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Abstract. The aim of this chapter is to act as a primer for those wanting to learn about Runtime Verification

(RV). We start by providing an overview of the main specification languages used for RV. We then introduce

the standard terminology necessary to describe the monitoring problem, covering the pragmatic issues of

monitoring and instrumentation, and discussing extensively the monitorability problem.

1 Introduction

The field of Runtime Verification (RV) has been, and is still, referred to by many names such as runtime mon-

itoring, trace analysis, dynamic analysis etc. The term verification implies a notion of correctness with respect

to some property. This is somewhat different from the term monitoring (the other popular term) which only

suggests that there is some form of behaviour being observed. Some view the notion of monitoring as being

more specific than that of verification as they take it to imply some interaction with the system, whereas ver-

ification is passive in nature. At this early point in this chapter we would like to note that the community is

not in agreement about the various meanings of certain terminology, such as the difference between runtime

verification and runtime monitoring. We take a popular interpretation in this chapter, but the reader will most

likely encounter alternative views in the literature.

RV is a lightweight, yet rigorous, formal method that complements classical exhaustive verification tech-

niques (such as model checking and theorem proving) with a more practical approach that analyses a single

execution trace of a system. At the price of a limited execution coverage, RV can give very precise information

on the runtime behaviour of the monitored system. The system considered can be a software system, hard-

ware or cyber-physical system, a sensor network, or any system in general whose dynamic behaviour can be

observed. The archetypal analysis that can be performed on runtime behaviour is to check for correctness of

that behaviour. This is also the main activity considered in this chapter. However, there are many other anal-

yses (e.g., falsification analysis) or activities (e.g., runtime enforcement) that can be performed, as it will be

discussed elsewhere in this handbook. RV is now widely employed in both academia and industry both before

system deployment, for testing, verification, and debugging purposes, and after deployment to ensure reliability,

safety, robustness and security.

The RV field as a self-named community grew out of the RV workshop established in 2001, which became a

conference in 2010 and occurs each year since then. In 2014, we have initiated the international Competition on

Runtime Verification (CRV) [17, 21] with the aim to foster the comparison and evaluation of software runtime

verification tools. In the same year, a European scientific network for the COoperation in Science and Technol-

ogy (COST) on Runtime Verification beyond Monitoring (ARVI) was approved and funded within the European

framework programme Horizon 2020. ARVI currently includes the participation of scientists from 26 European

countries and Australia. In 2016, together with other partners of ARVI, we have also started to organize the first

of a series of Schools on RV. However, it is worth noting that the research on monitoring techniques has been

around for a very long time and is present in other communities where it is not referred to in the same terms as

it is here, even if the process is the same.

In this chapter we introduce the field of RV covering the basic concepts and the standard notions of moni-

toring. We have not attempted to make a full survey of all related work but we refer to the main relevant litera-

ture [76, 98, 110, 137]. When considering how to check whether the runtime behaviour of a system conforms to

some specification there are three necessary steps to be taken:



1. Specifying (Un)Desired System Behaviour. Section 2 considers how system behaviour can be abstracted in

terms of events and traces and how specification languages can be used to describe properties of such traces.

2. Producing a Monitor from a Specification. Section 3 considers the monitoring problem and various issues

that must be dealt with during monitoring.

3. Connecting a Monitor to a System. Section 4 considers how various instrumentation approaches can be

used to extract the information necessary for monitoring from a running system.

We are also interested in the question of what can and cannot be monitored; this is addressed in Section 5.

Even though this question seems more theoretical, it determines what sorts of properties can be handled with

runtime verification. We provide an overview of all the chapters of this handbook in Section 6 and we conclude

in Section 7.

2 Formal Specification of the System Behaviour

This section introduces the reader to different formal approaches to describe the expected behaviour of a system.

We start by presenting various abstractions enabling to reason about the system behaviour at different level of

detail. We then present some specification languages after having discussed first some general properties of

these formalisms.

Example 1 (Traffic Lights). Throughout this section we choose as our running example a traffic light system.

This system consists of three lights of different colors: green, red, yellow. We then consider how to specify the

expected behaviour of such a system using different formalisms.

2.1 The Abstract Notion of Behaviour

When we consider the behaviour of a system we are referring to the way the system changes over time, by up-

dating some internal state, taking some internal or external action, or affecting the environment in some way. We

typically describe this behaviour in terms of the observations we can make about it. There are two general kinds

of observations we can make: either we inspect some snapshot of the current state of the system at a particular

time, or we record certain actions or state changes made by the system (where the system in question may

include the environment). Below we describe how we will abstract systems in terms of the observations (events)

we can make about them over time (giving a trace) and how we describe behaviour using these abstractions.

Events. We will call any kind of observation about the system an event. In the simple case an event is a name

for something that can happen, for example lightTurnsGreen, lightBrightnessIs80 or pedestrianButtonPressed.

In the more complex case an event could be structured, containing data values of interest. We do not cover this

complex case here but it is discussed in Chapter 3. Note that we make a distinction between events as syntactic

elements and what they denote semantically. For example, an event temperatureLimit may correspond to a

sensor detecting that the temperature is at or above 20◦C. We separate the representation of this event and the

process of recording/detecting and reporting it (Section 4 describes how we practically observe systems).

In this presentation events are discrete atomic entities, but there are two alternative views that are taken in

various work. Firstly, some work considers an event as having a duration, i.e., a start and end time. This can

be easily translated into the setting where events are atomic by introducing associated start and end events. For

example, we might have the event lightGreen at one level of abstraction, but lightGreenOn and lightGreenOff

at another level of abstraction. Secondly, in languages specified over continuous time events can be viewed

as signals that can be queried for a value. We discuss this setting in more detail later. Where an alternative

interpretation of event is being taken we will be explicit in the text.

We will call a system’s observable events of interest its alphabet. We stress of interest as there are potentially

an infinite number of different ways of describing an event but typically we are only interested in a small (at

least usually finite) set of such events.

It is clear that the choice of events is fundamental in how much information we have about a system and the

properties we can describe. Events can be defined at different levels of abstraction, be about internal or external



behaviour, may cover the whole system or one specific part, and may not correspond directly with existing

components or actions defined in the system. The choice of events is part of the specification process and will

depend on what the end goal is.

We note that this choice of abstracting systems in terms of events rather than states is a distinction that is

different from (but compatible with) the work of model checking. As with many things, not all work in RV uses

the event abstraction and some work may view an execution as a sequence of observed states.

Traces. We use events to abstract a particular observation about a system. We abstract the behaviour of a single

run of a system as a trace, which is a (finite) sequence of events (or sets of events) [126]. Clearly, an observable

trace of a system must be finite, but it is sometimes useful to think about the possible infinite behaviours of a

system. As discussed later, when viewing a trace as a finite prefix of some possible infinite behaviour we can ask

whether the finite prefix can be extended to some acceptable infinite trace. Another key choice in structuring

a trace is whether each point in the trace consists of a single event or a set of events. The single event view

is often more straightforward, but it does not easily allow for settings where multiple observations may occur

concurrently (and it does not make sense to coalesce them) or the exact ordering of events within a particular

time frame is unclear (or unhelpful to enforce). This choice may seem arbitrar.y but it has an impact on the

interpretation of specifications as those languages assuming a single event at a time implicitly include extra

axioms, i.e., seeing one event precludes seeing any other. Finally, different approaches treat the notion of time

differently. The order of events in a trace gives a qualitative notion of time, but it does not immediately capture

any quantitative distance (in time) between events. We discuss the different approaches for embedding time into

traces later.

Properties and Specifications. A property of a system can be abstractly described as a (possibly infinite) set of

traces. A specification is a concrete (textual) object describing a property and therefore it denotes a set of traces.

We have chosen to distinguish properties from specifications as the distinction can be important. However, this

distinction is not universal in the literature. Note that the full behaviour, or intended behaviour, of a system may

be given as a property. However, this will always be restricted by the event abstractions chosen and it is usually

not the aim to describe total behaviour but key behaviour at a level of abstraction that is useful.

Using this separation we can have many specifications for a single property, but a property is unique and

independent of a specification language. If the specification language is ambiguous (e.g., English) then the

specific property being described may not be clear. Dealing with such ambiguities is a common issue in the

specification process. Generally we expect a specification language to be unambiguous, at least in terms of

the traces its specifications denote. We note that most work in the area conflate the notions of property and

specification, and we may do so here. This is due to the fact the specification is the only object that exists

concretely and it is often used to represent its underlying property.

A somewhat alternative distinction that some make between property and specification is that a property

describes a unit of behaviour whilst a specification may capture many properties.

Much of the activity of RV considers explicit properties captured in some specification language. However,

there are also many implicit properties covered by the field. A notable example of an implicit property is dead-

lock avoidance (see Chapter 2). When monitoring this property the property itself is not written in a specification

language; instead specific ad-hoc algorithms are written to detect a violation of the property. Other examples of

implicit properties are memory safety and bounds checking.

2.2 General Specification Language Features

In the following we discuss general features of specification languages used for runtime verification. We do not

aim to present a taxonomy of languages, but instead aim to introduce some general concepts and terminology

that is helpful when discussing such languages. See [99] for a more in-depth discussion of such features.

Executable versus Declarative. In some specification languages (e.g., state machines) the specification is di-

rectly executable whereas in other languages (e.g., temporal logic) it is more common to generate an exe-

cutable object (monitor) from the specification. Languages where specifications are executable tend to have



more straightforward monitoring algorithms. However, executable specifications also tend to be more low-level

(operational) and less able to capture properties at a high level of abstraction. For example, it is usually more

straightforward to combine specifications written declaratively, e.g., if the temporal logic formula ϕ1 represents

the normal behaviour of a traffic light system and formula ϕ2 represents some special behaviour to be seen if a

special emergency event occurs then the total behaviour should be ϕ1 ∨ (emergency→ ϕ2). With automata this

would either require monitoring mechanisms to allow the monitoring of multiple automata, or a construction on

the automata leading to a complex automata that is difficult to read.

Prefix Closure. Consider the property that the yellow light is never on immediately after the red light. We might

try to specify this using the regular expression

((green | yellow)∗red+green)∗

but under the standard semantics this does not accept the trace green yellow red. Our intention is for all pre-

fixes of the describe language to be accepted. Such properties are safety properties and are common in system

specification. Some specification languages assume prefix-closure, although most do not.

When Language ∕= Property. Typically, a concrete specification denotes a set of traces. Sometimes, for usability

reasons, it might be useful for this language to not directly describe the property being specified, but be implicitly

related to it. Therefore, this is less a feature of a language and more a feature of its usage. We give two examples

here:

1. Polarity. A specification may capture good (desired, positive) behaviour or bad (undesired, negative) be-

haviour. Consider again the above property that the yellow light is never on immediately after the red light.

Any trace not satisfying this property would match the regular expression

(red | green | yellow)∗ red yellow

which is, arguably, easier to read. When good behaviour is described a match represents validation of the

desired property, whereas matching a specification describing bad behaviour represents a violation of that

property.
2. Suffix Matching. Consider again the above property, the expression (red | green | yellow)∗ represents all

possible traces and is, in some sense, redundant. In the interests of readability it would be more concise to

simply write the expression

red yellow

and let it be understood that matching this expression against the suffix of a trace violates the desired

property.

Finite versus Infinite. Some specification languages are more suited to specifying sets of finite traces (e.g.,

state machines) whereas other are more suited to specifying sets of infinite traces (e.g., temporal logic). As

observations at runtime are necessarily finite this often leads to a mapping from a semantics over infinite traces

to one over finite traces.

Time. As mentioned above, a totally ordered trace gives a qualitative notion of time, but not a quantitative one.

Specification languages whose specifications denote such traces also only capture this qualitative notion of time.

Notice that this qualitative notion is fragile as properties making use of this make assumptions about the level

of abstraction events will be recorded at. Consider the property that the green light should be followed by the

red light. Unless we are careful, the following two traces would not satisfy this property:

τ1 = green green red τ2 = green pedestrianButtonPressed red

Furthermore, if we want to check that the green light is on for 30 seconds it would be necessary to sample

this light at a particular frequency and count the number of events seen. As discussed below, there are various

methods for integrating quantitative notions of time into a specification language. Most commonly this is via

explicit clocks in executable languages, or explicit intervals in declarative ones. With this quantitative notion

one can now say how long the green light should be on and how soon the red light should come on once it goes

off.



1 2 3
green yellow

red

(green yellow red)∗(green | green yellow | ε)

□(green→◦yellow∧yellow→◦red∧ red→◦green)

Fig. 1. Illustrating the traffic light sequence property using a state machine, regular expression, and linear temporal logic

formula.

Data and Quantification. A specification language may view events as atomic symbols or as structures con-

taining data. Languages that consider data may do so in various ways, but this tends to be dependent on the

underlying formalism. Temporal logics may be extended by standard notions of quantification [69, 53, 23],

quantification over the active domain [26, 95, 141], or (more recently) with freeze quantifiers [19, 18, 63, 24].

An alternative approach is the use of parametric trace slicing [52, 127] to add a form of data quantification

to a range of otherwise propositional formalisms (e.g., regular expressions and state machines). Specification

languages making use of state machines often include the idea of transitions being labelled with guards and

assignments [59, 12]. Finally, some formalisms, such as stream languages [81] and rule systems [16], have data

manipulating features as standard. Chapter 3 considers such languages in more detail.

2.3 Specific Specification Languages

This section focusses on particular (families of) specification languages used for runtime verification. Figure 1

formalises a typical light sequence property of traffic lights in various basic languages described in this section.

Temporal Logic The most common family of specification languages used for runtime verification is temporal

logic with the most basic and usual variant being linear temporal logic (LTL) [124].

Linear Temporal Logic (LTL). Future-time LTL introduces two basic modal operators: Next is written ◦ϕ and

means that ϕ is true at the next point of the trace; and Until is written ϕ1 U ϕ2 and means that ϕ1 is true from

the current point of the trace until ϕ2 is true. These operators are used to define two (often more frequently used)

operators: Always is defined as □ϕ ≡ ϕ U false and means that ϕ should be true on every step of the trace

from the current one onwards; and Eventually is defined as ♦ϕ ≡ ¬□¬ϕ and means that ϕ is true at some point

in the trace from the current point onwards. Some variations of LTL also introduce a notion of Weak Until that

does not require ϕ2 to eventually hold, only that ϕ1 holds until it does (i.e., this may be infinitely often).

Past-time LTL has symmetric operators looking into the past e.g., Previous (•) as the dual of Next and Since

(S ) as the dual of Until. However, things are not quite this simple due to the finite nature of the past. It is

typical to introduce a notion of Weak Previous (•̂) that is always true at the first state; it is then possible to define

•ϕ = ¬•̂¬ϕ . It is common to consider a setting where both future-time and past-time operators are available.

In the runtime verification setting it is typical to consider finite traces only. As LTL has an infinite trace

semantics it is necessary to provide an alternative finite trace semantics to deal with the end of trace. There are

two main approaches to this:

– Providing an alternative semantics ensuring that □ϕ is true at the end of a trace and ♦ϕ is false. One way

of achieving this is to add the dual of Weak Previous i.e., Weak Next and set up the semantics to preserve

the identify □ϕ = ϕ ∧ ◦̂ϕ . However, it is more common to define an alternative semantics directly without

introducing ◦̂ (see, for example, the early work in [128]).

– The finite trace is a finite prefix of some infinite trace. The truth of a formula on this finite prefix is defined

by the possible extensions of that prefix i.e., it is true if all extensions make it true. This necessitates a

multi-valued verdict domain. This idea is captured in LT L3 [27] where a third verdict ? is given where some

extensions are failing and some succeeding. This is called impartiality and means that some formulas (e.g.,

□a) can never be satisfied (there are always bad extensions) and dually some can never be violated (e.g.,

♦a). These ideas relate to the notion of monitorability, discussed later.



There is an additional dimension that crosscuts both approaches, that of anticipation. The general idea is that

if every extension of a finite trace leads to a single verdict then this verdict should be given to that finite trace.

In the case where a purely finite trace semantics is given, the notion of anticipation is often captured by splitting

the verdict domain into two forms of verdicts: strong verdicts reflecting an anticipatory result (all extensions)

and weak verdicts reflecting the verdict to be given if the trace were to finish at the current point [16, 12].

Interval Temporal Logic. In LTL formulas are given over states or events i.e., distinct points in time. An alter-

native view, taken by interval temporal logic [48, 144], is to reason over intervals, i.e. pairs of points in time.

Formulas in this logic may then use binary relations comparing intervals e.g. whether their start/end points are

ordered, or whether one interval overlaps with, or is contained within, another. This presentation is generally

not strictly more expressive than LTL as translations have been given into LTL [129].

Variants with Time. Standard temporal logics take a qualitative view of time i.e. they place an ordering on

events but do not relate those events to the quantitative time line they occur within. There exist variants of LTL

that add a notion of quantitative time via the extension of the underlying model (trace) with timestamps and

an extension of the language constructs. Two notable variants are metric temporal logic [142] and timed LTL

[29] which both use the notion of intervals to talk about ranges of time points. In MTL, temporal operators are

annotated with discrete time intervals, e.g. ϕ U[3,7] ψ states that ψ should hold between 3 and 7 time units from

now and until then ϕ should hold. MTL also contains the notion of congruences that allow one to state that a

formula should hold periodically with respect to an absolute time. In TLTL there are the additional constructs

⊳a ∈ I, indicating that the time since a last occurred lies within the interval I, and ⊲a ∈ I, indicating that the time

until a next occurs lies within the interval I. Whilst these variants of LTL alter the model of traces to include

information about time and extend temporal operators to make use of this, they remain inherently regular.

More Expressive Variants. We consider further extensions of LTL that increase the expressiveness of the logic

as examples of how more complex properties could be captured. There is a rich literature in extending LTL in

various ways and this discussion is not meant to be exhaustive.

The first is CaReT [3] which extends LTL with a (context-free) language of calls and returns. The language

is extended with reserved symbols call and ret annotated with labels for the modules being entered or exited.

The temporal operators are then separated into global and abstract forms where the abstract versions reason over

the so-called abstract successors of the current position which skips behaviour belonging to nested calls.

Next, one may consider adding fixed-point operator to the language, as is done in Eagle [14, 94]. As ex-

amples, the maximum fixed point equation υx.a∧ x and minimum fixed-point equation µx.a∨◦x capture the

behaviour of □a and ♦a respectively. Such equations allow behaviour to be defined recursively, which allows

context-free behaviour to be captured. In the Eagle setting, the difference between minimum and maximum

fixed points is most important when given a finite trace semantics, as it clearly defines what should happen at

this boundary.

In [37] Bollig et al. introduce frequency Linear-time Temporal (fLTL) which replaces U with U c where c

is a rational number between 0 and 1. The formula ϕ U c ψ means that ϕ holds with frequency c until ψ holds,

meaning that when c = 1 this coincides with the standard interpretation of Until. The effect of this addition is

that fLTL can capture non context-free properties.

As a more exotic example of an expressive variant of LTL is given by Baader et al. [11] who describe a

runtime verification approach for a temporal description logic that combines LTL with the ALC description

logic. As well as allowing description logic axioms to replace axioms, this approach considers the idea of

reasoning with incomplete information about the trace.

Signal Temporal Logic. Another important temporal logic in the runtime verification domain is the setting

where the trace is not a discrete sequence of events but a collection of signals where a signal is a function from

a set of real time points to a value domain. This a setting typically assumed in hardware monitoring and comes

with its own rich set of specification languages. The standard such language is Signal Temporal Logic [117]

which includes signal predicates of the form f (x1[t], . . . ,xn[t]) > 0 where f is some function and xi[t] is the

value of the ith signal at time t. One can use such predicates to define operators to capture the rising and falling



edges of a signal. A further defining feature of this logic is the lack of next operator, due to a dense interpretation

of time meaning that there is no notion of next state. A consequence of this is that Until is typically interpreted

with the left operand holding for all times after the current point (up until the right operand holds).

Hyperproperties. A growing area of interest in RV is that of hyperproperties i.e., properties on sets of traces

rather than on single traces. There have been various extensions of standard temporal logics to this setting [55]

and some have been considered in the context of runtime verification.

Regular Expressions A popular declarative language for describing sets of strings in computer science is

the regular expression. These have received attention in the runtime verification community, but less attention

than temporal logics. We do not spend time describing regular expressions (which should be familiar), but

note that they are sometimes used alongside the notion of suffix-matching for violations (e.g., in the work of

tracematches [2]). Later we point out work that combines regular expressions and temporal logic as they

are declarative approaches with different advantages. Whilst regular expressions have been extended with a

quantitative notion of time [7] and to handle data words [111], such extensions have not received much interest

in runtime verification.

State Machines Whilst temporal logic and regular expressions are important declarative languages for speci-

fication they require monitor synthesis techniques to produce an executable monitor, which is usually described

as some form of state machine. Conversely, state machines have the advantage of being directly executable. As

for regular expressions, we do not cover the standard definition of a state machine here, but note that various

runtime verification approaches make use of this formalism e.g. [59]. Such approaches do not necessarily agree

on exact semantics, but follow the same approach. Areas where approaches may differ include the semantics

of completion (what to do if no transition exists), the introduction of various special states, and whether states

have explicit output. They may also extend state machines with clocks [59] or deal with extended finite state

machines [12]. Some approaches [123] also deal with UML state charts as a state machine representation.

Beyond Regular The previous languages were typically regular in nature (with some exceptions). There are

also more expressive languages available. This space has not been as well explored, which perhaps suggests that

the need for more expressive specification languages is not there, or that such languages have not been accepted

for other reasons such as usability.

Grammars and String Rewriting. The obvious non-regular language is that of context-free grammars. The key

application for such expressiveness is to capture the notion of calls and returns in programs (which can already

be handled in the above CaReT logic). A generalised form of grammar is a string rewriting system, which allows

arbitrary rewrite rules on strings. Such systems are Turing-complete. JavaMOP [118] includes both context-free

grammars and string-rewriting systems as so-called plugin languages.

Rule Systems. Another powerful formalism is the rule system. In this setting, conditional rules are used to

rewrite a set of facts i.e. by adding and removing facts from the set. By predicating a rule on a particular fact,

it is then possible to use rules to effectively turn other rules on and off. This setting was first explored in the

RuleR system [16] and has been continued in the recent work on LogFire [97].

Stream Languages. An alternative approach is to view the trace as one or more streams and to define stream

equations over these streams to produce new streams, which may themselves be the subject of further stream

equations. This approach makes computing values (rather than verdicts) over traces straightforward. An early

example in this space is LOLA [81].



Other Approaches. The above covers the more standard runtime verification approaches. However, there have

been various other languages utilised in the field that have received only a little attention. For example, Calder

and Sevegnani [43] have utilised a process algebra to perform runtime verification of wireless networks, and

Majma et al. [116] make use of coloured petri-nets in their runtime verification of a pacemaker. Recent work [87]

makes use of Hennessy-Milner Logic with recursion (µHML) to describe monitors and explore the monitoring

problem in general.

Combinations Some specification approaches consider combinations of various languages previously de-

scribed. Such work aims to find good compromises between the various advantages and disadvantages of dif-

ferent languages.

Mixing temporal logic and regular expressions. A popular combination is to add regular expressions to temporal

logic. Such a combination typically increases expressiveness (as LTL is star-free regular) and make the language

more suitable for expressing certain properties involving sequences of events. Examples of combinations include

Sugar/PSL [84], RLTL [109], SALT [31], LDL [62], and MDL [25].

Many in One. TraceContract [15] provides an internal Scala DSL that supports temporal logic, rule systems,

and state machines. As previously mentioned, the JavaMOP tool [118] includes the notion of plugin languages

which allows users to describe instrumentation in one common language and then use different specification

languages over declared events. Supported plugin languages include finite state machines, extended regular

expressions, context free grammars, past and future linear temporal logic, CaReT, and string rewriting systems.

Translations. As well as combinations of approaches, there are also a number of cases where translations exist

between languages. An early example is the embedding of LTL into the very expressive Eagle logic [13]. Other

examples include the translation of domain specific languages into more standard logics for runtime verification

(e.g. [42]. A recent example is the translation of first-order temporal logic into quantified event automata [127].

2.4 Summary

This section has introduced abstractions and languages for describing system behaviour. One conclusion one

can draw from this section is that there are a vast number of different ways to describe system behaviour and

there is no conclusive silver bullet. Research into specification languages for runtime verification is ongoing and

there are many languages that we have not been able to mention in this short summary.

3 From Specifications to Monitors

So far we have spoken about how to specify desired or undesired system behaviour i.e. a property of a system.

In this section we consider the runtime analysis that checks whether a system satisfies or violates a property. We

begin by discussing the typical monitoring setup

3.1 The Monitoring Setup

As depicted in Fig. 2, a typical RV monitoring setup consists of three main components, namely the system-

under-scrutiny, the monitor and the instrumentation mechanism. The collective unit encompassing these three

components is then often referred to as the monitored system. The previous section discussed how we abstract a

system being monitored and here we briefly describe what we mean by a monitor and the role of instrumentation

(although practical instrumentation techniques are discussed in Section 4).
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Fig. 2. The Basic Monitoring Setup

Monitors (execution monitors [131]) are computational entities that execute along side a system so as to ob-

serve its runtime behaviour and possibly determine whether a property is satisfied or violated from the exhibited

(system) execution. When sufficient system behaviour is observed, a monitor may reach a verdict (e.g., accep-

tance or rejection). This verdict is normally assumed to be definite, i.e., it cannot be retracted or revised, and

is typically communicated to some higher-level entity responsible for handling monitor detections (e.g., the

user or some other supervising software component). Whereas few guarantees are expected of the system under

scrutiny, in a monitoring setup, monitors are generally considered part of the trusted computing base (TCB)

[131, 107, 85] and should manifest a level of correctness themselves. For instance, the verdicts produced by

monitors should relate, in some sense, to the property being checked for (e.g., a detected violation should only

be flagged by a monitor when the system violates the property being checked) and monitors are also normally

expected to interfere minimally (if at all) with the execution of the system under scrutiny. For this reason, moni-

tors are usually generated by automated synthesis procedures that take a syntactic representation of the property

as input and return the executable code of the monitor as a result. Apart from assisting and expediting monitor

construction, automated monitor syntheses mitigate problems associated with the correctness of the monitor

itself by standardizing monitor code and giving more scope for a formal treatment of their correctness.

Instrumentation is the computational plumbing that connects the execution of a system under scrutiny with the

analysis performed by the monitor. It typically concerns itself with two aspects of the monitoring process. First,

instrumentation determines what aspects of the system execution are made visible (to the monitor) for analysis.

As depicted in Fig. 2, instrumentation records the relevant information from the computation of a running system

(e.g., program variable reads/writes, method/function calls and returns, memory management operations such

as allocations and deallocations, lock acquisitions and releases, and communication operations such as channel

inputs and outputs) and records them as system events. Event recording may either consist of redirecting and

filtering out existing visible system behaviour, or it may involve extracting aspects of system behaviour that

were previously not observable, transforming a black-box system into a grey-box one. The recorded events are

then reported to the monitor in the form of an ordered stream called an execution trace (of events), which would

normally correspond to the same notion introduced in the previous section. Instrumentation usually guarantees

that the event order in the execution trace corresponds to the order in which the respective computational step

occured. However, there are cases such as in distributed settings where only a partial ordering of events can be

reliably reported to the monitor.

Second, instrumentation also dictates how the system and the monitor execute in relation to one another

in a monitoring setup. For instance, instrumentation may require the system to terminate executing before the

monitor starts running, or interleave the respective executions of the system and the monitor that share a common

execution thread. In concurrent settings, the system and monitor typically have their own execution threads, and

instrumentation may dictates how tightly coupled these executions need to be. The instrumentation may either

require that the respective threads to execute synchronously regulated by a global (symbolic) clock [77], or else

allow threads to execute asynchronously to one another and then specify synchronisation points between the

respective executions. The latter organisation may, in turn, impinge on the timeliness of monitor detections in

relation to when the system exhibits a violation to the property being monitored for [46].



Monitoring setups need not necessarily be to confined to the structure and functionality depicted in Fig. 2.

In Monitor-Oriented Programming (MOP) [49, 50], monitoring is envisaged more as a code design principle

advocating for the separation of concerns between the core functionality of a system and ancillary functionality

that deals with aspects such as safety, security, reliability and robustness. Code is thus organised as a layered

architecture where the innermost core consists of the plain-vanilla system, and the outer layers are made up

of monitors observing the execution of the inner layers and reacting to these observations [46]. In MOP, mon-

itors typically do more than just analyse execution traces and raise detections; they may suppress observable

behaviour from the inner-layers or filter stimuli coming from outer layers [80, 112, 35], or inject adaptation

actions affecting the structure and future behaviour of the inner layers [45, 60, 93].

3.2 Monitor Synthesis And Deployment Design Choices

In general, monitoring setups come in various shapes and sizes, and might differ slighly from the clean con-

ceptual view presented in Fig. 2. In what follows, we overview a few of the possible variations commonly

encountered in the literature.

Offline, Online, Synchronous and Asynchronous Monitoring In offline monitoring (or logging) the analysis

is carried out after the system executes. Relevant system events are recorded as an execution trace inside a

permanent data store (e.g., a file) which is then passed on to the monitor for analysis. Since the execution

of the monitor is independent of that of the executing system, an offline analysis is less intrusive and certain

constraints such as low monitor runtime overheads do not apply. Offline monitoring also benefits from the

fact that the captured execution trace typically describes complete executions, which allows for global trace

analyses—these often require backwards traversal [128].

By contrast, online monitoring is performed during system execution. It addresses one of the main disad-

vantages of its offline counterpart, namely that of late detections: a violation to a property is only discovered

once the system execution terminates, potentially missing the opportunity to mitigate the damage resulting from

that violation. Online monitoring operates within tighter constraints such as working with partial executions

(i.e., up to the current execution point), stringent requirements for low overheads and, because of this, the need

to perform the analysis in incremental fashion.

The simultaneous execution of the system and the monitor may be performed in a variety of ways. At one

extreme, synchronous online monitoring instruments the system and monitor to execute in lock-step: every

time the system generates an event, it waits for the monitor to process it before proceeding with its execution

(monitors are by nature passive entities and their execution depends on systems to generate events). At the other

extreme, asynchronous online monitoring detaches the execution of the monitor from that of the system. This

approach is less intrusive on system execution when compared to synchronous monitoring, typically leading to

lower overheads [44], but may still yield a degree of late detections (especially when the underlying platform

does not guarantee fair executions between the monitor and the system). Due to this, cross-breed approaches

that fall on the spectrum in between these two approaches are used to obtain the best of both worlds; consult

[47] for a comprehensive survey on this spectrum of approaches.

Monolithic, Decentralised, Orchestrated and Choreographed Monitor Approaches There are a number of

strategies for synthesising monitors from a particular specification. By far, the most common approach is to syn-

thesise a single monitor that represents the entire specification as one monolithic block (e.g., [30]). Increasingly

however, new synthesis strategies are being explored. For instance, the work in [33, 115, 92, 8, 120] synthe-

sise concurrently executing monitors to better exploit the underlying parallel hardware consisting of multiple

processing units whereas the work in [78, 32, 9, 67, 68] synthesise component-based monitors to better localise

analysis due to multiple event sources and heterogenous hardware. Distribution is another important aspect af-

fecting the monitor synthesis. In general, there are two main strategies for coordinating the monitoring activity

across the various distributed locations. Orchestration relies on a single coordinating entity to gather, order and

analyse events whereas a choreographed approach disseminates these tasks across a number of monitors [90,

56]. Whereas orchestration is typically simpler to synthesise, thus easier to get right, choreography is more



attuned to the characteristics of distributed computing, leading to lower network traffic and a higher degree of

fault tolerance [67]. This topic is discussed further in a dedicated chapter.

Inlining Monitor Code Versus Monitor Code Separation. Monitoring can be either inlined [70, 135, 51] or

consolidated as a separate code unit with events of interest being sent to it (often referred to as outlined). Fig. 2

describes more of a conceptual view rather than the actual implementation, and covers both alternatives. In

multi-threaded settings, inlining of inter-thread monitoring requires a choreographed setup [135, 90] whereas

keeping monitor code separate also affords a centralised orchestrated solution. Monitor inlining tends to yield

lower overheads and is generally more expressive because it has full access of the system code [70]. By con-

trast, having monitoring as a separate unit minimally alters the code of the monitored system (all the decision

branching is performed inside the monitor), is less error-prone (orchestration tends to be easier to program than

monitor choreographies and is harder to tamper with), allows monitor computation to be offloaded to other ma-

chines [57], and facilitates compositional analysis whereby monitors may be more readily treated in isolation

[85, 89, 1, 86].

4 Instrumentation

The term instrumentation refers to the mechanism employed to probe and to extract signals, traces of events

and other information of interest from a software or hardware system during its execution.

The instrumentation is an important phase in runtime verification setup enabling monitors to be hooked on

to the system. The choice of instrumentation techniques depends on the type of system to be monitored. For

example, monitoring hardware system may require probing mixed-analog signals using physical wires, while

for software the instrumentation method is strictly related to the programming language in which the software is

implemented or to the low-level language in which it is compiled (i.e., bytecode, assembly, etc.). In the following

we further explain these concepts in two dedicated sections for hardware and software instrumentation.

4.1 Hardware Instrumentation

The increased level of integration, complexity and functionality of the new generation of analog/mixed-signal

(AMS) and digital system-on-chip (SoC) technology demands for always new efficient and effective methods

to observe and to analyze SoC behaviour both at the physical and at the operational level [4, 5, 102, 103, 122,

130, 132–134].

Due to the complexity of their design, the simulation of such systems is becoming very time-consuming

and expensive. For this reason, simulation is generally complemented with design emulation that uses dedicated

acceleration platforms such as Field Programmable Gate Arrays (FPGAs) to implement the design under test in

hardware. Thus, monitoring the behaviour of an emulated design is an important task supporting the verification

of the pre-silicon design. Fig. 3 shows two examples of hardware instrumentation in such scenarios [102]. In

the first case (a) the emulated design and the monitor are two independent pieces of hardware. They both

share the same source of external clock. The available digital and analog output pins of the emulated design

are hooked with physical wires to the hardware monitor. The analog signals are transformed into digital ones

using an analog-to-digital (ADC) converter. The obtained signals are then processed synchronously using also a

dedicated hardware implementing a monitor. An oscilloscope is employed to observe the verdict of the monitor

at runtime. In the second case (b) both the monitor and the design are implemented using the same hardware.

However, simulation and emulation are not able to cover all the aspects of the physical hardware and in

particular the software related aspects. In order to check software related problems, large multiprocessor archi-

tectures usually require many cycles of executions. In such cases either simulation or emulation may result in

too complex and expensive tasks to perform. For this reason, modern SoC have embedded test functionalities,

providing a dedicated debug interface [140] called JTAG (also referred as the IEEE Specification 1149.1).

JTAG is a test architecture equipped with a serial interface and other debugging features enabling to sample

snapshots of individual SoC pin signals and to drive specific output signals.
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Fig. 3. Monitoring design under test: a) the hardware monitor is external to the design under test sharing the same clock

generator; b) the emulated design is implemented together with the monitor in the same hardware.

JTAG is nowadays the most popular standard for on-chip instrumentation. Many modern processor architec-

tures such as ARM, x86, MIPS are using JTAG protocol as the foundation for complex data/instruction tracing

and debugging. The JTAG port enables the control over the processor that can be halted, single stepped or

run freely. However, the possibility to halt the processor running real-time applications can introduce delays in

the normal execution altering important timing constraints of the system. For this reason, some designs enable

debuggers to access only registers and data buses without the need of halting the processors.

4.2 Software Instrumentation

Software instrumentation (SI) is a well-established method employed in many applications including software

profiling, performance analysis, optimization, testing and runtime verification. SI consists in adding extra code

to track the execution of particular software components and to output an execution trace that can be monitored.

The two main approaches for software instrumentation are performed either at the source code level [36, 136,

105, 10, 138, 121] or at the binary level [34, 40, 114, 119, 108]. Furthermore, SI can be static or dynamic whether

they occur before (i.e., compilation-/link-time) or at execution time (i.e., tracking dynamically linked libraries).

Source code instrumentation consists in adding manually or automatically extra instructions to the software

source files before the compilation. Nowadays, there are several instrumentation frameworks [36, 136, 105, 10,

138, 121] available for the main popular programming languages such as Java, C and C++, or even mobile

platforms running on Android [72, 73, 66, 61]. For example, aspect-oriented programming (AOP) environments

usually provide static weaving mechanisms that enable to add at compile-time an additional behaviour to the

existing source code without modifying the original source code. The key idea (see Figure 4) is to apply special

instructions and code segments (called advices) contained in a specification file (aspect) that indicate what

methods (called pointcuts) should be handled by the aspect code. For example, it is possible to specify how to

add some additional code to log all the function calls when the function’s name starts with a particular prefix.

An aspect weaver is then the component responsible to process the advice instructions and weave them together

with original source files, generating the final source code that is compiled into an executable. Although in many

AOP frameworks the weaving is generally performed statically at the level of source code, there are also cases

such as in AspectWerkz [39] where the weaving can occur also dynamically at level of bytecode.

SI is generally limited by the execution coverage. This means that if some parts of the instrumented code

are not reachable during the execution, the instrumentation will not provide any information. Furthermore, SI

generally introduces a computational overhead that changes the timing-related behaviour of the instrumented

program. This could be unacceptable in applications where preserving real-time constraints is extremely im-

portant to meet safety critical requirements. In the worst case scenario the overhead of SI may be also the
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class	Logger	{	

					private	PrintStream	stream;	

					Logger	()	{…	}		

					void	log(String	message)	{	

													stream.println(message);	

					}	

}	

class	Power	{	

					int	balance;	

	

					void	deposit	(int	amount){	

														balance	+=	amount;	

					}	

					boolean	withdraw	(int	amount){	

													if	(balance	– amount	>	0){	

																	balance	-=	amount;	

																	return	true;	

														}	else	return	false;	

					}	

}	

Source	code	 Aspect	

aspect	Logging	{	

					Logger	logger	=	new	Logger	();	

	

					before	(int	amount)	:	

														call	(void	Power.deposit(int))	&&				

																																																										args(amount))	{	

															logger.log(“Deposit	=	”	+	amount);}	

	

					before	(int	amount)	:	

														call	(void	Power.withdraw(int))	&&				

																																																											args(amount))	{	

															logger.log(“Withdraw	=	”	+	amount);}	

					}	
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class	Power	{	

					int	balance;	

	

					void	deposit	(int	amount){	

														logger.log(“Deposit	=	”	+	amount);	

														balance	+=	amount;	

}	

					boolean	withdraw	(int	amount){	

														logger.log(“Withdraw	=	”	+	amount);	

													if	(balance	– amount	>	0){	

																	balance	-=	amount;	

																	return	true;	

														}	else	return	false;	
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Fig. 4. Example of instrumentation of the Java source code with AspectJ.

responsible of timing related Heisenbugs [143, 83], bugs that disappear or are altered in the instrumented pro-

gram. For all these reasons, in the last decade, there has been a great effort to develop new approaches [83, 101,

38, 96, 82, 6] for controlling and mitigating the computational overhead due to SI.

These approaches generally employ sampling-based techniques that reduce the overhead by selecting only a

limited and controlled number of events. However, sampling-based techniques are prone to introduce gaps in the

output trace, leading to uncertainty in the monitoring result. To quantify such uncertainty, a possible approach

(developed in [22, 104, 139]) is to learn statistical models of the monitored system and to use them to fill in

sampling-induced gaps in event sequences, and then computing the probability that the property of interest is

satisfied or violated.

5 Monitorability: What can we monitor?

In this section, we discuss the (notion of) monitorability of properties. Informally, studying the monitorability

of a property consists in determining whether or not a property is monitorable, that is, determining whether it is

worth monitoring that property at runtime. Intuitively, it is worth monitoring a property if, during monitoring,

the monitor can still provide an evaluation (in the form of a verdict) of the current execution and one can avoid

situations in which a monitor would inevitably provide inconclusive verdicts.

When using a formalism to write properties (specifying the expected system behavior), one of the questions

that arise is whether all properties that are expressible in this formalism can be monitored. Thus, the moni-

torability question naturally depends on the specification formalism. Moreover, monitorability also depends on



the nature of the decision procedure implemented by a runtime monitor. At runtime, a monitor tries to assign

a verdict to the current observation σ (which is by nature finite) by determining whether σ is a model or not

of the monitored property. Hence, when using a formalism with a semantics over infinite sequences (that is,

the models of the properties are infinite executions), monitorability issues arise when relating finite sequences

to infinite ones. To intuitively illustrate this issue, consider the two properties “predicate p always holds” and

“whenever predicate p holds, predicate q holds in the future”. For the first property, suppose that a monitor for

this property has in so far observed an execution wherein all observed states predicate p held. In this situation, a

monitor is useful because one can later obtain a state leading to the falsification of p and a monitor could detect

that an observation wherein p does not hold cannot be extended to the correct infinite correct executions (which

are models of the property) wherein predicate p holds at every position. For the second property, suppose that

a monitor for this property has in so far observed an execution wherein whenever predicate p held, predicate q

held on the next position. Then, suppose that this monitor observes predicate p and receives a certain number of

states where predicate q does not hold. Such a monitor can not determine that this sequence cannot be continued

to a correct execution. What is worse, the monitor can not relate this execution nor any of its continuations to

the infinite ones that are models of the property. Hence, we can see intuitively that it is not worth monitoring

that property and the monitor would be doomed producing inconclusive verdicts.

Based on the above informal description of monitorability, several definitions and visions of monitorable

properties were proposed. In the rest of this section, we first present the definitions and the associated charac-

terisations of monitorable properties. We note recent research efforts extending the notion of monitorability to

decentralised and distributed systems [67]. We focus in the rest of this section to monitorability in the centralised

setting, that is following the setup presented in the earlier sections.

5.1 Definitions of Monitorability

Monitoring to detect bad behaviors. The first definition of monitorability was given by Kim et al. [106]. In

their definition, monitoring is purposed to detect violations of properties. They consider safety properties over

infinite executions. Since for any safety property, any bad (infinite) execution has a finite prefix that cannot be

extended to a correct execution, it is possible to detect any violation of a safety property with a finite sequence.

However, the detection of such bad prefixes should be computable. Hence, a property ϕ ⊆ Σ ω is said to be

monitorable if Σ ∗ \pref(ϕ) is co-recursively enumerable, where pref(ϕ) is the set of prefixes of ϕ .

Monitoring to detect good and bad behaviors. Pnueli and Zaks later generalised the notion of monitorabil-

ity [125]. The underlying principles behind their definition are twofold: a monitor can be also used to detect

good behaviors, and a monitor should be running only if it has the possibility to reach a verdict. In their defi-

nition, a monitor is purposed to determine whether the current execution leads to infinite continuations that are

models of the monitored property. A monitor can then determine a verdict whenever either every continuation

of the current observation is a model or every continuation is a counter-example of the monitored property.

Moreover, it is worth monitoring as long as the monitor can find a verdict with a possible continuation of the

observed sequence.

More precisely, their definition of monitorability comes as follows. For a property ϕ ⊆ Σ ω , and given the

current execution σ ∈ Σ ∗, ϕ is said to be positively determined by σ if all (infinite) continuations of σ satisfy ϕ .

Conversely, Pnueli and Zaks also define the notion of negative determinacy. Whenever an execution σ positively

(resp. negatively) determines a property ϕ , a monitor for ϕ associates verdict ⊤ (resp. ⊥) with σ . Then, ϕ is

said to be σ -monitorable, if σ has a continuation such that ϕ is either positively or negatively determined by

this continuation. Finally, a property is monitorable if it is σ -monitorable, for any σ ∈ Σ ∗.

We note that in [64], Diekert and Leucker provide an equivalent topological definition of monitorability.

Given a property to monitor ϕ over some alphabet Σ and an execution sequence σ ∈ Σ ∗, ϕ is monitorable at σ

(alternatively σ -monitorable) if every open set Oσ containing σ has a subset SOσ such that either SOσ ⊆ ϕ or

SOσ ⊆ (Σ ∗ \ϕ), which one can understand as σ has a continuation that positively or negatively determines ϕ .

And then ϕ is monitorable if it is monitorable at every σ ∈ Σ ∗.



Monitoring with a parameterised verdict domain. The previous definition of monitorability implicitly uses the

3-valued truth-domain {⊥,?,⊤} where ⊥ and ⊤ are final verdicts (i.e., assigned once and never changed) and

verdict ? is emitted by the monitor for other sequences (i.e., those not allowing it to reach a final verdict). Falcone

et al. argue that in some situations, one may monitor only to detect satisfactions or violations in separation [75].

Hence, they parameterised the definition of monitorability by a truth-domain B that contains at least one final

verdict.

Monitoring with a semantics for finite executions. To account for the situations where the monitored program

stops before the monitor is able to reach a final verdict (i.e., when the last verdict is ?), Falcone et al. introduce

a notion of monitorability taking finite executions into account [75]. The definitions requires the specification

formalism to be endowed with a semantics over finite sequences including verdicts ⊤c and ⊥c used to indicate

that the property is currently true and currently false, respectively. An execution sequence evaluates to ⊤ and

⊥ as in the definition of Pnueli et al. [125], and it evaluates to ⊤c (resp. ⊥c) as long as no definitive verdict

has been found and the current execution sequence satisfies (resp. does not satisfy) the property. Intuitively, for

a property to be monitorable, the evaluations of the property on correct and incorrect finite executions should

differ so that a monitor is able to detect in a sound manner the situations in which it should emit a final verdict.

Monitoring for a branching-time logic. Francalanza et al. [88, 89] study the problem of monitoring for branching-

time logics and define µ-HML a reformulation of µ-calculus as a branching-time logic with least and greatest

fix-points. Monitorability of a formula in this logic amounts to being able to synthesise a sound monitor that is

able to detect all violations or all satisfactions of the formula. A salient aspect of this body of work is the identi-

fication of a maximally-expressive syntactic subset of the logic whereby any monitorable property is guaranteed

to be expressible within this syntactic subset (similar maximality guarantees are also given in the context of LTL

in [54]). More importantly, the branching nature of the logic considered gives scope for considering monitoring

setups that depart from the classic setup consisting of one system execution generating a single trace, since

alternative setups may extend the set of monitorable properties.

5.2 Characterisations of Monitorable Properties

We now report on the existing characterisations of monitorable properties. Characterising monitorable properties

as a class of properties is important because, when specifying a system, it allows determining the monitorability

of the specified property just by determining the class to which the property belongs (for instance using the

syntactic elements used to construct the property).

Characterisation for the definition in [106]. Kim et al. directly define monitorable properties as the class of

safety properties such that the set of prefixes is co-recursively enumerable.

Characterisation for the definition in [125]. The definition of monitorability in [125] is the most studied one.

Bauer et al. [28, 30] prove that the set of monitorable properties in the sense of [125] is a (strict) superset of the

union of safety and co-safety properties. Falcone et al. [74, 75] prove that the set of monitorable properties in the

sense of [125] is a (strict) super set of the set of obligation properties (which are formed by finite conjunctions

and disjunctions of safety and co-safety properties). They also prove that adding additional verdicts to the

definition of monitorability in [125] does not allow monitoring more properties. Later in [64], Diekert and

Leucker enunciate the same results as in [75] from a topological perspective. They additionally prove that

any countable union/disjunction or any countable intersection/conjunction of monitorable sets/properties is also

monitorable. In [65] Diekert et al. study the complexity of deciding monitorability. They show that i) deciding

whether a Büchi automaton defines a monitorable property is PSPACE-complete, and ii) deciding whether an

LTL formula defines a monitorable property is PSPACE-hard and EXPSPACE-easy.

Characterisation for the definition in [75]. Falcone et al. [75] prove that the set of monitorable properties in

the sense of [75] forms a strict subset of obligation properties. They also prove that the definition in [75] allows

monitoring any (linear-time) property when used with truth-domain {⊥,⊥c,⊤c,⊤}.



6 Overview of the Handbook

The idea of this book originated from the need to have an handbook for students to support their training with

several tutorials on different aspects of RV. The volume has been organized into seven chapters. This chapter

can be considered a primer to the field and necessary knowledge for the rest of this book.

The second chapter [113] is dedicated to the detection of concurrency errors raised in concurrent program-

ming. The chapter presents how dynamic analysis techniques can be used for the detection and localisation of

data races, atomicity violations, and deadlocks.

The third chapter [100] shows to adapt early-stage runtime verification frameworks wherein events are

names to events that carry date. The chapter shows how adding data to events complexifies the specification

language and the underlying monitoring algorithms. The chapter overviews five specification formalisms and

associated monitoring algorithms.

The fourth chapter [79] presents how runtime monitors can be used to prevent and react to failures to increase

the dependability of systems. For this, it presents the two main techniques for such purposes, namely runtime

enforcement and healing failures, respectively.

The fifth chapter [20] revolves around the techniques for the monitoring of specifications on cyber-physical

systems. The behaviour of cyber-physical systems is modeled by continuous state variables interleaved with

discrete events. The chapter presents state-of-the-art techniques for using qualitative and quantitative moni-

toring techniques either during simulation or when the system is running. The chapter also presents example

applications and compares exiting tools.

The sixth chapter [91] tackles the emerging and important topics of decentralised monitoring and distributed

monitoring. The chapter identifies the distinguishing features of decentralised and distributed systems and clas-

sifies the existing approaches along these features.

The seventh chapter [58] is dedicated to the application of runtime verification to industrial systems and

more particularly on financial transaction systems. This chapter places runtime verification in the development

lifecycle of a software. It interestingly describes some of the properties that can be useful in real-life applica-

tions. Moreover, it reports on some of the lessons learned by the authors and outlines some of the challenges to

address for RV to become an industrial practice.

7 Conclusion

This chapter has given a brief introduction to the field of runtime verification covering four major topics: how to

specify system behaviour, how to setup monitoring, how to perform instrumentation, and what the limitations

of monitoring are. We refer the reader to the other chapters in this book and other introductions to RV [71, 110]

for further details on the topic.
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