	14.3 Nucleation	418
	14.4 Fluctuations and Stability	421
	References	430
	Examples	430
	Exercises	430
15	CLASSICAL STABILITY THEORY	433
	15.1 Stability of Equilibrium States	433
	15.1 Stability of Equilibrium States15.2 Thermal Stability	433
	15.3 Mechanical Stability	435
	15.5 Mechanical Stability 15.4 Stability with Respect to Fluctuations in N	437
	References	439
	Exercises	439
16	ODITICAL DUENOMENIA AND CONFLCUDATIONAL	
16	CRITICAL PHENOMENA AND CONFIGURATIONAL HEAT CAPACITY	441
	Introduction	441
	16.1 Stability and Critical Phenomena	441
	16.2 Stability and Critical Phenomena in Binary Solutions	443
	16.3 Configurational Heat Capacity	447
	Further Reading	448
	Exercises	449
17	ELEMENTS OF STATISTICAL THERMODYNAMICS	451
	Introduction	451 452
	17.1 Fundamentals and Overview17.2 Partition Function Factorization	452
		454
		455
	17.5 Canonical Partition Function and	
	Thermodynamic Quantities	462
	17.6 Calculating Partition Functions	462
	17.7 Equilibrium Constants	469
	Appendix 17.1 Approximations and Integrals	471
	Reference	472
	Examples	472
	Exercises	473

	٠	٠
v	1	1
Λ	L	I

LIST OF VARIABLES	475
STANDARD THERMODYNAMIC PROPERTIES	477
PHYSICAL CONSTANTS AND DATA	485
NAME INDEX	487
SUBJECT INDEX	489