
Quantum Statistical Mechanics is concerned with many-particle systems
that interact with the external world. This leads to a quantum mechani-
cal description of thermal equilibrium in terms of mixed states that follow
a Gibbs distribution. The external world acts as a heat bath that fixes
the temperature. This situation should be contrasted to closed, or isolated,
systems, which are described by pure states subject to the time dependent
Schrödinger equation. As we always may combine our system of interest
with its environment, it is clear that Quantum Statistical Mechanics must
somehow arise out of such time-evolving pure states. How and in what sense
this happens is a very interesting question first investigated by von Neumann
in the early days of quantum theory [1]. Unfortunately it is extremely chal-
lenging to experimentally realize many-particle systems, in which unitary
time evolution can be observed on appreciable time scales. This greatly
inhibited further developments for several decades, although a number of
theoretical works appeared that are nowadays recognized as ground break-
ing [2]. In the early noughties the situation changed dramatically, when it
became possible to investigate the non-equilibrium evolution of cold atomic
systems that were to a good approximation isolated on long time scales [3].
These experimental advances opened the door to exploring new regions of
Hilbert space and answer fundamental questions about relaxation and equi-
libration in many-particle quantum systems. Exciting results have kept on
coming ever since, e.g. while this volume was being completed it was shown
by a direct measurement [4], that entanglement creates local entropy that
validates the use of statistical physics for local observables.

Quantum integrable models have played a important role in these de-
velopments for a number of reasons. First, some of the systems that have
been explored experimentally are described by integrable theories with small
perturbations. Second, integrable models have the attractive feature of al-
lowing one to derive exact results. This in turn has proved extremely useful
for revealing general features of non-equilibrium dynamics. For example
it was understood by considering non-interacting theories that relaxation
in isolated quantum systems occurs at the level of local properties, which
can be described by appropriate statistical ensembles [7]. Finally, the non-
equilibrium dynamics of (almost) integrable models has been found to differ
in interesting ways from that of generic systems. For example, the pioneering
quantum Newton’s cradle experiment of Kinoshita, Wenger, and Weiss [5]
demonstrated that while (non-integrable) two- and three-dimensional gases
relax swiftly to an equilibrium Gibbs distribution, a one-dimensional (al-
most integrable) gas evolves slowly towards a non-thermal stationary state.
For the purpose of this introduction we define quantum integrable models
rather loosely as being characterized by having an infinite number of conser-
vation laws that possess certain locality properties. A consequence of this
structure is that the scattering of elementary excitations in these models is
purely elastic. In this volume we will encounter many examples of integrable

1



theories, ranging from systems of non-interacting particles to quantum spin
chains to conformal field theories. Their behaviours out of equilibrium are
strongly affected by their conservation laws, which constrain their dynamics
and provide selection rules for the stationary states they relax to [6]. The
locality properties of conservation laws in integrable theories play a crucial
role in this context [8], as in fact any Hamiltonian H has a huge number of
non-local conservation laws (such as the projectors on its eigenstates or ar-
bitrary powers of H). The constraints imposed by the conservation laws on
the evolution of integrable models out of equilibrium have the attractive con-
sequence that such systems can relax to states of matter that are impossible
to realize in equilibrium. In presence of weak integrability breaking pertur-
bations these states become metastable, giving rise to the phenomenon of
prethermalization.

Our aim in putting together this Special Issue of JSTAT was to provide a
self-contained introduction to key aspects of the non-equilibrium dynamics
in (almost) integrable theories. Nine reviews focus on a range of theoretical
aspects in both lattice and continuum theories, while one review provides
an overview of the current state of the art in cold atom experiments. The
topics covered are largely complementary to previous reviews on quantum
quenches and thermalisation in the literature [9, 10, 11, 12].

The contents of the Special Issue is as follows:

1. Essler and Fagotti open the volume with a pedagogical introduction
to quantum quenches in integrable quantum spin chains, focussing in
particular on the role played by local conservation laws.

2. Calabrese and Cardy review the imaginary time path integral approach
to the quench dynamics in conformal field theories, and discuss the ap-
plication of these results to condensed matter and cold atoms systems.

3. Cazalilla and Chung survey results on quantum quenches in the Lut-
tinger model and its close relatives.

4. Bernard and Doyon review the transport properties of conformal field
theories both in one and higher dimensions.

5. Caux presents an introduction to the quench action method, which
is an effective representation for calculating time-dependent expecta-
tion values of physical operators following a generic out-of-equilibrium
protocol.

6. Ilievski, Medenjak, Prosen, and Zadnik discuss the importance of
quasilocal charges in integrable lattice systems both for quenches and
transport phenomena.

2



7. Vidmar and Rigol report on the Generalized Gibbs Ensemble in inte-
grable lattice models and how to measure its predictions in numerical
simulations.

8. Langen, Gasenzer, and Schmiedmayer review the concept of prether-
malization in near-integrable quantum systems with special emphasis
on the experiments where these phenomena have been observed.

9. Vasseur and Moore review the non-equilibrium dynamics of many-
body quantum systems after a quantum quench with spatial inhomo-
geneities, focusing on integrable and many-body localized systems.

10. De Luca and Mussardo close the volume with a manuscript on classical
integrable field theories at a finite energy density, with a time evolution
that starts from initial conditions far from equilibrium.

Even a volume as substantial as this one cannot give a complete account
of all the recent exciting developments in the non-equilibrium dynamics of
integrable models. Some topics like ramps and Kibble-Zurek physics have
been omitted because reviews already exists [24], while others had to be left
out due to space constraints. We nevertheless hope that this Special Issue
can serve as a useful and substantial introduction for newcomers in the field,
as well as a convenient and reasonably complete reference for experts.
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