
1

Introduction to Service-Oriented Programming (Rev 2.1)
by

Guy Bieber, Lead Architect, Motorola ISD
Jeff Carpenter, Software Engineer, Motorola ISD

ABSTRACT - A new programming paradigm is forming throughout the software industry. This paradigm is driven by the
exploitation of networking technology and the need to be able to create more powerful capabilities more quickly. The
diversity in languages, middleware, and platforms has prevented larger constructs from being formed and the shortage of
qualified software engineers only aggravates the problem. The inception of the Service-Oriented Programming (SOP)
paradigm is being defined throughout the industry including: Sun’s Jini™, Openwings™, Microsoft’s. NET™, and HP’s
CoolTown™. Much like the early days of Object-Oriented Programming (OOP), certain characteristics of SOP are covered
by some implementations, but no one approach covers all of them. Until the key features of OOP (encapsulation, inheritance,
and polymorphism) and a design methodology (OOA/OOD) had been defined, consistency in OOP programming models was
not achieved. This paper analyzes Service-Oriented technologies to identify the key characteristics and patterns of SOP, and
demonstrates the value of SOP to developers and end users.

KEY WORDS – Service-Oriented, Contract, Component, Connector, Container, Context, Availability, Discovery,

Interoperability, Security, Network-centric, Patterns.

INTRODUCTION
With the advent of Internet technology, people are becoming
more closely connected. So far, this connectivity is only
skin-deep. People can send e-mail or instant messages to
family members, or share files over the web. Some
capabilities have been wrapped up neatly into web pages:
free Internet telephony, text translation, price comparisons,
and Internet garage sales (auctions). These services are
useful in themselves, but the Internet is still very stove-
piped; connecting these services together to do more
powerful things is very difficult. For instance, it might be
nice to have a service call one’s cell phone when an item
meeting a price constraint is found on an auction or in retail
sales. It is very difficult for someone to use Internet services
in ways not intended by the original author. This is typically
due to poorly defined interfaces or lack of documentation on
interfaces. When it becomes possible to utilize services to
create new, more powerful constructs, the power of
networking will be fully exploited.

To understand Service-Oriented Programming, one needs to
understand some of the paradigms that preceded it,
including Object Oriented Programming (OOP), Client-
Server, and Component Models. OOP is built on the premise
that programming problems can be modeled in terms of the
objects in the problem domain. Object Oriented
Programming has specific characteristics: inheritance,
encapsulation, and polymorphism. Service-Oriented
Programming builds on OOP, adding the premise that
problems can be modeled in terms of the services that an
object provides or uses.

Component models prescribe that programming problems
can be seen as independently deployable black boxes that
communicate through contracts. The traditional client-
server model often lacks well-defined public contracts that
are independent of the client or server implementation. This
has made the client-server model brittle. In Service-
Oriented Programming, components publish and use
services in a peer-to-peer manner. In SOP a client is not tied
to a particular server. Instead, service providers are
interchangeable.

SERVICE-ORIENTED TECHNOLOGY
The software industry has been putting out strong messages
that the future of distributed computing is service-oriented.
These messages are coming from many of the industry big
hitters: Microsoft, Hewlett Packard, Sun Microsystems, and
Motorola. The message may be difficult to see, because
each company has conceptualized the service-oriented
model in their own technology initiatives: Microsoft
.NET™, Hewlett Packard Cooltown™, Sun Microsystems
Java™ / Jini™, and Openwings™.

Service-Oriented Programming is a paradigm for distributed
computing that supplements Object Oriented Programming.
Whereas OOP focuses on what things are and how they are
constructed, SOP focuses on what things can do.

What is a Service?

A service is a contractually defined behavior that can
be implemented and provided by any component for
use by any component, based solely on the contract.

2

This paper examines these technologies in detail to derive
what qualities make software service-oriented. We identify
the architectural elements and aspects of Service-Oriented
systems. We also propose a modeling language for SOP and
identify useful design patterns.

MICROSOFT .NET
The Microsoft .NET™ [1, 2] effort provides an Internet
Operating System, bridging applications from the traditional
desktop to the Internet. Microsoft has recognized that
ubiquitous network connectivity has not been fully
exploited. The vision is that future applications will be
built not only by integration of local services, but integration
of services across the Internet. Microsoft sees this effort as a
way to decrease time-to-market, to achieve higher developer
productivity, and to improve quality.

Microsoft is focusing on language independence, as opposed
to platform independence. This is a similar approach to that
taken by the Common Object Request Broker Architecture
(CORBA). .NET ignores object model issues, instead
focussing on messaging. This could be interpreted as a
direct attack on the Java model. The following table gives a
brief summary of the core components of the Microsoft
.NET™ strategy.

Core Component Description
.NET™ Internet
Operating System
Services

Provide necessary services such as
security (PASSPORT.NET™), file
storage, user preference management,
calendar management, etc.

.NET™
Development
Infrastructure

This includes Visual Studio .NET™,
.NET™ Enterprise Servers, the .NET™
Framework, and Windows .NET™.

.NET™ Device
Software

Framework for devices to participate.

.NET™ User
Experience

Delivery of a personal portal accessible
from any network device.

Figure 1. The Microsoft .NET Strategy

Some parts of the .NET™ framework are well defined, but
others are still immature. Recently, Microsoft demonstrated
some of the technology behind the marketing at the Fall
2000 COMDEX trade show. The demonstration focused on
the .NET™ Development Infrastructure. Microsoft is
pushing several new technologies to enable .NET™: Service
Contract Language (SCL), Simple Object Access Protocol
(SOAP), Disco, C#, and the Common Language Runtime
(CLR).

Service Contract Language (SCL) is a language for defining
language-independent message interfaces. This is very
similar to CORBA Interface Definition Language (IDL) and
DCOM Microsoft Interface Definition Language (MIDL).
The important concept to recognize here is a standard for
defining service interfaces.

Simple Object Access Protocol (SOAP) is an Extensible
Markup Language (XML) based means of passing messages
that is intended to be language-independent. It is the
equivalent of method invocation-based on-the-wire
protocols such as Remote Method Invocation (RMI) Wire
Protocol and CORBA Internet Inter-Orb Protocol (IIOP).
SOAP is certainly less efficient than RMI or IIOP since
XML messages are text-based and contain tagging
information. Instead of a protocol-independent approach,
Microsoft has chosen to define a new protocol.

Disco is Microsoft’s upcoming strategy for service
discovery. This is yet another spin on Microsoft’s plug-and-
play technologies. The core concept to identify here is
service discovery.

C# is Microsoft’s attempt to provide a programming
language that is network-friendly and that has something
that Active Server Pages (ASP) really lacks: security.
Microsoft realized that even if they are sending mobile code
between Windows machines, they must ensure the code is
not malicious. C# syntax is similar to Java, except the APIs
look like Win32 APIs. The key concept to recognize here is
a secure platform for mobile code.

The Common Language Runtime (CLR) is an attempt to
bring the service paradigm to Dynamic Link Libraries
(DLLs). The concept is to define language-independent
interfaces to DLLs that include the object code, interface
definitions, and a description of the interface. The key
element to notice here again is the concept of a contract.

In demonstrating their new Visual Studio .NET™ at
COMDEX, Microsoft showed Web Services that had not
been combined before being put together to make
applications. The ability to put services together in ways not
envisioned by their authors is called conjunction.

Microsoft is also working on servers to host these web
services as shown in the following figure:

Figure 2. .NET™ Enterprise Servers

3

The following tables summarize the SOP elements and
characteristics demonstrated by Microsoft .NET™.

Element .NET
Contract Service Contract Language (SCL)
Component Web Service Providers
Container .NET™ servers

Figure 3. Microsoft .NET SOP Elements

Characteristic .NET
Conjunctive Services can be combined in new ways.
Interoperable SCL and SOAP provide some

interoperability for .NET™.
Secure C# is an attempt to provide a secure

language.
Available DISCO discovery is essential to achieving

availability (i.e. fail-over)

Figure 4. Microsoft .NET™ SOP Characteristics

HEWLETT PACKARD COOLTOWN™
Hewlett Packard has elevated the user experience in service-
oriented computing to the forefront through a technology
called Cooltown [3]. Cooltown is built on web technologies
such as Hypertext Transfer Protocol (HTTP). Cooltown
promotes the idea of bridging the physical world and digital
world (the web). The goal is to give people, places and
things (objects) a digital presence on the web that people can
then interact with. The Internet contains content relating to
the objects around us, but the content is not directly linked
to the objects themselves. Cooltown attempts to enrich
interaction with the physical world by providing a digital
presence that allows information and control to flow
naturally around us.

Much of this technology focuses on the concept of discovery
by location: being able to discover and interact with the
objects around you. In a museum this could mean getting
information delivered to you about the painting you are
viewing. Cooltown envisions every object being
represented by a web page. Pads are handheld devices that
support web browsers and object detection. Pads can detect
objects by reading bar codes, RF / IR tags, or a beacon (i.e. a
Universal Resource Locator (URL) broadcaster). All of
these technologies are simply used to deliver a URL. Other
supporting technologies are Global Positioning Systems
(GPS) and Bluetooth [4]. Objects can be very passive,
providing a reference that can be associated with a URL.
Other devices simply provide a URL that is hosted
elsewhere. Some devices will actually contain a web server
to deliver content.

The figure below shows some of the elements of HP
Cooltown: beacons, tags, portals, pads, and places.

Figure 5. Cooltown™

A place corresponds to a location in the real world. A tag is
provided by an object as a reference to a URL. A beacon
delivers an object’s URL. A pad is any device that can
display a web browser and can sense beacons or tags. A
portal provides a connection from a pad to one or more web
servers. Examples of portals could be wireless Internet
access such as 802.11. Hewlett Packard’s Chai Server
allows web servers to be embedded in devices.

The one core underlying assumption of HP Cooltown, is a
web-based interface. Cooltown does not address
programmatic interfaces directly, focusing instead on the
user interfaces provided by web pages. This approach
inhibits the conjunctive and interoperable aspects of SOP.
However, it does demonstrate some of the characteristics of
SOP.

The following tables summarize the SOP elements and
characteristics demonstrated by HP Cooltown™.

Element Cooltown™
Component People, Place, Thing
Container Web Server

Figure 6. HP Cooltown™ SOP Elements

Characteristic Cooltown™
Mobility Delivery of web pages and Java™ code

over the web provides mobility.
Discoverable The sensing of beacons and tags is a

discovery mechanism.
Interoperable HTTP is the standard of interoperability in

HP Cooltown™.
Available Cooltown™ location-based discovery

allows users to switch between objects
easily.

Figure 7. HP Cooltown™ SOP Characteristics

4

SUN JINI TECHNOLOGY
Sun’s Jini™ Network Technology [5] is a framework for
building systems spontaneously. Jini™ technology makes it
possible to build a system out of a network of services.
Services can be added or removed from the network, and
new clients can find existing services. This all occurs
dynamically, with no administration.

Services are based on well-known interfaces written in the
Java™ programming language. Whether a service is
implemented in hardware or software is not a concern. The
service object downloaded to a user is supplied by the
component providing the service. The client only knows that
it is dealing with an implementation of an interface written
in the Java™ programming language. A design based on
service interfaces makes it possible to build systems with
higher availability. A component can use any service that
complies with the interface, instead of being statically
configured to communicate with a certain component.

Jini™ technology is built on top of Java™ (see Figure 8
below). Java’s Remote Method Invocation (RMI) provides
remote garbage collection of remote objects and the ability
to passing object state as well as object code around the
network.

Figure 8. Jini Architecture

The Jini™ architecture has several aspects that enable
Service-Oriented Programming.

Discovery is the process by which components locate a
Jini™ system. The discovery protocol allows components to
locate a repository of services called a Lookup Service.
Lookup Services are discovered through a multicast request
or a unicast request to a well-known location.

Join is the process of adding a service to a Jini™ system.
After a component has discovered a Lookup Service, it
registers an object for the service into the Lookup Service.
This service object contains the Java™ programming
language interface for the service. This includes the methods
that users and applications will invoke to execute the
service, along with any other descriptive attributes.

Lookup is the process by which a client or user locates and
invokes a service, described by its interface type. More fine-
grained selection of is made possible through the use of
other attributes.
Federation is the act of associating Lookup Services

together to provide a scope for
Join and Lookup. Lookup
Services can also be bridges to
other naming and directory
services.

Security for Jini technology is
currently under development,
but will be built on the Java
security model, including the
RMI security effort.

Leases are grants of guaranteed
access to a resource for a given
time period, negotiated between service users and service
providers. If a lease is not renewed before it’s expiration
then the user and the provider of the service consider the
resource to be freed. A lease expires if the resource is no
longer needed, the service user or network fails, or the
renewal request is denied. Jini™ uses this model to reclaim
resources based on the failures inherent in distributed
systems.

Transactions are used to wrap a series of operations together
so that the operations either succeed or fail as a unit. The
Jini™ Transaction Protocol takes an object-oriented view of
transactions. Instead of defining specific transaction
semantics, Jini™ supplies interfaces that describe a generic
two-phase commit process.

User interface adapters can be provided along with services.
These adapters allow the service to be accessed directly by a
user on a particular platform. These adapters can be
graphical, voice-based, or other interface technologies.

The following tables summarize the SOP elements and
characteristics demonstrated by Sun Jini™:

Element Jini™
Contracts Service Interfaces

Figure 9. Jini™ SOP Elements

Characteristic Jini™
Mobility Delivery of service proxy objects and

associated code over the network.
Conjunctive Services provided over the network can be

aggregated to perform new tasks.
Interoperable The Java language™ is the standard of

interoperability.
Available Equivalent services can be utilized in the

case of service failure.
Secure Planned for a future release, based on Java

RMI security.

Figure 10. Jini™ SOP Characteristics

Key aspects of the
Jini™ Architecture

• Discovery
• Join
• Lookup
• Federation
• Security
• Leases
• Transactions
• User Interfaces

5

OPENWINGS™
Openwings™ [6] is a service-oriented architectural
framework for building systems and systems of systems.
Although not tied specifically to Jini™, it builds upon
Java™ and Jini™ concepts to provide a more complete
solution. The figure below shows a high level diagram of the
Openwings™ architecture.

Network

M
an

ag
em

en
t

 S
er

vi
ce

s

J2EE J2SE J2ME

Web

UDDI

Jini

C
on

ne
ct

or

Se
rv

ic
es

SOAPC
on

ta
in

er
Se

rv
ic

es

C
on

te
xt

 S
er

vi
ce

s

Se
cu

ri
ty

 S
er

vi
ce

s

In
st

al
l S

er
vi

ce
s

D
is

co
ve

ry
Pl

ug
-in

s

JMS

IIOP

RMI

Component Services

Openwings
Facilities

Domain
Model

Compon
en

t

Compone
nt

Compon
en

t

Data Serv
ice

s

Com
ponen

t

Compo
nen

t

Com
ponen

t

Network

M
an

ag
em

en
t

 S
er

vi
ce

s

J2EE J2SE J2ME

WebWeb

UDDIUDDI

Jini

C
on

ne
ct

or

Se
rv

ic
es

SOAPSOAPC
on

ta
in

er
Se

rv
ic

es

C
on

te
xt

 S
er

vi
ce

s

Se
cu

ri
ty

 S
er

vi
ce

s

In
st

al
l S

er
vi

ce
s

D
is

co
ve

ry
Pl

ug
-in

s

JMSJMS

IIOPIIOP

RMIRMI

Component Services

Openwings
Facilities

Domain
Model

Compon
en

t

Compone
nt

Compon
en

t

Data Serv
ice

s

Com
ponen

t

Compo
nen

t

Com
ponen

t

Figure 11. Openwings Architecture

Several of the core services provide aspects of service-
oriented computing, as described below:

Component Services provides convenient abstractions of the
service discovery / lookup semantics – components simply
provide and use services. Component services allows
multiple service discovery mechanism to be used
transpartently. Additionally, there are simple semantics for
adding service attributes and user interfaces.

Connector Services provides an abstraction of protocols
(both synchronous and asynchronous). This enhances the
model of service-oriented computing by making it possible
for service providers and users to be completely transport-
independent. Connectors can be distributed with
components or built dynamically at runtime. The Openwings
reference implementation contains a component called a
Connector Repository, which provides a service that
generates and stores connectors based on the applicable
service interface.

Container Services provide processing as a network service.
The container is responsible for lifecycle, availability, and
code security for components. Container services provide a
process abstraction for the Java virtual machine as well as
the ability to control non-java executables. Container
services also provide a clustering capability for high
availability systems.

Context Services creates a context for service discovery and

component deployment. An Openwings context is a
grouping of hardware and software components that use
each other’s services (i.e. a system). When a component is
placed in a context, its services can be utilized by other
components in that context. Contexts can enter into
relationships with other contexts to share services, thus
forming systems of systems.

Security Services meets the challenges posed by evolving,
unpredictable threats in a network-based service framework.
Openwings focuses on three major aspects of securing
service-oriented systems: service security (authorization &
authentication for service usage), mobile code security, and
transport security (integrity and confidentiality).
Install Services

Install Services provide the ability to easily deploy
components. Install Services allow zero-interaction
installation of components onto platforms. Install Services
provide component authentication and resolution of
dependencies.

Management Services abstracts the management of software
components, hardware components and networks.
Management services provide a simple management
framework that allows plug-ins for various legacy
management frameworks .

Openwings Facilities are non-core Openwings services that
are deemed of general use. Data Services provides a simple
abstraction of persistence mechanisms by providing an
object view of database, regardless of the underlying storage
mechanism.

The following table summarizes the SOP elements
demonstrated by Openwings™

Element Openwings™
Contracts Service Interfaces
Component Component Services
Connector Connector Services
Container Container Service
Context Context Services

Figure 12. Openwings™ SOP Elements

Openwings™ shares the SOP characteristics provided by
Jini™, with the following additions:

Characteristic Openwings™
Secure Role-Based Access Control to services
Deployable Openwings Components can be installed

over the network into Spaces or specific
platforms. Connector Services provides
protocol independence and Policy Services
provides environment independence.

Figure 13. Unique Openwings SOP Characteristics

6

SUMMARY OF SERVICE-ORIENTED
TECHNOLOGIES
All of the initiatives discussed so far have key focus areas
and key technologies they depend on, as seen in the
following table.

Initiative Focus Dependencies
.NET™ Language-

Independent
Services

SOAP, IP, SCL,
XML, DISCO,
WINTEL, HTTP

Cooltown™ User / Service
Interaction

HTTP, IP

Jini™ Platform-
Independent
Service Discovery

Java, HTTP, IP

Openwings™ Service-Oriented
Programming

Java, HTTP, IP

Figure 14. Summary of SOP Technologies

ELEMENTS OF SOP
The analysis of several Service-Oriented technologies has
yielded a set of common architectural elements that make up
Service-Oriented Programming:

• Contract – An interface that contractually defines the
syntax and semantics of a single behavior.

• Component – A third-party deployable computing
element that is reusable due to independence from
platforms, protocols, and deployment environments.

• Connector – An encapsulation of transport-specific
details for a specified contract. It is an individually
deployable element.

• Container – An environment for executing components
that manages availability and code security.

• Context – An environment for deploying plug and play
components, that prescribes the details of installation,
security, discovery, and lookup.

ASPECTS OF SOP
There are also several architectural aspects that characterize
service-oriented computing:

• Conjunctive - This refers to the ability to use or
combine services in ways not conceived by their
originators. This implies that components have
published interfaces for the services they provide.

• Deployable – This refers to the ability to deploy or
reuse a component in any environment. This requires
transport independence, platform independence, and
environment independence.

• Mobile – This refers to the ability to move code around
the network. This is used to move proxies, user
interfaces, and even mobile agents. This is the key
enabler for interoperability.

• Available – One of the premises of Service-Oriented
Programming is that redundant networked resources can
provide high availability. It is the goal of SOP to
handle the failures that plague distributed computing.

• Secure – The concepts of mobile code and network-
discoverable services provide new challenges for
security. While SOP allows services to have a much
broader range of use, it cannot succeed without
protecting these services from misuse.

• Interoperable – Interoperability is the ability of
components from different sources to use each other’s
services. SOP supports this through two key features:
code mobility and contracts. Interoperability is
achieved by sending code across the network that
complies with the contract. This code could be a proxy
or even an entire application.

ARCHITECTURE DESCRIPTION LANGUAGE
Just as Object Oriented Programming has a modeling
language, namely Unified Modeling Language (UML),
Service-Oriented Programming needs a modeling language
as well. Architecture Description Language (ADL) [7],
developed at Carnegie Mellon University, is a modeling
language that provides notation for most of these
architectural elements of SOP. ADL contains notation for
Components, Connectors, Roles, and Ports. A proposed
modification to ADL for SOP adds notation for containers
and contexts, which could be viewed as specialized
components. An example diagram is shown below:

Container

Component

Container

Component

Connector

Role=
 Provider

Role=
 User

Ports

Provider
Proxy

User
Proxy

Component

Context

Figure 15. Architecture Description Language

Service-Oriented Programming
Elements

• Contracts
• Components
• Connectors
• Containers
• Contexts

Aspects
• Conjunctive
• Deployable
• Mobile
• Secure
• Available
• Interoperable

7

PATTERNS FOR SERVICE-ORIENTED
PROGRAMMING
In the following pages we present design patterns that apply
to Service-Oriented Programming derived from Java™,
Jini™, and Openwings™. The patterns from Microsoft
.NET™ and HP Cooltown™ are covered by these patterns.
In the interest of brevity, mini-patterns are used throughout
this section as follows: name, problem, context, and
solution.

JAVA™ PATTERNS
Jini™ derives much of its power from Java™, hence
relevant patterns from Java™ are presented here: contracts,
mobility, and code security.

Pattern Name: Contracts
Problem: How can behaviors be defined independent of
implementations?
Context: Anywhere it is desirable to hide complexity.
Solution: The concept of an interface construct was added
to Java to describe a behavior both in syntax and
semantics. The methods, method types, method parameter
types, and field types prescribe the interface syntax. The
comments, method names, and field names describe the
semantics of the interface. An object can implement
multiple interfaces. This pattern occurs in .NET™ SCL.

Pattern Name: Mobility
Problem: How can code be moved around the network for
execution?
Context: It can be advantageous to move code instead of
data for security, performance, or interoperability.
Solution: By making code portable, it can be easily moved
from host to host. Java supports both code mobility and
state mobility. State mobility is provided through
serialization. Code mobility is provided through platform
independent code, delivered in bundles called Java
Archive (JAR) files using any form of file transfer.

Pattern Name: Code Security
Problem: When downloading and running code from
numerous sources, how can it be assured the software will
not harm the target system?
Context: Anywhere where mobile code is delivered from
sources of various levels of trust.
Solution: Java™ provides a security sandbox, certificate
based authentication, and granular privilege assignment.

JINI™ PATTERNS
Unlike distributed computing paradigms before it, Jini™
tackles the hard issues of distributed computing. Distributed
computing is fraught with problems such as partial failures,
locality of execution, and interface mismatch. Partial
failures can occur when elements, such as networks, fail

between nodes. Locality of execution refers to the question
of call by reference versus call by value. In distributed
computing, this becomes remote invocation versus object
serialization. Interoperability problems occur when
elements deployed at different times have incompatible
interfaces. Through the use of mobile code, Jini™
eliminates these interoperability problems. This section
describes the following Jini™ patterns: lease, discovery,
lookup, service security, and service user interface.

Pattern Name: Lease
Problem: How can resource failures be detected?
Context: In a distributed environment where partial
failures can occur, such as network outages.
Solution: Both sides agree to lease a resource for a given
period of time. Lease expiration is detected by both sides,
regardless of host or network failures, so partial failures
are guaranteed to be detected correctly by both parties.

Pattern Name: Discovery
Problem: How can plug and play hardware and software
be achieved?
Context: In any system where reduced administration or
ease of use is important.
Solution: A bootstrapping protocol is used to
automatically find a lookup service. From there
everything else can be found. As long as the
bootstrapping technique remains the same, software can
participate in a plug and operate (PLOP) environment.
This pattern occurs in .NET™ Disco and in the
Cooltown™ tag / beacon discovery.

Pattern Name: Lookup
Problem: How can services be published and discovered
based on their contracts and attributes?
Context: Used where it is desirable to publish services for
general use.
Solution: Allows publication and lookup of services based
on their contracts and attributes. Unlike stovepipe client /
servers, service interfaces are published and are usable by
any other component.

Pattern Name: Service Security
Problem: How can services be secured from unauthorized
access?
Context: Anywhere services are published.
Solution: Securing access to the Jini™ lookup service and
to the services themselves is a work in progress.

Pattern Name: Service User Interface
Problem: How can user interfaces be attached to services?
Context: Anywhere where a graphical, audio, or other
kind of user interface needs to be provided with a service.
Solution: Jini™ uses the concept of a ServiceUI [8],
which can be attached to any service. Factories are

8

defined for each kind of user interface category (voice,
graphics, etc.). These factories are used to get mobile code
that provides a user interface. This has the advantage that
client and server software always stay in sync.

OPENWINGS™ PATTERNS
Jini™ and Java™ provide features that enable SOP.
However, several elements are missing that would allow
development of full-scale service-oriented systems.
Openwings™ is focused on filling these holes, to provide
the full set of elements and aspects intrinsic to SOP. The
following patterns are described in this section: component,
connector, container, context, installer, policy, and proxy.

Pattern Name: Component
Problem: What is the unit of service deployment?
Context: Any system where hardware or software needs to
be abstracted as services.
Solution: A component encapsulates a unit of deployment
of hardware (through software) or software. Components
are the basic unit of deployment for services (a component
can provide or use many services). Services provided and
used by components are contractually specified.
Components are subject to third party composition and are
independent of deployment contexts. Components must
be independent of platforms, transport protocols, and
deployment environment details such as network topology.

Pattern Name: Connector
Problem: How can components using different transport
protocols be interoperable?
Context: Anywhere where interoperability and efficient
bandwidth use is important.
Solution: Connectors provide an abstraction for transport
independence. Connectors are categorized as synchronous
or asynchronous. Connectors are composed of a user
proxy and a provider proxy. A user proxy provides an
object that implements a contract and a provider proxy
takes an object that implements a contract. Connectors can
naturally be chained. They also provide an insertion point
for transport security and quality of service. Connectors
can be bundled with components, located in a repository,
or generated on the fly.

Pattern Name: Container
Problem: How can component execution be managed for
security, availability, and mobility?
Context: This pattern is useful when services are deployed
as components.
Solution: An application server is an example of a
container. A Java container would enforce code security
by configuring the Java™ Security Manager. The
container also provides a concept missing from Java™, the
ability to map multiple processes to a single Java Virtual
Machine (JVM). This reduces the startup time for Java
programs. The container pattern can manage pools of

JVMs and make load-balancing decisions. Containers
work together to form clusters, which guarantee clustered
services are kept running. This feature enables cold and
warm fail-over of services. Finally, the container provides
an environment to support mobile agents.

Pattern Name: Context
Problem: How can a context for system formation and
service discovery be created and managed?
Context: This pattern is useful in a distributed computing
environment where systems need to be self-forming and
self-healing.
Solution: A context provides an environment for self-
forming and self-healing systems. A context enforces a
system boundary, provides for automated installation of
components (see the Installer pattern), provides the core
services for system formation, and prescribes how services
are published and discovered beyond the workgroup. The
context pattern relies on environment-independent
components (see the Policy pattern).

Pattern Name: Installer
Problem: How can software be installed securely and
automatically?
Context: This pattern is useful in any system using the
context pattern.
Solution: The installer pattern inverts the traditional
installation approach. Typically software is delivered with
its own installer. Because this bundled installer has no
knowledge of the deployment context, the user must
answer many questions about how the software should be
installed. This pattern is simply unworkable for mobile
code. Instead, components are delivered as bundles to a
context with an installer. The installer service verifies and
installs the software automatically throughout the context.

Pattern Name: Policy
Problem: How can environment-specific details be
abstracted from code?
Context: A policy is useful anywhere a configuration file
was previously used.
Solution: Policies are discoverable configuration files.
For instance, the context pattern uses policies to tell
deployed components information about their deployment
environment. Policies have both a human readable form
and an object form. The policy object knows how to store
and restore itself from human readable form (XML).

Pattern Name: Proxy
Problem: How can a programmatic interface be delivered
in a mobile fashion?
Context: Proxies can be used behind any interface to add
functionality to an object.
Solution: Proxies can provide an object that implements a
contract or take an object that implements a contract.

9

Proxies are the primitives used to create connectors and
smart proxies. Smart proxies allow users to add additional
layers of functionality behind an interface.

Pattern Name: Management
Problem: How can zero-administration systems be built?
Context: Any environment where administration needs to
be minimized and insight into system operation is
important.
Solution: Every component has a management framework
that allows different management aspects to be added at
runtime, i.e. Management Beans (MBeans). Management
Beans have published interfaces much like services, but
they provide behind-the-scenes service management. The
management function is lightweight and can be automated
through the use of policies.

SERVICE FAILURE HANDLING
One aspect of Service-Oriented Programming that deserves
closer examination is how availability is achieved at the
component level. Components that use services must deal
with the realities of distributed computing; namely, that
services in distributed systems can fail in unique ways [9].
In distributed technologies such as Java™ RMI, Jini™, and
Openwings™, this is brought home to developers by the
convention that every method of a service interface must
throw a java.rmi.RemoteException. How a component
deals with a service failure is purely the decision of the
developer. Realistically, there are an unlimited number of
ways to handle service failures. However, it is helpful to
consider a number of possible strategies for exception
handling.

DO-NOTHING SOLUTION
The simplest approach is the do-nothing solution: the broken
service object is discarded, and no immediate attempt is
made to recover or locate another equivalent service. The
component proceeds to do other things and avoids activity
that involves using the service.

try
{
service.doSomething();

}
catch (RemoteException e)
{
service = null;
// log the error
System.out.println(e.toString());

}

// continue…

Figure 16. Do-nothing code example

PROPAGATE THE EXCEPTION
The do-nothing solution is obviously not adequate for most
situations. Alternatively, the RemoteException may be

rethrown and handled at a higher level:

• Components that have user interfaces could enter a state
where they await some user action that initiates the
lookup and use of another service.

• Components using session-oriented (stateful) services
where information pertinent to the component’s use of
the service is remembered over a series of calls instead
of passed in every call. Recovery in this case requires
code that attempts to roll back to a well-defined state at
which it is appropriate to find and use a different
service.

LOCATE ANOTHER SERVICE
Another approach is to attempt to recover by locating
another equivalent service. The code that uses the service
can be placed in a loop to attempt to locate another
equivalent service. If an appropriate service is found, the
component can continue normal operation.

boolean success = false;
int tries = 0;

while (!success && tries<3)
{
tries++;
try
{
service.doSomething();
success = true;

}
catch (RemoteException e)
{
// log the error
System.out.println(e.toString());

// attempt to locate a new service
service = ...

}
}

Figure 17. Simple recovery code example

This code attempts to limit the number of attempts made to
locate a new service so that the code does not go into an
infinite loop. There are several variations on this method:

• The number recovery attempts can vary. The code
above makes three attempts.

• The recovery attempt could be governed by a timeout
instead of a specific number of tries. This requires a
multi-threaded approach.

• This approach could also benefit from Aspect-Oriented
Programming, which is provided in the Java language
by AspectJ technology [10]. This would allow common
exception handling blocks to be applied across entire
applications.

This is still a fairly primitive approach. It may be
cumbersome to surround every method call on a service

10

with a block of code like the one above.

USE A SERVICE PROXY
A technique to avoid the introduction of extra code blocks is
to use a layer of abstraction to hide service failures as much
as possible. This approach uses the Proxy pattern. The client
code receives a service object that is a proxy for actual
services. This proxy is a local object, and when one of its
methods is called, it in turn invokes the same method on the
service object, catching RemoteException. If the remote
service should fail, the proxy uses the strategy outlined
above to locate and use an equivalent service. If the proxy
cannot succeed in completing the call using some service
object, it raises a RemoteException.

This approach is actually fairly simple to implement. As of
version 1.3, the Java programming language contains a
feature called dynamic proxies [11]. Using the reflection
capabilities of the language, the JVM can dynamically
create objects that implement one or more interfaces. These
dynamic proxies pass method invocations to another object
that handles method calls. This method-handling object must
implement the java.lang.reflect.InvocationHandler. A
properly written InvocationHandler would be used to map
method calls to one or more service objects and trap remote
exceptions.

A variation on this method made possible by the use of a
proxy is the ability to continually maintain a pool of
equivalent services, so that no time is spent on lookup if a
new service instance is needed.

SERVICE-ORIENTED EXAMPLE
The real power of Service-Oriented Programming may not
be apparent until it is put into action. This section develops
an example problem and proposes a solution using Service-
Oriented Programming. The goal is to demonstrate the
value provided by SOP throughout the life cycle of a
product. As is often true in real life, the evolution of the
problem can be even more interesting and challenging than
the original problem.

THE PROBLEM
A MP3 player vendor has decided to one-up the competition
by differentiating their product. They have decided to
produce an extensible product that allows any source of
audio to be directed to any audio capable device. Users are
no longer content just to search for files, download or rip
them, organize them, and play them on their PC or MP3
device. Users want to be able to speak the name of the song,
artist, or type of music they want and have music found,
downloaded, organized, and played for them wherever they
are. They want to take advantage of the many sources of
audio content available on the web. The user should be able
to play their audio on a variety of devices.

THE SERVICE-ORIENTED SOLUTION
To decompose this problem, one must define the
components and service interfaces. The first step in this
process is to look for standard service interfaces for this
problem domain. If these interfaces already exist, it is likely
that one or more components that implement this interface
are already available as products that can be integrated into
the solution. For this example, the assumption is that the
service interfaces need to be created. In the interest of
space, the interfaces for the example are summarized below.

1. Audio Player - This service interface controls the
playback of an audio file, stream, or play list
(represented by a URL). This includes standard
features such as play, pause, stop, fast forward,
rewind, mute, skip forward, and skip backward.

2. Audio Recorder – This service interface is used to
control recording of audio and can produce an
audio stream or audio file.

3. Audio Finder - This service interface takes in an
audio description (title, artist, album, etc.) and
returns one or more hits as URLs.

4. Audio Store – This service interface takes in a
audio file or audio stream reference and organizes
available information about it, such as artist, title,
genre, etc.

5. Audio Codec – This service interface is used to
publish audio codecs.

6. Speech to Text Service – This service interface
takes in an audio stream or file. It performs speech
recognition and outputs text. One of the attributes
of the service is the language being translated.

7. Text to Speech Service – This service interface
takes in a text stream and outputs the audio
representation as a stream or file.

8. Audio Provider – This service interface is used for
net broadcasters or audio providers (such as
Napster) to publish their services.

9. Audio Stream – This service interface provides
steaming audio using some codec.

The figure below shows the components and services in the
initial design in ADL notation. The connectors have a user
role (triangle) and a provider role (square). The numbers on
the ends of the connectors correspond to the previously
defined service contracts.

11

Audio
Finder

Audio
Provider
Service

Speech Services Audio
Codec

Audio Services Audio
Speech UI

7

7
11

6

6

Audio
Store

4

4

55

3

3

8

Audio
Input

Device

Audio
Output
Device9

9

9

9

9

9

9

9

Audio
Graphical

 UI

1

8

1

Figure 18. ADL Problem Model

Here is a brief summary of the components in this diagram.
Components in bold are included as part of the core product
offering:

• Audio Services Component – This is the vendor’s
existing product. It is an audio player, audio
recorder, and CD ripper.

• Audio Graphical User Interface – This is a service
user interface delivered directly from the audio
services component.

• Audio Speech UI - This is another service user
interface delivered from the audio services
component.

• Speech Services Component – This is a third party
tool that provides text-to-speech and speech-to-text
conversion. The intent is to allow audio services to
work with speech control.

• Audio Store Component – This component
manages audio files, audio stream references, and
codecs. The Audio Service goes to the audio store
to access any available audio providers. This is
packaged with the product.

• Audio Provider Component –Any provider of audio
content locally or on the web. This is not packaged
with the product.

• Audio Finder Component - This service locates
audio providers to find specific audio content. This
is packaged with the product.

• Audio Codec – These codecs are published on the
web.

• Audio Output Device - Any device that accepts an
audio stream.

• Audio Input Device - Any device that provides an
audio stream.

Certain components work better if they are shared. For
instance, speech services usually require training to achieve
high quality recognition. If every product contained its own

speech service, users would waste time training different
services. By making speech services shared, they can
integrate easily with whatever products and services the user
buys.

The figure below shows an example deployment. The
hardware includes two PCs (with broadband connections),
one stereo, and multiple radios throughout the house. From a
software perspective, there are four components that
implement the Audio Player interface (Interface 1). One
player is attached to a stereo directly, another is on a PC,
and a third is tied to a short-range FM transmitter.

FM
Relay

Audio
Service

Audio
Service

Analog
Audio

Internet
Audio
Service

Figure 19. Example MP3 system

Some of the components in this diagram lookup the services
they use, but others delegate lookup to an external controller
called a coordinator. A coordinator component can be used
to configure connection of passive services. The
coordinator may assign services itself, or it may have a user
interface to allow the user to do the configuration. The
Audio Services component acts as a coordinator, allowing
the user to direct a particular audio stream to particular
rooms in the house. This is easy to visualize for the user:
relevant components are shown as pictures of what they
really are and service contracts show up as labels or icons.
Then it is simply a matter of connecting the dots to do
powerful things.

One important thing to note here is that since discovery is
being used, the system is self-forming and self-healing. The
system is self-forming because new components can be
added dynamically and used in the system without changing
the existing components. For instance, if another player is
added to the system, it simply appears as another option for
audio output. If a player is removed from the system, it is
no longer shown as an option for audio output. In a service-
based system, it doesn’t matter if the device provides a
single service or all-in-one capability, since each service is a
separate entity.

12

EVOLVING THE PROBLEM
Competitors will inevitably develop competing standards for
audio services on the web. The strategy to overcome this is
to publish an adapter service that complies with the
competitor’s service interface definition and translates it to
the vendor’s definition.

One way the system might evolve is to extend audio services
to the car. Motorola started with car radios and has come
back to them, with a twist, in the iRadio [12]. What if
playlists of music and information from the home could
follow users wherever they go, including the car? If a car
can be detected over Bluetooth or HomeRF [13], the audio
can be downloaded to the car stereo. The car in this instance
would contain an audio store and audio player.

As wireless connectivity increases, even children’s toys can
participate in service discovery. For instance, Motorola’s
new cable modems have HomeRF wireless access built in.
In fact, Sally’s doll can play her favorite songs or allow
Mom to call her down to dinner. Again, this is simply
another audio recorder and player.

This capability could be extended to the daily workout,
using a wireless audio player that can store audio. When the
device is in the house it is discovered and audio can be sent
to it. This could even be the audio recorded from a favorite
nighttime comedy. The cable box could become an audio
source. More instances of these same components are used
to achieve this.

This same player could be used at house parties or
nightclubs. Everyone brings their wireless audio devices
containing their favorite songs. The house playlist is
generated from this collection of music, creating a more
interactive experience.

BENEFITS OF THE SOP APPROACH
The technologies to achieve this vendor’s evolutionary goals
actually exist today. The advantages to the developer are
that their existing work was never broken, and extending the
system is easy. For users, SOP allows them to connect the
services in new ways that add capabilities and value. The
ability to redirect audio anywhere in the house, to the car, or
to personal devices utilizing wireless technology provides
tremendous new value. Instead of running wires between
stereo components, the user draws lines between
components to achieve the desired configuration. A
traditional stovepipe client-server system would have never
allowed the expansion or flexibility the SOP solution
provides.

CONCLUSION
Service-Oriented Programming (SOP) is a new paradigm for
computer science that requires a different way of thinking of

distributed problems. Though the model was originally
designed for inter-process communication, it holds true for
intra-process communication, i.e. communication between
objects contained in different threads within the same
program. The reason that both threaded and distributed
computing are currently fraught with errors is that contracts
are not clearly defined. The problem is particularly bad in
threading models, where calls are often made directly into
the implementations of objects running in different threads.

The service-oriented approach and service-oriented
frameworks such as Openwings™ provide many benefits for
developers and system integrators. Building software
components is simplified by the enforcement of good object-
oriented design principles. Component design is driven by
the interfaces of the services provided. This in turn
simplifies integration of systems. The prototyping of
components is also simplified. A fully service-oriented
component framework such as Openwings™ Component
Services makes it possible to build truly reusable, non-trivial
software components.

The benefits of simplified development and integration are
passed on to users. Systems that are designed with redundant
services will be highly available, satisfying expectations for
systems that always work. Systems that are designed with
security at all levels, especially at the service level, will
meet user’s expectations of systems that protect their secure
data. Systems that are designed based on well-known
interfaces will be true plug-and-play, satisfying user demand
for zero-administration systems.

Because service interfaces are clearly separated from user
interfaces, the same service can be accessible to a wide
variety of users who access the service in a variety of ways.
Users with increasing levels of expertise can take advantage
of more features of service interfaces. Users around the
world can use an interface that works in their language.
Users will be able to access services with all kinds of
different devices. In the near future, users will be able to
combine off-the-shelf components to build their own custom
systems.

Java™, Jini™, and Openwings™ are providing the first
fully functional framework for SOP. In describing the

Key benefits of Service-Oriented Computing

For developers
• Truly reusable

components
• Simplified system

integration
• Extensible Systems

For users
• Available systems
• Secure data
• Plug and Play
• Zero-administration
• Accessibility of

services

13

patterns of SOP, it should have become clear that some of
the patterns can only be supported in a Java™ programming
environment at this time, especially code mobility and code
security. Until these capabilities are added to other
languages and paradigms it will be very difficult to
implement Service-Oriented Programming in other
languages.

REFERENCES
[1] Microsoft .NET, http://www.microsoft.com/net
[2] The Programmable Web: Web Services Provides

Building Blocks for the Microsoft .NET Framework,
http://msdn.microsoft.com/msdnmag/issues/0900/WebP
latform/print.asp

[3] HP Cooltown, http://cooltown.hp.com/
[4] Bluetooth, http://www.bluetooth.com
[5] Jini, http://www.jini.org
[6] Openwings, http://www.openwings.org
[7] Architecture Description Language (ADL),

http://www.cs.cmu.edu/~acme/acme_documentation.ht
ml

[8] ServiceUI project, http://www.jini.org
[9] A Note on Distributed Computing,

http://www.sun.com/research/techrep/1994/abstract-
29.html

[10] Aspect J, http://aspectj.org
[11] Dynamic Proxy Classes,

http://java.sun.com/j2se/1.3/docs/guide/reflection/proxy
.html

[12] iRadio,
http://www.motorola.com/ies/telematics/iradio/infrastru
cture.html

[13] Surfboard SB4100W,
http://broadbandstore.motorola.com/

http://www.microsoft.com/net
http://msdn.microsoft.com/msdnmag/issues/0900/WebPlatform/print.asp
http://msdn.microsoft.com/msdnmag/issues/0900/WebPlatform/print.asp
http://cooltown.hp.com/
http://www.bluetooth.com/
http://www.jini.org/
http://www.openwings.org/
http://www.cs.cmu.edu/~acme/acme_documentation.html
http://www.cs.cmu.edu/~acme/acme_documentation.html
http://www.jini.org/
http://www.sun.com/research/techrep/1994/abstract-29.html
http://www.sun.com/research/techrep/1994/abstract-29.html
http://aspectj.org/
http://java.sun.com/j2se/1.3/docs/guide/reflection/proxy.html
http://java.sun.com/j2se/1.3/docs/guide/reflection/proxy.html
http://www.motorola.com/ies/telematics/iradio/infrastructure.html
http://www.motorola.com/ies/telematics/iradio/infrastructure.html
http://broadbandstore.motorola.com/

	INTRODUCTION
	SERVICE-ORIENTED TECHNOLOGY
	MICROSOFT .NET
	HEWLETT PACKARD COOLTOWN™
	SUN JINI TECHNOLOGY
	OPENWINGS™
	SUMMARY OF SERVICE-ORIENTED TECHNOLOGIES
	PATTERNS FOR SERVICE-ORIENTED PROGRAMMING
	JAVA™ PATTERNS
	JINI™ PATTERNS
	OPENWINGS™ PATTERNS

	SERVICE FAILURE HANDLING
	DO-NOTHING SOLUTION
	PROPAGATE THE EXCEPTION
	LOCATE ANOTHER SERVICE
	USE A SERVICE PROXY

	SERVICE-ORIENTED EXAMPLE
	THE PROBLEM
	THE SERVICE-ORIENTED SOLUTION
	EVOLVING THE PROBLEM
	BENEFITS OF THE SOP APPROACH

	CONCLUSION

