Introduction to rare event simulation

Bruno Tuffin

(some works with colleagues H. Cancela, V. Demers, P. L'Ecuyer, G. Rubino)

INRIA - Centre Bretagne Atlantique, Rennes

Aussois, June 2008, AEP9

1/35 Rare event Simulation

Bruno Tuffin

Introduction to rare events

Monte Carlo: the basics

Importanc Sampling

Splitting

Monte Carlo: the basics

Importance Sampling

Splitting

- 1 Introduction to rare events
- 2 Monte Carlo: the basics
- Importance Sampling
- Splitting
- 5 Conclusions and main research directions

Sampling

Splitting

Conclusions and main research directions

Rare events occur when dealing with performance evaluation in many different areas

- in telecommunication networks: loss probability of a small unit of information (a packet, or a cell in ATM networks), connectivity of a set of nodes,
- in dependability analysis: probability that a system is failed at a given time, availability, mean-time-to-failure,
- in air control systems: probability of collision of two aircrafts,
- in particle transport: probability of penetration of a nuclear shield,
- in biology: probability of some molecular reactions,
- in *insurance*: probability of ruin of a company,
- in *finance*: value at risk (maximal loss with a given probability in a predefined time),

Monte Carlo: the basics

mportance Sampling

Splitting

- A rare event is an event which occurrence is rare, of probability less than 10^{-3} .
- Typical probabilities of interest are between 10^{-8} and 10^{-10} .
- This is a target for instance in nuclear plants (!)
- In most of the above problems, the mathematical model is too complicated to be solved by analytic-numeric methods because
 - the assumptions are not stringent enough,
 - the mathematical dimension of the problem is large,
 - or the state space is too large to get a result in a reasonable time.
- Then, simulation is often the only tool at hand.

Splitting

- In all the above problems, the goal is to compute $\mu = \mathbb{E}[X]$ of some random variable X.
- Monte Carlo simulation (in its basic form) generates n independent copies of X, $(X_i, 1 \le i \le n)$,
- $\bar{X}_n = (1/n) \sum_{i=1}^n X_i$ approximation of μ .
- Almost sure convergence as $n \to \infty$ (law of large numbers).
- Accuracy: central limit theorem, yielding a confidence interval

$$\mu \in \left(\bar{X}_n - \frac{c_{\alpha}\sigma}{\sqrt{n}}, \, \bar{X}_n + \frac{c_{\alpha}\sigma}{\sqrt{n}}\right)$$

- α : desired confidence probability,
- $c_{\alpha} = \Phi^{-1}(1 \frac{\alpha}{2})$ with Φ is the cumulative Normal distribution function of $\mathcal{N}(0,1)$
- $\sigma^2 = \text{Var}[X] = \mathbb{E}[X^2] (\mathbb{E}[X])^2$, estimated by $S_n^2 = (1/(n-1)) \sum_{i=1}^n X_i^2 (n/(n-1)) (\bar{X}_n)^2$.

nportance ampling

Splitting

- Confidence interval size: $2c_{\alpha}\sigma/\sqrt{n}$,
- decreasing in $1/\sqrt{n}$ independently of the mathematical dimension of the problem (advantage for large dimensions).
- Slow in the other hand: to reduce the width by 2, you need 4 times more replications.
- How to improve the accuracy? Acceleration
 - either by decreasing the simulation time to get a replication
 - or reducing the variance of the estimator.
- For rare events, acceleration required! (See next slide.)

Splitting

main research directions

- Crude Monte Carlo: simulates the model directly
- Assume we want to compute the probability $\mu = \mathbb{E}[1_A] << 1$ of a rare event A.
- X_i Bernoulli r.v.: 1 if the event is hit and 0 otherwise.
- To get a single occurrence, we need in average $1/\mu$ replications (10^9 for $\mu=10^{-9}$), and more to get a confidence interval.
- $n\bar{X}_n$ Binomial with parameters (n, μ) and the confidence interval is

$$\left(\bar{X}_n - \frac{c_\alpha \sqrt{\mu(1-\mu)}}{\sqrt{n}}, \, \bar{X}_n + \frac{c_\alpha \sqrt{\mu(1-\mu)}}{\sqrt{n}}\right).$$

- Relative half width $c_{lpha}\sigma/(\sqrt{n}\mu)=c_{lpha}\sqrt{(1-\mu)/\mu/n} o\infty$ as $\mu o0$.
- Something has to be done to accelerate the occurrence (and reduce variance).

4D + 4B + 4B + B + 900

- In rare-event simulation models, we often parameterize with a rarity parameter $\epsilon > 0$ such that $\mu = \mathbb{E}[X(\epsilon)] \to 0$ as $\epsilon \to 0$.
- An estimator $X(\epsilon)$ is said to have bounded relative variance (or bounded relative error) if $\sigma^2(X(\epsilon))/\mu^2(\epsilon)$ is bounded uniformly in ϵ .
- Interpretation: estimating $\mu(\epsilon)$ with a given relative accuracy can be achieved with a bounded number of replications even if $\epsilon \to 0$.
- Weaker property: asymptotic optimality (or logarithmic efficiency) if $\lim_{\epsilon \to 0} \ln(\mathbb{E}[X^2(\epsilon)]) / \ln(\mu(\epsilon)) = 2$.
- Other robustness measures exist (based on higher degree moments, on the Normal approximation, on simulation time...)

ullet IS replaces ${\mathbb P}$ by another probability measure $\tilde{{\mathbb P}}$, using

$$E[X] = \int h(y)d\mathbb{P}(y) = \int h(y)\frac{d\mathbb{P}(y)}{d\tilde{\mathbb{P}}(y)}d\tilde{\mathbb{P}}(y) = \tilde{\mathbb{E}}\left[h(Y)L(Y)\right]$$

- $L = d\mathbb{P}/d\tilde{\mathbb{P}}$ likelihood ratio,
- $\tilde{\mathbb{E}}$ is the expectation associated to probability law $\mathbb{P}.$
- Required condition: $d\tilde{\mathbb{P}}(y) \neq 0$ when $h(y)d\mathbb{P}(y) \neq 0$.
- If $\mathbb P$ and $\tilde{\mathbb P}$ continuous laws, L ratio of density functions.
- If $\mathbb P$ and $\tilde{\mathbb P}$ are discrete laws, L ratio of indiv. prob.
- Unbiased estimator: $\frac{1}{n} \sum_{i=1}^{n} h(Y_i) L(Y_i)$ with

 $(Y_i, 1 \le i \le n)$ i.i.d; copies of Y, according to $\tilde{\mathbb{P}}$.

 \bullet Goal: select probability law $\tilde{\mathbb{P}}$ such that

$$\tilde{\sigma}^2[h(Y)L(Y)] = \tilde{\mathbb{E}}[(h(Y)L(Y))^2] - \mu^2 < \sigma^2[h(Y)].$$

9/35 Rare event Simulation

Bruno Tuffin

Introduction to rare events

Monte Carlo: the basics

Importance Sampling

Splitting

main research directions ullet Use for IS an exponential density with a different rate $\tilde{\lambda}$

$$\tilde{\mathbb{E}}[(1_A(Y)L(Y))^2] = \int_0^T \left(\frac{\lambda e^{-\lambda y}}{\tilde{\lambda} e^{-\tilde{\lambda} y}}\right)^2 \tilde{\lambda} e^{-\tilde{\lambda} y} dy = \frac{\lambda^2 (1 - e^{-(2\lambda - \tilde{\lambda})T})}{\tilde{\lambda}(2\lambda - \tilde{\lambda})}.$$

• Variance ratio for T=1 and $\lambda=0.1$:

10/35 Rare event Simulation

Bruno Tuffin

Introduction to rare events

Monte Carlo: the basics

Importance Sampling

Splitting

$$\tilde{\mathbb{E}}[(1_A(Y)L(Y))^2] = \int_T^\infty \left(\frac{\lambda e^{-\lambda y}}{\tilde{\lambda} e^{-\tilde{\lambda} y}}\right)^2 \tilde{\lambda} e^{-\tilde{\lambda} y} dy = \frac{\lambda^2 e^{-(2\lambda - \tilde{\lambda})T}}{\tilde{\lambda}(2\lambda - \tilde{\lambda})}.$$

• Minimal value computable, but infinite variance wen $\tilde{\lambda} > 2\lambda$. If $\lambda = 1$:

11/35 Rare event Simulation

Bruno Tuffin

Introduction to

Monte Carlo: the

Importance Sampling

Splitting

$$\widetilde{\mathbb{P}} = \frac{|h(Y)|}{\mathbb{E}[|h(Y)|]} d\mathbb{P}.$$

• *Proof:* for any alternative IS measure \mathbb{P}' , leading to the likelihood ratio L' and expectation \mathbb{E}' ,

$$\tilde{\mathbb{E}}[(h(Y)L(Y))^2] = (\mathbb{E}[|h(Y)|])^2 = (\mathbb{E}'[|h(Y)|L'(Y)])^2 \leq \mathbb{E}'[(h(Y)L'(Y))^2].$$

- If $h \ge 0$, $\tilde{\mathbb{E}}[(h(Y)L(Y))^2] = (\mathbb{E}[h(Y)])^2$, i.e., $\tilde{\sigma}^2(h(Y)L(Y)) = 0$. That is, IS provides a zero-variance estimator.
- Implementing it requires knowing $\mathbb{E}[|h(Y)|]$, i.e. what we want to compute; if so, no need to simulation!
- But provides a hint on the general form of a "good" IS.
 measure.

Bruno Tuffin

Introduction to rare events

Monte Carlo: the basics

Importance Sampling

Splitting

$$\{Y_j, j \geq 0\}$$

- $X = h(Y_0, ..., Y_\tau)$ function of the sample path with
 - $P = (P(y, z) \text{ transition matrix}, \pi_0(y) = \mathbb{P}[Y_0 = y],$ initial probabilities
 - up to a stopping time τ , first time it hits a set Δ .
 - $\mu(y) = \mathbb{E}_y[X]$.
- IS replaces the probabilities of paths (y_0, \ldots, y_n) ,

$$\mathbb{P}[(Y_0,\ldots,Y_{\tau})=(y_0,\ldots,y_n)]=\pi_0(y_0)\prod_{j=1}^{n-1}P(y_{j-1},y_j),$$

by
$$\tilde{\mathbb{P}}[(Y_0,\ldots,Y_{\tau})=(y_0,\ldots,y_n)]$$
 st $\tilde{\mathbb{E}}[\tau]<\infty$.

- For convenience, the IS measure remains a DTMC, replacing P(y,z) by $\tilde{P}(y,z)$ and $\pi_0(y)$ by $\tilde{\pi}_0(y)$.
- Then $L(Y_0, \ldots, Y_{\tau}) = \frac{\pi_0(Y_0)}{\tilde{\pi}_0(Y_0)} \prod_{j=1}^{\tau-1} \frac{P(Y_{j-1}, Y_j)}{\tilde{P}(Y_{j-1}, Y_j)}.$

13/35 Rare event Simulation

Bruno Tuffin

Introduction to rare events

Monte Carlo: the basics

Importance Sampling

Splitting

main research directions

Splitting

- Markov chain with state-space $\{0,1,\ldots,B\}$, $P(y,y+1)=p_y$ and $P(y,y-1)=1-p_y$, for $y=1,\ldots,B-1$
- $\Delta = \{0, B\}$, and let $\mu(y) = \mathbb{P}[Y_{\tau} = B \mid Y_0 = y]$.
- Rare event if B large or the p_y s are small.
- If $p_y = p < 1$ for y = 1, ..., B 1, known as the gambler's ruin problem.
- An M/M/1 queue with arrival rate λ and service rate $\mu > \lambda$ fits the framework with $p = \lambda/(\lambda + \mu)$.
- How to apply IS: increase the p_y s to \tilde{p}_y to accelerate the occurrence (but not too much again).
- Large deviation theory applies here, when B increases.
 - \bullet Strategy for an M/M/1 queue: exchange λ and μ
 - Asymptotic optimality, but no bounded relative error.

Splitting

- System with c types of components. $Y = (Y_1, \dots, Y_c)$ with Y_i number of up components.
- 1: state with all components up.
- Failure rates are $O(\varepsilon)$, but not repair rates. Failure propagations possible.
- System down (in Δ) when some combinations of components are down.
- Goal: compute $\mu(y)$ probability to hit Δ before **1**.
- $\mu(\mathbf{1})$ typical measure in dependability analysis, small if ε small.
- Simulation using the embedded DTMC. Failure probabilities are $O(\varepsilon)$ (except from 1). How to improve (accelerate) this?
- Proposition: $\forall y \neq 1$, increase the probability of the set of failures to constant 0.5 < q < 0.9 and use individual probabilities proportional to the original ones.
- Failures not rare anymore.

HRMS Example, and IS

Figure: Original probabilities

Figure: Probabilities under IS

16/35 Rare event Simulation

Bruno Tuffin

Introduction to rare events

Monte Carlo: the basics

Importance Sampling

Splitting

$$X = \sum_{j=1}^{\tau} c(Y_{j-1}, Y_j)$$

- Is there a Markov chain change of measure yielding zero-variance?
- Yes we have zero variance with

$$\tilde{P}(y,z) = \frac{P(y,z)(c(y,z) + \mu(z))}{\sum_{w} P(y,w)(c(y,w) + \mu(w))}
= \frac{P(y,z)(c(y,z) + \mu(z))}{\mu(y)}.$$

 Without the additivity assumption the probabilities for the next state must depend in general of the entire history of the chain. Introduction to

Monte Carlo: the basics

Importance Sampling

Splitting

Conclusions and main research directions

4 D > 4 B > 4 E > 4 E > E 990

Monte Carlo: the basics

Sampling

Spirring

main research directions

• Proof by induction on the value taken by τ , using the fact that $\mu(Y_{\tau}) = 0$ In that case, if \tilde{X} denotes the IS estimator,

$$\tilde{X} = \sum_{i=1}^{\tau} c(Y_{i-1}, Y_i) \prod_{j=1}^{i} \frac{P(Y_{j-1}, Y_j)}{\tilde{P}(Y_{j-1}, Y_j)}
= \sum_{i=1}^{\tau} c(Y_{i-1}, Y_i) \prod_{j=1}^{i} \frac{P(Y_{j-1}, Y_j)\mu(Y_{j-1})}{P(Y_{j-1}, Y_j)(c(Y_{j-1}, Y_j) + \mu(Y_j))}
= \sum_{i=1}^{\tau} c(Y_{i-1}, Y_i) \prod_{j=1}^{i} \frac{\mu(Y_{j-1})}{c(Y_{j-1}, Y_j) + \mu(Y_j)}
= \mu(Y_0)$$

- Unique Markov chain implementation of the zero-variance estimator.
- Again, implementing it requires knowing $\mu(y) \ \forall y$, the quantities we wish to compute.
- Approximation to be used.

- Use a heuristic approximation $\hat{\mu}(\cdot)$ and plug it into the zero-variance change of measure instead of $\mu(\cdot)$.
- More efficient but also more requiring technique: learn adaptively function $\mu(\cdot)$, and still plug the approximation into the zero-variance change of measure formula instead of $\mu(\cdot)$.
 - Adaptive Monte Carlo (AMC) proceeds iteratively.
 - Considers several steps and n_i independent simulation replications at step i.
 - At step i, replaces $\mu(x)$ by a guess $\mu^{(i)}(x)$
 - use probabilities

$$\tilde{P}_{y,z}^{(i)} = \frac{P_{y,z}(c_{y,z} + \mu^{(i)}(z))}{\sum_{w} P_{y,w}(c_{y,w} + \mu^{(i)}(w))}.$$

• Gives a new estimation $\mu^{(i+1)}(y)$ of $\mu(y)$, from which a new transition matrix $\tilde{P}^{(i+1)}$ is defined.

- ASA just uses a single sample path (y_0, \ldots, y_n) .
- Initial distribution for y_0 , matrix $\tilde{P}^{(0)}$ and guess $\mu^{(0)}(\cdot)$.
- At step j of the path, if $y_j \not\in \Delta$,
 - matrix $\tilde{P}^{(j)}$ used to generate y_{j+1} .
 - From y_{j+1} , update the estimate of $\mu(y_j)$ by

$$\begin{array}{lcl} \mu^{(j+1)}(y_j) & = & (1-a_j(y_j))\mu^{(j)}(y_j) \\ & + & a_j(y_j)\left[c(y_j,y_{j+1}) + \mu^{(j)}(y_{j+1})\right]\frac{P(y_j,y_{j+1})}{\tilde{P}^{(j)}(y_j,y_{j+1})}, \end{array}$$

where $\{a_j(y), j \ge 0\}$, sequence of *step sizes* • For $\delta > 0$ constant.

$$\tilde{P}^{(j+1)}(y_j, y_{j+1}) = \max \left(P(y_j, y_{j+1}) \frac{\left[c(y_j, y_{j+1}) + \mu^{(j+1)}(y_{j+1}) \right]}{\mu^{(j+1)}(y_j)}, \ \delta \right).$$

- Otherwise $\mu^{(j+1)}(y) = \mu^{(j)}(y)$, $\tilde{P}^{(j+1)}(y,z) = P^{(j)}(y,z)$.
- Normalize: $P^{(j+1)}(y_j, y) = \frac{\tilde{P}^{(j+1)}(y_j, y)}{\sum_z \tilde{P}^{(j+1)}(y_j, z)}$.
- If $y_j \in \Delta$, y_{j+1} generated from initial distribution, but estimations of $P(\cdot, \cdot)$ and $\mu(\cdot)$ kept.
- Batching techniques used to get a confidence interval.

20/35 Rare event Simulation

Bruno Tuffin

Introduction to rare events

Monte Carlo: the basics

Importance Sampling

Splitting

main research directions

Splitting

- You have to store vectors $\mu^{(n)}(\cdot)$. State-space typically very large when we use simulation...
- This limits the practical effectiveness of the method.
- Our research direction:
 - Use K basis functions $\mu^{(1)}(\cdot), \dots, \mu^{(K)}(\cdot)$, and an approximation

$$\mu(\cdot) \equiv \sum_{k=1}^K \alpha_k \mu^{(k)}(\cdot).$$

- Learn coefficients α_k as in previous methods, instead of the function itself.
- See also how best basis functions can be learnt, as done in dynamic programming.

Splitting

Conclusions and main research directions

- Let P(i, i + 1) = p and P(i, i 1) = 1 p for $1 \le i \le B 1$, and P(0, 1) = P(B, B 1) = 1.
- We want to compute $\mu(1)$, probability of reaching B before coming back to 0.
- If p small, to approach $\mu(\cdot)$, we can use

$$\hat{\mu}(y) = p^{B-y} \quad \forall y \in \{1, \dots, B-1\}$$

with $\hat{\mu}(0) = 0$ and $\hat{\mu}(B) = 1$ based on the asymptotic estimate $\mu(i) = p^{B-i} + o(p^{B-i})$.

• We can verify that the variance of this estimator is going to 0 (for fixed sample size) as $p \to 0$.

Splitting

- Complicates the previous model due to the multidimensional description of a state.
- The idea is to approach $\mu(y)$ by the probability of the path from y to Δ with the largest probability
- Results (to be published):
 - Bounded Relative Error proved (as $\epsilon \to 0$).
 - Even vanishing relative error if $\mu(y)$ contains all the paths with the smallest degree in ϵ .
- Simple version: approach $\mu(y)$ by the (sum of) probability of paths from y with only failure components of a given type.
- Results impressive with respect to the IS scheme of just increasing the probability of whole set failure transitions to q as proposed in the literature (gain of several orders of magnitudes + stability of the results).

Sampling

Splitting

- Splitting is the other main rare event simulation technique.
- Assume we want to compute the probability $\mathbb{P}(D)$ of an event D.
- General idea:
 - Decompose

$$D_1\supset\cdots\supset D_m=D,$$

- Use $\mathbb{P}(D) = \mathbb{P}(D_1)\mathbb{P}(D_2 \mid D_1) \cdots \mathbb{P}(D_m \mid D_{m-1})$, each conditional event being "not rare",
- Estimate each individual conditional probability by crude Monte Carlo, i.e., without changing the laws driving the model.
- The final estimate is the product of individual estimates.
- Question: how to do it for a stochastic process?
 Difficult to sample conditionally to an intermediate event.

- Goal: compute $\gamma_0 = \mathbb{P}[\tau_B < \tau_A]$ with
 - $\tau_A = \inf\{j > 0 : Y_{j-1} \notin A \text{ and } Y_j \in A\}$
 - $\tau_B = \inf\{j > 0 : Y_j \in B\}$
- Intermediate levels from importance function $h: \mathcal{Y} \to \mathbb{R}$ with $A = \{x \in \mathcal{Y} : h(x) < 0\}$ and $B = \{x \in \mathcal{Y} : h(x) > \ell\}$:
 - Partition $[0, \ell)$ in m subintervals with boundaries $0 = \ell_0 < \ell_1 < \cdots < \ell_m = \ell$.
 - Let $T_k = \inf\{j > 0 : h(Y_j) \ge \ell_k\}$ and $D_k = \{T_k < \tau_A\}$.
- 1st stage:
 - simulate N_0 chains until min (τ_A, T_1) .
 - If R_1 number of chains for which D_1 occurs, $\hat{p}_1 = R_1/N_0$ unbiased estimator of $p_1 = \mathbb{P}(D_1)$.
- Stage $1 < k \le m$:
 - If $R_{k-1}=0$, $\hat{p}_l=0$ for all $l\geq k$ and the algorithm stops
 - Otherwise, start N_k chains from these R_k entrance states, by potentially cloning (splitting) some chains
 - simulate these chains up to $min(\tau_A, T_k)$.
 - $\hat{p}_k = R_k/N_{k-1}$ unbiased estimator of $p_k = \mathbb{P}(D_k|D_{k-1})$

25/35 Rare event Simulation

Bruno Tuffin

Introduction to rare events

Monte Carlo: the basics

Importance Sampling

Splitting

main research directions

- clone each of the R_k chains reaching level k in c_k copies, for a fixed positive integer c_k .
- $N_k = c_k R_k$ is random.
- Fixed effort:
 - N_k fixed a priori
 - random assignment draws the N_k starting states at random, with replacement, from the R_k available states.
 - fixed assignment, on the other hand, we would split each of the R_k states approximately the same number of times.
 - Fixed assignment gives a smaller variance than random assignment because it amounts to using stratified sampling over the empirical distribution G_k at level k.
- Fixed splitting can be implemented in a depth-first way, recursively, while fixed effort cannot.
- On the other hand, you have no randomness (less variance) in the number of chains with fixed effort.

26/35 Rare event Simulation

Bruno Tuffin

Introduction to rare events

Monte Carlo: the basics

Importance Sampling

Splitting

mportano Sampling

Splitting

- As k increases, it is likely that the average time before reaching the next level or going back to A increases significantly.
- We can kill (truncate) trajectories hat go a given number β of levels down (unlikely to come back), but biased.
- Unbiased solution: apply the Russian roulette principle
 - kill the trajectory going down with a probability r_{β} . If it survives, assign a multiplicative weight $1/(1-r_{\beta})$.
 - Several possible implementations to reduce the variance due to the introduction of weights.

- How to define the importance function h?
 - If the state space is one-dimensional and included in \mathbb{R} , the final time is an almost surely finite stopping time and the critical region is $B=[b,\infty)$, any strictly increasing function would be good (otherwise a mapping can be constructed, by just moving the levels), such as for instance h(x)=x.
 - If the state space is multidimensional: the importance function is a one-dimensional projection of the state space.
 - Desirable property: the probability to reach the next level should be the same, whatever the entrance state in the current level.
 - Ideally, $h(x) = \mathbb{P}[\tau_B \le \tau_A \mid X(0) = x]$, but as in IS, they are a probabilities we are looking for.
 - This $h(\cdot)$ can also be learnt or estimated a priori, with a presimulation, by partitionning the state space and assuming it constant on each region.

nportance ampling

Splitting

- How many offsprings at each level?
 - In fixed splitting:
 - if $c_k < 1/p_k$, we do not split enough, it will become unlikely to reach the next event;
 - if $c_k > 1/p_k$, the number of trajectories will exponentially explode with the number of levels.
 - The right amount is $c_k = 1/p_k$ (c_k can be randomized to reach that value if not an integer).
 - In fixed effort, no explosion is possible.
 - In both cases, the right amount has to be found.
- How many levels to define?
 - i.e., what probability to reach the next level?

Splitting

- In a general setting, very few results exist:
 - We only have a central limit theorem based on genetic type interacting particle systems, as the sample increases.
 - Nothing exist on the definition of optimal number of levels...
- Consider the simplified setting, with a single entrance state at each level.
- Similar to coin–flipping to see if next level is reached or not.
- In that case, asymptotically optimal results can be derived, providing hints of values to be used.

- $N_0 = N_1 = \cdots = N_{m-1} = n$
- The \hat{p}_k 's binomial r.v. with parameters n and $p_k = p = \mu_0^{1/m}$ assumed independent.
- It can be shown that

$$\operatorname{Var}[\hat{p}_{1} \cdots \hat{p}_{m}] = \prod_{k=1}^{m} \mathbb{E}[\hat{p}_{k}^{2}] - \gamma_{0}^{2} = \left(p^{2} + \frac{p(1-p)}{n}\right)^{m} - p^{2m}$$
$$= \frac{mp^{2m-1}(1-p)}{n} + \cdots + \frac{(p(1-p))^{m}}{n^{m}}.$$

- Assuming $n \gg (m-1)(1-p)/p$, $\operatorname{Var}[\hat{p}_1 \cdots \hat{p}_m] \approx mp^{2m-1}(1-p)/n \approx m\gamma_0^{2-1/m}/n$.
- The work normalized variance $\approx [\gamma_0^n m^2]/n = \gamma_0^{2-1/m} m^2$
- Minimized at $m = -\ln(\gamma_0)/2$
- This gives $p^m = \gamma_0 = e^{-2m}$, so $p = e^{-2}$.
- But the relative error and its work-normalized version both increase toward infinity at a logarithmic rate.
- There is no asymptotic optimality either.

31/35 Rare event Simulation

Bruno Tuffin

Introduction to rare events

Monte Carlo: the basics

Importance Sampling

Splitting

main research directions

Splitting

Conclusions and main research directions

- $N_0 = n$, $p_k = p = \gamma_0^{1/m}$ for all k, and c = 1/p; i.e., $N_k = R_k/p$.
- The process $\{N_k, k \geq 1\}$ is a branching process.
- From standard branching process theory

$$\operatorname{Var}[\hat{p}_1\cdots\hat{p}_m]=m(1-p)p^{2m-1}/n.$$

- If p fixed and $m \to \infty$, the squared relative error m(1-p)/(np) is unbounded,
- But it is asymptotically efficient:

$$\lim_{\gamma_0 \to 0^+} \frac{\log(\mathbb{E}[\tilde{\gamma}_n^2])}{\log \gamma_0} = \lim_{\gamma_0 \to 0^+} \frac{\log(m(1-p)\gamma_0^2/(np) + \gamma_0^2)}{\log \gamma_0} = 2.$$

 Fixed splitting is asymptotically better, but it is more sensitive to the values used.

Splitting

- Illustrative of the impact of the importance function.
- Two queues in tandem
 - ullet arrival rate at the first queue is $\lambda=1$
 - mean service time is $\rho_1 = 1/4$, $\rho_2 = 1/2$.
 - Embedded DTMC: $Y = (Y_j, j \ge 0)$ with $Y_j = (Y_{1,j}, Y_{2,j})$ number of customers in each queue after the jth event
 - $B = \{(x_1, x_2) : x_2 \ge L = 30\}, A = \{(0, 0)\}.$
- Goal: impact of the choice of the importance function?
- Importance functions:

$$h_1(x_1, x_2) = x_2,$$

 $h_2(x_1, x_2) = (x_2 + \min(0, x_2 + x_1 - L))/2,$
 $h_3(x_1, x_2) = x_2 + \min(x_1, L - x_2 - 1) \times (1 - x_2/L).$

- With h_1 , \hat{V}_N and \hat{W}_N were significantly higher than for h_2 and h_3 .
- Estimators rescaled as $ilde{V}_N=10^{18} imes\hat{V}_N$ and $ilde{W}_N=10^{15} imes\hat{W}_N.$

	$N = 2^{10}$		$N = 2^{12}$		$N = 2^{14}$		$N = 2^{16}$	
	$ ilde{V}_N$	$ ilde{W}_N$	$ ilde{V}_{N}$	$ ilde{W}_{N}$	$ ilde{V}_{N}$	$ ilde{W}_{N}$	$ ilde{V}_{N}$	$ ilde{W}_{N}$
h ₂ , Splitting	109	120	89	98	124	137	113	125
<i>h</i> ₂ , Rus. Roul.	178	67	99	37	119	45	123	47
h ₃ , Splitting	93	103	110	121	93	102	107	118
<i>h</i> ₃ , Rus. Roul.	90	34	93	35	94	36	109	41

34/35 Rare event Simulation

Bruno Tuffin

Introduction to rare events

Monte Carlo: the basics

nportance ampling

Splitting

main research directions

Splitting

- Two main techniques for rare event simulation: importance sampling and splitting
- Splitting fans usually say that it has the advantage of not having to change the model's laws.
- But, requires the definition of the importance function, very similar to defining the IS change of measure.
- On the other hand, any rare event has to be decomposed in non-rare ones, which cannot always be done.
- Recent moves:
 - defining zero-variance approximation, yielding bounded relative error.
 - Cross Entropy technique: finds the optimal change of measure in a parametric family.
- Book on Rare event simulation to be published by John Wiley & Sons, by the end of the year.

