Introduction to Nonparametric Estimation

Alexandre Tsybakov Springer, 2009

Errata (May 2, 2012):

Page 17, lines 5-6. "...which holds for all n and h (cf. Theorem 1.3 with $\beta = 2$)". This should be replaced by :

"...which holds for all n and h. Indeed, using (A.4) in the Appendix we can deduce that Theorem 1.3 with $\beta = 2$ can be stated in a stronger form (with $\beta! = 2$ instead of $\ell! = 1$ in the denominator of the bias term)."

Page 20, last line. Factor $\frac{1}{n}$ is missing:

$$\sum_{j=1}^{n} \text{ should be replaced by } \frac{1}{n} \sum_{j=1}^{n}$$

Page 54. Proposition 1.17 should start as follows:

Let $N \leq n-1$. Then under Assumption (A)...

Page 74, Exercise 1.7: $n \ge 1$ should be replaced by n > 1.

Page 75, Exercise 1.10. (3) Prove that

This should be completed as follows:

(3) Prove that, uniformly in $f \in W^{per}(\beta, L)$ as $n \to \infty$,

Page 79, display (2.3): monotone increasing should be replaced by monotone non-decreasing.

Page 101, first inequality in (2.52): $\log M$ should be replaced by $\log(M \vee 2)$ (to make the result non-void for M=1).

Page 134, Exercise 2.3. This exercise is wrong and should be removed.

Page 192, line 6: $\Phi(\omega)e^{\mathrm{i}t\omega}$ should be replaced by $\Phi(\omega)e^{-\mathrm{i}t\omega}$.

Page 192, lines 8 and 12. Factor 2π is missing on the right hand side of the two displays:

$$\int (f(x+t) - f(x))^2 dx \qquad \text{should be replaced by} \qquad 2\pi \int (f(x+t) - f(x))^2 dx$$

Page 205, reference 57: should be Grama, I.G. and Neumann, M. (2006) and not Grama, I.G. and Nussbaum, M. (2006).