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Abstract: This review paper is intended for scholars with different backgrounds, possibly in only one of the subjects covered, and
therefore little background knowledge is assumed. The first part is an introduction to classical and quantum information theory (CIT,
QIT): basic definitions and tools of CIT are introduced, such as the information content of a random variable, the typical set, and some
principles of data compression. Some concepts and results of QIT are then introduced, such as the qubit, the pure and mixed states,
the Holevo theorem, the no-cloning theorem, and the quantum complementarity. In the second part, two applications of QIT to open
problems in theoretical physics are discussed. The black hole (BH) information paradox is related to the phenomenon of the Hawking
radiation (HR). Considering a BH starting in a pure state, after its complete evaporation only the Hawking radiation will remain,
which is shown to be in a mixed state. This either describes a non-unitary evolution of an isolated system, contradicting the evolution
postulate of quantum mechanics and violating the no-cloning theorem, or it implies that the initial information content can escape the
BH, therefore contradicting general relativity. The progress toward the solution of the paradox is discussed. The renormalization group
(RG) aims at the extraction of the macroscopic description of a physical system from its microscopic description. This passage from
microscopic to macroscopic can be described in terms of several steps from one scale to another, and is therefore formalized as the
action of a group. The c-theorem proves the existence, under certain conditions, of a function which is monotonically decreasing along
the group transformations. This result suggests an interpretation of this function as entropy, and its use to study the information flow

along the RG transformations.
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1 Classical information theory

Classical information theory has been introduced by
Claude Shannon in 1948 [1, 2]. In this seminal work he
has devised a quantitative definition of information
content, and then other formal definitions of relevant
quantities, in order to allow for a quantitative treatment of
those and other related subjects. In the same seminal
work he also demonstrated some important theorems
which hold for such quantities. In this first section we
give a summary of the main concepts of the classical
information theory introduced by Shannon.

1.1 Information content

The first important contribution of Shannon has been to
address the question: “What is information?”. More
precisely, he was looking for a way to measure the
amount of information contained in a given physical
system. This is a rather elusive concept, and it can depend
on things difficult to quantify, things such as the context,
and the observer background knowledge.

To give an example, we can think at the amount of
information contained in human facial expressions. We
know at an intuitive level that a big amount of
information is contained in a single facial expression (see
figure 1), since we sometimes take important decisions
based on such informations. But at the same intuitive
level we can appreciate how difficult is to quantify this
amount. Moreover, the type of information in the example

Figure 1: Examples of facial expressions.

of the facial expressions refers to emotional states or
states of consciousness, and therefore involve some
degree of subjectivity in their definition (think e.g. at the
famous painting “Mona Lisa” by Leonardo da Vinci, and
its enigmatic facial expression, so difficult to define). As
usual in science, Shannon has overcome this type of
difficulty by first defining clearly the scope of his
definition. His definition of “content of information” is
indeed limited to systems that can be described by a
random variable.

Since we need a precise definition of random variable,
following the notation of MacKay [3] we will use the
concept of ensemble, i.e. the collection of three objects:

X ≡ (x,AX ,PX) (1)

where x represents the value of the random variable, AX is
the set of the possible values it can assume, and PX is its
probability distribution of those values (i.e. the set of the
probabilities of each possible value).

1.1.1 Information content of a single outcome

Based on this concept we then introduce the following
definition for the amount of information gained from the
knowledge of a single outcome xi ∈ AX of the random
variable X :

h(xi)≡
1

log2
log

1
p(xi)

(2)

where p(xi) ∈ PX is the probability of the outcome xi. To
give an intuition of this definition we can consider the
example of the weather forecast. Let’s simplify, and
consider a situation where two only possible weather
conditions are possible: sunny (�) and rainy (�). So, in
our example the random variable is “tomorrow’s
weather”, the two possible values are AX = {�, �},
and there will be a probability distribution PX = {p(�),

p(�)}.
It is worth noting that the definition of Shannon is

totally independent from the actual value of the outcome,
and only depends on its probability. It is in order to stress
this concept that we have used the symbols {�, �} for
the values of the outcome, that are not numerical, and do
not appear at all in (2). It is also worth to stress that this
definition of “amount of information contained in a single
outcome” is a differential definition: the difference
between the amount of information we possess about the
random variable, before and after we know the outcome.

We can illustrate this concept of “differential
definition” using the weather variable: in a location where
there is a very high probability of sunny weather, with the
probability distribution PX = {p(�) = 0.99,
p(�) = 0.01}, if tomorrow we see sunny weather, we
will have learnt very little information. On the other hand,
if tomorrow we find rainy weather, we will have gained a
lot of useful information, with respect to today.
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1.1.2 Information content of a random variable

Using the definition (2) of the information content of a
single outcome, we can define the information content of
a whole random variable:

H(X)≡∑
i

p(xi)h(xi)

=
1

log2 ∑
i

p(xi) log
1

p(xi)

(3)

This definition can be seen as the average of the
information gained for each outcome expressed in (2),
averaged over all the possible outcomes.

This expression is formally equal (apart from constant
factors) to the entropy defined in thermodynamics, and
Shannon proposed the same name in the context of
information theory. This entropy is sometimes called
“Shannon entropy”, to distingush it from its quantum
counterpart, discussed in the following. In the case of a
binary variable (i.e. variable with only two possible
outcomes) we have:

AX = {0,1} (4a)

PX = {p,(1− p)}, (4b)

and the entropy of a binary random variable gets the
special name of binary entropy:

H(2) =
1

log2

[

p log
1
p
+(1− p) log

1
(1− p)

]

(5)

A plot of the binary entropy as a function of p is shown in
figure 2.

Figure 2: Plot of the entropy of a binary variable (binary
entropy) shown in (5).

Again as for the information content of a single
outcome, we can give some intuition for the definition of
the entropy (i.e. information content) of a random
variable using the example of the weather forecast. We

can notice that in the case of a very biased probability
distribution PX = {p(�) = 0.01, p(�) = 0.99},
although the information content of the very unlikely
outcome h(�) = 1

log2 log 1
0.01 is very high, its weight (i.e.

probability) in the average (5) is very small. So we have
that the highest value for the binary entropy is for the

uniform probability distribution PX = {p(�) = 0.5,
p(�) = 0.5}, so that p = 1/2 and all the outcomes are
equiprobable. It can be shown that this is true not only for
the case of a binary variable, but for all the entropies of
any random variable. This also explains the constant
factor 1

log2 in the definitions of the entropies: it is a
normalization factor, so that the maximum entropy is
normalized to 1. The factor 1

log2 has also the advantage to
make the definitions (3) and (5) independent of the choice
of the basis for the logarithms. Alternative and equivalent
definitions are:

H =−∑
i

p(xi) log2 p(xi) (6a)

H(2) =−p log2 p− (1− p) log2(1− p). (6b)

With this normalization is said that the entropy is measured
in bits, and the entropy of an unbiased binary variable is 1.
Sometimes another normalization is used, where the log2
is replaced by the natural logarithm ln = loge; in this case
it is said that the entropy is measured in nats.

1.1.3 Comments

We can find an intuitive justification of the definition (2)
doing the following observations. First, the probability of
two independent variables is the product of the
probabilities of each outcome. On the other hand, for the
definition (2) of “information from a single outcome” it is
reasonable that the information gained from two
outcomes from two independent variables is the sum of
the information gained from each outcome. Thirdly, we
have emphasized that the information content only
depends on the probability. Given all this, when looking
for an expression of the information content, the
logarithm of the probability fits all the requirements. The
last detail of using the logarithm of the inverse of the
probability is coming from the requirement that the
entropy of a variable has to be maximal (and not minimal)
in the case of uniform probability distribution (see figure
2).

1.2 Other important definitions

For the applications we want to introduce in the following
sections, we need to define few more quantities. The
definitions we need involve two random variables:

{X ,AX ,PX} (7a)

{Y,AY ,PY } (7b)
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1.2.1 Joint entropy

The joint probability p(x,y) is defined as the probability
that the variable X has the outcome x and the variable Y

has the outcome y. Based on this concept, it is easy to
define the joint entropy of two random variables as:

H(X ,Y) ≡
1

log2 ∑
x,y

p(x,y) log
1

p(x,y)
(8)

It is worth to recall from probability theory that the joint
probability is the product of the probabilities in the case
of independent random variables. So in the case of
independent variables the joint entropy is the sum of the
entropies.

Complementary to the concept of joint entropy is the
definition of mutual information of two random variables:

I(X : Y )≡ H(X)+H(Y)−H(X ,Y). (9)

We can use the intuition that mutual information is a

measure of how much two random variables are not

independent. It is also useful to rephrase this and think
that mutual information is a measure of how much we

know about a random variable X if we know about

random variable Y . It is frequently used a graphical
representation to visualize the relationship between
entropy, joint entropy and mutual information. Instead of
the Venn diagrams [4, 5], sometimes misleading, we
prefer to use the alternative approach used e.g. by [3],
shown in figure 3.

Figure 3: A graphical representation of the relationship
between entropy, joint entropy and mutual information.

1.3 Source coding theorem

After having introduced some definitions, we here
describe a theorem, called source coding theorem.

First, we have to introduce the notion of a source,
described as a black box producing sequences of values.
The way to model this is to consider those values as the
outcomes of random variables. So we consider a sequence
of N random variables, and we assume the following
hypotheses: that the variables are independent from each

other, that the set of possible values is identical for alle
the variables, and finally that the probability distributions

are identical. This is usually summarized as the N
variables being independent and identically distributed,
or i.i.d..

1.3.1 Typical set

Let’s consider a sequence of N i.i.d. binary variables. We
can write the sequence of variables as (X1,X2, . . . ,XN) =
XN , and a single outcome will be a sequence of values as
(x1,x2, . . . ,xN) = xN , which in the case of a binary variable
can be represented as a sequence of N ones and zeroes. We
can call AXN the set of all the possible sequences, and we
can write it down, (e.g. using the lexicographic order) as
follows:

(0,0,0,0,0, . . . ,0)

(1,0,0,0,0, . . . ,0)

(0,1,0,0,0, . . . ,0)

...

(1,1,1,1,1, . . . ,1)

(10)

Given all this, the source coding theorem proves the
existence of a subset of AXN , called typical set, with the
property that "almost all" the information contained in the
random variable is indeed contained in this subset.
Moreover, the theorem proves that for a sequence of N

i.i.d. variables with entropy H(X), the typical set has
2NH(X) elements in it. To be more precise, the theorem
can be verbally stated as follows:

Theorem 1(Source coding theorem). N i.i.d. random

variables each with entropy H(X) can be compressed into

more than 2NH(X) bits with negligible risk of information

loss, as N → ∞; conversely if they are compressed into

fewer than NH(X) bits it is “virtually certain” that some

information will be lost.

It is of course possible to have a more precise statement,
where instead of the “almost all” and “virtually certain”
phrases, the proper mathematical expressions, with “the
epsilons and the deltas” typical of the mathematical limits
are used. For a proof of the theorem see e.g. [3, 6].

1.3.2 Compression

In figure 4 we can see a graphical representation of the
typical set, along with the idea that it is possible to label
the elements of the typical set. The fundamental idea of
compression is that if we use only the NH(X) symbols
needed to label the elements of the typical set, instead of
using the N symbols of the full sequences, we have a
negligible probability to loose information.

c© 2015 NSP
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(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, . . . , 0)

(0, 0, 1, 1, 0, 0, 0, 1, 0, 1, . . . , 0)

(0, 1, 0, 1, 0, 0, 0, 0, 0, 1, . . . , 1)

(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, . . . , 1)

(1, 0, 0, 1, 0, 0, 1, 0, 0, 1, . . . , 0)

.

.

.

.

.

.
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2

3

.

.

.

(0, 0, 1, 0, 1, 1, 0, 1, 1, 0, . . . , 0) 2N   H(X )

(a)

(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, . . . , 0)

(0, 0, 1, 1, 0, 0, 0, 1, 0, 1, . . . , 0)

(0, 1, 0, 1, 0, 0, 0, 0, 0, 1, . . . , 1)

(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, . . . , 1)

(1, 0, 0, 1, 0, 0, 1, 0, 0, 1, . . . , 0)

.

.

.

.

.

.

.

.

.

(0, 0, 1, 0, 1, 1, 0, 1, 1, 0, . . . , 0)

00000 · · · 01

00000 · · · 10

11111 · · · 11

N H(X )

00000 · · · 11

(b)

Figure 4: The typical set as a subset of all the possible
sequences of N i.i.d. random variables outcomes. (a) The
typical set elements can be labeled with a number between
1 and 2NH(X). (b) This number can be written with NH(X)
binary simbols.

2 Quantum Information Theory

If the physical system used as support for the
transmission and processing of information is a quantum
system, classical information theory is no more valid in
all its parts, and a different theory has to be developed:
quantum information theory (QIT). As the classical
random variable with two possible values (the bit) is the
building block of CIT, the quantum random variable with
its possible described by vectors of an Hilbert space of
dimension two (the qubit) is the building block of QIT
(see figure 5). The experimental efforts to implement a
qubit in a physical system have already a long history.
Among the different approaches we can mention ion

traps [7, 8], quantum dots [9, 10], nuclear spins, accessed
via nuclear magnetic resonance [11, 12], colour defects in
crystals [13, 14] and superconductive structures [15, 16].
In this section we will review the usual axiomatic

|0

|+

|1

|-

(a)

|0

|1

(b)

Figure 5: The Block sphere is a two dimensional
manifold, and is used to represent the two dimensional
Hilbert space of the states of a qubit.

introduction of quantum mechanics (QM) and the formal
tools which are necessary to describe the applications of
QIT presented in the following. Among the many
references for the axiomatic introduction to quantum
mechanics, and the statements of its postulates, we refer
mostly to [17].

2.1 Mixed states and density operator formalism

The state of a quantum system is represented by an
element of an Hilbert space H , of modulus one, which in
the Dirac notation can be represented by a “ket”
|ψ〉 ∈ H . In the case of a qubit (i.e. two-dimensional
system) the basis can be represented as {|0〉 , |1〉} (called
computational basis), and the generic state of the qubit
will be |ψ〉 = α |0〉+β |1〉, where α ,β ∈ C, and the link
to the angles shown in figure 5b is
|ψ〉= cos θ

2 |0〉+ eiϕ sin θ
2 |1〉.

In analogy to the concept of random variable
introduced above, we need a formal tool to describe a
situation where the state of the quantum system is
unknown, and it is only know the set of possible states,
with their probability distribution. If a system is in such
conditions, it is said to be in a mixed state, and the tool to
describe mathematically a mixed state is the density

operator.

2.1.1 Density operator of a pure state

To introduce the density operator, let’s first recall some
details on linear algebra. The scalar product in the Dirac

c© 2015 NSP
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notation is written as 〈φ|ψ〉; if we choose a basis
{|1〉 , |2〉 , . . . , |n〉 , . . .} of the Hilbert space, it is possible to
compute the components 〈i|ψ〉= ψi and 〈φ|i〉= φ∗

i of the
vectors and co-vectors, so to write them as one-column
and one-row matrices respectively. In this notation, the
scalar product can be seen as a dot product between
matrices:

〈φ|ψ〉= (φ1,φ2, . . . ,φn, . . .)









ψ1
ψ2
...

ψn









(11a)

=∑
i

φ∗
i ψi. (11b)

But if we invert the order, and write

|ψ〉 〈φ|=









ψ1
ψ2
...

ψn









(φ1,φ2, . . . ,φn, . . .) (12a)

=







ψ1φ∗
1 ψ1φ∗

2 · · · ψ1φ∗
N

ψ2φ∗
1 ψ2φ∗

2 · · · ψ2φ∗
N

· · · · · · · · · · · ·
ψNφ∗

1 ψNφ∗
2 · · · ψNφ∗

N






(12b)

we have a matrix, which can be interpreted as the
representation, in the chosen basis, of an operator defined

on the same Hilbert space.
This was written for two different states |ψ〉 and |φ〉.

But using this type of product we can associate to any
single vector of the Hilbert space an operator:

|ψ〉 ↔

↔ |ψ〉〈ψ|=









ψ1
ψ2
...

ψn









(ψ1,ψ2, . . . ,ψn, . . .) (13a)

=







ψ1ψ∗
1 ψ1ψ∗

2 · · · ψ1ψ∗
N

ψ2ψ∗
1 ψ2ψ∗

2 · · · ψ2ψ∗
N

· · · · · · · · · · · ·
ψNψ∗

1 ψNψ∗
2 · · · ψNψ∗

N






(13b)

def
= ρ̂ψ . (13c)

2.1.2 Density operator of a mixed state

When a state of a quantum system can be represented as a
vector of an Hilbert space (i.e. a ket in Dirac notation), it
is said to be in a pure state. But if we want to represent
the quantum analog of a random variable, we have to use
the concept of mixed state introduced above, where we
don’t know the state of the system, but only a set of
possible states, and their respective probabilities. A mixed
state for which all its possible states are equiprobable is

said a maximally mixed state. It is interesting to point out
that whether the system is in a pure or a mixed state
depends on both the system and the observer, because the
knowledge about the system depends also on the
observer, and not only on the system itself. The density
operators formalism is able to effectively represent this
type of states.

Indeed, if the possible states of the system are
{|α1〉 , |α2〉 , . . . , |αN〉}, with probabilities
{p1, p2, . . . , pN}, then the mixed state can be represented
as:

∑
i=1

pi |αi〉 〈αi| . (14)

This can be seen as a linear combination of the density
operators associated to the pure states, where the
coefficients are the probabilities.

This is an abstract representation of the density
operators; if we fix a basis in the Hilbert space, we can
write a density operator as a matrix, that will be called
density matix. A special and not uncommon case is when
the set of possible states of a mixed state is an
orthonormal basis for the Hilbert space. If we write this
orthonormal basis as {|1〉 , |2〉 , . . . , |n〉 , . . .}, and then
represent the density matrix associated to a pure state in
this basis, the matrix elements will be all zero, apart from
one single element on the diagonal equal to one, in the
position corresponding to the position of the pure state in
the basis:

ρ̂n = |n〉〈n|=













0
...
n
...













(0, . . . ,n, . . .)

=













0 0 0 0

0
. . . 0 0

0 0 1 0

0 0 0
. . .













. (15)

If we then consider a mixed state such that the possible
states are all the elements of the basis:

∑
i=1

pi |i〉 〈i| (16)

its density matrix, represented in this same basis will be
diagonal, with the probabilities as diagonal elements:

ρ̂ =













p1 0 0 0

0
. . . 0 0

0 0 pn 0

0 0 0
. . .













. (17)

If represented in this basis, non-zero off-diagonal
elements indicate that some of the possible states are
quantum superpositions of basis states. From the
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normalization property of the probability distribution it is
then easy to see that:

Tr(ρ̂) =∑
i

pi = 1, (18)

where Tr(ρ̂) indicates the trace, defined as the sum of the
diagonal elements. Since the trace is preserved under
change of reference, we can conclude that Tr(ρ̂) = 1 is a
property of any density matrix. Another property of any
density matrix is that the eigenvalues are non-negative.
This can be proven rigorously, and can be easily seen in
the case of a diagonal density matrix (17), where the
eigenvalues have the meaning of probabilities.

2.2 Quantum measurement and quantum

complementarity

Continuing with the axiomatic introduction of quantum
mechanics, after the concept of mixed states, and the
density operators formalism to describe them, we now
describe the measurement of the state of a quantum
system.

In the following subsections we will give two possible
formalizations of the measurement process, namely the
projective measurement, and the POVM. Finally, we will
see the concept of complementarity.

2.2.1 Projective measurement

A first way to formalize the measurement process is the
projective measurement or von Neumann measurement

(see [17, 18]). In this description we associate to the
measurement an hermitian operator M̂, and its
decomposition over the projectors on its eigenspaces:

M̂ =∑
m

mP̂m (19)

where {m}, the eigenvalues of M̂, are the possible
outcomes of the measurement, and the {P̂m} operators are
projectors, i.e. satisfy the following properties:

∀m, P̂m is hermitian (20a)

∀m,m′, P̂mP̂m′ = δm,m′ P̂m. (20b)

The probability that the outcome of the measurement is m

when the system is in the state |ψ〉 is:

pψ(m) = 〈ψ| P̂m |ψ〉 ; (21)

and soon after such measurement the state of the system
is:

P̂m |ψ〉
√

pψ(m)
. (22)

From the requirement that the sum of all the probabilities
(21) is equal to 1 we have the property of completeness for
the set of projectors:

∑
m

P̂m = I. (23)

The expectation value of the measurement M̂ if the system
is in the state |ψ〉 is:

Eψ(M̂) =∑
m

m pψ(m)

=∑
m

m〈ψ|Pm |ψ〉

= 〈ψ|
(

∑
m

mPm

)

|ψ〉

= 〈ψ|M̂ |ψ〉
= 〈M̂〉ψ .

(24)

and the standard deviation is:

∆(M̂) =
√

〈(M̂ −〈M̂〉ψ)2〉ψ

=
√

〈M̂2〉ψ −〈M̂〉2
ψ

(25)

where we have used the compact notation 〈ψ| · |ψ〉= 〈·〉ψ .
Sometimes it is useful to write the projectors as:

P̂m = M̂†
mM̂m (26)

where M̂m are called Krauss operators. The equations
(19)-(23) can be rewritten in terms of the Krauss
operators using (26).

2.2.2 POVMs

It is possible to generalize the projective measurement
and define the POVM (positive operator-valued
measurement [18]), where some of the hypotheses of the
projective measurement are relaxed. In particular, we
consider the collection of operators that represent the
measurement:

{Êm} (27)

and relax the hypothesis that those operators are
projectors. Similarly to the projective measurement, the
probability that the outcome is m if the system is in |ψ〉 is:

pψ(m) = 〈ψ| Êm |ψ〉 . (28)

Also for the POVM we have the property of
completeness: ∑m Êm = Î, but as a consequence of the
(27) not being projectors, is that in general we can not
write them in terms of the Krauss operators, as in (26),
and therefore for the POVM measurement it is not defined
the state of the system after the measurement.

A common situation with POVM measurement is
when we have a quantum system in a mixed state, where

c© 2015 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp


24 F. Grazioso: Introduction to Quantum Information Theory and Outline of...

the set of possible states are represented by some vectors
of the Hilbert space {|ψm〉}, not necessarily orthogonal to
each other, and we want a measurement in order to know

in which of the states of the set the system is. This POVM
is represented by the set of operators:

{Êm = |ψm〉〈ψm|}. (29)

These last operators are indeed projectors; however, since
the {|ψm〉} are not necessarily orthogonal, this POVM is

not in general a projective measurement. In this type of
POVM, since the set of states does not necessarily form a
basis of the Hilbert space, the completeness property has
in general to be guaranteed with suitable normalization
coefficients.

2.2.3 Quantum complementarity

If we consider the Hilbert space representing the states of
the quantum system, each basis can be seen as a different
POVM. In particular, an orthogonal basis will correspond
to a projective measurement. The preparation and
measurement of the quantum state of a physical system
can be described in the language of QIT in terms of the
encoding and decoding of information by two parties,
traditionally called Alice and Bob. The quantum
complementarity is then related to the choice of the basis
in which each party operates. If we consider the example
of a qubit, in figure 6 two different orthogonal bases are
shown, the computational basis {|0〉 , |1〉}, and the basis
{|+〉 , |−〉}, where

|+〉= 1√
2
(|0〉+ |1〉) (30a)

|−〉= 1√
2
(|0〉− |1〉). (30b)

Alice may choose to encode some information in the
qubit, using the computational basis {|0〉 , |1〉}, i.e. she
prepares the system in one of the two states of this basis
(see figures 5 and 6). The qubit will be then transmitted to
Bob, who will perform a measurement to decode the
information. If he chooses the diagonal basis {|+〉 , |−〉},
he will be in the situation where both outcomes of the
measurement have 0.5 probability (see figure 6b). To
describe this situation in terms of information we can use
the concept of mutual information expressed in (9), and
say that the mutual information between the (classical)
random variable representing Bob’s measurement
outcome and the (classical) random variable representing
the information encoded by Alce, is zero. This means in
other terms that the Bob can not access the information of
Alice. This situation expresses the concept of quantum
complementarity, and based on this concept Charles
Bennett and Gilles Brassard in 1984 devised the idea of
quantum cryptography [19], which over the years has
become one of the most developed applications of
QIT [20–22, 24].

|
|0

|1

|+|-

(a)

|

|0

|1

|+|-

(b)

Figure 6: Two orthogonal references in the plane,
to represent two different projective measurements: the
computational basis {|0〉 , |1〉}, and the basis {|+〉 , |−〉}
defined in (30). (a) A generic vector, with its components
on the two references. (b) A special case of an eigenvector
of the first reference which has equal components on the
second reference.

2.3 von Neumann entropy

In analogy to the definition of information content of a
classical random variable (Shannon entropy) defined in
(3), it is possible to define the von Newmann entropy, in
the case of a quantum random variable, in the following
way:

S(ρ̂) =
1

log2
Tr

(

ρ̂ log
1
ρ̂

)

. (31)

Here Tr(·) represents the trace of the density matrices, and
ρ is the density operator representing the random variabile
of which S represents the (quantum) information content.

2.3.1 Quantum evolution

To complete the axiomatic framework of quantum
mechanics we need one last postulate, about the evolution
of a quantum system. It states that the evolution in time of
a quantum system is described by an unitary
transformation over the Hilbert space describing the
states:

|ψ(t)〉= Û |ψ(0)〉 . (32)

Here we will not give the details about the actual unitary
operator, described by Shrödinger equation.

2.4 Holevo theorem (Holevo bound)

One of the most important results of QIT is the following
theorem, called after Alexander Holevo [25]. As for the
description of quantum complementarity, this result is
best described in terms of the interaction between the two
parties Alice and Bob.
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Theorem 2(Holevo bound). Let’s suppose that Alice

prepares the quantum system in a mixed state described

by the density operator ρ̂X , where X = {|x1〉 , . . . , |xn〉}
are the possible pure states, and {p1, . . . , pn} are the

corresponding probabilities. Then, Bob performs a

measurement, described by a POVM built (as described

in section 2.2.2) on the set of pure states

Y = {|y1〉 , . . . , |yn〉}, and we denote y the outcome of this

measurement. It is possible to prove that for any such

measurements Bob may do there is an upper bound for

the mutual information (9) between the two random

variables X and Y . In particular:

I(X : Y )≤ S(ρ̂)−∑
x

pxS(ρ̂x) (33)

where ρ̂ = ∑x pxρ̂x is the density operator describing the

global mixed state prepared by Alice.

It is worth to stress that from the point of view of
Alice (the sender), the information she encodes in the
system is a classical information. We can represent it as
the integer index labelling the states in the set of quantum
states X = {|x1〉 , . . . , |xn〉} chosen for the encoding. On
the other hand, from the point of view of Bob(the
receiver), the system is in a quantum mixed state. The
following theorem expresses the relationship between the
information contained in those two random variables.

Theorem 3.Given a classical random variable, encoded

in a quantum system using the set of pure states

X = {|x1〉 , . . . , |xn〉}, the relation between the information

contained in this classical random variable, and the

quantum information contained a mixed quantum state

ρ̂X built with those pure states is:

S(ρ̂)−∑
x

pxS(ρ̂x)≤ H(X) (34)

the equality being reached in the case {|x1〉 , . . . , |xn〉} are

all orthogonal vectors.

Because of this second result, we can express the Holevo
theorem (33) saying that in a quantum encoding-decoding
process the amount of information that Bob can access is
in general less than the (classical) information initially
encoded by Alice, and that this information can be fully
accessed only in the special case where the set of
quantum states used for the encoding is orthogonal.

2.5 No-cloning theorem

Another important result of QIT is the no-cloning theorem,
introduced by and Wootters, Zurek and Dieks in 1982 [26,
27]. It is a no-go theorem that can be stated very briefly as
follows:

Theorem 4(No-cloning). It is impossible to create an

identical copy of an arbitrary unknown quantum state.

The crucial part is the fact that the theorem applies to
a situation where the state is unknown.

The theorem can be expressed also in the following
alternative statement:

Theorem 5(No-cloning). Given two states

{|ψ1〉 , |ψ2〉} ∈ H , which are non-orthogonal, i.e.

0 < | 〈ψ1|ψ2〉 | < 1, it doesn’t exist an unitary

transformation defined on two states

Û : H ⊗H → H ⊗H such that

Û(|ψi〉 |0〉) = |ψi〉 |ψi〉 (35)

when i is not known, i.e. when ψi ∈ {ψ1,ψ2} is unknown.

3 The Black Hole Information Paradox

3.1 Black holes

For the purpose of this review, black holes (BHs) can be
briefly described as objects so dense, and with a
gravitational field so strong, that on a surface external to
them, and called events horizon, the escape velocity is
higher than the speed of light. This implies that no
physical object, not even light itself, can ever leave a BH
once it is inside its event horizon.

3.2 Hawking radiation and black hole

evaporation

The work of Stephen Hawking in 1974 [28] introduced
the notion of the Hawking radiation (HR). This
phenomenon is in turn due to the phenomenon of
quantum vacuum fluctuations, that was discussed and
theorized at the beginning of the 20th century by the
scientists that contributed to develop quantum theory (see
e.g. [29, 30]). Quantum vacuum fluctuations are in turn
linked to what has been subsequently formalized as the
Heisenberg uncertainty principle [17, 31], and can be
summarized as the continuous and very rapid creation and
annihilation of particle-antiparticle couples (see figure 7).
Hawking theorized that there is a non-zero probability
that a particle-antiparticle couple is generated close
enough to the BH’s event horizon, so that one of the two
particles manages to escape before they re-annihilate
while the other is trapped inside the horizon. The net
effect is a radiation emitted from the BH while taking
some energy from it, and because of the mass-energy
equivalence, the phenomenon can be described as the
evaporation of the BH. The Hawking radiation has an
extremely low intensity, but if the BH is small enough, it
can lead to the complete evaporation of the BH in a
physically meaningful time, compared to the age of the
universe. In its subsequent detailed quanto-mechanic
calculations [32, 33], Hawking showed also that the
quantum state in which the HR is emitted is a maximally

mixed state (see section 2.1.2).
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Figure 7: Schematics of the mechanism of quantum
vacuum fluctuation and generation of Hawking radiation.

3.3 Black hole paradox

Since it is always possible to prepare the BH, as soon as it
forms, in a pure state, and then leave it isolated, the
phenomenon of HR leads to a contradiction. Indeed if we
consider an isolated BH as an isolated quantum system,
according to the postulates of QM seen in section 2.3.1,
its evolution should be described by an unitary
transformation. But if we consider the process of
complete evaporation of the BH, and take into account
that the HR is emitted in a mixed state, we would have the
evolution of an isolated quantum system from a pure state
to a mixed state, in contradiction with that postulate. For
what follows it is worth to remember that a maximally
mixed state is such that each state of the mixture is
equiprobable. So if we describe the final state of the
Hawking radiation after the complete evaporation as a
quantum random variable, this is in a maximally mixed
state, and therefore it has zero mutual information with
the quantum random variable describing the initial state.

3.3.1 BH paradox in terms of QIT

It is possible to rephrase this contradiction using the
concepts of quantum information theory, so to show that
contradicting the postulate of unitary evolution of an
isolated quantum system is equivalent to contradict the
no-cloning theorem introduced in section 2.5.

Let’s consider a physical system, containing a certain
amount of information, dropped into the BH at an early
time, and let’s ask the question whether this information
can in principle be retrieved at a later time or not (see
figure 8).
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Figure 8: Information falling into the event horizon: can
it, even in principle, be retrieved? From the point of view
of an in-falling observer, crossing the event horizon has no
physical effect, and this suggests that also the information
is not destroyed when it falls inside the horizon.

In a deterministic system, following the dynamic
equations that describe its evolution, it is in principle
possible to reconstruct an earlier state once we fully know
the state at a later time (with emphasis on the full

knowledge of any degree of freedom and their
correlations). So, if a BH is well described by quantum
mechanics, the answer to the question about the
information retrieval should be affirmative, and the
Hawking radiation is a good candidate to explain how the
information can escape. This in turn would question
general relativity, from which the very definition of event
horizon descends [34, 35], because by definition nothing
can escape the event horizon.
If on the other hand the answer to the question about the
information retrieval is negative, then it means that the
quantum-mechanical description of the BH and its
evolution has to be revised.

Moreover, we can show how, if we accept the notion
that somehow the information initially dropped inside the
event horizon, eventually escapes via the Hawking
radiation, we incur in another problem. Indeed, from the
point of view of an in-falling observer, crossing the event
horizon has no physical effect. So we can safely assume
that the information dropped in the BH still exists intact,
inside the event orizon (at least until it reaches the
internal singularity of the BH).
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Therefore, if the information also escapes, it means
that at least a finite time, two copies of the same
information exist, inside and outside the event horizon. So
this would contradict the no-cloning theorem of section
2.5.

3.3.2 Contributions to the solution from QIT

Although the BH information paradox is still an open
problem, QIT has contributed to its comprehension with
some important results and insights.

Jacob Bekenstein is one of the leading authors of such
line of research [36]. In 1972 he has introduced a
generalized second law describing the thermodynamics of
BHs [37], and in the 1973 he has introduced a definition
of BH’s entropy, as being proportional to its area A and
inversely proportional to the square of Plank’s length ℓ2

P:

SBH ∝
A

ℓ2
P

. (36)

Then, at first Bekenstein [38], and then Bousso [39] have
found upper bounds for the BH’s entropy. Since the
double meaning of the entropy as both a thermodynamic
parameter and a measure of the information content of a
system (see section 1.1) these results have suggested a
information theoretical approach to solve the paradox.

Hayden and Preskyll [40] have used results from
quantum error correction, to extend a result already found
by Page [?]. When the BH is in an advanced stage of its
evaporation, more precisely when its entropy is less than
half the initial amount, they prove that the information
retention time, i.e. the time needed for the information
dropped in the event horizon to re-emerge in the Hawking
radiation, is relatively short, and in particular:

tinfo = O(rS logrS) (37)

where rS is the Schwarzschild radius.

Another contribution to the solution of the BH
information paradox, also used by Hayden and Preskyll,
is the concept of BH complementarity [42, 43]. This
approach considers two possibilities: the information
traveling toward the BH from outside, when reaches the
event horizon is either transmitted inside or reflected
outside. Then, the suggestion is that instead of choosing
between those two possibilities, we can accept them both.
To solve the conflict with the no-cloning theorem, we
assume that, because of the quantum complementarity

discussed in section 2.2.3 it is impossible for any observer
to observe both descriptions, or access both copies of the
information. An external observer will see the incoming
information being absorbed by the event horizon, and
then re-transmitted outside by means of the Hawking
radiation, all this process being unitary. The observer
falling inside the event horizon from outside will not

notice the crossing, and will continue to observe the
information that is falling with him. But he will not be
able to access the information reflected outside with the
Hawking radiation, because that will be encoded in a
different basis, such that the mutual information is zero.

Another important result worth to mention is the
holographic principle, a general result which can be
stated as follows: “Physical processes in a system of D

dimensions are reflected in processes taking place on the

D − 1 dimensional boundary of that system. There is an

equivalence between theories of different sorts written in

space-times of different dimensions” [36, 44].
The fields of QIT, Astrophysics and general relativity

have all gained from this interdisciplinary approach; as an
example the concept of Generalized Second Law, and the
Holographic Principle have also lead to results in QIT. In
particular, upper bounds have been proven for the entropy
outflow ∂S

∂ t
, which is a proxy for the communication rate,

or information channel capacity [36].

4 The renormalization group information

flow

4.1 Description of the RG

The main idea of the renormalization group (RG) is that
of a tool to extract the macroscopic description of a
physical system (e.g. a field) from its microscopic model.
First of all, the change in the descriptions going from the
microscopic to the macroscopic model is captured by the
change of the interaction constant g(µ) in the interaction
term of the hamiltonian.

This change can be described as the action of an
operator Ĝ applied to the interaction constant:

g(µ2) = Ĝ [ g(µ1)] (38)

where µi is a parameter that represents the different
scales. Although this transformation is called
“renormalization group”, it is not formally a group. It is
just a "flow of transformations" in the space of all the
possible hamiltonians. The main reason why the RG is
not a group, is that given a transformation from a small
scale description to a large scale description, the inverse
transformation is not necessarily defined.

In 1954 Murray Gell-Mann and Francis Low
published a work on quantum electrodynamics
(QED) [45], in which they studied the photon propagator
at high energies. They introduced the concept of scaling
transformation with a group-like formalism, where the
group operator Ĝ transforms the electromagnetic coupling
parameter g:

Ĝ [g(µ2)] =

(

µ2

µ1

)d

Ĝ [g(µ1)] (39a)

g(µ2) = Ĝ−1

[

(

µ2

µ1

)d

Ĝ [g(µ1)]

]

. (39b)
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Equation (39) expresses the requirement that before and
after the scaling, the physical laws don’t change. So the
equation requires that the coupling parameter before and
after the scaling changes taking into account the scaling

factor
(

µ2
µ1

)d

. Going from this discrete scaling µ1 → µ2

to a continuous scaling transformation, it is possible to
define a function β(g) that expresses the corresponding
continuous transformation of the coupling parameter g:

β [g(µ)] =
∂g(µ)
∂ ln(µ)

. (40)

Between 1974 and 1975 Kenneth Wilson and John Kogut
introduced a more general description of this
idea [46–48]. In this description, the large scale
(macroscopic) behaviour will be linked to the low energy
regime of the model, because at long distance only long
wavelengths are relevant, while for the microscopic
behaviour higher energies will be relevant. With reference
to this, in the language of the RG the microscopic, high
energy model will be called the ultraviolet limit, while the
macroscopic, low energy one will be called the infrared

limit. Another language to express the description at
different scales is in terms of fine graining and coarse

graining.
To give an example of the low energy approximation,

we can imagine a sinusoidal potential for the microscopic
model, and its approximation with a parabolic potential
for the macroscopic description. This will be a good
description at low energies, i.e. at the bottom of the
microscopic potential. However, at high energies this
approximation may introduce some divergencies,
involving as an example the integration over bigger
ranges of energies. Since those divergencies are only due
to the approximated description of the potential, this can
be corrected introducing a cut-off for the high range of
energies. The dynamics of a composite system can be

g

g

(a)

galaxies

stars

(b)

Figure 9: abstract description of the renormalization
group. (a) Two different scales of modelling, with two
different interacting constants. (b) An example of such
different scales can be found in astrophysics, where the
description at the scale of stars (lower image) has an
interaction constant different from the description at the
scale of galaxies (upper image).

described by the interactions between its components. At

a certain scale (graining) µ1 the physics of that model is
described by the hamiltonian of the system, and in
particular by its interaction term, i.e. by the interaction
constant g(µ1). At an bigger scale (coarse graining) µ2,
the components of the lower scale can be “clustered” into
a single element of the coarse graining (see section 9a),
and the interaction constant is in principle changed. The
equations expressing the constrain that: “the physics at
different scales has to be the same” are (38) and (39),
which express the constrains for the interaction constant
g(µi), and another equation that express the constrain
between the correlation at different scales, which is the
the Callan-Symanzik equation [49–51]:
[

m
∂

∂m
+β(g)

∂
∂g

+ nγ
]

C(n)(x1, . . . ,xn;m,g) = 0 (41)

where: m is the mass, C is the correlation function between
the (x1, . . . ,xn) elements of the system, β and γ are two
functions that “compensate” the effect of the scale change,
in order for the description (i.e. the correlation function) at
the different scales to be consistent. In particular β , which
we have already seen in (40), captures the change of the
coupling constant, while γ captures the change of the field
itself.

In applying the group transformations, we go from
one point of the space (manifold) of all the possible
hamiltonians (i.e. in the manifold of the βs and γs) to
another. However, there are some points, called critical

points, or conformal points, where the function g(µ) has
its minimum. From another point of view we can think at
the manifold of the hamiltonians (each describing a
different model for the system, at different scales, with
different values of the coupling constant), and then think
that the RG transformations describes a flow from one
model to the other. The flow always ends at the points that
are invariant for this transformation, so those points have
to be self-similar. Each of the critical points are
characterized by the (minimal) value that the function
assumes there, and this value is called the "central
charge" of the system.

4.2 The c-function and the link to QIT

The c-theorem of Alexander Zamolodchikov [52]
individuates, in the case of a two-dimensional
renormalizable field, a function which is monotonic along
the RG transformations.

This monotonicity suggests an information theoretical
meaning for this function, analogue to the information
content. [53–55].

Since the seminal result by Zamolodchikov, several
authors have worked on c-theorems at dimensions higher
than 2 [56–60].

Another approach to the RG is the density matrix
renormalization group (DMRG) [61, 62]. Osborne and
Nielsen [63] make more explicit the link between DMRG
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and QIT. A characteristic feature of critical phenomena is
the emergence of collective behaviour, and it is
conjectured that quantum entanglement is the origin of
this cooperative behaviour. DMRG and its explicit
quanto-mechanical approach seems the ideal formalism
with which to substantiate this conjecture [64, 65].

Finally, a different interdisciplinary approach, not
necessarily linked to information theory, is the parallel
between the renormalization used in quantum field theory
and the renormalization used in thermodynamics and
statistical mechanics to describe critical
phenomena [46, 66].
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