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Abstract

In most multiagent systems planning on forehand can help to seri-
ously improve the efficiency of executing actions. The main difference
between centrally creating a plan and constructing a plan for a system
of agents lies in the fact that in the latter coordination plays the main
part. This introduces a number of additional difficulties. This spe-
cial issue discusses some of these difficulties in detail. To place these
in a context, this introduction gives a brief overview of multiagent
planning problems, and most multiagent planning techniques.

1 Introduction

Agents can be classified into two categories according to the techniques they
employ in their decision making: reactive agents (cf. [27]) base their next
decision solely on their current sensory input, while planning agents, on the
other hand, take into account anticipated future situations, possibly as a
result of their own actions, to decide on the best course of action [33].
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When an agent should plan and when it should be reactive depends on
the particular situation it finds itself in. Consider the example where an
agent has to plan a route from one place to another. A reactive agent might
use a compass to plot its course, whereas a planning agent would consult a
map. Clearly, the planning agent will come up with the shortest route in
most cases, as it will not be confronted with uncrossable rivers and one-way
streets. On the other hand, there are also situations where a reactive agent
can be at least as effective, for instance if there are no maps to consult such
as in a domain of (Mars) exploration rovers. Nevertheless, the ability to
plan ahead is invaluable in many domains. Therefore, this special issue is
dedicated to agents that are planning.

In particular the work presented here focuses on systems where a num-
ber of such planning agents interact. Such settings where multiple agents
plan, often distributedly, introduce additional difficulties over the already
hard problem of planning itself: there is the additional need for coordina-
tion, and because communication is often limited, the result is consequently
less optimal. However, there are a number of good reasons for having mul-
tiple agents creating plans. First, the agents may represent real-life entities
which mainly have their own interests at heart. Therefore, they appreciate
maintaining their privacy and autonomy. Second, a distributed system may
already exist, for which centralization would be too costly. Third, creating
and maintaining plans locally allows for a more efficient reaction in case of
incidents, especially when communication is limited. Finally, dividing the
planning problem into smaller pieces and solving those in parallel may some-
times be more efficient, especially when the individual planning problems are
loosely coupled.

The five contributions in this special issue expand on these motivations
by studying some of the questions that arise when developing a multiagent
planning approach.

1. How to place additional constraints upon the agents before planning
such that their resulting plans can easily be coordinated?

2. How to efficiently construct plans in a distributed fashion?

3. How to make collaborative decisions when there are multiple options
for which each agent has its own preferences?

4. When should a planning agent ask the user for more specific informa-
tion?
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5. How to measure how much privacy is lost in the process of coordinating
plans?

This introduction gives some background on the multiagent planning prob-
lem, existing approaches to this problem, and it then places these five con-
tributions in this context. Parts of this document are based on an earlier
technical report [14].

2 Multiagent planning problems

There are many variants of what is understood as a multiagent planning
problem. In general, a multiagent planning problem can be defined as the
problem of planning by and for a group of agents. Except for more centralized
(multiagent) planning problems, each agent in such a problem has in fact a
private, individual planning problem. A typical individual planning problem
of an agent includes a set of operations (with some costs attached, and a pre-
and post-condition) that it can perform, a set of goals (with reward values),
and the current (initial) state of this agent. The solution to a multiagent
planning problem is a plan: a partially ordered sequence of actions that,
when executed successfully, results in a set of achieved goals for some of the
agents. Most techniques can deal with problems where the actions and goals
of the agents are only weakly dependent upon each other, where the agents
are cooperative, and where communication is reliable. However, in general
a multiagent planning approach may encounter a whole variety of situations
along these three axes.

• From independent to strongly related

– Independent: no shared resources, no dependencies

– Strongly related: joint actions, shared resources

– E.g. lift a box together, car assembly

• From cooperative to self-interested agents

– In some settings the participating agents are only interested in
optimizing their own utility.

– E.g. robots in the robocup versus companies in a supply chain
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• From no communication possible to reliable communication

– In hostile environments agents may not or cannot communicate
during execution. This may require all coordination to take place
before the execution starts.

– E.g. robots rescuing people in disaster scenarios, or on a planetary
exploration mission versus companies in a supply chain

There are benchmark problems with different ranges in the spectra of these
properties, such as

• Robocup Rescue [38], where a team of agents of sometimes different
types need to coordinate their efforts in dealing with all kinds of disas-
ters,

• darpa coordinators military team coordination [41, 43, 55, 66], and

• supply chain formation in the Trading Agent Competition [70].

To deal with these problems, many different techniques have been put for-
ward. The next section discusses quite a number of these techniques briefly.

3 Multiagent planning techniques

Multi-agent planning techniques cover quite a range of solutions to different
phases of the problem. This section structures existing work using these
steps in the process of solving a multiagent planning problem. In general,
the following phases can be distinguished (generalizing the main steps in task
sharing by [20]).

1. Allocate goals to agents.

2. Refine goals into subtasks.

3. Schedule subtasks by adding resource allocation (possibly including the
agents) and timing constraints.

4. Communicate planning choices (of prior steps) to recognize and resolve
conflicts.
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5. Execute the plans.

Planning is a combination of phases 2 and 3, which are often interleaved.
Any of these steps could be performed by one agent or some subset. Not all
phases of this general multi-agent planning process need to be included. For
example, if there are no common or global goals, there is no need for phase
1. Also, some approaches combine different phases. For example, agents can
coordinate their plans while constructing their plans (combination of phase
2, 3, and 4), or postpone coordination until the execution phase (combination
of phase 4 and 5), as, e.g., robots may do when they unexpectedly encounter
each other while following their planned routes.

In general, any interleaving of the five phases may make sense, depending
on the problem, indicating a wide variety of possible problem classes. The
following subsections describe some well-known approaches to handling issues
arising in each of the phases.

3.1 Goal and task allocation

Centralized methods (such as those mentioned in the next section) often take
care of the assignment of goals and tasks to agents during planning. There
are, however, many other methods to assign tasks in a more distributed way,
giving the agents a higher degree of autonomy and privacy. For example,
complex task allocation protocols [53] may be used, or auctions and market
simulations.

An auction is a way to assign a task to the agent that attaches the highest
value or lowest cost (called private value) to it [68, 73]. A Vickrey [62] auction
is an example of an auction protocol that is quite often used in multiagent
systems. In a Vickrey auction each agent can make one closed bid, and the
task is assigned to the highest bidder for the price of the second-highest
bidder. This auction protocol has the nice property that bidding agents
should simply bid their true private values (i.e., exactly what they think it’s
worth to them), removing any need for additional reasoning about its worth
to others.

Market simulations and economics can also be used to distribute large
quantities of resources among agents [67, 71, 72]. For example, in [6] it is
shown how costs and money are turned into a coordination device. These
methods are not only used for task assignment (phase 2), but can also be used
for coordinating agents after plan construction (phase 5). In the context of
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value-oriented environments, such game-theoretical approaches where agents
reason about the cost of their decision making (or communication) become
more important. See, for example, work by Sandholm, supported by results
from a multiple dispatch center vehicle routing problem [51].

An overview of value-oriented methods to coordinate agents is given
in [28]. Among these, Markov decision processes (MDPs) can deal with
settings where outcomes are uncertain, and can even be extended to deal
with partially observable worlds. Algorithms often use these representations
to compute policies that specify the optimal actions for each agent for any
possible belief state. In this survey we focus on deterministic approaches
to multiagent planning, but there are surveys on the use of MDPs for mul-
tiagent planning under uncertainty [45, 52]. These multiagent approaches
rely on earlier work on centralized planning/coordination algorithms in the
context of uncertainty and/or partial observability [34, 48].

Value-oriented methods for self-interested agents lie within the domain
of game theory [2]. On the one hand, literature on using auctions, markets,
and negotiation protocols to allocate resource or tasks is far too extensive
to cover here. On the other hand, however, work relating game theory (and
mechanism design) to multiagent planning is surprisingly scarce [see, e.g. 61].

3.2 Goal and task refinement

In the second phase, the global tasks or goals are refined such that each re-
maining task can be done by a single agent. Apart from single-agent planning
techniques using non-linear planning [47, 50] or Hierarchical Task Networks,
htns [26], special purpose techniques use the classical planning framework
to construct multi-agent plans [37, 46]. A number of planners with more
sophisticated models of temporal extent can be applied in this fashion, cen-
tralizing and combining phases 2 through 4 [1, 5, 12, 39, 42]. See for example
the book on automated planning for an overview of such techniques [33].

3.3 Decentralized planning

Instead of one agent planning for the rest, the second and third phases may
be implemented by local planning by each of the agents. In principle, any
planning technique can be used here, and different agents may even use
other techniques. Some approaches integrate individual planning (phases 2
and 3) with coordination of the plans (phase 4). Early in the history of

6



distributed AI, a distributed version of the noah planner demonstrated how
to integrate phases 1 through 4, each decentralized, to plan for a single agent
in parallel [10], highlighting central issues in distributed planning.

Later, all five phases are interleaved by the Partial Global Planning frame-
work [pgp, 21], and its extension, Generalized pgp [gpgp, 15, 16], where
each agent has partial knowledge of the plans of other agents using a special-
ized plan representation. In this method, coordination is achieved as follows.
If an agent A informs another agent B of a part of its own plan, B merges
this information into its own partial global plan. Agent B can then try to
improve the global plan by, for example, eliminating redundancy it observes.
Such an improved plan is shown to other agents, who might accept, reject,
or modify it. This process is assumed to run concurrently with the execu-
tion of the (first part of the) local plan. pgp has first been applied to the
distributed vehicle monitoring test bed, but, later on, an improved version
has also been shown to work on a hospital patient scheduling problem. Here
Decker and Li [17] used a framework for Task Analysis, Environment Mod-
eling, and Simulation (tæms) to model such multi-agent environments in a
more general way. Shared Activity Coordination (shac) extended gpgp’s
concept of modeling coordination mechanisms while separating the model
and implementation from that of the planning problem and algorithm [9].
An overview of the pgp related approaches is given by [40].

Another approach to agent coordination is through models of mental at-
titude. The grate framework enables agents to coordinate their individual
planning by reasoning about their beliefs, desires, intentions, and joint in-
tentions/commitments [36]. Coordination is interleaved with planning by
creating and revising commitments through an organizing agent.

3.4 Coordination after planning

A large body of research focused on how to coordinate after plans have been
constructed separately (phase 4). These so-called plan merging methods aim
at the construction of a joint plan for a set of agents given the individual
(sub) plans of each of the participating agents. Georgeff [30, 32] was one
of the first to actually propose a plan-synchronization process starting with
individual plans. He defined a process model to formalize the actions open
to an agent. Parts of such a process model are the correctness conditions,
which are defined on the state of the world and must be valid before execution
of the plan may succeed. Two agents can help each other by changing the
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state of the world in such a way that the correctness conditions of the other
agent become satisfied. Of course, changing the state of the world may
help one agent, but it may also interfere with another agent’s correctness
conditions [31].

Stuart [56] uses a propositional temporal logic to specify constraints on
plans, such that it is guaranteed that only feasible states of the environment
can be reached. These constraints are given to a theorem prover to generate
sequences of communication actions (in fact, these implement semaphores)
that guarantee that no event will fail. To both improve efficiency and resolve
conflicts, one can introduce restrictions on individual plans (in phase 3) to
ensure efficient merging. This line of action is proposed by Yang et al. [75]
and Foulser et al. [29], and can also be used to merge alternative plans to
reach the same goal.

Another centralized plan-merging approach addresses problems arising
from both conflicts and redundant actions by using the search method A*
and a smart cost-based heuristic: Ephrati and Rosenschein [22] showed that,
by dividing the work of constructing sub plans over several agents, one can
reduce the overall complexity of the merging algorithm [23].

Other work on plan merging propose a distributed polynomial-time algo-
rithm to improve social welfare, the sum of the benefits of all agents [25, 49].
Through a process of group constraint aggregation, agents incrementally con-
struct an improved global plan by voting about joint actions. They even
propose algorithms to deal with insincere agents, and to interleave planning,
coordination, and execution [24].

The plan merging problem is also blurred with interleaved planning and
coordination at multiple levels of abstraction [7]. The idea is that the agents
may have partially refined their plans at different levels of detail and can also
coordinate them at different levels. Based on a concurrent hierarchical plan
(chip) representation (adding durative action and consumable/replenishing
resources to an htn), centralized algorithms are given for offline summa-
rization of potential refinements of an abstract task and for exploiting this
summary information to more efficiently resolve conflicts in systematic and
local planning [8].

This abstract reasoning can also be used by agents to maintain auton-
omy while exploiting the results of other agents to improve plan efficiency
and search performance [11, 13]. In [11] the idea is to add conditional de-
pendencies to the plan: if an agent achieves another’s subgoal, the agent
can execute a more efficient branch of the plan; otherwise the normal course
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of action can still be followed. This works succeeds a single-agent approach
that uses a conditional simple temporal network (STN) representation to
merge redundant actions/subplans across subgoals [59]. In [13] all plans are
modeled as resource consuming and producing processes. Such a view allows
for efficient plan merging through resource exchanges. The effectivity of this
approach is supported by an experimental analysis of applying plan merging
to planning data from a taxi company.

3.5 Coordination before planning

Another way agents can coordinate (phase 4) before they even start creating
their plans (phases 2 and 3) is by using social laws. A social law is a generally
accepted convention that each agent has to follow. Such laws restrict the
agents in their behavior. They can be used to reduce communication costs
and planning and coordination time. In fact, the work of Yang et al. [75]
and Foulser et al. [29] about finding restrictions that make the plan merging
process easier, as discussed in the previous section, is a special case of this
type of coordination. Typical examples of social laws in the real world are
traffic rules: because everyone drives on the right side of the road (well,
almost everyone), virtually no coordination with oncoming cars is required.
Generally, solutions found using social laws are not optimal, but they may be
found relatively fast. How social laws can be created in the design phase of
a multi-agent system is studied by Shoham and Tennenholtz [54]. Briggs [3]
proposed more flexible laws, where agents first try to plan using the strictest
laws, but when a solution cannot be found agents are allowed to relax these
laws somewhat.

Another way to coordinate agents is to figure out the exact interdepen-
dencies between their tasks beforehand. Prerequisite constraints can be dealt
with centrally using existing planning technology (such as partial order plan-
ning [69] or those mentioned in Section 3.2) by viewing these tasks as single-
agent tasks. The summary information discussed used in pgp has also been
proposed to precompute the interferences (such as shared resources) among
the goals of one agent or a group [8]. Information about the top level of a
plan hierarchy can be exchanged among the agents to determine conflicting
and also positive relations, and even to match goals to agents [63–65]. If pos-
sible, relations are solved or exploited at this top level. If not, a refinement
of the plans is made, and the process is repeated, thus, integrating phase 2
and 4.
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Coordination before planning can also be used by competitive agents that
insist on their planning autonomy [60]. Here, the problem is that the plan-
ning agents have a set of interrelated (sub)goals that they have to reach, and
they do not want others to interfere with their planning activity. That is,
each of the agents requires full planning autonomy, but at the same time they
have to be sure that whatever (sub)plans they construct to solve their part
of the problem can be coordinated seamlessly without requiring replanning.
Planning problems like these often occur in multi-modal transportation prob-
lems: several parties have to ensure that packages are transported from their
source locations to their destinations. The planning agents are prepared to
carry out their part of the job if it can be guaranteed that they will not be
interfered by the activities of other agents [4].

It is clear that most of those planning problems cannot be decomposed
into independent subproblems without changing the original planning prob-
lem. However, temporal constraints can be added to the agents’ stns up
front so that they need not communicate at all during scheduling and execu-
tion [35]. Another preplanning coordination method adds a minimal set of
additional constraints to the subgoals to be performed in order to ensure a
coordinated solution by independent planning [58].

3.6 Plan execution

Distributed Continual Planning (DCP) problems often require agents to
break and re-make commitments during execution when there are unexpected
events/failures or goal changes [19]. Distributed sipe [18] and coda [44] ex-
plore approaches to interleaving phases 2 through 5 with a focus on minimiz-
ing communication. shac, mentioned in Section 3.3, incorporates a simple,
general algorithm, for which coordination mechanisms are customized to the
problem domain.

Recently, a variety of decentralized planning algorithms for handling un-
certainty in real time have been developed for scaling to large (100 agents
and over 13000 tasks) problems based on tæms as part of the darpa coor-
dinators program [41, 43, 55, 66, 74]. Some of the challenges of these prob-
lems include partial observability, deadlines, uncertain duration, uncertain
message delay, and dynamic revision of goals. These algorithms interleave
phases 2 through 5 in different ways: by computing metrics to communicate
and identify the most critical tasks to execute, by using the timing flexibility
of STNs to maintain schedule stability while continually exploring optimiza-
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tions with others, and by regenerating local MDP policies based on changing
commitments.

The steam collaborative execution framework [57] focuses just on phases
4 and 5 by building on the concept of joint intention mentioned in Section 3.3.
This system enables agents to work together to discover when commitments
are broken and how to recover from failures and still meet goals.

4 Contributions in this special issue

Problems associated with agent communication and interaction in planning
(the fourth phase introduced in Section 3) are at the heart of multiagent
planning. The articles of this issue cover many of the different contexts de-
scribed above but focus on ways to minimize commmunication or interactions
for more efficient planning and execution.

• Steenhuisen and Witteveen extend precedence-based temporal decou-
pling (coordination before planning) to handle synchronization con-
straints.

• Cox and Durfee introduce an algorithm and problem reformulation
techniques for distributed coordination after planning to efficiently “merge”
redundant actions and reuse the results of other agents.

• Purrington and Durfee describe complete and approximate algorithms
for finding optimal agreements for self-interested planning agents.

• Rosenfeld, Kraus, and Ortiz demonstrate that an agent can learn when
it needs feedback from others based on its confidence in making local
planning decisions.

• Van der Krogt describes how an agent can measure how much private
information it is communicating to others according to the size of the
possible plan space.
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