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Introduction to regularity structures

Martin Hairer

The University of Warwick

Abstract. These are short notes from a series of lectures given at the Uni-

versity of Rennes in June 2013, at the University of Bonn in July 2013, at

the XVIIth Brazilian School of Probability in Mambucaba in August 2013,

and at ETH Zurich in September 2013. They give a concise overview of the

theory of regularity structures as exposed in the article [Invent. Math. DOI:

10.1007/s00222-014-0505-4]. In order to allow to focus on the conceptual

aspects of the theory, many proofs are omitted and statements are simplified.

We focus on applying the theory to the problem of giving a solution theory

to the stochastic quantisation equations for the Euclidean �4
3 quantum field

theory.

1 Introduction

Very recently, a new theory of “regularity structures” was introduced (Hairer,

2014), unifying various flavours of the theory of (controlled) rough paths (includ-

ing Gubinelli’s theory of controlled rough paths (Gubinelli, 2004), as well as his

branched rough paths (Gubinelli, 2010)), as well as the usual Taylor expansions.

While it has its roots in the theory of rough paths (Lyons, 1998), the main ad-

vantage of this new theory is that it is no longer tied to the one-dimensionality

of the time parameter, which makes it also suitable for the description of solu-

tions to stochastic partial differential equations, rather than just stochastic ordi-

nary differential equations. The aim of this article is to give a concise survey of

the theory while focusing on the construction of the dynamical �4
3 model. While

the exposition aims to be reasonably self-contained (in particular no prior knowl-

edge of the theory of rough paths is assumed), most of the proofs will only be

sketched.

The main achievement of the theory of regularity structures is that it allows to

give a (pathwise!) meaning to ill-posed stochastic PDEs that arise naturally when

trying to describe the macroscopic behaviour of models from statistical mechanics

near criticality. One example of such an equation is the KPZ equation arising as

a natural model for one-dimensional interface motion (Kardar et al., 1986; Bertini

and Giacomin, 1997; Hairer, 2013):

∂th = ∂2
xh + (∂xh)2 + ξ − C.

Key words and phrases. Stochastic PDEs, regularity structures, renormalisation.

Received December 2013; accepted March 2014.

175

http://imstat.org/bjps/
http://dx.doi.org/10.1214/14-BJPS241
http://www.redeabe.org.br/
http://dx.doi.org/10.1007/s00222-014-0505-4


176 M. Hairer

Another example is the dynamical �4
3 model arising, for example, in the stochastic

quantisation of Euclidean quantum field theory (Parisi and Wu, 1981; Jona-Lasinio

and Mitter, 1985; Albeverio and Röckner, 1991; Da Prato and Debussche, 2003;

Hairer, 2014), as well as a universal model for phase coexistence near the critical

point (Giacomin et al., 1999):

∂t� = �� + C� − �3 + ξ.

In both of these examples, ξ formally denotes space–time white noise, C is an

arbitrary constant (which will actually turn out to be infinite in some sense), and

we consider a bounded square spatial domain with periodic boundary conditions.

In the case of the dynamical �4
3 model, the spatial variable has dimension 3, while

it has dimension 1 in the case of the KPZ equation. While a full exposition of the

theory is well beyond the scope of this short introduction, we aim to give a concise

overview to most of its concepts. In most cases, we will only state results in a

rather informal way and give some ideas as to how the proofs work, focusing on

conceptual rather than technical issues. The only exception is the “reconstruction

theorem,” Theorem 2.10 below, which is the linchpin of the whole theory. Since its

proof (or rather a slightly simplified version of it) is relatively concise, we provide

a fully self-contained version. For precise statements and complete proofs of most

of the results exposed here, we refer to the original article (Hairer, 2014).

Loosely speaking, the type of well-posedness results that can be proven with

the help of the theory of regularity structures can be formulated as follows.

Theorem 1.1. Let ξε = δε ∗ ξ denote the regularisation of space–time white noise

with a compactly supported smooth mollifier δε that is scaled by ε in the spatial

direction(s) and by ε2 in the time direction. Denote by hε and �ε the solutions to

∂thε = ∂2
xhε + (∂xhε)

2 − Cε + ξε,

∂t�ε = ��ε + C̃ε�ε − �3
ε + ξε.

Then there exist choices of constants Cε and C̃ε diverging as ε → 0, as well as

processes h and � such that hε → h and �ε → � in probability. Furthermore,

while the constants Cε and C̃ε do depend crucially on the choice of mollifiers δε ,

the limits h and � do not depend on them.

Remark 1.2. We made a severe abuse of notation here since the space–time white

noise appearing in the equation for hε is on R × T1, while the one appearing in the

equation for �ε is on R × T3. (Here, we denote by Tn the n-dimensional torus.)

Remark 1.3. We have not described the topology in which the convergence takes

place in these examples. In the case of the KPZ equation, one actually obtains

convergence in some space of space–time Hölder continuous functions. In the case

of the dynamical �4
3 model, convergence takes place in some space of space–time
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distributions. One caveat that also has to be dealt with in the latter case is that the

limiting process � may in principle explode in finite time for some instances of

the driving noise.

From a “philosophical” perspective, the theory of regularity structures is in-

spired by the theory of controlled rough paths (Lyons, 1998; Gubinelli, 2004;

Lyons et al., 2007), so let us rapidly survey the main ideas of that theory. The

setting of the theory of controlled rough paths is the following. Let us say that we

want to solve a controlled differential equation of the type

dY = f (Y )dX(t), (1.1)

where X ∈ Cα is a rather rough function (say a typical sample path for an m-

dimensional Brownian motion). It is a classical result by Young (1936) that the

Riemann–Stieltjes integral (X,Y ) �→
∫ ·

0 Y dX makes sense as a continuous map

from Cα × Cα into Cα if and only if α > 1
2
. As a consequence, “naïve” approaches

to a pathwise solution to (1.1) are bound to fail if X has the regularity of Brownian

motion.

The main idea is to exploit the a priori “guess” that solutions to (1.1) should

“look like X at small scales.” More precisely, one would naturally expect the solu-

tion Y to satisfy

Yt = Ys + Y ′
sXs,t +O

(

|t − s|2α)

, (1.2)

where we wrote Xs,t as a shorthand for the increment Xt − Xs . As a matter of

fact, one would expect to have such an expansion with Y ′ = f (Y ). Denote by Cα
X

the space of pairs (Y,Y ′) satisfying (1.2) for a given “model path” X. It is then

possible to simply “postulate” the values of the integrals

Xs,t =:
∫ t

s
Xs,r ⊗ dXr , (1.3)

satisfying “Chen’s relations”

Xs,t −Xs,u −Xu,t = Xs,u ⊗ Xu,t , (1.4)

as well as the analytic bound |Xs,t | � |t − s|2α , and to exploit this additional data

to give a coherent definition of expressions of the type
∫

Y dX, provided that the

path X is “enhanced” with its iterated integrals X and Y is a “controlled path” of

the type (1.2). See, for example, Gubinelli (2004) for more information or Hairer

(2011) for a concise exposition of this theory.

Compare (1.2) to the fact that a function f : R → R is of class Cγ with γ ∈
(k, k + 1) if for every s ∈ R there exist coefficients f

(1)
s , . . . , f

(k)
s such that

ft = fs +
k

∑

ℓ=1

f (ℓ)
s (t − s)ℓ +O

(

|t − s|γ
)

. (1.5)
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Of course, f
(ℓ)
s is nothing but the ℓth derivative of f at the point s, divided by

ℓ!. In this sense, one should really think of a controlled rough path (Y,Y ′) ∈ Cα
X

as a 2α-Hölder continuous function, but with respect to a “model” determined by

the function X, rather than by the usual Taylor polynomials. This formal analogy

between controlled rough paths and Taylor expansions suggests that it might be

fruitful to systematically investigate what are the “right” objects that could possi-

bly take the place of Taylor polynomials, while still retaining many of their nice

properties.

2 Definitions and the reconstruction operator

The first step in such an endeavour is to set up an algebraic structure reflecting

the properties of Taylor expansions. First of all, such a structure should contain a

vector space T that will contain the coefficients of our expansion. It is natural to

assume that T has a graded structure: T = ⊕

α∈A Tα , for some set A of possible

“homogeneities.” For example, in the case of the usual Taylor expansion (1.5),

it is natural to take for A the set of natural numbers and to have Tℓ contain the

coefficients corresponding to the derivatives of order ℓ. In the case of controlled

rough paths, however, it is natural to take A = {0, α}, to have again T0 contain

the value of the function Y at any time s, and to have Tα contain the Gubinelli

derivative Y ′
s . This reflects the fact that the “monomial” t �→ Xs,t only vanishes

at order α near t = s, while the usual monomials t �→ (t − s)ℓ vanish at integer

order ℓ.

This, however, is not the full algebraic structure describing Taylor-like expan-

sions. Indeed, one of the characteristics of Taylor expansions is that an expansion

around some point x0 can be re-expanded around any other point x1 by writing

(x − x0)
m =

∑

k+ℓ=m

m!
k!ℓ!(x1 − x0)

k · (x − x1)
ℓ. (2.1)

(In the case when x ∈ Rd , k, ℓ and m denote multi-indices and k! = k1! · · ·kd !.)
Somewhat similarly, in the case of controlled rough paths, we have the (rather

trivial) identity

Xs0,t = Xs0,s1
· 1 + 1 · Xs1,t . (2.2)

What is a natural abstraction of this fact? In terms of the coefficients of a “Taylor

expansion,” the operation of re-expanding around a different point is ultimately

just a linear operation from Ŵ :T → T , where the precise value of the map Ŵ

depends on the starting point x0, the endpoint x1, and possibly also on the details

of the particular “model” that we are considering. In view of the above examples,

it is natural to impose furthermore that Ŵ has the property that if τ ∈ Tα , then

Ŵτ − τ ∈ ⊕

β<α Tβ . In other words, when re-expanding a homogeneous monomial
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around a different point, the leading order coefficient remains the same, but lower

order monomials may appear.

These heuristic considerations can be summarised in the following definition of

an abstract object we call a regularity structure:

Definition 2.1. Let A ⊂ R be bounded from below and without accumulation

point, and let T = ⊕

α∈A Tα be a vector space graded by A such that each Tα is a

Banach space. Let furthermore G be a group of continuous operators on T such

that, for every α ∈ A, every Ŵ ∈ G, and every τ ∈ Tα , one has Ŵτ − τ ∈ ⊕

β<α Tβ .

The triple T = (A,T ,G) is called a regularity structure with model space T and

structure group G.

Remark 2.2. Given τ ∈ T , we will write ‖τ‖α for the norm of its component

in Tα .

Remark 2.3. In Hairer (2014), it is furthermore assumed that 0 ∈ A, T0 ≈ R, and

T0 is invariant under G. This is a very natural assumption which ensures that our

regularity structure is at least sufficiently rich to represent constant functions.

Remark 2.4. In principle, the set A can be infinite. By analogy with the polyno-

mials, it is then natural to consider T as the set of all formal series of the form
∑

α∈A τα , where only finitely many of the τα’s are non-zero. This also dovetails

nicely with the particular form of elements in G. In practice, however, we will

only ever work with finite subsets of A so that the precise topology on T does not

matter.

At this stage, a regularity structure is a completely abstract object. It only be-

comes useful when endowed with a model, which is a concrete way of associating

to any τ ∈ T and x0 ∈ Rd , the actual “Taylor polynomial based at x0” represented

by τ . Furthermore, we want elements τ ∈ Tα to represent functions (or possibly

distributions) that “vanish at order α” around the given point x0.

Since we would like to allow A to contain negative values and, therefore, al-

low elements in T to represent actual distributions, we need a suitable notion of

“vanishing at order α.” We achieve this by considering the size of our distribu-

tions, when tested against test functions that are localised around the given point

x0. Given a test function ϕ on Rd , we write ϕλ
x as a shorthand for

ϕλ
x (y) = λ−dϕ

(

λ−1(y − x)
)

.

Given r > 0, we also denote by Br the set of all functions ϕ : Rd → R such that

ϕ ∈ Cr with ‖ϕ‖Cr ≤ 1 that are furthermore supported in the unit ball around the

origin. With this notation, our definition of a model for a given regularity structure

T is as follows.
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Definition 2.5. Given a regularity structure T and an integer d ≥ 1, a model for

T on Rd consists of maps

� : Rd → L
(

T ,S ′(Rd
))

, Ŵ : Rd × Rd → G,

x �→ �x, (x, y) �→ Ŵxy

such that ŴxyŴyz = Ŵxz and �xŴxy = �y . Furthermore, given r > | infA|, for any

compact set K ⊂ Rd and constant γ > 0, there exists a constant C such that the

bounds
∣

∣(�xτ)
(

ϕλ
x

)∣

∣ ≤ Cλ|τ |‖τ‖α, ‖Ŵxyτ‖β ≤ C|x − y|α−β‖τ‖α, (2.3)

hold uniformly over ϕ ∈ Br , (x, y) ∈ K, λ ∈ (0,1], τ ∈ Tα with α ≤ γ , and β < α.

Remark 2.6. In principle, test functions appearing in (2.3) should be smooth. It

turns out that if these bounds hold for smooth elements of Br , then �xτ can be

extended canonically to allow any Cr test function with compact support.

Remark 2.7. The identity �xŴxy = �y reflects the fact that Ŵxy is the linear map

that takes an expansion around y and turns it into an expansion around x. The first

bound in (2.3) states what we mean precisely when we say that τ ∈ Tα represents a

term that vanishes at order α. (Note that α can be negative, so that this may actually

not vanish at all.) The second bound in (2.3) is very natural in view of both (2.1)

and (2.2). It states that when expanding a monomial of order α around a new point

at distance h from the old one, the coefficient appearing in front of lower-order

monomials of order β is of order at most hα−β .

Remark 2.8. In many cases of interest, it is natural to scale the different directions

of Rd in a different way. This is the case, for example, when using the theory

of regularity structures to build solution theories for parabolic stochastic PDEs,

in which case the time direction “counts as” two space directions. To deal with

such a situation, one can introduce a scaling s of Rd , which is just a collection

of d mutually prime strictly positive integers and to define ϕλ
x in such a way that

the ith direction is scaled by λsi . In this case, the Euclidean distance between

two points should be replaced everywhere by the corresponding scaled distance

|x|s = ∑

i |xi |1/si . See also Hairer (2014) for more details.

With these definitions at hand, it is then natural to define an equivalent in this

context of the space of γ -Hölder continuous functions in the following way.

Definition 2.9. Given a regularity structure T equipped with a model (�,Ŵ) over

Rd , the space Dγ = Dγ (T ,Ŵ) is given by the set of functions f : Rd → ⊕

α<γ Tα

such that, for every compact set K and every α < γ , the exists a constant C with
∥

∥f (x) − Ŵxyf (y)
∥

∥

α ≤ C|x − y|γ−α (2.4)

uniformly over x, y ∈ K.
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The most fundamental result in the theory of regularity structures then states

that given f ∈ Dγ with γ > 0, there exists a unique Schwartz distribution Rf on

Rd such that, for every x ∈ Rd , Rf “looks like �xf (x) near x.” More precisely,

one has the following theorem.

Theorem 2.10. Let T be a regularity structure as above and let (�,Ŵ) a model

for T on Rd . Then, there exists a unique linear map R :Dγ → S ′(Rd) such

that

∣

∣

(

Rf − �xf (x)
)(

ϕλ
x

)∣

∣ � λγ , (2.5)

uniformly over ϕ ∈ Br and λ as before, and locally uniformly in x.

Proof. The proof of the theorem relies on the following fact. Given any r > 0 (but

finite), there exists a function ϕ : Rd → R with the following properties:

(1) The function ϕ is of class Cr and has compact support.

(2) For every polynomial P of degree r , there exists a polynomial P̂ of degree r

such that, for every x ∈ Rd , one has
∑

y∈Zd P̂ (y)ϕ(x − y) = P(x).

(3) One has
∫

ϕ(x)ϕ(x − y)dx = δy,0 for every y ∈ Zd .

(4) There exist coefficients {ak}k∈Zd such that 2−d/2ϕ(x/2) = ∑

k∈Zd akϕ(x − k).

The existence of such a function ϕ is highly non-trivial. This is actually equiv-

alent to the existence of a wavelet basis consisting of Cr functions with com-

pact support, a proof of which was first obtained by Daubechies in her semi-

nal article (Daubechies, 1988). From now on, we take the existence of such a

function ϕ as a given for some r > | infA|. We also set �n = 2−nZd and, for

y ∈ �n, we set ϕn
y (x) = 2nd/2ϕ(2n(x − y)). Here, the normalisation is chosen in

such a way that the set {ϕn
y }y∈�n is again orthonormal in L2. We then denote by

Vn ⊂ Cr the linear span of {ϕn
y }y∈�n , so that, by the property (4) above, one has

V0 ⊂ V1 ⊂ V2 ⊂ · · · . We furthermore denote by V̂n the L2-orthogonal comple-

ment of Vn−1 in Vn, so that Vn = V0 ⊕ V̂1 ⊕ · · · ⊕ V̂n. In order to keep notations

compact, it will also be convenient to define the coefficients an
k with k ∈ �n by

an
k = a2nk .

With these notation at hand, we then define a sequence of linear operators

Rn :Dγ → Cr by

(

Rnf
)

(y) =
∑

x∈�n

(

�xf (x)
)(

ϕn
x

)

ϕn
x (y).

We claim that there then exists a Schwartz distribution Rf such that, for every

compactly supported test function ψ of class Cr , one has 〈Rnf,ψ〉 → (Rf )(ψ),

and that Rf furthermore satisfies the properties stated in the theorem.
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Let us first consider the size of the components of Rn+1f −Rnf in Vn. Given

x ∈ �n, we make use of properties (3) and (4), so that
〈

Rn+1f −Rnf,ϕn
x

〉

=
∑

k∈�n+1

an
k

〈

Rn+1f,ϕn+1
x+k

〉

−
(

�xf (x)
)(

ϕn
x

)

=
∑

k∈�n+1

an
k

(

�x+kf (x + k)
)(

ϕn+1
x+k

)

−
(

�xf (x)
)(

ϕn
x

)

=
∑

k∈�n+1

an
k

((

�x+kf (x + k)
)(

ϕn+1
x+k

)

−
(

�xf (x)
)(

ϕn+1
x+k

))

=
∑

k∈�n+1

an
k

(

�x+k

(

f (x + k) − Ŵx+k,xf (x)
))(

ϕn+1
x+k

)

,

where we used the algebraic relations between �x and Ŵxy to obtain the last iden-

tity. Since only finitely many of the coefficients ak are non-zero, it follows from the

definition of Dγ that for the non-vanishing terms in this sum we have the bound
∥

∥f (x + k) − Ŵx+k,xf (x)
∥

∥

α � 2−n(γ−α),

uniformly over n ≥ 0 and x in any compact set. Furthermore, for any τ ∈ Tα , it

follows from the definition of a model that one has the bound
∣

∣(�xτ)
(

ϕn
x

)∣

∣ � 2−αn−nd/2,

again uniformly over n ≥ 0 and x in any compact set. Here, the additional factor

2−nd/2 comes from the fact that the functions ϕn
x are normalised in L2 rather than

L1. Combining these two bounds, we immediately obtain that
∣

∣

〈

Rn+1f −Rnf,ϕn
x

〉∣

∣ � 2−γ n−nd/2, (2.6)

uniformly over n ≥ 0 and x in compact sets. Take now a test function ψ ∈ Cr with

compact support and let us try to estimate 〈Rn+1f −Rnf,ψ〉. Since Rn+1f −
Rnf ∈ Vn+1, we can decompose it into a part δRnf ∈ Vn and a part δ̂Rnf ∈ V̂n+1

and estimate both parts separately. Regarding the part in Vn, we have

∣

∣

〈

δRnf,ψ
〉∣

∣ =
∣

∣

∣

∣

∑

x∈�n+1

〈

δRnf,ϕn
x

〉〈

ϕn
x ,ψ

〉

∣

∣

∣

∣

� 2−γ n−nd/2
∑

x∈�n+1

∣

∣

〈

ϕn
x ,ψ

〉∣

∣, (2.7)

where we made use of the bound (2.6). At this stage we use the fact that, due to

the boundedness of ψ , we have |〈ϕn
x ,ψ〉| � 2−nd/2. Furthermore, thanks to the

boundedness of the support of ψ , the number of non-vanishing terms appearing in

this sum is bounded by 2nd, so that we eventually obtain the bound
∣

∣

〈

δRnf,ψ
〉∣

∣ � 2−γ n. (2.8)

Regarding the second term, we use the standard fact coming from wavelet analysis

(Meyer, 1992) that a basis of V̂n+1 can be obtained in the same way as the basis

of Vn, but replacing the function ϕ by functions ϕ̂ from some finite set �. In other
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words, V̂n+1 is the linear span of {ϕ̂n
x }x∈�n;ϕ̂∈�. Furthermore, as a consequence of

property (2), the functions ϕ̂ ∈ � all have the property that
∫

ϕ̂(x)P (x) dx = 0, (2.9)

for any polynomial P of degree less or equal to r . In particular, this shows that one

has the bound
∣

∣

〈

ϕ̂n
x ,ψ

〉∣

∣ � 2−nd/2−nr .

As a consequence, one has

∣

∣

〈

δ̂Rnf,ψ
〉∣

∣ =
∣

∣

∣

∣

∑

x∈�n

ϕ̂∈�

〈

Rn+1f, ϕ̂n
x

〉〈

ϕ̂n
x ,ψ

〉

∣

∣

∣

∣

� 2−nd/2−nr

∣

∣

∣

∣

∑

x∈�n

ϕ̂∈�

〈

Rn+1f, ϕ̂n
x

〉

∣

∣

∣

∣

.

At this stage, we note that, thanks to the definition of Rn+1 and the bounds on

the model (�,Ŵ), we have |〈Rn+1f, ϕ̂n
x 〉|� 2−nd/2−α0n, where α0 = infA, so that

|〈δ̂Rnf,ψ〉| � 2−nr−α0n. Combining this with (2.8), we see that one has indeed

Rnf → Rf for some Schwartz distribution Rf .

It remains to show that the bound (2.5) holds. For this, given a distribution

η ∈ Cα for some α > −r , we first introduce the notation

Pnη =
∑

x∈�n

η
(

ϕn
x

)

ϕn
x , P̂nη =

∑

ϕ̂∈�

∑

x∈�n

η
(

ϕ̂n
x

)

ϕ̂n
x .

We also choose an integer value n ≥ 0 such that 2−n ∼ λ and we write

Rf − �xf (x)

=Rnf −Pn�xf (x) +
∑

m≥n

(

Rm+1f −Rmf − P̂m�xf (x)
)

(2.10)

=Rnf −Pn�xf (x) +
∑

m≥n

(

δ̂Rmf − P̂m�xf (x)
)

+
∑

m≥n

δRmf.

We then test these terms against ψλ
x and we estimate the resulting terms separately.

For the first term, we have the identity
(

Rnf −Pn�xf (x)
)(

ψλ
x

)

=
∑

y∈�n

(

�yf (y) − �xf (x)
)(

ϕn
y

)〈

ϕn
y ,ψλ

x

〉

. (2.11)

We have the bound |〈ϕn
y ,ψλ

x 〉| � λ−d2−dn/2 ∼ 2dn/2. Since one furthermore has

|y − x|� λ for all non-vanishing terms in the sum, one also has similarly to before
∣

∣

(

�yf (y) − �xf (x)
)(

ϕn
y

)∣

∣ �
∑

α<γ

λγ−α2−dn/2−αn ∼ 2−dn/2−γ n. (2.12)

Since only finitely many (independently of n) terms contribute to the sum in (2.11),

it is indeed bounded by a constant proportional to 2−γ n ∼ λγ as required.
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We now turn to the second term in (2.10), where we consider some fixed value

m ≥ n. We rewrite this term very similarly to before as
(

δ̂Rmf − P̂m�xf (x)
)(

ψλ
x

)

=
∑

ϕ̂∈�

∑

y,z

(

�yf (y) − �xf (x)
)(

ϕm+1
y

)〈

ϕm+1
y , ϕ̂m

z

〉〈

ϕ̂m
z ,ψλ

x

〉

,

where the sum runs over y ∈ �m+1 and z ∈ �m. This time, we use the fact that by

the property (2.9) of the wavelets ϕ̂, one has the bound
∣

∣

〈

ϕ̂m
z ,ψλ

x

〉∣

∣ � λ−d−r2−rm−md/2, (2.13)

and the L2-scaling implies that |〈ϕm+1
y , ϕ̂m

z 〉| � 1. Furthermore, for each z ∈ �m,

only finitely many elements y ∈ �m+1 contribute to the sum, and these elements

all satisfy |y − z| � 2−m. Bounding the first factor as in (2.12) and using the fact

that there are of the order of λd2md terms contributing for every fixed m, we thus

see that the contribution of the second term in (2.10) is bounded by
∑

m≥n

λd2md
∑

α<γ

λγ−α−d−r2−dm−αm−rm

∼
∑

α<γ

λγ−α−r
∑

m≥n

2−αm−rm ∼ λγ .

For the last term in (2.10), we combine (2.7) with the bound |〈ϕm
y ,ψλ

x 〉| �
λ−d2−dm/2 and the fact that there are of the order of λd2−md terms appearing

in the sum (2.7) to conclude that the mth summand is bounded by a constant pro-

portional to 2−γm. Summing over m yields again the desired bound and completes

the proof. �

Remark 2.11. Note that the space Dγ depends crucially on the choice of model

(�,Ŵ). As a consequence, the reconstruction operator R itself also depends on

that choice. However, the map (�,Ŵ,f ) �→ Rf turns out to be locally Lipschitz

continuous provided that the distance between (�,Ŵ,f ) and (�̄, Ŵ̄, f̄ ) is given

by the smallest constant ̺ such that
∥

∥f (x) − f̄ (x) − Ŵxyf (y) + Ŵ̄xy f̄ (y)
∥

∥

α ≤ ̺|x − y|γ−α,
∣

∣(�xτ − �̄xτ)
(

ϕλ
x

)∣

∣ ≤ ̺λα‖τ‖,

‖Ŵxyτ − Ŵ̄xyτ‖β ≤ ̺|x − y|α−β‖τ‖.
Here, in order to obtain bounds on (Rf − R̄f̄ )(ψ) for some smooth compactly

supported test function ψ , the above bounds should hold uniformly for x and y

in a neighbourhood of the support of ψ . The proof that this stronger continuity

property also holds is actually crucial when showing that sequences of solutions to

mollified equations all converge to the same limiting object. However, its proof is

somewhat more involved which is why we chose not to give it here.
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Remark 2.12. In the particular case where �xτ happens to be a continuous func-

tion for every τ ∈ T (and every x ∈ Rd ), Rf is also a continuous function and one

has the identity

(Rf )(x) =
(

�xf (x)
)

(x). (2.14)

This can be seen from the fact that

(Rf )(y) = lim
n→∞

(

Rnf
)

(y) = lim
n→∞

∑

x∈�n

(

�xf (x)
)(

ϕn
x

)

ϕn
x (y).

Indeed, our assumptions imply that the function (x, z) �→ (�xf (x))(z) is jointly

continuous and since the non-vanishing terms in the above sum satisfy |x − y| �
2−n, one has 2dn/2(�xf (x))(ϕn

x ) ≈ (�yf (y))(y) for large n. Since furthermore
∑

x∈�n ϕn
x (y) = 2dn/2, the claim follows.

3 Examples of regularity structures

3.1 The polynomial structure

It should by now be clear how the structure given by the usual Taylor polynomials

fits into this framework. A natural way of setting it up is to take for T the space

of all abstract polynomials in d commuting variables, denoted by X1, . . . ,Xd , and

to postulate that Tk consists of the linear span of monomials of degree k. As an

abstract group, the structure group G is then given by Rd endowed with addition

as its group operation, which acts onto T via ŴhX
k = (X −h)k , where h ∈ Rd and

we use the notation Xk as a shorthand for X
k1

1 · · ·Xkd

d for any multiindex k.

The canonical polynomial model is then given by

(

�xX
k)(y) = (y − x)k, Ŵxy = Ŵy−x .

We leave it as an exercise to the reader to verify that this does indeed satisfy the

bounds and relations of Definition 2.5.

In the particular case of the canonical polynomial model and for γ /∈ N, the

spaces Dγ then coincide precisely with the usual Hölder spaces Cγ . In the case of

integer values, this should be interpreted as bounded functions for γ = 0, Lipschitz

continuous functions for γ = 1, etc.

3.2 Controlled rough paths

Let us see now how the theory of controlled rough paths can be reinterpreted in

the light of this theory. For given α ∈ (1
3
, 1

2
) and n ≥ 1, we can define a regularity

structure T by setting A = {α − 1,2α − 1,0, α}. We furthermore take for T0 a

copy of R with unit vector 1, for Tα and Tα−1 a copy of Rn with respective unit
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vectors Wj and �j , and for T2α−1 a copy of Rn×n with unit vectors Wj�i . The

structure group G is taken to be isomorphic to Rn and, for x ∈ Rn, it acts on T via

Ŵx1 = 1, Ŵx�i = �i,

ŴxWi = Wi − xi1, Ŵx(Wj�i) = Wj�i − xj�i .

Let now X = (X,X) be an α-Hölder continuous rough path with values in Rn.

In other words, the functions X and X are as in the Introduction, satisfying the

relation (1.4) and the analytic bounds |Xt − Xs | � |t − s|α , |Xs,t | � |t − s|2α . It

turns out that this defines a model for T in the following way (recall that Xs,t is a

shorthand for Xt − Xs ):

Lemma 3.1. Given an α-Hölder continuous rough path X, one can define a model

for T on R by setting Ŵsu = ŴXs,u and

(�s1)(t) = 1, (�sWj )(t) = X
j
s,t ,

(�s�j )(ψ) =
∫

ψ(t) dX
j
t , (�sWj�i)(ψ) =

∫

ψ(t) dX
i,j
s,t .

Here, both integrals are perfectly well-defined Riemann integrals, with the differ-

ential in the second case taken with respect to the variable t . Given a controlled

rough path (Y,Y ′) ∈ Cα
X as in (1.2), this then defines an element Ŷ ∈ D2α by setting

Ŷ (s) = Y(s)1 + Y ′
i (s)Wi,

with summation over i implied.

Proof. We first check that the algebraic properties of Definition 2.5 are satisfied. It

is clear that ŴsuŴut = Ŵst and that �sŴsuτ = �uτ for τ ∈ {1,Wj ,�j }. Regarding

Wj�i , we differentiate Chen’s relations (1.4) which yields the identity

dX
i,j
s,t = dX

i,j
u,t + Xi

s,u dX
j
t .

The last missing algebraic relation then follows at once. The required analytic

bounds follow immediately from the definition of the rough path space Dα .

Regarding the function Ŷ defined in the statement, we have
∥

∥Ŷ (s) − ŴsuŶ (u)
∥

∥

0 =
∣

∣Y(s) − Y(u) + Y ′
i (u)Xi

s,u

∣

∣,

∥

∥Ŷ (s) − ŴsuŶ (u)
∥

∥

α =
∣

∣Y ′(s) − Y ′(u)
∣

∣,

so that the condition (2.4) with γ = 2α does indeed coincide with the definition of

a controlled rough path given in the Introduction. �

In this context, the reconstruction theorem allows us to define an integration op-

erator with respect to W . We can formulate this as follows where one should really

think of Z as providing a consistent definition of what one means by
∫

Y dXj .
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Lemma 3.2. In the same context as above, let α ∈ (1
3
, 1

2
), and consider Ŷ ∈ D2α

built as above from a controlled rough path. Then the map Ŷ�i given by

(Ŷ�j )(s) = Y(s)�j + Y ′
i (s)Wi�j

belongs to D3α−1. Furthermore, there exists a function Z such that, for every

smooth test function ψ , one has

(RŶ�j )(ψ) =
∫

ψ(t) dZ(t),

and such that Zs,t = Y(s)X
j
s,t + Y ′

i (s)X
i,j
s,t +O(|t − s|3α).

Proof. The fact that Ŷ�i ∈ D3α−1 is an immediate consequence of the definitions.

Since α > 1
3

by assumption, we can apply the reconstruction theorem to it, from

which it follows that there exists a unique distribution η such that, if ψ is a smooth

compactly supported test function, one has

η
(

ψλ
s

)

=
∫

ψλ
s (t)Y (s) dX

j
t +

∫

ψλ
s (t)Y ′

i (s) dX
i,j
s,t +O

(

λ3α−1)

.

By a simple approximation argument, it turns out that one can take for ψ the

indicator function of the interval [0,1], so that

η(1[s,t]) = Y(s)X
j
s,t + Y ′

i (s)X
i,j
s,t +O

(

|t − s|3α)

.

Here, the reason why one obtains an exponent 3α rather than 3α − 1 is that it is

really |t − s|−11[s,t] that scales like an approximate δ-distribution as t → s. �

Remark 3.3. Using the formula (2.14), it is straightforward to verify that if X

happens to be a smooth function and X is defined from X via (1.3), but this time

viewing it as a definition for the left-hand side, with the right-hand side given by a

usual Riemann integral, then the function Z constructed in Lemma 3.2 coincides

with the usual Riemann integral of Y against Xj .

3.3 A classical result from harmonic analysis

The considerations above suggest that a very natural space of distributions is ob-

tained in the following way. For some α > 0, we denote by C−α the space of all

Schwartz distributions η such that η belongs to the dual of Cr with r > α some

integer and such that
∣

∣η
(

ϕλ
x

)∣

∣ � λ−α,

uniformly over all ϕ ∈ Br and λ ∈ (0,1], and locally uniformly in x. Given any

compact set K, the best possible constant such that the above bound holds uni-

formly over x ∈ K yields a seminorm. The collection of these seminorms endows

C−α with a Fréchet space structure.
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Remark 3.4. It turns out that the space C−α is independent of the choice of r in

the definition given above, which justifies the notation. Different values of r give

raise to equivalent seminorms.

Remark 3.5. In terms of the scale of classical Besov spaces, the space C−α is a

local version of B−α
∞,∞. It is in some sense the largest space of distributions that

is invariant under the scaling ϕ(·) �→ λ−αϕ(λ−1·); see, for example, Bourgain and

Pavlović (2008).

It is then a classical result in the “folklore” of harmonic analysis that the product

extends naturally to C−α ×Cβ into S ′(Rd) if and only if β > α. The reconstruction

theorem yields a straightforward proof of the “if” part of this result.

Theorem 3.6. There is a continuous bilinear map B :C−α × Cβ → S ′(Rd) such

that B(f,g) = fg for any two continuous functions f and g.

Proof. Assume from now on that ξ ∈ C−α for some α > 0 and that f ∈ Cβ for

some β > α. We then build a regularity structure T in the following way. For the

set A, we take A = N ∪ (N − α) and for T , we set T = V ⊕ W , where each one of

the spaces V and W is a copy of the polynomial model in d commuting variables

constructed in Section 3.1. We also choose Ŵ as in the canonical model, acting

simultaneously on each of the two instances.

As before, we denote by Xk the canonical basis vectors in V . We also use the

suggestive notation “�Xk” for the corresponding basis vector in W , but we postu-

late that �Xk ∈ Tα+|k| rather than �Xk ∈ T|k|. Given any distribution ξ ∈ C−α , we

then define a model (�ξ ,Ŵ), where Ŵ is as in the canonical model, while �ξ acts

as
(

�ξ
xX

k)(y) = (y − x)k,
(

�ξ
x�Xk)(y) = (y − x)kξ(y),

with the obvious abuse of notation in the second expression. It is then straight-

forward to verify that �y = �x ◦ Ŵxy and that the relevant analytical bounds are

satisfied, so that this is indeed a model.

Denote now by Rξ the reconstruction map associated to the model (�ξ ,Ŵ) and,

for f ∈ Cβ , denote by F the element in Dβ given by the local Taylor expansion of

f of order β at each point. Note that even though the space Dβ does in principle

depend on the choice of model, in our situation F ∈ Dβ for any choice of ξ . It

follows immediately from the definitions that the map x �→ �F(x) belongs to

Dβ−α so that, provided that β > α, one can apply the reconstruction operator to it.

This suggests that the multiplication operator we are looking for can be defined as

B(f, ξ) = Rξ (�F).

By Theorem 2.10, this is a jointly continuous map from Cβ × C−α into S ′(Rd),

provided that β > α. If ξ happens to be a smooth function, then it follows immedi-

ately from Remark 2.12 that B(f, ξ) = f (x)ξ(x), so that B is indeed the requested

continuous extension of the usual product. �
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Remark 3.7. As a consequence of (2.5), it is actually easy to show that B :C−α ×
Cβ → C−α .

4 Products and composition by smooth functions

One of the main purposes of the theory presented here is to give a robust way to

multiply distributions (or functions with distributions) that goes beyond the barrier

illustrated by Theorem 3.6. Provided that our functions/distributions are repre-

sented as elements in Dγ for some model and regularity structure, we can multi-

ply their “Taylor expansions” pointwise, provided that we give ourselves a table of

multiplication on T .

It is natural to consider products with the following properties. Here, given a

regularity structure, we say that a subspace V ⊂ T is a sector if it is invariant

under the action of the structure group G and if it can furthermore be written as

V = ⊕

α∈A Vα with Vα ⊂ Tα .

Definition 4.1. Given a regularity structure (T ,A,G) and two sectors V, V̄ ⊂ T ,

a product on (V , V̄ ) is a bilinear map ⋆ :V × V̄ → T such that, for any τ ∈ Vα

and τ̄ ∈ V̄β , one has τ ⋆ τ̄ ∈ Tα+β and such that, for any element Ŵ ∈ G, one has

Ŵ(τ ⋆ τ̄ ) = Ŵτ ⋆ Ŵτ̄ .

Remark 4.2. The condition that homogeneities add up under multiplication is

very natural bearing in mind the case of the polynomial regularity structure. The

second condition is also very natural since it merely states that if one re-expands

the product of two “polynomials” around a different point, one should obtain the

same result as if one reexpands each factor first and then multiplies them together.

Given such a product, we can ask ourselves when the pointwise product of an

element Dγ1 with an element in Dγ2 again belongs to some Dγ . In order to answer

this question, we introduce the notation D
γ
α to denote those elements f ∈Dγ such

that furthermore

f (x) ∈ T +
α ≡

⊕

β≥α

Tβ,

for every x. With this notation at hand, it is not too difficult to verify that one has

the following result.

Theorem 4.3. Let f1 ∈ D
γ1
α1(V ), f2 ∈ D

γ2
α2(V̄ ), and let ⋆ be a product on (V , V̄ ).

Then, the function f given by f (x) = f1(x) ⋆ f2(x) belongs to D
γ
α with

α = α1 + α2, γ = (γ1 + α2) ∧ (γ2 + α1). (4.1)
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Proof. It is clear that f (x) ∈ ⊕

β>α Tβ , so it remains to show that it belongs to

Dγ . Furthermore, since we are only interested in showing that f1 ⋆ f2 ∈ Dγ , we

discard all of the components in Tβ for β ≥ γ .

By the properties of the product ⋆, it remains to obtain a bound of the type
∥

∥Ŵxyf1(y) ⋆ Ŵxyf2(y) − f1(x) ⋆ f2(x)
∥

∥

β � |x − y|γ−β .

By adding and subtracting suitable terms, we obtain
∥

∥Ŵxyf (y) − f (x)
∥

∥

β ≤
∥

∥

(

Ŵxyf1(y) − f1(x)
)

⋆
(

Ŵxyf2(y) − f2(x)
)∥

∥

β

+
∥

∥

(

Ŵxyf1(y) − f1(x)
)

⋆ f2(x)
∥

∥

β (4.2)

+
∥

∥f1(x) ⋆
(

Ŵxyf2(y) − f2(x)
)∥

∥

β .

It follows from the properties of the product ⋆ that the first term in (4.2) is bounded

by a constant times
∑

β1+β2=β

∥

∥Ŵxyf1(y) − f1(x)
∥

∥

β1

∥

∥Ŵxyf2(y) − f2(x)
∥

∥

β2

�
∑

β1+β2=β

‖x − y‖γ1−β1‖x − y‖γ2−β2 � ‖x − y‖γ1+γ2−β .

Since γ1 + γ2 ≥ γ , this bound is as required. The second term is bounded by a

constant times
∑

β1+β2=β

∥

∥Ŵxyf1(y) − f1(x)
∥

∥

β1

∥

∥f2(x)
∥

∥

β2

� ‖x − y‖γ1−β11β2≥α2
� ‖x − y‖γ1+α2−β,

where the second inequality uses the identity β1 +β2 = β . Since γ1 +α2 ≥ γ , this

bound is again of the required type. The last term is bounded similarly by reversing

the roles played by f1 and f2. �

Remark 4.4. It is clear that the formula (4.1) for γ is optimal in general as can

be seen from the following two “reality checks.” First, consider the case of the

polynomial model and take fi ∈ Cγi . In this case, the truncated Taylor series Fi

for fi belong to D
γi

0 . It is clear that in this case, the product cannot be expected

to have better regularity than γ1 ∧ γ2 in general, which is indeed what (4.1) states.

The second reality check comes from the example of Section 3.3. In this case, one

has F ∈ D
β
0 , while the constant function x �→ � belongs to D∞

−α so that, according

to (4.1), one expects their product to belong to D
β−α
−α , which is indeed the case.

It turns out that if we have a product on a regularity structure, then in many

cases this also naturally yields a notion of composition with smooth functions. Of

course, one could in general not expect to be able to compose a smooth function
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with a distribution of negative order. As a matter of fact, we will only define the

composition of smooth functions with elements in some Dγ for which it is guar-

anteed that the reconstruction operator yields a continuous function. One might

think at this case that this would yield a triviality, since we know of course how

to compose arbitrary continuous function. The subtlety is that we would like to

design our composition operator in such a way that the result is again an element

of Dγ .

For this purpose, we say that a given sector V ⊂ T is function-like if α <

0 ⇒ Vα = 0 and if V0 is one-dimensional. (Denote the unit vector of V0 by 1.)

We will furthermore always assume that our models are normal in the sense that

(�x1)(y) = 1. I this case, it turns out that if f ∈ Dγ (V ), then Rf is a continuous

function and one has the identity (Rf )(x) = 〈1, f (x)〉, where we denote by 〈1, ·〉
the element in the dual of V which picks out the pre-factor of 1.

Assume now that we are given a regularity structure with a function-like sector

V and a product ⋆ :V × V → V . For any smooth function G : R → R and any

f ∈ Dγ (V ) with γ > 0, we can then define G(f ) to be the V -valued function

given by

(G ◦ f )(x) =
∑

k≥0

G(k)(f̄ (x))

k! f̃ (x)⋆k,

where we have set

f̄ (x) =
〈

1, f (x)
〉

, f̃ (x) = f (x) − f̄ (x)1.

Here, G(k) denotes the kth derivative of G and τ ⋆k denotes the k-fold product

τ ⋆ · · · ⋆ τ . We also used the usual conventions G(0) = G and τ ⋆0 = 1.

Note that as long as G is C∞, this expression is well-defined. Indeed, by as-

sumption, there exists some α0 > 0 such that f̃ (x) ∈ T +
α0

. By the properties of the

product, this implies that one has f̃ (x)⋆k ∈ T +
kα0

. As a consequence, when consid-

ering the component of G ◦ f in Tβ for β < γ , the only terms that give a con-

tribution are those with k < γ/α0. Since we cannot possibly hope in general that

G ◦ f ∈Dγ ′
for some γ ′ > γ , this is all we really need.

It turns out that if G is sufficiently regular, then the map f �→ G ◦ f enjoys

similarly nice continuity properties to what we are used to from classical Hölder

spaces. The following result is the analogue in this context to the well-known fact

that the composition of a Cγ function with a sufficiently smooth function G is

again of class Cγ .

Proposition 4.5. In the same setting as above, provided that G is of class Ck

with k > γ/α0, the map f �→ G ◦ f is continuous from Dγ (V ) into itself. If k >

γ/α0 + 1, then it is locally Lipschitz continuous.

The proof of this result can be found in Hairer (2014). It is somewhat lengthy,

but ultimately rather straightforward.
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4.1 A simple example

A very important remark is that even if both Rf1 and Rf2 happens to be

continuous functions, this does not in general imply that R(f1 ⋆ f2)(x) =
(Rf1)(x)(Rf2)(x). For example, fix κ < 0 and consider the regularity structure

given by A = (−2κ,−κ,0), with each Tα being a copy of R given by T−nκ = 〈�n〉.
We furthermore take for G the trivial group. This regularity structure comes with

an obvious product by setting �m ⋆ �n = �m+n provided that m + n ≤ 2.

Then, we could for example take as a model for T = (T ,A,G):

(

�x�
0)

(y) = 1, (�x�)(y) = 0,
(

�x�
2)

(y) = c, (4.3)

where c is an arbitrary constant. Let furthermore

F1(x) = f1(x)�0 + f ′
1(x)�, F2(x) = f2(x)�0 + f ′

2(x)�.

Since our group G is trivial, one has Fi ∈ Dγ provided that each of the fi be-

longs to Dγ and each of the f ′
i belongs to Dγ+κ . (And one has γ + κ < 1.) One

furthermore has the identity (RFi)(x) = fi(x).

However, the pointwise product is given by

(F1 ⋆ F2)(x) = f1(x)f2(x)�0 +
(

f ′
1(x)f2(x) + f ′

2(x)f1(x)
)

� + f ′
1(x)f ′

2(x)�2,

which by Theorem 4.3 belongs to Dγ−κ . Provided that γ > κ , one can then apply

the reconstruction operator to this product and one obtains

R(F1 ⋆ F2)(x) = f1(x)f2(x) + cf ′
1(x)f ′

2(x),

which is obviously different from the pointwise product RF1 ·RF2.

How should this be interpreted? For n > 0, we could have defined a model �(n)

by

(

�x�
0)

(y) = 1, (�x�)(y) =
√

2c sin(nx),
(

�x�
2)

(y) = 2c sin2(nx).

Denoting by R(n) the corresponding reconstruction operator, we have the identity

(

R(n)Fi

)

(x) = fi(x) +
√

2cf ′
i (x) sin(nx),

as well as R(n)(F1 ⋆ F2) = R(n)F1 · R(n)F2. As a model, the model �(n) actu-

ally converges to the limiting model � defined in (4.3). As a consequence of the

continuity of the reconstruction operator, this implies that

R(n)F1 ·R(n)F2 = R(n)(F1 ⋆ F2) → R(F1 ⋆ F2) �= RF1 ·RF2,

which is of course also easy to see “by hand.” This shows that in some cases, the

“non-standard” models as in (4.3) can be interpreted as limits of “standard” models

for which the usual rules of calculus hold. Even this is, however, not always the

case.
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5 Schauder estimates and admissible models

One of the reasons why the theory of regularity structures is very successful at

providing detailed descriptions of the small-scale features of solutions to semi-

linear (S)PDEs is that it comes with very sharp Schauder estimates. Recall that

the classical Schauder estimates state that if K : Rd → R is a kernel that is smooth

everywhere, except for a singularity at the origin that is (approximately) homoge-

neous of degree β − d for some β > 0, then the operator f �→ K ∗f maps Cα into

Cα+β for every α ∈ R, except for those values for which α + β ∈ N. (See, e.g.,

Simon (1997).)

It turns out that similar Schauder estimates hold in the context of general reg-

ularity structures in the sense that it is in general possible to build an operator

K :Dγ → Dγ+β with the property that RKf = K ∗Rf . Of course, such a state-

ment can only be true if our regularity structure contains not only the objects nec-

essary to describe Rf up to order γ , but also those required to describe K ∗Rf up

to order γ + β . What are these objects? At this stage, it might be useful to reflect

on the effect of the convolution of a singular function (or distribution) with K .

Let us assume for a moment that f is also smooth everywhere, except at some

point x0. It is then straightforward to convince ourselves that K ∗ f is also smooth

everywhere, except at x0. Indeed, for any δ > 0, we can write K = Kδ + Kc
δ ,

where Kδ is supported in a ball of radius δ around 0 and Kc
δ is a smooth function.

Similarly, we can decompose f as f = fδ + f c
δ , where fδ is supported in a δ-ball

around x0 and f c
δ is smooth. Since the convolution of a smooth function with an

arbitrary distribution is smooth, it follows that the only non-smooth component of

K ∗f is given by Kδ ∗fδ , which is supported in a ball of radius 2δ around x0. Since

δ was arbitrary, the statement follows. By linearity, this strongly suggests that the

local structure of the singularities of K ∗ f can be described completely by only

using knowledge on the local structure of the singularities of f . It also suggests

that the “singular part” of the operator K should be local, with the non-local parts

of K only contributing to the “regular part.”

This discussion suggests that we certainly need the following ingredients to

build an operator K with the desired properties:

• The canonical polynomial structure should be part of our regularity structure in

order to be able to describe the “regular parts.”

• We should be given an “abstract integration operator” I on T which describes

how the “singular parts” of Rf transform under convolution by K .

• We should restrict ourselves to models which are “compatible” with the action

of I in the sense that the behaviour of �xIτ should relate in a suitable way to

the behaviour of K ∗ �xτ near x.

One way to implement these ingredients is to assume first that our model space T

contains abstract polynomials in the following sense.
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Assumption 5.1. There exists a sector T̄ ⊂ T isomorphic to the space of abstract

polynomials in d commuting variables. In other words, T̄α �= 0 if and only if α ∈ N,

and one can find basis vectors Xk of T|k| such that every element Ŵ ∈ G acts on T̄

by ŴXk = (X − h)k for some h ∈ Rd .

Furthermore, we assume that there exists an abstract integration operator I with

the following properties.

Assumption 5.2. There exists a linear map I :T → T such that ITα ⊂ Tα+β ,

such that IT̄ = 0, and such that, for every Ŵ ∈ G and τ ∈ T , one has

ŴIτ − IŴτ ∈ T̄ . (5.1)

Finally, we want to consider models that are compatible with this structure for

a given kernel K . For this, we first make precise what we mean exactly when we

said that K is approximately homogeneous of degree β − d .

Assumption 5.3. One can write K = ∑

n≥0 Kn where each of the kernels

Kn : Rd → R is smooth and compactly supported in a ball of radius 2−n around

the origin. Furthermore, we assume that for every multi-index k, one has a con-

stant C such that the bound

sup
x

∣

∣DkKn(x)
∣

∣ ≤ C2n(d−β+|k|), (5.2)

holds uniformly in n. Finally, we assume that
∫

Kn(x)P (x) dx = 0 for every poly-

nomial P of degree at most N , for some sufficiently large value of N .

Remark 5.4. It turns out that in order to define the operator K on Dγ , we will

need K to annihilate polynomials of degree N for some N ≥ γ + β .

Remark 5.5. The last assumption may appear to be extremely stringent at first

sight. In practice, this turns out not to be a problem at all. Say, for example, that we

want to define an operator that represents convolution with G, the Green’s function

of the Laplacian. Then G can be decomposed into a sum of terms satisfying the

bound (5.2) with β = 2, but it does of course not annihilate generic polynomials

and it is not supported in the ball of radius 1.

However, for any fixed value of N > 0, it is straightforward to decompose G

as G = K + R, where the kernel K is compactly supported and satisfies all of the

properties mentioned above, and the kernel R is smooth. Lifting the convolution

with R to an operator from Dγ → Dγ+β (actually to Dγ̄ for any γ̄ > 0) is straight-

forward, so that we have reduced our problem to that of constructing an operator

describing the convolution by K .
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Given such a kernel K , we can now make precise what we meant earlier when

we said that the models under consideration should be compatible with the ker-

nel K .

Definition 5.6. Given a kernel K as in Assumption 5.3 and a regularity structure

T satisfying Assumptions 5.1 and 5.2, we say that a model (�,Ŵ) is admissible

if the identities

(

�xX
k)(y) = (y − x)k, �xIτ = K ∗ �xτ − �xJ (x)τ, (5.3)

holds for every τ ∈ T with |τ | ≤ N . Here, J (x) :T → T̄ is the linear map given

on homogeneous elements by

J (x)τ =
∑

|k|<|τ |+β

Xk

k!

∫

D(k)K(x − y)(�xτ)(dy). (5.4)

Remark 5.7. Note first that if τ ∈ T̄ , then the definition given above is coherent

as long as |τ | < N . Indeed, since Iτ = 0, one necessarily has �xIτ = 0. On the

other hand, the properties of K ensure that in this case one also has K ∗ �xτ = 0,

as well as J (x)τ = 0.

Remark 5.8. While K ∗ ξ is well defined for any distribution ξ , it is not so clear

a priori whether the operator J (x) given in (5.4) is also well defined. It turns

out that the axioms of a model do ensure that this is the case. The correct way of

interpreting (5.4) is by

J (x)τ =
∑

|k|<|τ |+β

∑

n≥0

Xk

k! (�xτ)
(

D(k)Kn(x − ·)
)

.

Note now that the scaling properties of the Kn ensure that 2(β−|k|)nD(k)Kn(x − ·)
is a test function that is localised around x at scale 2−n. As a consequence, one has

∣

∣(�xτ)
(

D(k)Kn(x − ·)
)∣

∣ � 2(|k|−β−|τ |)n,

so that this expression is indeed summable as long as |k| < |τ | + β .

Remark 5.9. As a matter of fact, it turns out that the above definition of an ad-

missible model dovetails very nicely with our axioms defining a general model.

Indeed, starting from any regularity structure T , any model (�,Ŵ) for T , and a

kernel K satisfying Assumption 5.3, it is usually possible to build a larger regular-

ity structure T̂ containing T (in the “obvious” sense that T ⊂ T̂ and the action

of Ĝ on T is compatible with that of G) and endowed with an abstract integra-

tion map I , as well as an admissible model (�̂, Ŵ̂) on T̂ which reduces to (�,Ŵ)

when restricted to T . See Hairer (2014) for more details.
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The only exception to this rule arises when the original structure T contains

some homogeneous element τ which does not represent a polynomial and which

is such that |τ | + β ∈ N. Since the bounds appearing both in the definition of

a model and in Assumption 5.3 are only upper bounds, it is in practice easy to

exclude such a situation by slightly tweaking the definition of either the exponent

β or of the original regularity structure T .

With all of these definitions in place, we can finally build the operator K :Dγ →
Dγ+β announced at the beginning of this section. Recalling the definition of J

from (5.4), we set

(Kf )(x) = If (x) +J (x)f (x) + (Nf )(x), (5.5)

where the operator N is given by

(Nf )(x) =
∑

|k|<γ+β

Xk

k!

∫

D(k)K(x − y)
(

Rf − �xf (x)
)

(dy). (5.6)

Note first that thanks to the reconstruction theorem, it is possible to verify that the

right-hand side of (5.6) does indeed make sense for every f ∈ Dγ in virtually the

same way as in Remark 5.8. One has the following.

Theorem 5.10. Let K be a kernel satisfying Assumption 5.3, let T = (A,T ,G)

be a regularity structure satisfying Assumptions 5.1 and 5.2, and let (�,Ŵ) be an

admissible model for T . Then, for every f ∈ Dγ with γ ∈ (0,N −β) and γ +β /∈
N, the function Kf defined in (5.5) belongs to Dγ+β and satisfies RKf = K ∗Rf .

Proof. The complete proof of this result can be found in Hairer (2014) and will not

be given here. Let us simply show that one has indeed RKf = K ∗Rf in the par-

ticular case when our model consists of continuous functions so that Remark 2.12

applies. In this case, one has

(RKf )(x) =
(

�x

(

If (x) +J (x)f (x)
))

(x) +
(

�x(Nf )(x)
)

(x).

As a consequence of (5.3), the first term appearing in the right-hand side of this

expression is given by
(

�x

(

If (x) +J (x)f (x)
))

(x) =
(

K ∗ �xf (x)
)

(x).

On the other hand, the only term contributing to the second term is the one with

k = 0 (which is always present since γ > 0 by assumption) which then yields

(

�x(Nf )(x)
)

(x) =
∫

K(x − y)
(

Rf − �xf (x)
)

(dy).

Adding both of these terms, we see that the expression (K ∗ �xf (x))(x) cancels,

leaving us with the desired result. �
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6 Application of the theory to semilinear SPDEs

Let us now briefly explain how this theory can be used to make sense of solutions

to very singular semilinear stochastic PDEs. We will keep the discussion in this

section at a very informal level without attempting to make mathematically precise

statements. The interested reader may find more details in Hairer (2014).

For definiteness, we focus on the case of the dynamical �4
3 model, which is

formally given by

∂t� = �� − �3 + ξ, (6.1)

where ξ denotes space–time white noise and the spatial variable takes values in

the three-dimensional torus. The problem with such an equation is that even the

solution to the linear part of the equation, namely

∂t� = �� + ξ,

only admits solutions in some spaces of Schwartz distributions. As a matter of fact,

one has �(t, ·) ∈ C−α if and only if α > 1/2. As a consequence, it turns out that

the only way of giving meaning to (6.1) is to “renormalise” the equation by adding

an “infinite” linear term “∞�” which counteracts the strong dissipativity of the

term −�3. To be slightly more precise, one can prove a statement of the following

kind:

Theorem 6.1. Consider the sequence of equations

∂t�ε = ��ε + Cε�ε − �3
ε + ξε, (6.2)

where ξε = δε ∗ ξ with δε(t, x) = ε−5̺(ε−2t, ε−1x), for some smooth and com-

pactly supported function ̺, and ξ denotes space–time white noise. Then there

exists a choice of constants Cε such that the sequence �ε converges in probability

to a limiting (distributional) process �. Furthermore, the limiting process � does

not depend on the choice of mollifier ̺.

Remark 6.2. It turns out that in order to obtain a limit that is independent of the

choice of mollifier ̺, one should take Cε of the form

Cε = c1

ε
+ c̃ log ε + c3,

where c̃ is universal, but c1 and c3 depend on the choice of ̺.

Remark 6.3. The limiting solution � is only local in time, so that the precise

statement has to be slightly tweaked to allow for finite-time blow-ups. Regarding

the initial condition, one can take �0 ∈ C−β for any β < 2/3. This is expected to

be optimal, even for the deterministic equation.
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The aim of this section is to sketch how the theory of regularity structures can be

used to obtain this kind of convergence results. First of all, we note that while our

solution � will be a space–time distribution (or rather an element of Dγ for some

regularity structure with a model over R4), the “time” direction has a different

scaling behaviour from the three “space” directions. As a consequence, it turns

out to be effective to slightly change our definition of “localised test functions” by

setting

ϕλ
(s,x)(t, y) = λ−5ϕ

(

λ−2(t − s), λ−1(y − x)
)

.

Accordingly, the “effective dimension” of our space–time is actually 5, rather

than 4. The theory presented above extends mutatis mutandis to this setting. (Note

in particular that when considering the degree of a regular monomial, powers of

the time variable should now be counted double.) Note also that with this way of

measuring regularity, space–time white noise belongs to C−α for every α > 5
2
. This

is because of the bound
(

E
〈

ξ,ϕλ
x

〉2)1/2 =
∥

∥ϕλ
x

∥

∥

L2 ≈ λ−5/2,

combined with an argument similar to the proof of Kolmogorov’s continuity

lemma.

6.1 Construction of the associated regularity structure

Our first step is to build a regularity structure that is sufficiently large to allow to

reformulate (6.1) as a fixed point in Dγ for some γ > 0. Denoting by G the heat

kernel (i.e., the Green’s function of the operator ∂t −�), we can write the solution

to (6.1) with initial condition �0 as

� = G ∗
(

ξ − �3)

+ G�0,

where ∗ denotes space–time convolution and where we denote by G�0 the har-

monic extension of �0. In order to have a chance of fitting this into the framework

described above, we first decompose the heat kernel G as

G = K + K̂,

where the kernel K satisfies all of the assumptions of Section 5 (with β = 2) and

the remainder K̂ is smooth. If we consider any regularity structure containing the

usual Taylor polynomials and equipped with an admissible model, is straightfor-

ward to associate to K̂ an operator K̂ :Dγ → D∞ via

(K̂f )(z) =
∑

k

Xk

k!
(

D(k)K̂ ∗Rf
)

(z),

where z denotes a space–time point and k runs over all possible four-dimensional

multi-indices. Similarly, the harmonic extension of �0 can be lifted to an element
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in D∞ which we denote again by G�0 by considering its Taylor expansion around

every space–time point. At this stage, we note that we actually cheated a little:

while G�0 is smooth in {(t, x) : t > 0, x ∈ T3} and vanishes when t < 0, it is of

course singular on the time-0 hyperplane {(0, x) :x ∈ T3}. This problem can be

cured by introducing weighted versions of the spaces Dγ allowing for singulari-

ties on a given hyperplane. A precise definition of these spaces and their behaviour

under multiplication and the action of the integral operator K can be found in

Hairer (2014). For the purpose of the informal discussion given here, we will sim-

ply ignore this problem.

This suggests that the “abstract” formulation of (6.1) should be given by

� = K
(

� − �3)

+ K̂
(

� − �3)

+ G�0. (6.3)

In view of (5.5), this equation is of the type

� = I
(

� − �3)

+ (· · ·), (6.4)

where the terms (· · ·) consist of functions that take values in the subspace T̄ of

T spanned by regular Taylor polynomials. In order to build a regularity structure

in which (6.4) can be formulated, it is natural to start with the structure given by

abstract polynomials (again with the parabolic scaling which causes the abstract

“time” variable to have homogeneity 2 rather than 1), and to add a symbol �

to it which we postulate to have homogeneity −5
2

−
, where we denote by α− an

exponent strictly smaller than, but arbitrarily close to, the value α.

We then simply add to T all of the formal expressions that an application of the

right-hand side of (6.4) can generate for the description of �, �2, and �3. The

homogeneity of a given expression is completely determined by the rules |Iτ | =
|τ | + 2 and |τ τ̄ | = |τ | + |τ |. More precisely, we consider a collection U of formal

expressions which is the smallest collection containing 1, X, and I(�), and such

that

τ1, τ2, τ3 ∈ U ⇒ I(τ1τ2τ3) ∈ U,

where it is understood that I(Xk) = 0 for every multiindex k. We then set

W = {�} ∪ {τ1τ2τ3 : τi ∈ U},
and we define our space T as the set of all linear combinations of elements in W .

(Note that since 1 ∈ U , one does in particular have U ⊂ W .) Naturally, Tα consists

of those linear combinations that only involve elements in W that are of homo-

geneity α. It is not too difficult to convince oneself that, for every α ∈ R, W con-

tains only finitely many elements of homogeneity less than α, so that each Tα is

finite-dimensional.

In order to simplify expressions later, we will use the following shorthand

graphical notation for elements of W . For �, we simply draw a dot. The inte-

gration map is then represented by a down-facing line and the multiplication of

symbols is obtained by joining them at the root. For example, we have

I(�) = , I(�)3 = , I(�)I
(

I(�)3)

= .
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Symbols containing factors of X have no particular graphical representation, so we

will for example write XiI(�)2 = Xi . With this notation, the space T is given

by

T = 〈�, , , , , , ,Xi ,1, , , . . .〉,
where we ordered symbols in increasing order of homogeneity and used 〈·〉 to

denote the linear span. Given any sufficiently regular function ξ (say a continuous

space–time function), there is then a canonical way of lifting ξ to a model ιξ =
(�,Ŵ) for T by setting

(�x�)(y) = ξ(y),
(

�xX
k)(y) = (y − x)k,

and then recursively by

(�xτ τ̄ )(y) = (�xτ)(y) · (�x τ̄ )(y), (6.5)

as well as (5.3). (Note that here we used x and y as notation for generic space–time

points in order not to overload the notations.)

It turns out furthermore that there is a canonical way of building a structure

group G for T and to also lift ξ to a family of operators Ŵxy , in such a way that all

of the algebraic and analytic properties of an admissible model are satisfied. With

such a model ιξ at hand, it follows from (6.5) and the admissibility of ιξ that the

associated reconstruction operator satisfies the properties

RKf = K ∗Rf, R(fg) =Rf ·Rg,

as long as all the functions to which R is applied belong to Dγ for some γ > 0. As

a consequence, applying the reconstruction operator R to both sides of (6.3), we

see that if � solves (6.3) then, provided that the model (�,Ŵ) = ιξ was built as

above starting from any continuous realisation ξ of the driving noise, R� solves

the equation (6.1).

At this stage, the situation is as follows. For any continuous realisation ξ of the

driving noise, we have factored the solution map (�0, ξ) → � associated to (6.1)

into maps

(�0, ξ) → (�0, ιξ) → � → R�,

where the middle arrow corresponds to the solution to (6.3) in some weighted

Dγ -space. The advantage of such a factorisation is that the last two arrows yield

continuous maps, even in topologies sufficiently weak to be able to describe driv-

ing noise having the lack of regularity of space–time white noise. The only arrow

that is not continuous in such a weak topology is the first one. At this stage, it

should be believable that a similar construction can be performed for a very large

class of semi-linear stochastic PDEs. In particular, the KPZ equation can also be

analysed in this framework.

Given this construction, one is lead naturally to the following question: given a

sequence ξε of “natural” regularisations of space–time white noise, for example,
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as in (6.2), do the lifts ιξε converge in probably in a suitable space of admissible

models? Unfortunately, unlike in the case of the theory of rough paths where this

is very often the case, the answer to this question in the context of SPDEs is often

an emphatic no. Indeed, if it were the case for the dynamical �4
3 model, then

one could have chosen the constant Cε to be independent of ε in (6.2), which is

certainly not the case.

7 Renormalisation of the dynamical �
4
3 model

One way of circumventing the fact that ιξε does not converge to a limiting model

as ε → 0 is to consider instead a sequence of renormalised models. The main

idea is to exploit the fact that our abstract definitions of a model do not impose the

identity (6.5), even in situations where ξ itself happens to be a continuous function.

One question that then imposes itself is: what are the natural ways of “deforming”

the usual product which still lead to lifts to an admissible model? It turns out that

the regularity structure whose construction was sketched above comes equipped

with a natural finite-dimensional group of continuous transformations R on its

space of admissible models (henceforth called the “renormalisation group”), which

essentially amounts to the space of all natural deformations of the product. It then

turns out that even though ιξε does not converge, it is possible to find a sequence

Mε of elements in R such that the sequence Mειξε converges to a limiting model

(�̂, Ŵ̂). Unfortunately, the elements Mε no not preserve the image of ι in the space

of admissible models. As a consequence, when solving the fixed-point map (6.3)

with respect to the model Mειξε and inserting the solution into the reconstruction

operator, it is not clear a priori that the resulting function (or distribution) can again

be interpreted as the solution to some modified PDE. It turns out that in our case,

at least for a certain two-parameter subgroup of R, this is again the case and the

modified equation is precisely given by (6.2), where Cε is some linear combination

of the two constants appearing in the description of Mε .

There are now three questions that remain to be answered:

1. How does one construct the renormalisation group R?

2. How does one derive the new equation obtained when renormalising a model?

3. What is the right choice of Mε ensuring that the renormalised models converge?

7.1 The renormalisation group

In order to construct R, it is essential to first have some additional knowledge of the

structure group G for the type of regularity structures considered above. Recall that

the purpose of the group G is to provide a class of linear maps Ŵ :T → T arising

as possible candidates for the action of “re-expanding” a “Taylor series” around a

different point. In our case, in view of (5.3), the coefficients of these re-expansions

will naturally be some polynomials in x and in the expressions appearing in (5.4).
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This suggests that we should define a space T + whose basis vectors consist of

formal expressions of the type

Xk
N
∏

i=1

Jℓi
τi, (7.1)

where N is an arbitrary but finite number, the τi are basis elements of T , and the

ℓi are d-dimensional multi-indices satisfying |ℓi | < |τi | + 2. (The last bound is a

reflection of the restriction of the summands in (5.4) with β = 2.) The space T +

also has a natural graded structure T + = ⊕

T +
α by setting

|Jℓτ | = |τ | + 2 − |ℓ|,
∣

∣Xk
∣

∣ = |k|,

and by postulating that the degree of a product is the sum of the degrees. Unlike

in the case of T however, elements of T + all have strictly positive homogeneity,

except for the empty product 1 which we postulate to have degree 0.

To any given admissible model (�,Ŵ), it is then natural to associate linear maps

fx :T + → R by fx(X
k) = xk , fx(σ σ̄ ) = fx(σ )fx(σ̄ ), and

fx(Jℓi
τi) =

∫

D(ℓi)K(x − y)(�xτi)(dy). (7.2)

It then turns out that it is possible to build a linear map � :T → T ⊗ T + such that

if we define Fx :T → T by

Fxτ = (I ⊗ fx)�τ, (7.3)

where I denotes the identity operator on T , then these maps are invertible and

�xF
−1
x is independent of x. Furthermore, there exists a map �+ :T + → T + ⊗T +

such that

(� ⊗ I )� =
(

I ⊗ �+)

�, �+(σ σ̄ ) = �+σ · �+σ̄ . (7.4)

With this map at hand, we can define a product ◦ on the space of linear functionals

f :T + → R by

(f ◦ g)(σ ) = (f ⊗ g)�+σ.

If we furthermore denote by Ŵf the operator T associated to any such linear func-

tional as in (7.3), the first identity of (7.4) yields the identity Ŵf Ŵg = Ŵf ◦g . The

second identity of (7.4) furthermore ensures that if f and g are both multiplicative

in the sense that f (σ σ̄ ) = f (σ)f (σ̄ ), then f ◦ g is again multiplicative. It also

turns out that every multiplicative linear functional f admits a unique inverse f −1

such that f −1 ◦ f = f ◦ f −1 = e, where e :T + → R maps every basis vector of

the form (7.1) to zero, except for e(1) = 1. The element e is neutral in the sense

that Ŵe is the identity operator.
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It is now natural to define the structure group G associated to T as the set of

all multiplicative linear functionals on T +, acting on T via (7.3). Furthermore, for

any admissible model, one has the identity

Ŵxy = F−1
x Fy = Ŵγxy , γxy = f −1

x ◦ fy .

How does all this help with the identification of a natural class of deformations

for the usual product? First, it turns out that for every continuous function ξ , if we

denote again by (�,Ŵ) the model ιξ , then the linear map � :T → C given by

� = �yF
−1
y ,

which is independent of the choice of y by the above discussion, is given by

(��)(x) = ξ(x),
(

�Xk)(x) = xk, (7.5)

and then recursively by

�τ τ̄ = �τ · �τ̄ , �Iτ = K ∗ �τ.

Note that this is very similar to the definition of ιξ , with the notable exception that

(5.3) is replaced by the more “natural” identity �Iτ = K ∗ �τ . It turns out that

the knowledge of � and the knowledge of (�,Ŵ) are equivalent since one has

�x = �Fx and the map Fx can be recovered from �x by (7.2). (This argument

appears circular but it is possible to put a suitable recursive structure on T and

T + ensuring that this actually works.) Furthermore, the translation (�,Ŵ) ↔ �

actually works for any admissible model and does not at all rely on the fact that it

was built by lifting a continuous function. However, in the general case, the first

identity in (7.5) does not of course not make any sense anymore and might fail

even if the coordinates of � consist of continuous functions.

At this stage, we note that if ξ happens to be a stationary stochastic process

and � is built from ξ by following the above procedure, then �τ is a stationary

stochastic process for every τ ∈ T . In order to define R, it is natural to consider

only transformations of the space of admissible models that preserve this prop-

erty. Since we are not in general allowed to multiply components of �, the only

remaining operation is to form linear combinations. It is therefore natural to de-

scribe elements of R by linear maps M :T → T and to postulate their action on

admissible models by � �→ �
M with

�
Mτ = �Mτ.

It is not clear a priori whether given such a map M and an admissible model (�,Ŵ)

there is a coherent way of building a new model (�M ,ŴM) such that �
M is the

map associated to (�M ,ŴM) as above. It turns out that one has the following

statement.
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Proposition 7.1. In the above context, for every linear map M :T → T commut-

ing with I and multiplication by Xk , there exist unique linear maps �M :T →
T ⊗ T + and �̂M :T + → T + ⊗ T + such that if we set

�M
x τ = (�x ⊗ fx)�

Mτ, γ M
xy (σ ) = (γxy ⊗ fx)�̂

Mσ,

then �M
x satisfies again (5.3) and the identity �M

x ŴM
xy = �M

y .

At this stage, it may look like any linear map M :T → T commuting with I and

multiplication by Xk yields a transformation on the space of admissible models by

Proposition 7.1. This, however, is not true since we have completely disregarded

the analytical bounds that every model has to satisfy. It is clear from Definition 2.5

that these are satisfied if and only if �M
x τ is a linear combination of the �xτj with

|τj | ≥ |τ |. This suggests the following definition.

Definition 7.2. The renormalisation group R consists of the set of linear maps

M :T → T commuting with I and with multiplication by Xk , such that for τ ∈ Tα

and σ ∈ T +
α , one has

�Mτ − τ ⊗ 1 ∈
⊕

β>α

Tα ⊗ T +, �̂Mσ − σ ⊗ 1 ∈
⊕

β>α

T +
α ⊗ T +.

Its action on the space of admissible models is given by Proposition 7.1.

7.2 The renormalised equations

In the case of the dynamical �4 model considered in this article, it turns out that

we only need a two-parameter subgroup of R to renormalise the equations. More

precisely, we consider elements M ∈ R of the form M = exp(−C1L1 − C2L2),

where the two generators L1 and L2 are determined by the substitution rules

L1 : �→ 1, L2 : �→ 1.

This should be understood in the sense that if τ is an arbitrary formal expression,

then L1τ is the sum of all formal expressions obtained from τ by performing a

substitution of the type �→ 1, and similarly for L2. For example, one has

L1 = 3 , L1 = , L2 = 3 .

One then has the following result.

Proposition 7.3. The linear maps M of the type just described belong to R. Fur-

thermore, if (�,Ŵ) is an admissible model such that �xτ is a continuous function

for every τ ∈ T , then one has the identity

(

�M
x τ

)

(x) = (�xMτ)(x). (7.6)
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Remark 7.4. Note that it is the same value x that appears twice on each side of

(7.6). It is in fact not the case that one has �M
x τ = �xMτ . However, the identity

(7.6) is all we need to derive the renormalised equations.

It is now rather straightforward to show the following.

Proposition 7.5. Let M = exp(−C1L1 − C2L2) as above and let (�M ,ŴM) =
Mιξ for some smooth function ξ . Let furthermore � be the solution to (6.3) with

respect to the model (�M ,ŴM). Then the function u(t, x) = (RM�)(t, x) solves

the equation

∂tu = �u − u3 + (3C1 − 9C2)u + ξ.

Proof. By Theorem 4.3, it turns out that (6.3) can be solved in Dγ as soon as γ

is a little bit greater than 1. Therefore, we only need to keep track of its solution

� up to terms of homogeneity 1. By repeatedly applying the identity (6.4), we see

that the solution � is necessarily of the form

� = + ϕ1 − − 3ϕ + 〈∇ϕ,X〉, (7.7)

for some real-valued function ϕ and some R3-valued function ∇ϕ. (Note that ∇ϕ

is treated as an independent function here, we certainly do not suggest that the

function ϕ is differentiable. Our notation is only by analogy with the classical

Taylor expansion. . . .) Similarly, the right-hand side of the equation is given up to

order 0 by

�−�3 = �− − 3ϕ + 3 − 3ϕ2 + 6ϕ + 9ϕ − 3〈∇ϕ, X〉−ϕ31. (7.8)

Combining this with the definition of M , it is straightforward to see that, modulo

terms of strictly positive homogeneity, one has

M
(

� − �3)

= � − (M�)3 + 3C1 + 3C1ϕ1 − 9C2 − 9C2ϕ1

= � − (M�)3 + (3C1 − 9C2)M�.

Combining this with (7.6), the claim now follows at once. �

7.3 Convergence of the renormalised models

It remains to argue why one expects to be able to find constants Cε
1 and Cε

2 such that

the sequence of renormalised models Mειξε converges to a limiting model. Instead

of considering the actual sequence of models, we only consider the sequence of

stationary processes �̂
ε
τ := �

εMετ , where �
ε is associated to (�ε,Ŵε) = ιξε as

before. Since there are general arguments available to deal with all the expressions

τ of positive homogeneity, we restrict ourselves to those of negative homogeneity

which, leaving out � which is easy to treat, are given by

, , , , , ,Xi .
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For this section, some elementary notions from the theory of Wiener chaos ex-

pansions are required, but we will try to hide this as much as possible. At a formal

level, one has the identity

�
ε = K ∗ ξε = Kε ∗ ξ,

where the kernel Kε is given by Kε = K ∗ δε . This shows that, at least formally,

one has
(

�
ε )

(z) = (K ∗ ξε)(z)
2 =

∫ ∫

Kε(z − z1)Kε(z − z2)ξ(z1)ξ(z2) dz1 dz2.

Similar but more complicated expressions can be found for any formal expres-

sion τ . This naturally leads to the study of random variables of the type

Ik(f ) =
∫

· · ·
∫

f (z1, . . . , zk)ξ(z1) · · · ξ(zk) dz1 · · · dzk. (7.9)

Ideally, one would hope to have an Itô isometry of the type EIk(f )Ik(g) =
〈f sym, gsym〉, where 〈·, ·〉 denotes the L2-scalar product and f sym denotes the sym-

metrisation of f . This is unfortunately not the case. Instead, one should replace the

products in (7.9) by Wick products, which are formally generated by all possible

contractions of the type

ξ(zi)ξ(zj ) �→ ξ(zi) ⋄ ξ(zj ) + δ(zi − zj ).

If we then set

Îk(f ) =
∫

· · ·
∫

f (z1, . . . , zk)ξ(z1) ⋄ · · · ⋄ ξ(zk) dz1 · · · dzk,

one has indeed

EÎk(f )Îk(g) =
〈

f sym, gsym〉

.

See Nualart (1995) for a more thorough description of this construction, which

also goes under the name of Wiener chaos. It turns out that one has equivalence of

moments in the sense that, for every k > 0 and p > 0 there exists a constant Ck,p

such that

E
∣

∣Îk(f )
∣

∣

p ≤ Ck,p

∥

∥f sym
∥

∥

p ≤ Ck,p‖f ‖p,

where the second bound comes from the fact that symmetrisation is a contraction

in L2. Finally, one has EÎk(f )Îℓ(g) = 0 if k �= ℓ. Random variables of the form

Îk(f ) for some k ≥ 0 and some square integrable function f are said to belong to

the kth homogeneous Wiener chaos.

Returning to our problem, we first argue that it should be possible to choose M

in such a way that �̂
ε

converges to a limit as ε → 0. The above considerations

suggest that one should rewrite �
ε as

(

�
ε )

(z) = (K ∗ ξε)(z)
2

(7.10)

=
∫ ∫

Kε(z − z1)Kε(z − z2)ξ(z1) ⋄ ξ(z2) dz1 dz2 + Cε,
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where the constant Cε is given by

Cε =
∫

K2
ε (z1) dz1 =

∫

K2
ε (z − z1) dz1.

Note now that Kε is an ε-approximation of the kernel K which has the same singu-

lar behaviour as the heat kernel. In terms of the parabolic distance, the singularity

of the heat kernel scales like K(z) ∼ |z|−3 for z → 0. (Recall that we consider the

parabolic distance |(t, x)| =
√

|t | + |x|, so that this is consistent with the fact that

the heat kernel is bounded by t−3/2.) This suggests that one has K2
ε (z) ∼ |z|−6 for

|z| ≫ ε. Since parabolic space–time has scaling dimension 5 (time counts double),

this is a non-integrable singularity. As a matter of fact, there is a whole power of z

missing to make it borderline integrable, which suggests that one has

Cε ∼ 1

ε
.

This already shows that one should not expect �
ε to converge to a limit as ε → 0.

However, it turns out that the first term in (7.10) converges to a distribution-valued

stationary space–time process, so that one would like to somehow get rid of this

diverging constant Cε . This is exactly where the renormalisation map M (in par-

ticular the factor exp(−C1L1)) enters into play. Following the above definitions,

we see that one has

(

�̂
ε )

(z) =
(

�
εM

)

(z) =
(

�
ε )

(z) − C1.

This suggests that if we make the choice C1 = Cε , then �̂
ε

does indeed converge

to a non-trivial limit as ε → 0. This limit is a distribution given by

(

�
ε )

(ψ) =
∫ ∫

ψ(z)K(z − z1)K(z − z2) dz ξ(z1) ⋄ ξ(z2) dz1 dz2.

Using again the scaling properties of the kernel K , it is not too difficult to show

that this yields indeed a random variable belonging to the second homogeneous

Wiener chaos for every choice of smooth test function ψ . Once we know that �̂
ε

converges, it is immediate that �̂
ε
X converges as well, since this amounts to just

multiplying a distribution by a smooth function.

A similar argument to what we did for allows to take care of τ = since one

then has

(

�
ε )

(z) =
∫ ∫

Kε(z − z1)Kε(z − z2)Kε(z − z3)

× ξ(z1) ⋄ ξ(z2) ⋄ ξ(z3) dz1 dz2 dz3

+ 3

∫ ∫

Kε(z − z1)Kε(z − z2)Kε(z − z3)

× δ(z1 − z2)ξ(z3) dz1 dz2 dz3.
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Noting that the second term in this expression is nothing but

3Cε

∫

Kε(z − z1)ξ(z1) dz1 = 3Cε

(

�
ε )

(z),

we see that in this case, provided again that C1 = Cε , �̂
ε

is given by only the

first term in the expression above, which turns out to converge to a non-degenerate

limiting random distribution in a similar way to what happened for .

Turning to our list of terms of negative homogeneity, it remains to consider ,

, and . It turns out that the latter two are the more difficult ones, so we only

discuss these. Let us first argue why we expect to be able to choose the constants

C1 and C2 in such a way that �̂
ε

converges to a limit. In this case, the “bad”

terms comes from the part of (�ε )(z) belonging to the homogeneous chaos of

order 0. This is simply a constant, which turns out to be given by

Ĉε = 2

∫

K(z)Q2
ε(z) dz, (7.11)

where the kernel Qε is given by

Qε(z) =
∫

Kε(z̄)Kε(z̄ − z) dz̄.

Since Kε is an ε-mollification of a kernel with a singularity of order −3 and the

scaling dimension of the underlying space is 5, we see that Qε behaves like an ε-

mollification of a kernel with a singularity of order −3 − 3 + 5 = −1 at the origin.

As a consequence, the singularity of the integrand in (7.11) is of order −5, which

gives rise to a logarithmic divergence as ε → 0. This suggests that one should

choose C2 = Ĉε in order to cancel out this diverging term and obtain a non-trivial

limit for �̂
ε

as ε → 0. This is indeed the case.

We finally turn to the symbol . In this case, the “bad” terms appearing in

the Wiener chaos decomposition of �
ε are the terms in the first homogeneous

Wiener chaos, which are of the form

3

∫

Q̂ε(z − z1)Kε(z1 − z2)ξ(z2) dz1 dz2

(7.12)

= 3

∫

(Q̂ε ∗ Kε)(z − z2)ξ(z2) dz2,

where Q̂ε is the kernel given by

Q̂ε(z) = 2K(z)Q2
ε(z).

As already mentioned above, the problem here is that as ε → 0, Q̂ε converges

to a kernel Q̂ = 2KQ2, which has a non-integrable singularity at the origin. In

particular, the action of integrating a test function against Q̂ε does not converge to

a limiting distribution as ε → 0.
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This is akin to the problem of making sense of integration against a one-

dimensional kernel with a singularity of type 1/|x| at the origin. For the sake of

the argument, let us consider a function W : R → R which is compactly supported

and smooth everywhere except at the origin, where it diverges like W(x) ∼ 1/|x|.
It is then natural to associate to W a “renormalised” distribution RW given by

(RW)(ϕ) =
∫

W(x)
(

ϕ(x) − ϕ(0)
)

dx.

Note that RW has the property that if ϕ(0) = 0, then it simply corresponds to in-

tegration against W , which is the standard way of associating a distribution to a

function. In a way, the extra term can be interpreted as subtracting a Dirac distribu-

tion with an “infinite mass” located at the origin, thus cancelling out the divergence

of the non-integrable singularity. It is also straightforward to verify that if Wε is a

sequence of smooth approximations to W (say one has Wε(x) = W(x) for |x| > ε

and Wε ∼ 1/ε otherwise), then RW ε → RW in a distributional sense, and (using

the usual correspondence between functions and distributions) one has

RW ε = W ε − Ĉεδ0, Ĉε =
∫

W ε(x) dx.

The cure to the problem we are facing for showing the convergence of �
ε is

virtually identical. Indeed,by choosing C2 = Ĉε as in (7.11), the term in the first

homogeneous Wiener chaos for �̂
ε

corresponding to (7.12) is precisely given by

3

∫

Q̂ε(z − z1)Kε(z1 − z2)ξ(z2) dz1 dz2 − 3C2

∫

Kε(z − z2)ξ(z2) dz2

= 3

∫

(RQ̂ε ∗ Kε)(z − z2)ξ(z2) dz2.

It turns out that the convergence of RQ̂ε to a limiting distribution RQ̂ takes place

in a sufficiently strong topology to allow to conclude that �̂
ε

does indeed con-

verge to a non-trivial limiting random distribution.

It should be clear from this whole discussion that while the precise values of the

constants C1 and C2 depend on the details of the mollifier δε , the limiting (random)

model (�̂, Ŵ̂) obtained in this way is independent of it. Combining this with the

continuity of the solution to the fixed point map (6.3) and of the reconstruction

operator R with respect to the underlying model, we see that the statement of

Theorem 6.1 follows almost immediately.
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