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Introduction: rare events
Rare events occur when dealing with performance evaluation
in many different areas

in telecommunication networks: loss probability of a
small unit of information (a packet, or a cell in ATM
networks), connectivity of a set of nodes,

in dependability analysis: probability that a system is
failed at a given time, availability, mean-time-to-failure,

in air control systems: probability of collision of two
aircrafts,

in particle transport: probability of penetration of a
nuclear shield,

in biology: probability of some molecular reactions,

in insurance: probability of ruin of a company,

in finance: value at risk (maximal loss with a given
probability in a predefined time),

...
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What is a rare event? Why simulation?

A rare event is an event which occurence is rare, of
probability less than 10−3.

Typical probabilities of interest are between 10−8 and
10−10.

This is a target for instance in nuclear plants (!)

In most of the above problems, the mathematical model
is too complicated to be solved by analytic-numeric
methods because

the assumptions are not stringent enough,
the mathematical dimension of the problem is large,
or the state space is too large to get a result in a
reasonable time.

Then, simulation is often the only tool at hand.
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Monte Carlo

In all the above problems, the goal is to compute
µ = E[X ] of some random variable X .

Monte Carlo simulation (in its basic form) generates n

independent copies of X , (Xi , 1 ≤ i ≤ n),

X̄n = (1/n)
∑n

i=1 Xi approximation of µ.

Almost sure convergence as n → ∞ (law of large
numbers).

Accuracy: central limit theorem, yielding a confidence
interval

µ ∈
(

X̄n −
cασ√

n
, X̄n +

cασ√
n

)

α: desired confidence probability,
cα = Φ−1(1 − α

2 ) with Φ is the cumulative Normal
distribution function of N (0, 1)
σ2 = Var[X ] = E[X 2] − (E[X ])2, estimated by
S2

n = (1/(n − 1))
∑n

i=1 X 2
i − (n/(n − 1))(X̄n)

2.
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Remarks on the confidence interval

Confidence interval size: 2cασ/
√

n,

decreasing in 1/
√

n independently of the mathematical
dimension of the problem (advantage for large
dimensions).

Slow in the other hand: to reduce the width by 2, you
need 4 times more replications.

How to improve the accuracy? Acceleration

either by decreasing the simulation time to get a
replication
or reducing the variance of the estimator.

For rare events, acceleration required! (See next slide.)
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Inefficiency of crude Monte Carlo

Crude Monte Carlo: simulates the model directly

Assume we want to compute the probability
µ = E[1A] << 1 of a rare event A.

Xi Bernoulli r.v.: 1 if the event is hit and 0 otherwise.

To get a single occurence, we need in average 1/µ
replications (109 for µ = 10−9), and more to get a
confidence interval.

nX̄n Binomial with parameters (n, µ) and the confidence
interval is

(

X̄n −
cα

√

µ(1 − µ)√
n

, X̄n +
cα

√

µ(1 − µ)√
n

)

.

Relative half width

cασ/(
√

nµ) = cα

√

(1 − µ)/µ/n → ∞ as µ → 0.

Something has to be done to accelerate the occurence
(and reduce variance).
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Robustness properties

In rare-event simulation models, we often parameterize
with a rarity parameter ε > 0 such that
µ = E[X (ε)] → 0 as ε → 0.

An estimator X (ε) is said to have bounded relative

variance (or bounded relative error) if σ2(X (ε))/µ2(ε) is
bounded uniformly in ε.

Interpretation: estimating µ(ε) with a given relative
accuracy can be achieved with a bounded number of
replications even if ε → 0.

Weaker property: asymptotic optimality (or logarithmic

efficiency) if limε→0 ln(E[X 2(ε)])/ ln(µ(ε)) = 2.

Other robustness measures exist (based on higher
degree moments, on the Normal approximation, on
simulation time...)
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Importance Sampling (IS)

Let X = h(Y ) for some function h where Y obeys some
probability law P.

IS replaces P by another probability measure P̃, using

E [X ] =

∫

h(y)dP(y) =

∫

h(y)
dP(y)

d P̃(y)
d P̃(y) = Ẽ [h(Y )L(Y )]

L = dP/d P̃ likelihood ratio,
Ẽ is the expectation associated to probability law P.

Required condition: d P̃(y) 6= 0 when h(y)dP(y) 6= 0.

If P and P̃ continuous laws, L ratio of density functions.

If P and P̃ are discrete laws, L ratio of indiv. prob.

Unbiased estimator:
1

n

n
∑

i=1

h(Yi )L(Yi ) with

(Yi , 1 ≤ i ≤ n) i.i.d; copies of Y , according to P̃.

Goal: select probability law P̃ such that

σ̃2[h(Y )L(Y )] = Ẽ[(h(Y )L(Y ))2] − µ2 < σ2[h(Y )].
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IS difficulty: system with exponential failure time

Goal: to compute µ that the system fails before T ,
µ = E[1A(Y )] = 1 − e−λT .

Use for IS an exponential density with a different rate λ̃

Ẽ[(1A(Y )L(Y ))2] =

∫ T

0

(

λe−λy

λ̃e−λ̃y

)2

λ̃e−λ̃ydy =
λ2(1 − e−(2λ−λ̃)T )

λ̃(2λ − λ̃)
.

Variance ratio for T = 1 and λ = 0.1:

λ̃
λ = 0.1 1 2 3 4 5 6 7

variance ratio σ̃2(1A(Y )L(Y ))/σ2(1A(Y ))

0

0.5

1

1.5

2
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If A = [T ,∞), i.e., µ = P[Y ≥ T ], and IS with

exponential with rate λ̃:

Ẽ[(1A(Y )L(Y ))2] =

∫

∞

T

(

λe−λy

λ̃e−λ̃y

)2

λ̃e
−λ̃y

dy =
λ2e−(2λ−λ̃)T

λ̃(2λ − λ̃)
.

Minimal value computable, but infinite variance wen
λ̃ > 2λ. If λ = 1:

λ̃
0 0.25 0.5 0.75 λ = 1 1.25

variance ratio

0

0.5

1

1.5

2

2.5
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Optimal estimator for estimating E[h(Y )] =
∫

h(y)L(y)d P̃(y)

Optimal change of measure:

P̃ =
|h(Y )|

E[|h(Y )|]dP.

Proof: for any alternative IS measure P
′, leading to the

likelihood ratio L′ and expectation E
′,

Ẽ[(h(Y )L(Y ))2] = (E[|h(Y )|])2 = (E′[|h(Y )|L′(Y )])2 ≤ E
′[(h(Y )L′(Y ))2].

If h ≥ 0, Ẽ[(h(Y )L(Y ))2] = (E[h(Y )])2, i.e.,
σ̃2(h(Y )L(Y )) = 0. That is, IS provides a zero-variance
estimator.

Implementing it requires knowing E[|h(Y )|], i.e. what
we want to compute; if so, no need to simulation!

But provides a hint on the general form of a “good” IS.
measure.
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IS for a discrete-time Markov chain (DTMC)
{Yj , j ≥ 0}

X = h(Y0, . . . ,Yτ ) function of the sample path with
P = (P(y , z) transition matrix, π0(y) = P[Y0 = y ],
initial probabilities
up to a stopping time τ , first time it hits a set ∆.
µ(y) = Ey [X ].

IS replaces the probabilities of paths (y0, . . . , yn),

P[(Y0, . . . ,Yτ ) = (y0, . . . , yn)] = π0(y0)
n−1
∏

j=1

P(yj−1, yj),

by P̃[(Y0, . . . ,Yτ ) = (y0, . . . , yn)] st Ẽ[τ ] < ∞.

For convenience, the IS measure remains a DTMC,
replacing P(y , z) by P̃(y , z) and π0(y) by π̃0(y).

Then L(Y0, . . . ,Yτ ) =
π0(Y0)

π̃0(Y0)

τ−1
∏

j=1

P(Yj−1, Yj)

P̃(Yj−1, Yj)
.
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Illustration: a birth-death process

Markov chain with state-space {0, 1, . . . ,B},
P(y , y + 1) = py and P(y , y − 1) = 1 − py , for
y = 1, . . . ,B − 1

∆ = {0, B}, and let µ(y) = P[Yτ = B | Y0 = y ].

Rare event if B large or the py s are small.

If py = p < 1 for y = 1, . . . ,B − 1, known as the
gambler’s ruin problem.

An M/M/1 queue with arrival rate λ and service rate
µ > λ fits the framework with p = λ/(λ + µ).

How to apply IS: increase the py s to p̃y to accelerate
the occurence (but not too much again).

Large deviation theory applies here, when B increases.

Strategy for an M/M/1 queue: exchange λ and µ
Asymptotic optimality, but no bounded relative error.
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Highly Reliable Markovian Systems (HRMS)

System with c types of components. Y = (Y1, . . . ,Yc)
with Yi number of up components.

1: state with all components up.

Failure rates are O(ε), but not repair rates. Failure
propagations possible.

System down (in ∆) when some combinations of
components are down.

Goal: compute µ(y) probability to hit ∆ before 1.

µ(1) typical measure in dependability analysis, small if ε
small.

Simulation using the embedded DTMC. Failure
probabilities are O(ε) (except from 1). How to improve
(accelerate) this?

Proposition: ∀y 6= 1, increase the probability of the set
of failures to constant 0.5 < q < 0.9 and use individual
probabilities proportional to the original ones.

Failures not rare anymore.
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HRMS Example, and IS

2, 2
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1, 1
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1/2 ε2
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ε2ε2

ε

Figure: Original probabilities
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0
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ε
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q

(1 − q)/2
q/2
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q

Figure: Probabilities under IS
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Zero-variance IS estimator for Markov chains
simulation

Restrict to an additive (positive) cost

X =
τ
∑

j=1

c(Yj−1, Yj)

Is there a Markov chain change of measure yielding
zero-variance?

Yes we have zero variance with

P̃(y , z) =
P(y , z)(c(y , z) + µ(z))

∑

w P(y , w)(c(y , w) + µ(w))

=
P(y , z)(c(y , z) + µ(z))

µ(y)
.

Without the additivity assumption the probabilities for
the next state must depend in general of the entire
history of the chain.
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Zero-variance for Markov chains
Proof by induction on the value taken by τ , using the
fact that µ(Yτ ) = 0 In that case, if X̃ denotes the IS
estimator,

X̃ =
τ
∑

i=1

c(Yi−1,Yi )
i
∏

j=1

P(Yj−1,Yj)

P̃(Yj−1,Yj)

=

τ
∑

i=1

c(Yi−1,Yi )

i
∏

j=1

P(Yj−1,Yj)µ(Yj−1)

P(Yj−1,Yj)(c(Yj−1,Yj) + µ(Yj))

=

τ
∑

i=1

c(Yi−1,Yi )

i
∏

j=1

µ(Yj−1)

c(Yj−1,Yj) + µ(Yj)

= µ(Y0)

Unique Markov chain implementation of the
zero-variance estimator.

Again, implementing it requires knowing µ(y) ∀y , the
quantities we wish to compute.

Approximation to be used.
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Zero-variance approximation

Use a heuristic approximation µ̂(·) and plug it into the
zero-variance change of measure instead of µ(·).
More efficient but also more requiring technique: learn
adaptively function µ(·), and still plug the
approximation into the zero-variance change of measure
formula instead of µ(·).

Adaptive Monte Carlo (AMC) proceeds iteratively.

Considers several steps and ni independent simulation
replications at step i .
At step i , replaces µ(x) by a guess µ(i)(x)
use probabilities

P̃
(i)
y,z =

Py,z(cy,z + µ(i)(z))
∑

w
Py,w (cy,w + µ(i)(w))

.

Gives a new estimation µ(i+1)(y) of µ(y), from which a
new transition matrix P̃ (i+1) is defined.
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Adaptive stochastic approximation (ASA)

ASA just uses a single sample path (y0, . . . , yn).

Initial distribution for y0, matrix P̃(0) and guess µ(0)(·).
At step j of the path, if yj 6∈ ∆,

matrix P̃(j) used to generate yj+1.
From yj+1, update the estimate of µ(yj) by

µ(j+1)(yj ) = (1 − aj (yj ))µ
(j)(yj )

+ aj (yj )
[

c(yj , yj+1) + µ(j)(yj+1)
] P(yj , yj+1)

P̃(j)(yj , yj+1)
,

where {aj(y), j ≥ 0}, sequence of step sizes

For δ > 0 constant,

P̃(j+1)(yj , yj+1) = max

(

P(yj , yj+1)

[

c(yj , yj+1) + µ(j+1)(yj+1)
]

µ(j+1)(yj )
, δ

)

.

Otherwise µ(j+1)(y) = µ(j)(y), P̃(j+1)(y , z) = P(j)(y , z).

Normalize: P(j+1)(yj , y) =
P̃(j+1)(yj , y)

∑

z P̃(j+1)(yj , z)
.

If yj ∈ ∆, yj+1 generated from initial distribution, but
estimations of P(·, ·) and µ(·) kept.

Batching techniques used to get a confidence interval.
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Drawbacks of the learning techniques

You have to store vectors µ(n)(·). State-space typically
very large when we use simulation...

This limits the practical effectiveness of the method.

Our research direction:

Use K basis functions µ(1)(·), . . . , µ(K)(·), and an
approximation

µ(·) ≡
K
∑

k=1

αkµ
(k)(·).

Learn coefficients αk as in previous methods, instead of
the function itself.
See also how best basis functions can be learnt, as done
in dynamic programming.
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Illustration of heuristics: birth-death process

Let P(i , i + 1) = p and P(i , i − 1) = 1 − p for
1 ≤ i ≤ B − 1, and P(0, 1) = P(B, B − 1) = 1.

We want to compute µ(1), probability of reaching B

before coming back to 0.

If p small, to approach µ(·), we can use

µ̂(y) = pB−y ∀y ∈ {1, . . . ,B − 1}

with µ̂(0) = 0 and µ̂(B) = 1 based on the asymptotic
estimate µ(i) = pB−i + o(pB−i ).

We can verify that the variance of this estimator is
going to 0 (for fixed sample size) as p → 0.
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Illustration: HRMS

Complicates the previous model due to the
multidimensional description of a state.

The idea is to approach µ(y) by the probability of the
path from y to ∆ with the largest probability

Results (to be published):

Bounded Relative Error proved (as ε → 0).
Even vanishing relative error if µ(y) contains all the
paths with the smallest degree in ε.

Simple version: approach µ(y) by the (sum of)
probability of paths from y with only failure
components of a given type.

Results impressive with respect to the IS scheme of just
increasing the probability of whole set failure transitions
to q as proposed in the literature (gain of several orders
of magnitudes + stability of the results).
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Splitting: general principle

Splitting is the other main rare event simulation
technique.

Assume we want to compute the probability P(D) of an
event D.

General idea:

Decompose
D1 ⊃ · · · ⊃ Dm = D,

Use P(D) = P(D1)P(D2 | D1) · · ·P(Dm | Dm−1), each
conditional event being “not rare”,
Estimate each individual conditional probability by
crude Monte Carlo, i.e., without changing the laws
driving the model.
The final estimate is the product of individual estimates.

Question: how to do it for a stochastic process?
Difficult to sample conditionally to an intermediate
event.
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Splitting and Markov chain {Yj ; j ≥ 0} ∈ Y
Goal: compute γ0 = P[τB < τA] with

τA = inf{j > 0 : Yj−1 6∈ A and Yj ∈ A}
τB = inf{j > 0 : Yj ∈ B}

Intermediate levels from importance function h : Y → R with
A = {x ∈ Y : h(x) ≤ 0} and B = {x ∈ Y : h(x) ≥ `}:

Partition [0, `) in m subintervals with boundaries
0 = `0 < `1 < · · · < `m = `.
Let Tk = inf{j > 0 : h(Yj) ≥ `k} and Dk = {Tk < τA}.

1st stage:

simulate N0 chains until min(τA, T1).
If R1 number of chains for which D1 occurs,
p̂1 = R1/N0 unbiased estimator of p1 = P(D1).

Stage 1 < k ≤ m:

If Rk−1 = 0, p̂l = 0 for all l ≥ k and the algorithm stops
Otherwise, start Nk chains from these Rk entrance
states, by potentially cloning (splitting) some chains
simulate these chains up to min(τA, Tk).
p̂k = Rk/Nk−1 unbiased estimator of pk = P(Dk |Dk−1)
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The different implementations

Fixed splitting:
clone each of the Rk chains reaching level k in ck

copies, for a fixed positive integer ck .
Nk = ckRk is random.

Fixed effort:
Nk fixed a priori
random assignment draws the Nk starting states at
random, with replacement, from the Rk available states.
fixed assignment, on the other hand, we would split
each of the Rk states approximately the same number
of times.
Fixed assignment gives a smaller variance than random
assignment because it amounts to using stratified
sampling over the empirical distribution Gk at level k.

Fixed splitting can be implemented in a depth-first way,
recursively, while fixed effort cannot.

On the other hand, you have no randomness (less
variance) in the number of chains with fixed effort.
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Diminishing the computational effort

As k increases, it is likely that the average time before
reaching the next level or going back to A increases
significantly.

We can kill (truncate) trajectories hat go a given
number β of levels down (unlikely to come back), but
biased.

Unbiased solution: apply the Russian roulette principle

kill the trajectory going down with a probability rβ . If it
survives, assign a multiplicative weight 1/(1 − rβ).
Several possible implementations to reduce the variance
due to the introduction of weights.
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Issues to be solved

How to define the importance function h?

If the state space is one-dimensional and included in R,
the final time is an almost surely finite stopping time
and the critical region is B = [b,∞), any strictly
increasing function would be good (otherwise a
mapping can be constructed, by just moving the levels),
such as for instance h(x) = x .
If the state space is multidimensional: the importance
function is a one-dimensional projection of the state
space.
Desirable property: the probability to reach the next
level should be the same, whatever the entrance state in
the current level.
Ideally, h(x) = P[τB ≤ τA | X (0) = x ], but as in IS, they
are a probabilities we are looking for.
This h(·) can also be learnt or estimated a priori, with a
presimulation, by partitionning the state space and
assuming it constant on each region.
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Issues to be solved (2)

How many offsprings at each level?

In fixed splitting:

if ck < 1/pk , we do not split enough, it will become
unlikely to reach the next event;
if ck > 1/pk , the number of trajectories will
exponentially explode with the number of levels.
The right amount is ck = 1/pk (ck can be randomized
to reach that value if not an integer).

In fixed effort, no explosion is possible.
In both cases, the right amount has to be found.

How many levels to define?

i.e., what probability to reach the next level?
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Optimal values

In a general setting, very few results exist:

We only have a central limit theorem based on genetic
type interacting particle systems, as the sample
increases.
Nothing exist on the definition of optimal number of
levels...

Consider the simplified setting, with a single entrance
state at each level.

Similar to coin–flipping to see if next level is reached or
not.

In that case, asymptotically optimal results can be
derived, providing hints of values to be used.
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Simplified setting and fixed effort

N0 = N1 = · · · = Nm−1 = n

The p̂k ’s binomial r.v. with parameters n and

pk = p = µ
1/m

0 assumed independent.
It can be shown that

Var[p̂1 · · · p̂m] =
m
∏

k=1

E[p̂2
k ] − γ2

0 =

(

p
2 +

p(1 − p)

n

)m

− p
2m

=
mp2m−1(1 − p)

n
+ · · · +

(p(1 − p))m

nm
.

Assuming n � (m − 1)(1 − p)/p,

Var[p̂1 · · · p̂m] ≈ mp2m−1(1 − p)/n ≈ mγ
2−1/m

0 /n.

The work normalized variance ≈ [γn
0m2]/n = γ

2−1/m

0 m2

Minimized at m = − ln(γ0)/2

This gives pm = γ0 = e−2m, so p = e−2.

But the relative error and its work-normalized version
both increase toward infinity at a logarithmic rate.

There is no asymptotic optimality either.
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Simplified setting: fixed splitting

N0 = n, pk = p = γ
1/m

0 for all k , and c = 1/p; i.e.,
Nk = Rk/p.

The process {Nk , k ≥ 1} is a branching process.

From standard branching process theory

Var[p̂1 · · · p̂m] = m(1 − p)p2m−1/n.

If p fixed and m → ∞, the squared relative error
m(1 − p)/(np) is unbounded,

But it is asymptotically efficient:

lim
γ0→0+

log(E[γ̃2
n ])

log γ0
= lim

γ0→0+

log(m(1 − p)γ2
0/(np) + γ2

0)

log γ0
= 2.

Fixed splitting is asymptotically better, but it is more
sensitive to the values used.
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Illustrative simple example: a tandem queue

Illustrative of the impact of the importance function.

Two queues in tandem

arrival rate at the first queue is λ = 1
mean service time is ρ1 = 1/4, ρ2 = 1/2.
Embedded DTMC: Y = (Yj , j ≥ 0) with
Yj = (Y1,j ,Y2,j) number of customers in each queue
after the jth event
B = {(x1, x2) : x2 ≥ L = 30}, A = {(0, 0)}.

Goal: impact of the choice of the importance function?

Importance functions:

h1(x1, x2) = x2,

h2(x1, x2) = (x2 + min(0, x2 + x1 − L))/2,

h3(x1, x2) = x2 + min(x1, L − x2 − 1) × (1 − x2/L).
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Illustration, fixed effort: a tandem queue (2)

VN : variance per chain, (N times the variance of the
estimator) and the work-normalized variance per chain,
WN = SNVN , where SN is the expected total number of
simulated steps of the N Markov chains.

With h1, V̂N and ŴN were significantly higher than for h2

and h3.

Estimators rescaled as ṼN = 1018 × V̂N and
W̃N = 1015 × ŴN .

N = 210 N = 212 N = 214 N = 216

ṼN W̃N ṼN W̃N ṼN W̃N ṼN W̃N

h2, Splitting 109 120 89 98 124 137 113 125
h2, Rus. Roul. 178 67 99 37 119 45 123 47

h3, Splitting 93 103 110 121 93 102 107 118
h3, Rus. Roul. 90 34 93 35 94 36 109 41
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Conclusions

Two main techniques for rare event simulation:
importance sampling and splitting

Splitting fans usually say that it has the advantage of
not having to change the model’s laws.

But, requires the definition of the importance function,
very similar to defining the IS change of measure.

On the other hand, any rare event has to be
decomposed in non-rare ones, which cannot always be
done.

Recent moves:

defining zero-variance approximation, yielding bounded
relative error.
Cross Entropy technique: finds the optimal change of
measure in a parametric family.

Book on Rare event simulation to be published by John
Wiley & Sons, by the end of the year.
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