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Abstract. Point process models are useful for describing phenomena occurring at random 
locations and/or times. Following a review of basic concepts, some important models are 
surveyed including Poisson processes, renewal processes, Hawkes processes, and 
Markovian point processes. Techniques for estimation, simulation and residual analysis 
for point processes are also briefly discussed.  
 
A point process is a random collection of points falling in some space. In most 
applications, each point represents the time and/or location of an event, such as a 
lightning strike or earthquake. When modeling purely temporal data, the space in which 
the points fall is simply a portion of the real line.   
 
Figure 1 shows an example of origin times of Southern California earthquakes of 
magnitude at least 3.0 occurring in 2008, obtained from the Southern California 
Earthquake Data Center. Point process data arise in a wide variety of scientific 
applications, including epidemiology, ecology, forestry, mining, hydrology, astronomy, 
ecology, and meteorology. 
 

     
 
FORMAL DEFINITIONS 
 
There are several ways of characterizing a point process. The usual approach is to define 
a point process N as a random measure on a complete separable metric space S taking 
values in the non-negative integers Z+ (or infinity). In this framework the measure N(A) 
represents the number of points falling in the subset A of S. Attention is typically 
restricted to the case where N may contains only finitely many points on any bounded 
subset of S. 
 
The random measure definition above is perhaps not the most intuitive means of 
characterizing a point process, and several alternatives exist. Consider the case of a 
temporal point process,  e.g. the times of events occurring between time 0 and time T. 



One may characterize N as an ordered list {τ1, ..., τn} of event times. One may 
alternatively convey the equivalent information about N via the inter-event times {u1, ..., 
un}, where ui = τi - τi-1, with the convention that τ0 = 0. 
 
A temporal point process N may alternatively be described by a counting process N(t), 
where for any time t between 0 and T, N(t) is the number of points occurring at or before 
time t. The resulting process N(t) must be non-decreasing and right-continuous, and take 
only non-negative integer values. One could thus define a temporal point process as any 
non-decreasing, right-continuous Z+-valued process. This sort of definition has been used 
by [1,2,3], and others. 
 
The counting process definition of a point process lends itself naturally to discussions of 
martingales and distributional theory. On the other hand, the random measure 
formulation has the advantage of generalizing immediately to point processes in higher 
dimensions and in abstract spaces.  For simplicity, the remainder of this article will deal 
only with purely temporal point processes, where the domain S is simply a portion of the 
real (time-)line. 
 
A point process is called simple if with probability one, all its points τi occur at distinct 
times. A closely related concept is orderliness: a point process N is orderly if for any time 
t, P{N(t, t+Δt] > 1}/Δt -> 0 as Δt -> 0.  
 
The points of a point process are typically indistinguishable other than by their times 
and/or locations. When there is other important information to be stored along with each 
point, such as a list of times of wildfire origin times along with their corresponding burn 
areas, or the earthquake times and magnitudes shown in Figure 1, the result may be 
viewed as a marked point process. 
 
The relationship between time series and point processes is worth noting. Many datasets 
that are traditionally viewed as realizations of (marked) point processes could in principle 
also be regarded as time series, and vice versa. For instance, a sequence of earthquake 
origin times is typically viewed as a temporal point process; however, one could also 
store such a sequence as a time series consisting of zeros and ones, with the ones 
corresponding to earthquakes.  The main difference is that for a point process, the points 
can occur at any times in a continuum, whereas the time intervals are discretized in the 
time series case.  
 
 
POINT PROCESS MODELS 
 
The most important point process model is the Poisson process, which is a simple point 
process N such that the number of points in any set follows a Poisson distribution and the 
numbers of points in disjoint sets are independent. That is, N is a Poisson process if 
N(A1), ..., N(Ak) are independent Poisson random variables, for any disjoint, measurable 
subsets A1, ..., Ak of S. 
 



The behavior of a simple temporal point process N is typically modeled by specifying its 
conditional intensity, λ(t), which represents the infinitesimal rate at which events are 
expected to occur around a particular time t, conditional on the prior history of the point 
process prior to time t. Formally, the conditional intensity associated with a temporal 
point process N may be defined via the limiting conditional expectation 

λ(t) = limΔt -> 0 E{N[t, t + Δt) | Ht} / Δt, 
provided this limit exists, where Ht is the history of the point process N over all times 
strictly prior to time t.  Some authors instead define λ as the conditional probability 

λ(t) = limΔt -> 0 P{N[t, t + Δt) > 0 | Ht] / Δt , 
since the two definitions are equivalent for orderly point processes.  As all finite-
dimensional distibutions of N are uniquely determined by the conditional intensity [4,5], 
in modeling N it suffices to prescribe a model for λ.   
 
For a temporal point process originating at time 0, one may define the compensator A(t) 
as the integral of the conditional intensity from time 0 to time t.  The compensator may 
equivalently be defined as the unique non-negative non-decreasing predictable process 
A(t) such that N[0,t) - A(t) is a martingale [1,2]. 
 
λ may be estimated nonparametrically [6,7,8,9], or via a parametric model. In general, 
λ(t) depends not only on t but also on the times τi of preceding events. When N is a 
Poisson process, however, λ is deterministic; i.e. λ(t) depends only on t. 
 
A stationary Poisson process has constant conditional rate: λ(t) = α, for all t.  This model 
posits that the risk of an event is the same at all times, regardless of how frequently such 
events have occurred previously.  For a non-stationary Poisson process, λ(t) is some 
function of t. A generalization is the Cox process, or doubly-stochastic Poisson process, 
which is a Poisson process whose intensity function is randomly generated.  
 
Another important elementary type of temporal point process is the renewal process. 
A renewal process is a simple point process such that the inter-event times {u1, ..., un} are 
independent (typically i.i.d.) random variables. In the i.i.d. case, the density function 
governing each inter-event time is called the renewal density. Note that the renewal 
density f is ordinarily taken to be a density on the half-line, i.e. f(t) = 0 for t < 0. Renewal 
models embody the notion that the hazard of an event occurring at a particular time 
depends only on the time since the most recent event. In fire hazard analysis, for 
example, such a model is consistent with the theory of fuel loading followed by 
complete fuel depletion in the event of a fire. 
 
A point process N may be called self-exciting if cov{N(s,t), N(t,u)} > 0 for s < t < u. N is 
self-correcting if instead this covariance is negative. Thus the occurrence of points in a 
self-exciting point process causes other points to be more likely to occur, whereas in a 
self-correcting process, the points have an inhibitory effect. By definition, a Poisson 
process is neither self-exciting nor self-correcting.  
 



Self-exciting point process models are often used in seismology to model events that are 
temporally clustered. A commonly used example is the Hawkes process, where the 
conditional intensity is given by 

λ(t) = µ(t) + ∑i: τi < t ν(t-τi), 
where µ(t) represents the deterministic background rate and the function ν governs the 
clustering density. An example where µ(t) is constant was offered by [10]. Hawkes 
models are commonly used in seismology, where they are sometimes called epidemic-
type aftershock sequence (ETAS) models, encompassing the notion that earthquakes can 
have aftershocks, and those aftershocks can have aftershocks, etc. A form of the 
clustering density ν that is commonly used in modeling earthquake aftershocks is the 
Omori-Utsu law [11] 

ν(t) = κ(t+c)-p, 
which corresponds to power-law decay in the clustering behavior over time. 
 
Alternative versions of clustered point processes are formed by generating a sequence of 
parents and then placing clusters of points (offspring) around each parent. For the 
Neyman–Scott process, for instance, the offspring points are independently and 
identically distributed around the parents, and for the Bartlett-Lewis the offspring points 
are each generated via a renewal process originating at the corresponding parent. 
 
Self-correcting models are used in ecology, forestry and other fields to model 
occurrences that are well-dispersed. Such models may be useful in describing births of 
species, for example, or in seismology for modeling earthquake catalogs after aftershocks 
have been removed [12]. An important example is the Markovian point process model (so 
called because the conditional rate obeys the Markov property) where 

λ(t) = g{t, N[0,t)}. 
For example, the function g may be selected so that λ takes the form 

λ(t) = exp{α + β (t - ρ N[0,t))}, 
where α, β, and ρ are constants [13,14,15]. The parameters α and β govern the 
background rate and trend in the occurrences, while the product βρ represents the 
decrease in conditional rate of future events caused by each event, which may be due to 
diminished fuel load in the case of wildfire modeling, for instance, or the release of strain 
energy in the seismological case. 
 
 
TRANSFORMATIONS 
 
Some important operations on point processes include superposition, thinning, and 
rescaling. Graphically, these operations correspond, respectively, to overlaying points of 
one process onto those of another point process, deleting certain points, and stretching 
out the time axis. 
 
The Poisson process frequently arises as a limiting process resulting from transformations 
of point processes. For example, under quite general conditions, when k independent 
copies of a temporal point process are superposed and the time axis is rescaled by a factor 
of k, the resulting process converges to a Poisson process (for details see [16,17]). Similar 



results can be obtained for randomly thinned point processes [18] or rescaled point 
processes [19]. 
 
ESTIMATION AND SIMULATION 
 
The parameter vector θ for a point process model with conditional intensity λ(θ) is 
typically estimated by maximizing the log-likelihood function 

L(θ) = ∑i  log λ(τi ; θ)  - ∫S λ(t)dt. 
The consistency, asymptotic normality, and efficiency of maximum likelihood estimators, 
have been established under standard conditions [20,21], and standard errors may be 
obtained via the Hessian of the log-likelihood [22,23,24]. 
 
Alternatively, simulations may be useful for obtaining approximate standard errors and 
for other types of inference. An effective simulation method for point processes based on 
random thinning was devised in [25,26]. The procedure, which works for point processes 
whose conditional rate λ is bounded (or locally bounded) above by some constant b, 
involves simulating a (locally) stationary Poisson process with intensity b and thinning it, 
keeping each point τi with probability λ(τi) / b. 
 
MODEL EVALUATION 
 
The fit of a parametric point process model is often assessed using a likelihood score 
such as the Akaike Information Criterion (AIC), which is defined as 2p - 2L(θ), where p 
is the number of fitted parameters. The AIC rewards a model for higher likelihood and 
penalizes a model for overfitting; lower AIC indicates better fit.  
 
Residual analysis methods for point processes often involve comparing the number of 
points observed with the integrated conditional intensity within specified portions of S. 
Methods for normalizing and inspecting such residuals are described in [27]. 
 
Another useful technique for evaluating point process models is via rescaling. The 
method essentially involves rescaling the time axis of the observed point process N at 
time t by a factor of λ(t). More specifically, if the points are observed from time 0 to time 
T, then each point τi is moved to the new time A(τi), where A is the compensator. The 
resulting process M is a stationary Poisson process with unit rate, provided the original 
point process is simple [19]. Similarly, one may inspect residuals obtained by randomly 
thinning the process: that is, keeping each point τi independently with probability 
inversely proportional to  λ(τi). As with rescaled residuals, the resulting thinned residuals 
will be distributed according to a stationary Poisson process [28]. In practice, one may 
use the estimated intensity or compensator in place of the true intensity or compensator 
and inspect the rescaled or thinned process for uniformity. Several tests exist for this 
purpose, with different uses depending on the alternative hypotheses (e.g. 
[3,29,30,31,32,33]). Some of the most useful are tests based on second and higher order 
properties [34,35,36,37]. There are also more general second-order tests for point 
processes that do not rely on a stationary Poisson null hypothesis [38,39,40]. 
 



For further reading on point processes, see [5,17]. 
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