
Introduction to Semantic Web
Ontology Languages

Grigoris Antoniou1, Enrico Franconi2, and Frank van Harmelen3

1 ICS-FORTH, Greece
antoniou@icsforth.gr

2 Faculty of Computer Science, Free University of Bozen–Bolzano, Italy
franconi@inf.unibz.it

3 Department of Computer Science, Vrije Universiteti Amsterdam, Netherlands
frankh@cs.vu.nl

Abstract. The aim of this chapter is to give a general introduction
to some of the ontology languages that play a prominent role on the
Semantic Web, and to discuss the formal foundations of these languages.
Web ontology languages will be the main carriers of the information that
we will want to share and integrate.

1 Organisation of this Chapter

In section 2 we discuss general issues and requirements for Web ontology lan-
guages, including the semantics issues. We then describe briefly the most impor-
tant ontology languages in the design of the Semantic Web, namely RDF Schema
in section 3 and OWL in section 4. Section 5 contains a brief comparison with
other ontology languages. A brief introduction to description logics and their
relation to the OWL family of web ontology languages is included. The chapter
is concluded by a discussion on the importance of having correct and complete
inference engines for web ontology languages.

2 On Web Ontology Languages

Even though ontologies have a long history in Artificial Intelligence (AI), the
meaning of this concept still generates a lot of controversy in discussions, both
within and outside of AI. We follow the classical AI definition: an ontology is
a formal specification of a conceptualisation, that is, an abstract and simplified
view of the world that we wish to represent, described in a language that is
equipped with a formal semantics. In knowledge representation, an ontology is a
description of the concepts and relationships in an application domain. Depend-
ing on the users of this ontology, such a description must be understandable by
humans and/or by software agents. In many other field – such as in informa-
tion systems and databases, and in software engineering – an ontology would
be called a conceptual schema. An ontology is formal, since its understanding

should be non ambiguous, both from the syntactic and the semantic point of
views.

Researchers in AI were the first to develop ontologies with the purpose of fa-
cilitating automated knowledge sharing. Since the beginning of the 90’s, ontolo-
gies have become a popular research topic, and several AI research communities,
including knowledge engineering, knowledge acquisition, natural language pro-
cessing, and knowledge representation, have investigated them. More recently,
the notion of an ontology is becoming widespread in fields such as intelligent
information integration, cooperative information systems, information retrieval,
digital libraries, e-commerce, and knowledge management. Ontologies are widely
regarded as one of the foundational technologies for the Semantic Web: when
annotating web documents with machine-interpretable information concerning
their content, the meaning of the terms used in such an annotation should be
fixed in a (shared) ontology. Research in the Semantic Web has led to the stan-
dardisation of specific web ontology languages.

An ontology language is a mean to specify at an abstract level – that is,
at a conceptual level – what is necessarily true in the domain of interest. More
precisely, we can say that an ontology language should be able to express con-
straints, which declare what should necessarily hold in any possible concrete
instantiation of the domain. In the following, we will introduce various ways
to impose constraints over domains, by means of statements expressed is some
suitable ontology language.

2.1 What are Ontology Languages

How do we describe a particular domain? Let us consider the domain of courses
and lecturers at Griffith University. First we have to specify the “things” we
want to talk about. Here we will make a first, fundamental distinction. On one
hand we want to talk about particular lecturers, such as David Billington, and
particular courses, such as Discrete Mathematics. But we also want to talk about
courses, first year courses, lecturers, professors etc. What is the difference? In
the first case we talk about individual objects (resources), in the second we talk
about classes (also called concepts) which define types of objects.

A class can be thought of as a set of elements, called the extension of the
class. Individual objects that belong to a class are referred to as instances of
that class.

An important use of classes is to impose restrictions on what can be stated. In
programming languages, typing is used to prevent nonsense from being written
(such as A + 1, where A is an array; we lay down that the arguments of + must
be numbers). The same is needed in RDF. After all, we would like to disallow
statements such as:

– Discrete Mathematics is taught by Concrete Mathematics.
– Room MZH5760 is taught by David Billington.

The first statement is non-sensical because we want courses to be taught by
lecturers only. This imposes a restriction on the values of the property “is taught
by”. In mathematical terms, we restrict the range of the property.

The second statement is non-sensical because only courses can be taught.
This imposes a restriction on the objects to which the property can be applied.
In mathematical terms, we restrict the domain of the property.

Class hierarchies Once we have classes we would also like to establish rela-
tionships between them. For example, suppose that we have classes for

– staff members
– academic staff members
– professors
– associate professors
– assistant professors
– administrative staff members
– technical support staff members.

These classes are not unrelated to each other. For example, every professor is
an academic staff member. We say that professor is a subclass of academic staff
member, or equivalently, that academic staff member is a superclass of professor.
The subclass relationship is also called subsumption.

The subclass relationship defines a hierarchy of classes. In general, A is a
subclass of B if every instance of A is also an instance of B.

A hierarchical organisation of classes has a very important practical signifi-
cance, which we outline now. Consider the range restriction

Courses must be taught by academic staff members only.

Suppose Michael Maher was defined as a professor. Then, according to the
restriction above, he is not allowed to teach courses. The reason is that there
is no statement which specifies that Michael Maher is also an academic staff
member. Obviously it would be highly counterintuitive to overcome this difficulty
by adding that statement to our description. Instead we would like Michael
Maher to inherit the ability to teach from the class of academic staff members.

Property hierarchies We saw that hierarchical relationships between classes
can be defined. The same can be done for properties. For example, “is taught by”
is a subproperty of “involves”. If a course c is taught by an academic staff member
a, then c also involves a. The converse is not necessarily true. For example, a
may be the convenor of the course, or a tutor who marks student homework,
but does not teach c.

In general, P is a subproperty of Q if two objects are related by Q whenever
they are related by P .

Summary As a consequence of the discussion above, (Web) ontology languages
consist of:

– the important concepts (classes) of a domain
– important relationships between these concepts. These can be hierarchical

(subclass relationships), other predefined relationships contained in the on-
tology language, or user defined (properties).

– further constraints on what can be expressed (e.g. domain and range restric-
tions, cardinality constraints etc.).

2.2 Formal Semantics

Ontology languages allow users to write explicit, formal conceptualisations of
domains models. The main requirements are:

1. a well-defined syntax
2. a well-defined semantics
3. efficient reasoning support
4. sufficient expressive power
5. convenience of expression.

The importance of a well-defined syntax is clear, and known from the area
of programming languages; it is a necessary condition for machine-processing of
information. Web ontology languages have a syntax based on XML, though they
may also have other kinds of syntaxes.

Of course it is questionable whether the XML-based syntax is very user-
friendly, there are alternatives better suitable for humans. However this drawback
is not very significant, because ultimately users will be developing their ontologies
using authoring tools, or more generally ontology development tools, instead of
writing them directly in the Web ontology language.

Formal semantics describes precisely the meaning of knowledge. “Precisely”
here means that the semantics does not refer to subjective intuitions, nor is
it open to different interpretations by different persons (or machines). The im-
portance of formal semantics is well-established in the domain of mathematical
logic. In the context of ontology languages, the semantics enforces the meaning
of the expressed knowledge as a set of constraints over the domain. Any pos-
sible instantiation of the domain should necessarily conform to the constraints
expressed by the ontology.

Given a statement in an ontology, the role of the semantics is to devise pre-
cisely which are the models of the statement, i.e., all the possible instantiations
of the domain that are compatible with the statement. We say that a statement
is true in an instantiation of the domain if this instantiation is compatible with
the statement; the instantiation of the domain in which a statement is true is of
course a model of the statement, and viceversa. So, an ontology will itself devise
a set of models, which is the intersection among all the models of each statement
in the ontology. The models of an ontology represent the only possible realisable
situations.

For example, if an ontology states that professor is a subclass of academic
staff member (i.e., in any possible situation, each professor is also an academic
staff member), and if it is known that Michael Maher is a professor (i.e., Michael
Maher is an instance of the professor class), then in any possible situation it
is necessarily true that Michael Maher is an academic staff member, since the
situation in which he would not be an academic staff member is incompatible
with the constraints expressed in the ontology.

If we understand that an ontology language talks basically about classes,
properties and objects of a domain, then a model (i.e., a specific instantiation
of the domain) is nothing else than the precise characterisation for each objects
of the classes it is instance of, and of the properties it participates to. So, in
the above example, in any model of the ontology Michael Maher should be an
instance of the academic staff member class.

2.3 Reasoning

The fact that the formal semantics associates to an ontology a set of models,
allows us to define the notion of deduction. Given an ontology, we say that an
additional statement can be deduced from the ontology if it is true in all the
models of the ontology. This definition of deduction comes from logic and it is
very general but also very strict: if a statement is not true in all the models of an
ontology, then it is not a valid deduction from it. The process of deriving valid
deductions from an ontology is called reasoning.

If we consider the typical statements of web ontology languages, the following
deductions (“inferences”) can be introduced:

– Class membership. We want to deduce whether an object is instance of
a class. For example, if in the ontology it is stated that Michael Maher

is an instance of a class Professor, and that Professor is a subclass of the
Academic Staff Member class, then we can infer that Michael Maher is an in-
stance of Academic Staff Member, because this latter statement is true in all the
models of the ontology, as we have explained above.

– Classification: We want to deduce all the subclass relationships between the exist-
ing classes in the ontology. For example, if in the ontology it is stated that the class
Teaching Assistant is a subclass of the Professor class, and that Professor is
a subclass of the Academic Staff Member class, then we can infer that Teaching

Assistant is a subclass of Academic Staff Member. This deduction holds since
in any model of the ontology the extension of Teaching Assistant is a subset
of the extension of Professor, and the extension of Professor is a subset of the
extension of Academic Staff Member. Therefore, in any model the extension of
Teaching Assistant is a subset of the extension of Academic Staff Member, and
in any model the statement that Teaching Assistant is a subclass of Academic

Staff Member is true.

– Equivalence of classes. We want to deduce whether two classes are equivalent, i.e.,
they have the same extension. For example, if class Professor is equivalent to
class Lecturer, and class Lecturer is equivalent to class Teacher, then Professor

is equivalent to Teacher, too.

– Consistency of a class. We want to check that some class does not have nec-
essarily an empty extension. For example, given an ontology in which the class
Working-Student is defined to be a subclass of two disjoint classes Student and
Professor, it can be inferred that the class Working-Student is inconsistent, since
in every model of the ontology its extension is empty. In fact, any instance of
Working-Student would violate the constraints imposed by the ontology (namely,
that there is no common instance between the two classes). In this case, it would be
possible to remove the inconsistency for the Working-Student class by removing
from the ontology the disjointness statement between Student and Professor.

– Consistency of the ontology. We want to check that the ontology admits at least
a model, i.e., there is at least a possibility to have an instantiation of the do-
main compatible with the ontology. For example, suppose we have declared in the
ontology

1. that John is an instance of both the class Student and the class Professor,
and

2. that Student and Professor are two disjoint classes.

Then we have an inconsistency because the two constraints can not be satisfied
simultaneously. Statement 2 says that the extensions of the two classes can not
have any element in common, since they are disjoint, but statement 1 says that
John is an instance of both classes. This clearly indicates that there is an error in
the ontology, since it does not represent any possible situation.

In designing an ontology language one should be aware of the tradeoff between
expressive power and efficiency of reasoning. Generally speaking, the richer the
language is, the more inefficient the reasoning support becomes, often cross-
ing the border of non-computability. Thus we need a compromise, a language
that can be supported by reasonably efficient reasoners, while being sufficiently
expressive to express large classes of ontologies and knowledge.

Various methodologies are being developed on how to build a “good” on-
tology. These approaches may differ in many aspects, e.g., in the underlying
representation formalism, and whether they are equipped with an explicit no-
tion of quality, but most of them rely on reasoning mechanisms to support the
design of the ontology. Semantics is a prerequisite for reasoning support: deriva-
tions such as the above can be made mechanically, instead of being made by
hand. Logic-based reasoning is employed by the tools to verify the specification,
infer implicit statements and facts, and manifest any inconsistencies. Reasoning
support is important because it allows one to

– check the consistency of the ontology and the knowledge;
– check for unintended relationships between classes;
– derive explicitly all the statements that are true in the ontology, to better

understand its properties;
– reduce the redundancy of an ontology, discover equivalent descriptions, reuse

concept descriptions, and refine the definitions;
– automatically classify instances in classes.

In addition to the so called standard reasoning support listed above, non-
standard inference for ontologies are of great practical impact in ontology-based

applications. In particular, tools for building and maintaining large knowledge
bases also requires system services that cannot be provided by the standard rea-
soning techniques. These non-standard reasoning problems encompass matching
and unification of concepts (useful, e.g., for browsing ontologies and detecting
redundancies), least-common-subsumer and most-specific-concept computation
(useful to support the definition of new concepts), and approximation of con-
cepts (useful for approximate reasoning and for a comprehensible presentation
of ontologies to non-expert users).

Automated reasoning support allows one to check many more cases than
what can be done manually. Checks like the above are valuable for

– designing large ontologies, where multiple authors are involved;
– integrating and sharing ontologies from various sources.

Formal semantics and reasoning support is usually provided by mapping
an ontology language to a known logical formalism, and by using automated
reasoners that already exist for those formalisms.

3 The Key Semantic Web Ontology Languages

We now turn to a discussion of specific ontology languages that are based on the
abstract view from the previous version: RDF Schema and OWL. Quite a few
other sources already exist that give general introductions to these languages.
Some parts of the RDF and OWL specifications are intended as such introduc-
tions (in particular [13], [9] and [10]), and also didactic material such as [12] and
[11].

Our presentation is structured along the so-called layering of OWL: OWL
Lite, OWL DL and OWL Full. This layering is motivated by different require-
ments that different users have for a Web ontology language:

– RDF(S) is intended for those users primarily needing a classification hierar-
chy with typing of properties and meta-modelling facilities;

– OWL Lite adds the possibility to express definitions and axioms, together
with a limited use of properties to define classes;

– OWL DL supports those users who want the maximum expressiveness while
retaining good computational properties;

– OWL Full is meant for users who want maximum expressiveness with no
computational guarantees.

Before discussing the language primitives of OWL Lite, we first discuss language
elements from RDF and RDF Schema (RDF(S) for short). With the only purpose
to simplify the presentation in this tutorial by obtaining a strict layering between
RDF(S) and OWL Lite, we will restrict our discussion of RDF(S) to the case
where the vocabulary is strictly partitioned, the meta-modelling and reification
facilities are forbidden, as described in [12], also called “type separation” in [9]:

“Any resource is allowed to be only a class, a data type, a data type
property, an object property, an individual, a data value, or part of the
built-in vocabulary, and not more than one of these. This means that,
for example, a class cannot at the same time be an individual, [...]”

Under this restriction, we have the following strict language inclusion relation-
ship:

RDF(S) ⊂ OWL Lite ⊂ OWL DL,

where ⊂ stands for both syntactic and semantic language inclusion, in other
words: every syntactically correct RDF(S) statement is also a correct OWL Lite
statement, and every model of a RDF(S) ontology is also a model for the same
ontology expressed in OWL Lite (and similarly for the other case). A similar
but less strong restriction was proposed with RDFS(FA) [7], which does allow
a class to be an instance of another class, as long as this is done in a stratified
fashion. When dropping the restriction of a partitioned or stratified vocabulary
for RDF(S), the first inclusion relationship no longer holds. In that case, RDF(S)
is only a sublanguage of OWL Full. However, note that even in the general case
when the inclusion does not hold RDF(S) and OWL Lite/DL can still easily
inter-operate. Also note that the inclusion between OWL DL and OWL Full
does not hold, intuitively due to the lack of reification in OWL DL and OWL
Lite.

Before we discuss the different language primitives that we encounter along
this set of inclusions, we first list some of our notational conventions.

We use the normative abstract syntax for OWL as defined in [15]. While this
syntax in only meant for OWL itself, we use the same syntax for introducing
RDF(S) in order to clarify the relation between the languages4. We will use
symbols ci for classes, ei for objects, pi for properties between objects, and oi

for ontologies. Whenever useful, we will prefix classes and instances with pseudo-
namespaces to indicate the ontology in which these symbols occur, e.g. o1 e1 and
o2 e1 are two different instances, the first occurring in ontology o1, the second in
ontology o2.

Note that the XML-based syntax is far better known, but arguably not as
readable. In fact, the XML-syntax is clearly geared towards machine processing,
while the abstract syntax is tailored to human reading, thus our choice in this
section. The reader should keep in mind that the characteristics of the ontology
languages are independent of the syntax used.

3.1 RDF Schema

The most elementary building block of RDF(S) is a class, which defines a group
of individuals that belong together because they share some properties. The
following states that an instance e belongs to a class c:

4 Note that the semantics of the same constructs in RDF(S) and OWL can differ.

Individual(e type(c)) (“e is of type c”).

The second elementary statement of RDF(S) is the subsumption relation be-
tween classes: subClassOf:

subClassOf(ci cj)

In RDF, instances are related to other instances through properties:

Individual(ei value(p ej))

Properties are characterised by their domain and range:

ObjectProperty(p domain(ci)range(cj))

Finally, just as with classes, properties are organised in a subsumption hierarchy:

SubPropertyOf(o1 : pi o2 : pj)

RDF and RDFS allow the representation of some ontological knowledge. The main
modelling primitives of RDF/RDFS concern the organisation of vocabularies in typed
hierarchies: subclass and subproperty relationships, domain and range restrictions, and
instances of classes. However a number of other features are missing. Here we list a
few:

– Local scope of properties: rdfs:domain and fs:range define a unique domain/range
of a property for all classes. Thus in RDF Schema we cannot declare domain/range
restrictions that apply to some classes only. For example, for the property “father
of”, the father of elephants are elephants, while the fathers of mice are mice.

– Disjointness of classes: Sometimes we wish to say that classes are disjoint. For
example, male and female are disjoint. But in RDF Schema we can only state
subclass relationships, e.g. female is a subclass of person.

– Boolean combinations of classes: Sometimes we wish to build new classes by com-
bining other classes using union, intersection and complement. For example, we
may wish to define the class person to be the disjoint union of the classes male

and female. RDF Schema does not allow such definitions.
– Cardinality restrictions: Sometimes we wish to place restrictions on how many

distinct values a property may take. For example, we would like to say that a car
has at most four wheels. Again such restrictions are impossible to express in RDF
Schema. Note that min cardinality restrictions can be expressed for individuals in
RDF(S) by making use of the b-nodes.

– Special characteristics of properties: Sometimes it is useful to say that a property
is transitive (like “greater than”), unique (like “has mother”), or the inverse of
another property (like “eats” and “is eaten by”).

Summary of basic features of RDF Schema

– Classes and their instances
– Binary properties between objects
– Organisation of classes and properties in hierarchies
– Types for properties: domain and range restrictions

4 Web Ontology Language OWL

4.1 OWL Lite

One of the significant limitations of RDF Schema is the inability to make equality
claims between individuals. Such equality claims are possible in OWL Lite:

SameIndividual(ei ej)

Besides equality between instances, OWL Lite also introduces constructions to state
equality between classes and between properties. Although such equalities could already
be expressed in an indirect way in RDF(S) (e.g., through a pair of mutual Subclassof
or SubPropertyOf statements), this can be done directly in OWL Lite:

EquivalentClasses(c1 cj)

EquivalentProperties(p1 pj)

Just as importantly, as making positive claims about equality or subsumption rela-
tionships, is stating negative information about inequalities. A significant limitation
of RDF(S)5 is the inability to state such inequalities. Since OWL does not make the
unique name assumption, two instances ei and ej are not automatically regarded as
different. Such an inequality must be explicitly stated, as:

DifferentIndividuals(ei ej)

Because inequality between individuals is an often occurring and important statement
(in many ontologies, all differently named individuals are assumed to be different, i.e.
they embrace the unique name assumption), OWL Lite provides an abbreviated form:

DifferentIndividuals(e1 ... e4)

abbreviates the six DifferentIndividuals statements that would have been required
for this.

Whereas the above constructions are aimed at instances and classes, OWL Lite
also has constructs specifically aimed at properties. An often occurring phenomenon is
that a property can be modelled in two directions. Examples are ownerOf vs. ownedBy,
contains vs. isContainedIn, childOf vs. parentOf and countless others. The relationship
between such pairs of properties is established by stating

ObjectProperty(pi inverseOf(pj))

Other vocabulary in OWL Lite (TransitiveProperty and SymmetricProperty are
modifying a single property, rather then establishing a relation between two properties:

ObjectProperty(o1 : pi Transitive)

ObjectProperty(o1 : pi Symmetric)

The main limitation of RDF(S) to represent knowledge in terms of concepts and their
properties, is its inability to use properties in the local context of a class. As we have

5 but motivated by a deliberate design decision concerning the computational and
conceptual complexity of the language

already noted, a property has a unique definition for its domain and for its range,
and moreover the participation constraints of the instances of the domain and range
classes to the property are not specifiable in RDF(S). So, in RDF(S) it is impossible to
state whether a property is optional or required for the instances of the class (in other
words: should it have at least one value or not), and whether it is single- or multi-valued
(in other words: is it allowed to have more than one value or not). Technically, these
restrictions constitute 0/1-cardinality constraints on the property. The case where a
property is allowed to have at most one value for a given instance (i.e. a max-cardinality
of 1) has a special name: FunctionalProperty. The case where the value of a property
uniquely identifies the instance of which it is a value (i.e. the inverse property has a
max-cardinality of 1) is called InverseFunctionalProperty. These two constructions
allow for some interesting derivations under the OWL semantics: If an ontology models
that any object can only have a single “age”:

(ObjectProperty age Functional)

then different age-values for two instances ei and ej allow us to infer that

DifferentIndividuals(ei ej)

(if two objects ei and ej have a different age, they must be different objects). Similarly,
if an ontology states that social security numbers uniquely identify individuals, i.e.

ObjectProperty(hasSSN InverseFunctional)

then the two facts

Individual(ei value(hasSSN 12345))

Individual(ej value(hasSSN 12345))

sanction the derivation of the fact

SameIndividuals(ei ej)

Although RDF(S) already allows to state domain and range restrictions, these are very
limited. OWL Lite allows more refined version of these, local to the definition of a class:

Class(ci restriction(pi allValuesFrom(cj)))

says that all pi-values (if any) for each member of ci must be members of cj . This
differs from the RDF(S) range restriction

ObjectProperty(p range(cj))

which says that all pi-values must be members of cj , irrespective of whether they are
members of ci or not. This allows us to use the same property-name pi with different
range restrictions cj depending on the class ci to which pi is applied. For example, take
for pi the property Parent. Then Parents of cats are cats, while Parents of dogs are
dogs. An RDF(S) range restriction would not be able to capture this.

Similarly, although in RDF(S) we can define the range of a property, we cannot
enforce that properties actually do have a value: we can state the authors write books:

ObjectProperty(write domain(author) range(book))

but we cannot enforce in RDF(S) that every author must have written at least one
book. This is possible in OWL Lite:

Class(author restriction(write someValuesFrom(book)))

Technically speaking, these are just special cases of the general cardinality constraints
allowed in OWL DL. The someValuesFrom corresponds to a min-cardinality constraint
with value 1, and the functional property constraint mentioned above can be rewritten
in this context with a max-cardinality constraint with value 1. These can also be stated
directly:

Class(author restriction(write minCardinality(1)))

Class(object restriction(age maxCardinality(1)))

When a property has a minCardinality and maxCardinality constraints with the
same value, these can be summarised by a single exact Cardinality constraint.

4.2 OWL DL

With the step from OWL Lite to OWL DL, we obtain a number of additional language
constructs, which simplify the writing of an ontology, even if most of them could be
written anyway in OWL Lite as macros. It is often useful to say that two classes are
disjoint (which is much stronger than saying they are merely not equal):

DisjointClasses(ci cj)

OWL DL allows arbitrary Boolean algebraic expressions on either side of an equality
of subsumption relation. For example

SubClassOf(ci unionOf(cj ck))

In other words: ci is not subsumed by either cj or ck, but is subsumed by their union.
Similarly

EquivalentClasses(ci intersectionOf(cjck))

in other words: although ci is subsumed by cj and ck (a statement already expressible
in RDF(S)), stating that ci is equivalent to their intersection is much stronger. An
obvious example to think of here is “old men”: “old men” are not just both old and
men, but they are exactly the intersection of these two properties.

Of course, the unionOf and intersectionOf may be taken over more than two
classes, and may occur in arbitrary Boolean combinations.

Besides disjunction (unionOf) and conjunction (intersectionOf), OWL DL com-
pletes the Boolean algebra by providing a construct for negation: complementOf:

complementOf(ci cj)

In fact, arbitrary class expressions can be used on either side of subsumption or equiv-
alence axioms.

Note that all the additional OWL DL constructs introduced so far, are also in-
directly expressible already in OWL Lite. For example, the disjointness between two

classes ci and cjcan be expressed by means of the following two statements in OWL
Lite, for some fresh new property p:

SubClassOf(ci restriction(p minCardinality(1)))

SubClassOf(cj restriction(p maxCardinality(0)))

There are cases where it is not possible to define a class in terms of such algebraic
expressions. This can be either impossible in principle. In such cases it is sometimes
useful to simply enumerate sets of individuals to define a class. This is done in OWL
DL with the oneOf construct:

EquivalentClasses(cj oneOf(e1 ... en))

Similar to defining a class by enumeration, we can define a property to have a specific
value by stating the value:

Class(ci restriction(pj hasValue ek)

The extension from OWL Lite to OWL DL also lifts the restriction on cardinality
constraints to have only 0/1 values.

4.3 OWL Full

OWL Lite and DL are based on a strict segmentation of the vocabulary: no term can
be both an instance and a class, or a class and a property, etc. Full RDF(S) is much
more liberal: a class c1 can have both a type and a subClassOf relation to a class c2,
and a class can even be an instance of itself. In fact, the class Class is a member of
itself. OWL Full inherits from RDF(S) this liberal approach. This feature is crucial for
using OWL as a meta-modelling language.

Schreiber [14] argues that this is exactly what is needed in many cases of practical
ontology integration. When integrating two ontologies, opposite commitments have
often been made in the two ontologies on whether something is modelled as a class or
an instance. This is less unlikely than it may sound: is “747” an instance of the class
of all airplane-types made by Boeing or is “747” a subclass of the class of all airplanes
made by Boeing, and are particular jet planes instances of this subclass? Both points
of view are defensible. In OWL Full, it is possible to have equality statements between
a class and an instance.

In fact, just as in RDF Schema, OWL Full allows us even to apply the constructions
of the language to themselves. It is perfectly legal to (say) apply a max-cardinality
constraint of 2 on the subClassOf relationship. For this reason, OWL Full does not
include OWL DL, in which the constructions of the language are not semantic objects.
Of course, building any complete and terminating reasoning tools that support this
very liberal self-application of the language is out of the question. In fact, the theory
shows that it is impossible to build a correct and complete inference engine for OWL
Full.

5 Other Web-based ontology languages

Besides the two standards RDF Schema and OWL discussed above, a number of other
approaches for encoding ontologies on the World Wide Web have been proposed in the

XOL SHOE OML RDF/S OIL DAML+OIL

Partitions – – + – + +

Attributes

Instance attr. + + + + + +
Class attr. + – + – + +
Local scope + + + + + +
Global scope + – + + + +

Facets

Default values + – – – – –
Type constr. + + + + + +
Cardinalities + – – – + +

Taxonomies

Subclass of + + + + + +
Exhaustive comp. – – + – + +
Disjoint comp. – – + – + +
Not subclass of – – – – + +

Table 1. Comparison of web ontology languages with respect to concepts and tax-
onomies (taken from [16])

past. A comparison of these older languages is reported in [16]. We will now briefly
review the results of this comparison and discuss implications for our work.

Besides RDF Schema and OWL6, which have been introduced above, the com-
parison reported in [16] includes the following languages that have been selected on
the basis of their aim of supporting knowledge representation on the Web and their
compatibility to the Web standards XML or RDF.

– XOL (XML-based ontology language). XOL [4] has been proposed as a language
for exchanging formal knowledge models in the domain of bio-informatics. The
development of XOL has been guided by the representational needs of the domain
and by existing frame-based knowledge representation languages.

– SHOE (simple HTML ontology extension). SHOE[6] was created as an extension
of HTML for the purpose of defining machine-readable semantic knowledge. The
aim of SHOE is to enable intelligent Web agents to retrieve and gather knowledge
more precisely than it is possible in the presence of plain HTML documents.

– OML: (ontology markup language). OML [5] is an ontology language that has ini-
tially been developed as an XML serialisation of SHOE. Meanwhile, the language
consists of different layers with increasing expressiveness. The semantics especially
of the higher levels is largely based on the notion of conceptual graphs. In the
comparison, however, only a less expressive subset of OML (simple OML) is con-
sidered.

– OIL (ontology inference layer). OIL [3] is an attempt to develop an ontology lan-
guage for the Web that has a well defined semantics and sophisticated reasoning

6 Actually, [16] discuss DAML+OIL instead of OWL. DAML+OIL [8] is the direct
precursor of OWL, and all of the conclusions from [16] about DAML+OIL are also
valid for OWL

C, D → A | A (primitive conc.)

> | top (top)

⊥ | bottom (bottom)

¬C | (not C) (complement)

C uD | (and C D . . .) (conjunction)

C tD | (or C D . . .) (disjunction)

∀R.C | (all R C) (univ. quantifier)

∃R.C | (some R C) (exist. quantifier)

f ↑ | (undefined f) (undefinedness)

f : C | (in f C) (selection)

≥n R.C | (atleast n R C) (min cardinality)

≤n R.C (atmost n R C) (max cardinality)

R → P | P (primitive role)

f | f (primitive feature)

R−1 (inverse R) (inverse role)

Fig. 1. Syntax rules for ALCQI

support for ontology development and use. The language is constructed in a lay-
ered way starting with core-OIL, providing a formal semantics for RDF Schema,
standard-OIL, which is equivalent to an expressive description logic with reasoning
support, and Instance OIL that adds the possibility of defining instances.

We have to mention that there is a strong relationship between the OIL language and
RDF Schema as well as DAML+OIL. OIL extends RDF Schema and has been the
main influence in the development if DAML+OIL. The main difference between OIL
and DAML+OIL is an extended expressiveness of DAML+OIL in terms of complex
definitions of individuals and data types. DAML+OIL in turn has been the basis for
the development of OWL, which carries the stamp of an official W3C recommendation.
All observations on DAML+OIL in this comparison also apply to OWL.

6 Description Logics

We briefly now introduce description logics, which is the logic-based formalism which
is behind the OWL family of web ontology languages. From this brief Section the
parallel with the OWL family of web ontology languages will appear clear. An extensive
treatment of description logics, from friendly introductory chapters, to the theoretical
results, up to the description of applications and systems, can be found in the Handbook
of Description Logics [1]. Consistently with the informal notion of semantics introduced
above for the web ontology languages, description logics are considered as a structured
fragment of predicate logic. ALC is the minimal description language including full
negation and disjunction—i.e., propositional calculus.

>I = ∆I

⊥I = ∅
(¬C)I = ∆I \ CI

(C uD)I = CI ∩DI

(C tD)I = CI ∪DI

(∀R.C)I = {i ∈ ∆I | ∀j.RI(i, j) ⇒ CI(j)}
(∃R.C)I = {i ∈ ∆I | ∃j.RI(i, j) ∧ CI(j)}

(f ↑)I = ∆I \ dom fI

(f : C)I = {i ∈ dom fI | CI(fI(i))}
(≥n R.C)I = {i ∈ ∆I |]{j ∈ ∆I | RI(i, j) ∧ CI(j)} ≥ n}
(≤n R.C)I = {i ∈ ∆I |]{j ∈ ∆I | RI(i, j) ∧ CI(j)} ≤ n}

(R−1)I = {(i, j) ∈ ∆I ×∆I | RI(j, i)}

Fig. 2. Extensional semantics of ALCQI

The basic types of a DL language are concepts, roles, and features. A concept is a
description gathering the common properties among a collection of individuals; from a
logical point of view it is a unary predicate ranging over the domain of individuals. A
concept corresponds to a class in the web ontology languages. Inter-relationships be-
tween these individuals are represented either by means of roles (which are interpreted
as binary relations over the domain of individuals) or by means of features (which are
interpreted as partial functions over the domain of individuals). Roles correspond to
properties of RDF and OWL, while features correspond to functional properties. In this
Section, we will consider the Description Logic ALCQI, extending ALC with qualified
cardinality restrictions and inverse roles.

According to the syntax rules of Figure 1, ALCQI concepts (denoted by the letters
C and D) are built out of primitive concepts (denoted by the letter A), roles (denoted
by the letter R), and primitive features (denoted by the letter f); roles are built out
of primitive roles (denoted by the letter P) and primitive features. The top part of
Figure 1 defines the ALC sublanguage. Please also note that features are introduced
as shortcuts; in fact, they can be expressed by means of axioms using cardinality
restrictions, as we already noticed for OWL DL.

Let us now consider the formal semantics of ALCQI. We define the meaning of
concepts as sets of individuals—as for unary predicates—and the meaning of roles as
sets of pairs of individuals—as for binary predicates. This is the formalised notion of
instantiation of the domain we introduced at the beginning of this chapter. Formally, an
interpretation is a pair I = (∆I , ·I) consisting of a set ∆I of individuals (the domain
of I) and a function ·I (the interpretation function of I) mapping every concept to a
subset of ∆I , every role to a subset of ∆I×∆I , and every feature to a partial function
from ∆I to ∆I , such that the equations in Figure 2 are satisfied. The semantics of the
language can also be given by stating equivalences among expressions of the language
and First Order Logic formulae. An atomic concept A, an atomic role P , and an atomic
feature f , are mapped respectively to the open formulæA(γ), P (α, β), and f(α, β) –
with f a functional relation, also written f(α) = β. Figure 3 gives the transformational
semantics of ALCQI expressions in terms of equivalent FOL well-formed formulæ. A

>I ∼ true

⊥I ∼ false

(¬C)I ∼ ¬FC(γ)

(C uD)I ∼ FC(γ) ∧ FD(γ)

(C tD)I ∼ FC(γ) ∨ FD(γ)

(∃R.C)I ∼ ∃x.FR(γ, x) ∧ FC(x)

(∀R.C)I ∼ ∀x.FR(γ, x) ⇒ FC(x)

(f ↑)I ∼ ¬∃x. f(γ, x)

(f : C)I ∼ ∃x. f(γ, x) ∧ FC(x)

(≥n R.C)I ∼ ∃≥nx.FR(γ, x) ∧ FC(x)

(≤n R.C)I ∼ ∃≤nx.FR(γ, x) ∧ FC(x)

(R−1)I ∼ FR(β, α)

Fig. 3. FOL semantics of ALCQI

concept C and a role R correspond to the FOL open formulae FC(γ) and FR(α, β)
respectively. It is worth noting that, using the standard model-theoretic semantics, the
extensional semantics of Figure 2 can be derived from the transformational semantics
of Figure 3.

For example, we can consider the concept of happy fathers, defined using the
primitive concepts Man, Doctor, Rich, Famous and the roles CHILD, FRIEND. The
concept happy fathers can be expressed in ALCQI as

Man u (∃CHILD.>)u
∀CHILD. (Doctor u ∃FRIEND. (Rich t Famous)),

i.e., those men having some child and all of whose children are doctors having some
friend who is rich or famous.

An ontology is called in DL a knowledge base, and formally it is a finite set Σ
of terminological axioms – these are the ontology statements; it can also be called a
terminology or TBox. For a concept name A, and (possibly complex) concepts C, D,
terminological axioms are of the form A

.
= C (concept definition), A v C (primitive

concept definition), C v D (general inclusion statement). An interpretation I satisfies
C v D if and only if the interpretation of C is included in the interpretation of D, i.e.,
CI ⊆ DI . It is clear that the last kind of axiom is a generalisation of the first two:
concept definitions of the type A

.
= C – where A is an atomic concept – can be reduced

to the pair of axioms (A v C) and (C v A). Another class of terminological axioms –
pertaining to roles R, S – are of the form R v S. Again, an interpretation I satisfies
R v S if and only if the interpretation of R – which is now a set of pairs of individuals
– is included in the interpretation of S, i.e., RI ⊆ SI . An interpretation I is a model
of a knowledge base Σ iff every terminological axiom of Σ is satisfied by I. If Σ has
a model, then it is satisfiable; thus, checking for KB satisfiability is deciding whether
there is at least one model for the knowledge base. Σ logically implies an axiom α
(written Σ |= α) if α is satisfied by every model of Σ. We say that a concept C is
subsumed by a concept D in a knowledge base Σ (written Σ |= C v D) if CI ⊆ DI

for every model I of Σ. For example, the concept

Person u (∃CHILD. Person)

denoting the class of parents—i.e., the persons having at least a child which is a
person—subsumes the concept

Man u (∃CHILD.>)u
∀CHILD. (Doctor u ∃FRIEND. (Rich t Famous))

denoting the class of happy fathers – with respect to the following knowledge base
Σ:

Doctor
.
= Person u ∃DEGREE. Phd,

Man
.
= Person u sex : Male,

i.e., every happy father is also a person having at least one child, given the background
knowledge that men are male persons, and that doctors are persons.

A concept C is satisfiable, given a knowledge base Σ, if there is at least one model
I of Σ such that CI 6= ∅, i.e. Σ 6|= C ≡ ⊥. For example, the concept

(∃CHILD. Man) u (∀CHILD. (sex : ¬Male))

is unsatisfiable with respect to the above knowledge base Σ. In fact, an individual
whose children are not male cannot have a child being a man.

7 The importance of correct inference

An ontology inference engine based on description logics (such as iFaCT or Racer) can
offer a reasoning service to applications willing to properly use an ontology. As we have
already noticed, the inferential process’s complexity depends strictly on the adopted
ontology language’s expressivity: the inference engine becomes increasingly complex as
the ontology language becomes more expressive. In fact, theoreticians have proved that
you can’t build a complete inference engine for OWL Full, although it’s possible to use
existing description logic systems as inference engines for OWL Lite and OWL DL.

Designing and implementing complete inference engines for expressive ontology lan-
guages isn’t easy. As a prerequisite, you must have formal proof that the algorithms
are complete with respect to the ontology language’s declared semantics. The descrip-
tion logics community – which provides the theoretical foundations to the OWL family
of web ontology languages – has 20-plus years of experience to help provide theoreti-
cal results, algorithms, and efficient inference systems for all but the most expressive
OWL languages. We can understand how important it is for an inference engine to be
complete with the following example.

Suppose a military agency asks you to write an ontology to recognise whether a
particular individual description indicates some sort of “enemy” concept so that an ap-
plication can take appropriate automatic action (such as shooting) given the inference
engine’s answer. If the inference engine is sound but incomplete, it will recognise most
but not all enemies because it isn’t a complete reasoner. Because it is sound, however, it
won’t confuse a friendly soldier with an enemy. So, the application will start the auto-
matic shooting procedure only when the system recognises without doubt that someone
is an enemy. The application could fail to shoot an enemy, but field soldiers can take
traditional backup (nonautomatic) action. Soundness is more important because you
don’t want to shoot your own soldiers. So far, so good.

The agency has another application strictly related to the first one. The task is now
to recognise an individual description as an allied soldier to activate automatic proce-

dures that will alert the soldier to the headquarters’ secret position. Again, the system
must have a sound inference engine because the agency doesn’t want to disclose secret
information to enemies. Moreover, incompleteness is not a major problem because the
defence system can still be valid even if a soldier doesn’t know where the headquarters
is located.

The agency decides, of course, to use the same shared ontology for both applica-
tions. After all, the task in one case is to decide whether a soldier is an enemy and in
the other case decide whether he or she isn’t. So the second application can use the
same ontology as the first, but it exploits the outcome in a dual way. Unfortunately, it
turns out that the agency can’t use the same ontology for both tasks if the ontology
language’s inference engine is sound but incomplete. If a sound but incomplete reason-
ing system exists for solving, say, the first problem (recognising enemies), you can’t use
the same reasoning system as a sound (and possibly incomplete) procedure for solving
the second problem (recognising allies). In fact, using the same procedure for solving
the second problem would be unsound – it will say an individual isn’t an enemy when
he or she actually is. Although this is harmless for the first problem, it is bad for the
second, dual one. It would disclose valuable military secrets to enemies.

To solve this problem, one must have both a sound and complete inference engine for
the ontology language. This rules out using OWL Full for the above application because
having a complete inference engine with this language is impossible. The same of course
holds for OWL DL inference engines without guaranteed completeness properties.

It is important that Semantic Web application developers consider properly whether
such completeness properties are required for their applications.

References

1. F. Baader, D. Calvanese, D. McGuinness, D. Nardi, and P. F. Patel-Schneider,
editors. Description Logic Handbook: Theory, Implementation and Applications.
Cambridge University Press, 2003.

2. F. van Harmelen and D. Fensel. Practical Knowledge Representation for the Web.
In Proc. IJCAI’99 Workshop on Intelligent Information Integration, 1999

3. D. Fensel, I. Horrocks, F. van Harmelen, D.L. McGuinness and Peter F. Patel-
Schneider. OIL: An Ontology Infrastructure for the Semantic Web. IEEE Intelli-
gent Systems 16,2 (2001): 38-44

4. P. Karp, V. Chaudri and J. Thomere. An XML-Based Ontology Exchange Lan-
guage. Available at http://www.ai.sri.com/∼ pkarp/xol

5. R. Kent. Conceptual Knowledge Modelling Language. Available at
http://www.ontologos.org/CKML/

6. S. Luke and J. Hefflin. SHOE 1.01 Proposal Specification. Available at
http://www.cs.umd.edu/projects/plus/SHOE

7. J. Pan and I. Horrocks. (FA) and RDF MT: Two Semantics for RDFS. In Proc.
2003 International Semantic Web Conference (ISWC 2003), LNCS 2870, Springer
2003,30-46

8. P. Patel-Schneider, I. Horrocks and F. van Harmelen. Reviewing the Design of
DAML+OIL: An Ontology Language for the Semantic Web. In Proc. Eighteenth
National Conference on Artificial Intelligence, AAAI Pres 2002

9. D.L. McGuinness and F. van Harmelen. OWL Web Ontology Language Overview.
Available at http://www.w3.org/TR/owl-features/

10. M.K. Smith, Chris Welty and D.L. McGuinness. OWL Web Ontology Language
Guide. Available at http://www.w3.org/TR/owl-guide/

11. G. Antoniou and F. van Harmelen. Web Ontology Language: OWL. In S. Staab
and R. Studer (Eds), Handbook on Ontologies in Information Systems, Springer
2003

12. G. Antoniou and F. van Harmelen. A Semantic Web Primer, MIT Press 2004
13. F. Manola and E. Miller. RDF Primer. Available at

http://www.w3c.or.kr/Translation/PR-rdf-primer-20031215/
14. G. Schreiber. The Web is not well-formed. IEEE Intelligent Systems 17,2 (2002)
15. P.F. Patel-Schneider, P. Hayes and I. Horrocks. OWL Web Ontology Lan-

guage Semantics and Abstract Syntax. Available at http://www.w3.org/TR/owl-
semantics/

16. A. Gomez-Perez and O. Corcho. Ontology Languages for the Semantic Web. IEEE
Intelligent Systems 2002, 54-60

