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Abstract Shearlets emerged in recent years among the most successful frameworks

for the efficient representation of multidimensional data. Indeed, after it was recog-

nized that traditional multiscale methods are not very efficient at capturing edges and

other anisotropic features which frequently dominate multidimensional phenomena,

several methods were introduced to overcome their limitations. The shearlet repre-

sentation stands out since it offers a unique combinations of some highly desirable

properties: it has a single or finite set of generating functions, it provides optimally

sparse representations for a large class of multidimensional data, it is possible to

use compactly supported analyzing functions, it has fast algorithmic implementa-

tions and it allows a unified treatment of the continuum and digital realms. In this

chapter, we present a self-contained overview of the main results concerning the

theory and applications of shearlets.

Key words: affine systems, continuous wavelet transform, image processing, shear-

lets, sparsity, wavelets

1 Introduction

Scientists sometimes refer to the 21st century as the Age of Data. As a matter of

fact, since technological advances make the acquisition of data easier and less ex-

pensive, we are coping today with a deluge of data including astronomical, medical,

seismic, meteorological, and surveillance data, which require efficient analysis and
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processing. The enormity of the challenge this poses is evidenced not only by the

sheer amount of data, but also by the diversity of data types and the variety of pro-

cessing tasks which are required. To efficiently handle tasks ranging from feature

analysis over classification to compression, highly sophisticated mathematical and

computational methodologies are needed. From a mathematical standpoint data can

be modeled, for example, as functions, distributions, point clouds, or graphs. More-

over, data can be classified by membership in one of the two categories: explicitly

given data such as imaging or measurement data, and implicitly given data such as

solutions of differential or integral equations.

A fundamental property of virtually all data found in practical applications is that

the relevant information which needs to be extracted or identified is sparse, i.e., data

are typically highly correlated and the essential information lies on low dimensional

manifolds. This information can thus be captured, in principle, using just few terms

in an appropriate dictionary. This observation is crucial not only for tasks such as

data storage and transmission but also for feature extraction, classification, and other

high-level tasks. Indeed, finding a dictionary which sparsely represents a certain

data class entails the intimate understanding of its dominant features, which are

typically associated with their geometric properties. This is closely related to the

observation that virtually all multivariate data are typically dominated by anisotropic

features such as singularities on lower dimensional embedded manifolds. This is

exemplified, for instance, by edges in natural images or shock fronts in the solutions

of transport equations. Hence, to efficiently analyze and process these data, it is of

fundamental importance to discover and truly understand their geometric structures.

The subject of this volume is a recently introduced multiscale framework, the the-

ory of shearlets, which allows optimal encoding of several classes of multivariate

data through its ability to sparsely represent anisotropic features. As will be illus-

trated in the following, shearlets emerged as part of an extensive research activity

developed during the last 10 years to create a new generation of analysis and pro-

cessing tools for massive and higher dimensional data, which could go beyond the

limitations of traditional Fourier and wavelet systems. One of the forerunners of this

area of research is David L. Donoho, who observed that in higher dimensions tradi-

tional multiscale systems and wavelets ought to be replaced by a Geometric Multi-

scale Analysis in which multiscale analysis is adapted to intermediate-dimensional

singularities. It is important to remark that many of the ideas which are at the core of

this approach can be traced back to key results in harmonic analysis from the 1990’s,

such as Hart Smith’s Hardy space for Fourier Integral Operators and Peter Jones’

Analyst’s Traveling Salesman theorem. Both results concern the higher-dimensional

setting, where geometric ideas are brought into play to discover “new architectures

for decomposition, rearrangement, and reconstruction of operators and functions”

[16].

This broader area of research is currently at the crossroad of applied mathematics,

electrical engineering, and computer science, and has seen spectacular advances in

recent years, resulting in highly sophisticated and efficient algorithms for image

analysis and new paradigms for data compression and approximation. By presenting

the theory and applications of shearlets obtained during the last five years, this book
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is also a journey into one of the most active and exciting areas of research in applied

mathematics.

2 The Rise of Shearlets

2.1 The Role of Applied Harmonic Analysis

Applied harmonic analysis has established itself as the main area in applied math-

ematics focused on the efficient representation, analysis, and encoding of data. The

primary object of this discipline is the process of “breaking into pieces” (this is

the literal meaning of the Greek word analysis) to gain insight into an object. For

example, given a class of data C in L2(Rd), a collection of analyzing functions

(ϕi)i∈I ⊆ L2(Rd) with I being a countable indexing set is seeked such that, for all

f ∈ C , we have the expansion

f = ∑
i∈I

ci( f )ϕi. (1)

This formula provides not only a decomposition for any element f ∈C into a count-

able collection of linear measurements (ci( f ))i∈I ⊆ ℓ2(I), i.e., its analysis; it also

illustrates the process of synthesis, where f is reconstructed from the expansion

coefficients (ci( f ))i∈I .
One major goal of applied harmonic analysis is the construction of special classes

of analyzing elements which can best capture the most relevant information in a cer-

tain data class. Let us illustrate the two most successful types of analyzing systems

in the one-dimensional setting. Gabor systems are designed to best represent the

joint time-frequency content of data. In this case, the analyzing elements (ϕi)i∈I are

obtained as translations and frequency shifts of a generating function ϕ ∈ L2(R) as

follows:

{ϕp,q = ϕ(·− p)e2πiq· : p,q ∈ Z}.
In contrast to this approach, wavelet systems represent the data as associated with

different location and resolution levels. In this case, the analyzing elements (ϕi)i∈I

are obtained through the action of dilation and translation operators on a generating

function ψ ∈ L2(R), called a wavelet, as:

{ψ j,m = 2 j/2ψ(2 j ·−m) : j,m ∈ Z}. (2)

Given a prescribed class of data C , one major objective is to design an ana-

lyzing system (ϕi)i∈I in such a way that, for each function f ∈ C , the coefficient

sequence (ci( f ))i∈I in (1) can be chosen to be sparse. In the situation of an infinite-

dimensional Hilbert space – which is our focus here – the degree of sparsity is

customarily measured as the decay rate of the error of best n-term approximation.

Loosely speaking, this means that we can approximate any f ∈ C with high accu-
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racy by using a coefficient sequence (c̃i( f ))i∈I containing very few non-zero entries.

In the finite-dimensional setting, such a sequence is called sparse, and this explains

the use of the term sparse approximation. Intuitively, if a function can be sparsely

approximated, it is conceivable that “important” features can be detected by thresh-

olding, i.e., by selecting the indices associated with the largest coefficients in abso-

lute values, or that high compression rates can be achieved by storing only few large

coefficients ci( f ), see [19].

There is another fundamental phenomenon to observe here. If (ϕi)i∈I is an or-

thonormal basis, the coefficient sequence (ci( f ))i∈I in (1) is certainly uniquely de-

termined. However, if we allow more freedom in the sense of choosing (ϕi)i∈I to

form a frame – a redundant, yet stable system (see Subsection 3.3) – the sequences

(ci( f ))i∈I might be chosen significantly sparser for each f ∈ C . Thus, methodolo-

gies from frame theory will come into play, see Subsection 3.3 and [5, 7].

We can observe a close connection to yet another highly topical area. During the

last four years, sparse recovery methodologies such as Compressed Sensing in par-

ticular have revolutionized the areas of applied mathematics, computer science, and

electrical engineering by beating the traditional sampling theory limits, see [3, 23].

They exploit the fact that many types of signals can be represented using only a

few non-vanishing coefficients when choosing a suitable basis or, more generally, a

frame. Nonlinear optimization methods, such as ℓ1 minimization, can then be em-

ployed to recover such signals from “very few” measurements under appropriate

assumptions on the signal and on the basis or frame. These results can often be

generalized to data which are merely sparsely approximated by a frame, thereby

enabling Compressed Sensing methodologies for the situation we discussed above.

2.2 Wavelets and Beyond

The emergence of wavelets about 20 years ago represents a milestone in the devel-

opment of efficient encoding of piecewise regular signals. The major reason for the

spectacular success of wavelets consists not only in their ability to provide optimally

sparse approximations of a large class of frequently occurring signals and to repre-

sent singularities much more efficiently than traditional Fourier methods but also

in the existence of fast algorithmic implementations which precisely digitalize the

continuum domain transforms. The key property enabling such a unified treatment

of the continuum and digital setting is a Multiresolution Analysis, which allows a

direct transition between the realms of real variable functions and digital signals.

This framework also combines very naturally with the theory of filter banks devel-

oped in the digital signal processing community. An additional aspect of the theory

of wavelets which has contributed to its success is its rich mathematical structure,

which allows one to design families of wavelets with various desirable properties

expressed in terms of regularity, decay, or vanishing moments. As a consequence

of all these properties, wavelets have literally revolutionized image and signal pro-

cessing and produced a large number of very successful applications, including the
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algorithm of JPEG2000, the current standard for image compression. We refer the

interested reader to [65] for more details about wavelets and their applications.

Despite their success, wavelets are not very effective when dealing with multi-

variate data. In fact, wavelet representations are optimal for approximating data with

pointwise singularities only and cannot handle equally well distributed singularities

such as singularities along curves. The intuitive reason for this is that wavelets are

isotropic objects, being generated by isotropically dilating a single or finite set of

generators. However, in dimensions two and higher, distributed discontinuities such

as edges of surface boundaries are usually present or even dominant, and – as a

result – wavelets are far from optimal in dealing with multivariate data.

The limitations of wavelets and traditional multiscale systems have stimulated

a flurry of activity involving mathematicians, engineers, and applied scientists. In-

deed, the need to introduce some form of directional sensitivity1 in the wavelet

framework was already recognized in the early filter bank literature, and several

versions of “directional” wavelets were introduced, including the steerable pyra-

mid by Simoncelli et al. [71], the directional filter banks by Bamberger and Smith

[2], and the 2D directional wavelets by Antoine et al. [1]. A more sophisticated

approach was proposed more recently with the introduction of complex wavelets

[44, 45]. However, even though they frequently outperform standard wavelets in ap-

plications, these methods do not provide optimally sparse approximations of multi-

variate data governed by anisotropic features. The fundamental reason for this fail-

ure is that these approaches are not truly multidimensional extensions of the wavelet

approach.

The real breakthrough occurred with the introduction of curvelets by Candès and

Donoho [4] in 2004, which was the first system providing optimally sparse approx-

imations for a class of bivariate functions exhibiting anisotropic features. Curvelets

form a pyramid of analyzing functions defined not only at various scales and loca-

tions as wavelets do, but also at various orientations, with the number of orienta-

tions increasing at finer scales. Another fundamental property is that their supports

are highly anisotropic and become increasingly elongated at finer scales. Due to this

anisotropy, curvelets are essentially as good as an adaptive representation system

from the point of view of the ability to sparsely approximate images with edges.

The two main drawbacks of the curvelet approach are that, firstly, this system is not

singly generated, i.e., it is not derived from the action of countably many operators

applied to a single (or finite set) of generating functions; secondly, its construction

involves rotations and these operators do not preserve the digital lattice, which pre-

vents a direct transition from the continuum to the digital setting.

Contourlets were introduced in 2005 by Do and Vetterli [14] as a purely discrete

filter-bank version of the curvelet framework. This approach offers the advantage of

allowing a tree-structured filter bank implementation similar to the standard wavelet

1 It is important to recall that the importance of directional sensitivity in the efficient processing

of natural images by the human brain has been a major finding in neuropsycological studies such

as the work of Field and Olshausen [68], and a significant inspiration for some of the research

developed in the harmonic analysis and image processing literature.
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implementations which was exploited to obtain very efficient numerical algorithms.

However, a proper continuum theory is missing in this approach.

In the same year, shearlets were introduced by Guo, Kutyniok, Labate, Lim, and

Weiss in [30, 61]. This approach was derived within a larger class of affine-like

systems – the so-called composite wavelets [39, 40, 41] – as a truly multivariate

extension of the wavelet framework. One of the distinctive features of shearlets is

the use of shearing to control directional selectivity, in contrast to rotation used by

curvelets. This is a fundamentally different concept, since it allows shearlet systems

to be derived from a single or finite set of generators, and it also ensures a unified

treatment of the continuum and digital world due to the fact that the shear matrix

preserves the integer lattice. Indeed, as will be extensively discussed in this vol-

ume, the shearlet representation offers a unique combination of the following list of

desiderata:

• A single or a finite set of generating functions.

• Optimally sparse approximations of anisotropic features in multivariate data.

• Compactly supported analyzing elements.

• Fast algorithmic implementations.

• A unified treatment of the continuum and digital realms.

• Association with classical approximation spaces.

For completeness, it is important to recall yet another class of representation sys-

tems which are able to overcome the limitations of traditional wavelets and produce

optimally efficient representations for a large class of images, namely the bandelets

[70] and the grouplets [66]. Also in these methods, the idea is to take advantage of

the geometry of the data. However, in this case, this is done adaptively, that is, by

constructing a special data decomposition which is especially designed for each data

set, rather than by using a fixed representation system as it is done using wavelets or

shearlets. While one can achieve very efficient data decompositions using such an

adaptive approach, this is usually numerically more intensive than using nonadap-

tive methods.

In the following sections, we will present a self-contained overview of the key

results from the theory and applications of shearlets, focused primarily on the 2D

setting. These results will be elaborated in much more detail in the various chapters

of this volume, which will discuss both the continuum and digital aspects of shear-

lets. Before starting our overview, it will be useful to establish the notation adopted

throughout this volume and to present some background material from harmonic

analysis and wavelet theory.
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3 Notation and Background Material

3.1 Fourier Analysis

The Fourier transform is the most fundamental tool in harmonic analysis. Before

stating the definition, we remark that, in the following, vectors in Rd or Cd will

always be understood as column vectors, and their inner product – as also the inner

product in L2(Rd) – shall be denoted by ⟨·, ·⟩. For a function f ∈ L1(Rd), the Fourier

transform of f is defined by

f̂ (ξ ) =
∫

f (x)e−2πi⟨x,ξ ⟩dx,

and f is called a band-limited function if its Fourier transform is compactly sup-

ported. The inverse Fourier transform of a function g ∈ L1(Rd) is given as

ǧ(x) =
∫

g(ξ )e2πi⟨x,ξ ⟩dξ .

If f ∈ L1(Rd) with f̂ ∈ L1(Rd), we have f = ( f̂ )ˇ, hence in this case – which is by

far not the only possible case – the inverse Fourier transform is the “true” inverse.

It is well known that this definition can be extended to L2(Rd), and as usual, also

these extensions will be denoted by f̂ and ǧ. By using this definition of the Fourier

transform, the Plancherel formula for f ,g ∈ L2(Rn) reads

⟨ f ,g⟩= ⟨ f̂ , ĝ⟩,

and, in particular,

∥ f∥2 = ∥ f̂∥2.

We refer to [25] for additional background information on Fourier analysis.

3.2 Modeling of Signal Classes

In the continuum setting, the standard model of d-dimensional signals is the space

of square-integrable functions on Rd , denoted by L2(Rd). However, this space also

contains objects which are very far from natural images and data. Hence, it is conve-

nient to introduce subclasses and subspaces which can better model the types of data

encountered in applications. One approach for doing this consists in imposing some

degree of regularity. Therefore, we consider the continuous functions C(Rd), the k-

times continuously differentiable functions Ck(Rd), and the infinitely-many-times

continuously differentiable functions C∞(Rd), which are also referred to as smooth

functions. Since images are compactly supported in nature, a notion for compactly



8 Gitta Kutyniok and Demetrio Labate

supported functions is also required which will be indicated with the subscript 0,

e.g., C∞
0 (R

d).
Sometimes it is useful to consider curvilinear singularities such as edges in

images as singularities of distributions, which requires the space of distributions

D ′(Rd) as a model. For a distribution u, we say that x ∈Rd is a regular point of u, if

there exists a function φ ∈C∞
0 (Ux) with φ(x) ̸= 0 and Ux being a neighborhood of x.

This implies φ u ∈C∞
0 (R

d), which is equivalent to (φ u)∧ being rapidly decreasing.

The complement of the set of regular points of u is called the singular support of

u and is denoted by sing supp(u). Notice that the singular support of u is a closed

subset of supp(u).
The anisotropic nature of singularities on one- or multi-dimensional embedded

manifolds becomes apparent through the notion of a wavefront set. For simplicity,

we illustrate the 2-dimensional case only. For a distribution u, a point (x,s)∈R2×R

is a regular directed point, if there exist neighborhoods Ux of x and Vs of s as well

as a function φ ∈C∞
0 (R

2) satisfying φ |Ux ≡ 1 such that, for each N > 0, there exists

a constant CN with

|(uφ)∧(η)| ≤CN (1+ |η |)−N for all η = (η1,η2) ∈ R2 with
η2
η1

∈Vs.

The complement in R2×R of the regular directed points of u is called the wavefront

set of u and is denoted by WF(u). Thus, the singular support describes the location

of the set of singularities of u, and the wavefront set describes both the location and

local perpendicular orientation of the singularity set.

Fig. 1 Natural images are governed by anisotropic structures.

A class of functions, which is of particular interest in imaging sciences, is the

class of so-called cartoon-like images. This class was introduced in [15] to provide

a simplified model of natural images, which emphasizes anisotropic features, most

notably edges, and is consistent with many models of the human visual system.

Consider, for example, the photo displayed in Figure 1. Since the image basically

consists of smooth regions separated by edges, it is suggestive to use a model con-

sisting of piecewise regular functions, such as the one illustrated in Figure 2. For

simplicity, the domain is set to be [0,1]2 and the regularity can be chosen to be C2,

leading to the following definition.
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Fig. 2 Example of a cartoon-like image (function values represented using a grey scale map).

Definition 1. The class E
2(R2) of cartoon-like images is the set of functions f :

R2 → C of the form

f = f0 + f1χB,

where B ⊂ [0,1]2 is a set with ∂B being a closed C2-curve with bounded curvature

and fi ∈C2(R2) are functions with supp fi ⊂ [0,1]2 and ∥ fi∥C2 ≤ 1 for each i = 0,1.

Let us finally mention that, in the digital setting, the usual models for d-

dimensional signals are either functions on Zd such as ℓ2(Zd) or functions on

{0, . . . ,N −1}d , sometimes denoted by Zd
N .

3.3 Frame Theory

When designing representation systems of functions, it is sometimes advantageous

or unavoidable to go beyond the setting of orthonormal bases and consider redun-

dant systems. The notion of a frame, originally introduced by Duffin and Schaeffer

in [20] and later revived by Daubechies in [13], guarantees stability while allowing

non-unique decompositions. Let us recall the basic definitions from frame theory in

the setting of a general (real or complex) Hilbert space H .

A sequence (ϕi)i∈I in H is called a frame for H , if there exist constants 0 <
A ≤ B < ∞ such that

A∥x∥2 ≤ ∑
i∈I

|⟨x,ϕi⟩|2 ≤ B∥x∥2 for all x ∈ H .

The frame constants A and B are called lower and upper frame bound, respectively.

The supremun over all A and the infimum over all B such that the frame inequalities

hold are the optimal frame bounds. If A and B can be chosen with A = B, then the

frame is called A-tight, and if A = B = 1 is possible, then (ϕi)i∈I is a Parseval frame.

A frame is called equal-norm if there exists some c > 0 such that ∥ϕi∥ = c for all

i ∈ I, and it is unit-norm if c = 1.

Apart from providing redundant expansions, frames serve as an analysis tool. In

fact, if (ϕi)i∈I in H is a frame for H it allows the analysis of data through the

study of the associated frame coefficients (⟨x,ϕi⟩)i∈I , where the operator T defined



10 Gitta Kutyniok and Demetrio Labate

by

T : H → ℓ2(I), x 7→ (⟨x,ϕi⟩)i∈I

is called the analysis operator. The adjoint T ∗ of the analysis operator is referred to

as the synthesis operator and satisfies

T ∗ : ℓ2(I)→ H , ((ci)i∈I) 7→ ∑
i∈I

ciϕi.

The main operator associated with a frame, which provides a stable reconstruction

process, is the frame operator

S = T ∗T : H → H , x 7→ ∑
i∈I

⟨x,ϕi⟩ϕi.

The operator S is a positive, self-adjoint invertible operator on H with A · IH ≤
S ≤ B · IH , where IH denotes the identity operator on H . In the case of a Parseval

frame, this reduces to S = IH .

In general, a signal x ∈ H can be recovered from its frame coefficients through

the reconstruction formula

x = ∑
i∈I

⟨x,ϕi⟩S−1ϕi.

The sequence (S−1ϕi)i∈I , which can be shown to form a frame itself, is referred to

as the canonical dual frame. Taking a different viewpoint and regarding a frame as a

means for expansion in the system (ϕi)i∈I , we observe that, for each vector x ∈ H ,

x = ∑
i∈I

⟨x,S−1ϕi⟩ϕi.

If the frame (ϕi)i∈I does not constitute a basis, i.e., it is redundant, the coefficient

sequence (⟨x,S−1ϕi⟩)i∈I of this expansion is certainly not unique. It is this property

which then enables to derive much sparser expansions. It should also be noted that

the sequence (⟨x,S−1ϕi⟩)i∈I has the distinct property of being the smallest in ℓ2

norm of all expansion coefficient sequences.

For more details on frame theory, we refer the interested reader to [5, 7].

3.4 Wavelets

Wavelet analysis plays a central role in this volume since, as will be made more pre-

cise in the following, shearlets arise naturally from this general framework. Hence

a full understanding of shearlets can only be derived through a sound understanding

of wavelet theory.

We start by rewriting the definition of a discrete wavelet system in L2(R), stated

at the beginning of the introduction in (2), as
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{ψ j,m = D
− j
2 Tm ψ = 2 j/2 ψ(2 j · −m) : j,m ∈ Z}, (3)

where ψ ∈ L2(R), D2 is the dyadic dilation operator on L2(R) defined by

D2ψ(x) = 2−1/2ψ(2−1x), (4)

and Tt is the translation operator on L2(R), defined by

Ttψ(x) = ψ(x− t), for t ∈ R. (5)

The associated Discrete Wavelet Transform is then defined to be the mapping

L2(R) ∋ f 7→ Wψ f ( j,m) = ⟨ f ,ψ j,m⟩, j,m ∈ Z.

If the system (3) is an orthonormal basis of L2(R), it is called an orthonormal

wavelet system, and ψ is called a wavelet. Being a wavelet is by no means very

restrictive and plenty of choices exist. In fact, it is possible to construct wavelets ψ
which are well localized, in the sense that they have rapid decay both in the spa-

tial and frequency domain, or which satisfy other regularity or decay requirements.

Among the classical constructions, let us highlight the two most well-known: the

Daubechies wavelets, which have compact support and can be chosen to have high

regularity, leading to good decay in the frequency domain; and the Lemariè-Meyer

wavelets, which are band-limited and C∞ in the frequency domain, forcing rapid

decay in the spatial domain. It should be emphasized that the localization properties

of wavelet bases are among the major differences with respect to Fourier bases and

play a fundamental role in their approximation properties, as we will show below.

In fact, there is a general machinery to construct orthonormal wavelet bases

called Multiresolution Analysis (MRA). In dimension d = 1, this is defined as a

sequence of closed subspaces (Vj) j∈Z in L2(R) which satisfies the following prop-

erties:

(i) {0} ⊂ . . .⊂V−2 ⊂V−1 ⊂V0 ⊂V1 ⊂V2 ⊂ . . .⊂ L2(R).

(ii)
∩

j∈ZVj = {0} and
∪

j∈ZVj = L2(R).

(iii) f ∈Vj if and only if D−1
2 f ∈Vj−1.

(iv) There exists a φ ∈ L2(R), called scaling function, such that {Tmφ : m ∈ Z} is an

orthonormal basis 2 for V0.

This approach enables the decomposition of functions into different resolution lev-

els associated with the so-called wavelet spaces Wj, j ∈ Z. These spaces are defined

by considering the orthogonal complements

Wj :=Vj+1 ⊖Vj, j ∈ Z.

2 This assumption can be replaced by the weaker assumption that {Tmφ : m ∈ Z} is Riesz basis for

the space V0.
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That is, a function f j+1 ∈ Vj+1 is decomposed as f j+1 = f j + g j ∈ Vj ⊕Wj, where

f j contains, roughly, the lower frequency component of f j+1 and g j its higher fre-

quency component. It follows that L2(R) can be broken up as a direct sum of wavelet

spaces. Also, given an MRA, there always exists a function ψ ∈ L2(R) such that

{ψ j,m : j,m ∈ Z} is an orthonormal basis for L2(R). In fact, the MRA approach

allows to introduce an alternative orthonormal basis involving both the wavelet and

the scaling function, of the form

{φm = Tm φ = φ(·−m) : m ∈ Z}∪{ψ j,m : j ≥ 0,m ∈ Z}.

In this case, the translates of the scaling function take care of the low frequency re-

gion – the subspace V0 ⊂ L2(R) – and the wavelet terms of the high frequency region

– the complementary space L2(R)⊖V0. We refer to [65] for additional information

about the theory of MRA.

The extension of wavelet theory to higher dimensions requires the introduction of

some group theoretic tools. For this, it is useful to start by introducing the continuous

affine systems of L2(Rd), which are defined by

{
ψM,t = Tt D−1

M ψ = |detM|1/2 ψ(M(· − t)) : (M, t) ∈ G×Rd
}
. (6)

In this definition, ψ ∈ L2(Rd), G is a subset of GLd(R), the group of d-dimensional

invertible matrices, DM is the dilation operator on L2(Rd), defined by

DMψ(x) = |detM|−1/2ψ(M−1x), for M ∈ GLd(R), (7)

and Tt is the translation operator on L2(Rd), defined by

Ttψ(x) = ψ(x− t), for t ∈ Rd . (8)

We now aim to derive conditions on ψ such that any f ∈ L2(Rd) can be recovered

from its coefficients (⟨ f ,ψM,t⟩)M,t . For this, we first equip the parameter set of (6)

with a group structure by setting

(M, t) · (M′, t ′) = (MM′, t +Mt ′).

The resulting group, typically denoted by Ad , is the so-called affine group on Rd .

The mathematical structure of the affine systems becomes evident by observing that

(6) can be generated by the action of the unitary representation π(M,t) = DMTt of Ad

acting on L2(Rd) (cf. [42] for details on the theory of group representations). Then

the following result on reproducibility of functions in L2(Rd) can be proven.

Theorem 1 ([29, 63]). Retaining the notations introduced in this subsection, let dµ
be a left-invariant Haar measure on G ⊂ GLd(R), and dλ be a left Haar measure

of Ad . Further, suppose that ψ ∈ L2(Rd) satisfies the admissibility condition

∫

G
|ψ̂(MT ξ )|2 |detM|dµ(M) = 1.



Introduction to Shearlets 13

Then any function f ∈ L2(Rd) can be recovered via the reproducing formula

f =
∫

Ad

⟨ f ,ψM,t⟩ψM,t dλ (M, t),

interpreted weakly.

When the conditions of the above theorem are satisfied, ψ ∈ L2(Rd) is called a

continuous wavelet. The associated Continuous Wavelet Transform is defined to be

the mapping

L2(Rd) ∋ f 7→ Wψ f (M, t) = ⟨ f ,ψM,t⟩, (M, t) ∈ Ad .

One interesting special case is obtained, when the dilation group G has the form

G = {aId : a > 0}, which corresponds to the case of isotropic dilations. In this case,

the admissibility condition for ψ becomes

∫

a>0
|ψ̂(aξ )|2 da

a
= 1,

and the (isotropic) Continuous Wavelet Transform is the mapping of f ∈ L2(Rd)
into

Wψ f (a, t) = a−d/2
∫

Rd
f (x)ψ(a−1(x− t))dx, a > 0, t ∈ Rd . (9)

Notice that the discrete wavelet systems (3) are obtained by discretizing the contin-

uous affine systems (6) for d = 1, when choosing isotropic dilations with G = {2 j :

j ∈ Z}.

3.5 Wavelets for Multivariate Data and Their Limitations

The traditional theory of wavelets, which is based on the use of isotropic dilations,

is essentially a one-dimensional theory. This can be illustrated by looking at the be-

haviour of the isotropic Continuous Wavelet Transform of functions containing sin-

gularities. Indeed, consider a function or distribution f , which is regular everywhere

except for a point singularity at x0, and let us examine the behaviour of Wψ f (a, t),
given by (9). Provided ψ is smooth, a direct computations shows that Wψ f (a, t) has

rapid asymptotic decay, as a → 0, for all values of t, unless t = x0. In this sense, the

Continuous Wavelet Transform of f signals the location of the singularity through

its asymptotic decay at fine scales. More generally, using this property, the Continu-

ous Wavelet Transform can be used to characterize the singular support of a function

or distribution [43].

However, due to its isotropic nature, the Continuous Wavelet Transform is unable

to provide additional information about the geometry of the set of singularities of

a function or distribution in terms of resolving the wavefront set. The key problem

is that, although the isotropic wavelet transform has the advantage of simplicity, it
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lacks directional sensitivity and the ability to detect the geometry of f . The same

phenomenon showing the limitation of the traditional wavelet framework can be

illustrated using the Discrete Wavelet Transform.

Before doing this, let us recall the definition of non-linear approximation and,

in particular, the best N-term approximation, which is the proper notion of approxi-

mation in the context of wavelet bases. For a function f ∈ L2(R2), the best N-term

approximation fN of f with respect to a wavelet basis is obtained by approximating

f from its N largest wavelet coefficients in magnitude – rather than from its “first”

N which is the standard approach in linear Fourier approximations. Hence, denoting

by ΛN the index set corresponding to the N largest wavelet coefficients |⟨ f ,ψλ ⟩| as-

sociated with some wavelet basis (ψλ )λ∈Λ , the best N-term approximation of some

f ∈ L2(R2) in (ψλ )λ∈Λ is defined as

fN = ∑
λ∈ΛN

⟨ f ,ψλ ⟩ψλ .

If a function is expanded in a frame instead of a basis, the best N-term approxima-

tion can usually not be explicitly determined. A more detailed discussion of non-

linear approximation theory, encompassing the expansion in frames, is contained in

Chapter 5 of this volume.

We can now present a simple heuristic argument, which highlights the limitations

of traditional wavelet approximations with respect to more sophisticated multiscale

methods – such as the shearlet framework – when aiming at optimally sparse ap-

proximations of cartoon-like images and other piecewise smooth functions on R2.

Let f be a cartoon-like image (see Definition 1) containing a singularity along a

smooth curve and {ψ j,m} be a standard wavelet basis of L2(R2). For j sufficiently

large, the only significant wavelet coefficients ⟨ f ,ψ j,m⟩ are those associated with

the singularity. Since at scale 2− j, each wavelet ψ j,m is supported or essentially sup-

ported inside a box of size 2− j × 2− j, there exist about 2 j elements of the wavelet

basis overlapping the singularity curve. The associated wavelet coefficients can be

controlled by

|⟨ f ,ψ j,m⟩| ≤ ∥ f∥∞ ∥ψ j,m∥L1 ≤C 2− j.

It follows that the Nth largest wavelet coefficient in magnitude, which we denote by

⟨ f ,ψ j,m⟩(N), is bounded by O(N−1). Thus, if f is approximated by its best N-term

approximation fN , the L2 error obeys

∥ f − fN∥2
L2 ≤ ∑

ℓ>N

|⟨ f ,ψ j,m⟩(ℓ)|2 ≤C N−1.

Indeed, this estimate can be proved rigorously and can be shown to be tight in the

sense that there exist cartoon-like images for which the decay rate is also bounded

below by C N−1 for some constant C > 0 (cf. [65]).

However, the approximation rate O(N−1) obtained using wavelet approximations

is far from optimal for the class of cartoon-like images E2(R2). Indeed, the follow-

ing optimality result was proved in [15].
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Theorem 2 ([15]). Let f ∈ E
2(R2). There exists a constant C such that, for any N,

a triangulation of [0,1]2 with N triangles can be constructed so that the piecewise

linear interpolation fN of these triangles satisfies

∥ f − fN∥2
L2 ≤C N−2, N → ∞.

This result provides the optimal asymptotic decay rate of the nonlinear approxima-

tion error for objects in E
2(R2), in the sense that no other polynomial depth search

algorithm3 can yield a better rate. In fact, it shows that the adaptive triangle-based

approximation of the image is as good as if the image had no singularities.

The approximation result from Theorem 2 provides a benchmark for optimally

sparse approximation of 2-dimensional data. Furthermore, the argument in the proof

of Theorem 2, which uses adapted triangulations, suggests that analyzing elements

with elongated and orientable supports are required to achieve optimally sparse ap-

proximations of piecewise smooth bivariate functions. Indeed, this observation is at

the core of the construction of curvelets and shearlets. Notice however that, unlike

the triangulation approximations in Theorem 2, curvelet and shearlet systems are

nonadaptive. It is a remarkable fact that, even though they are nonadaptive, curvelet

and shearlet representations are able to achieve (essentially) the same optimal ap-

proximation rate of Theorem 2. This result will be discussed below and, in more

detail, in Chapter 5 of this volume.

4 Continuous Shearlet Systems

After discussing the limitations of wavelet systems in higher dimensions, we will

now introduce shearlet systems as a general framework to overcome these limita-

tions. We will first focus on continuous shearlet systems; discrete shearlet systems

will be discussed next. As mentioned above, we restrict ourselves to the 2D case.

Before defining the system of shearlets in a formal way, let us introduce intu-

itively the ideas which are at the core of its construction. Our observations from the

previous section suggest that, in order to achieve optimally sparse approximations

of signals exhibiting anisotropic singularities such as cartoon-like images, the ana-

lyzing elements must consist of waveforms ranging over several scales, orientations,

and locations with the ability to become very elongated. This requires a combina-

tion of an appropriate scaling operator to generate elements at different scales, an

orthogonal operator to change their orientations, and a translation operator to dis-

place these elements over the 2D plane.

Since the scaling operator is required to generate waveforms with anisotropic

support, we utilize the family of dilation operators DAa , a > 0, based on parabolic

3 The role of the polynomial depth search condition is to limit how deep or how far down in the

dictionary the algorithm is allowed to search. Without this condition, one could choose a count-

able dense set of E2(R2) as a dictionary but this would make the search algorithm numerically

impracticable. See more detailed discussion in Chapter 5 of this volume.
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scaling matrices Aa of the form

Aa =

(
a 0

0 a1/2

)
,

where the dilation operator is given by (7). This type of dilation corresponds to

so-called parabolic scaling, which has a long history in the harmonic analysis liter-

ature and can be traced back to the “second dyadic decomposition” from the theory

of oscillatory integrals [24, 73] (see also the more recent work by Smith [72] on

the decomposition of Fourier integral operators). It should be mentioned that, rather

than Aa, the more general matrices diag(a,aα) with the parameter α ∈ (0,1) con-

trolling the “degree of anisotropy” could be used. However, the value α = 1/2 plays

a special role in the discrete setting, i.e., when the parameters of the shearlet system

are discretized. In fact, parabolic scaling is required in order to obtain optimally

sparse approximations of cartoon-like images, since it is best adapted to the C2-

regularity of the curves of discontinuity in this model class. For simplicity, in the

remainder of this chapter, we will only consider the case α = 1/2, which is required

for the sparsity results discussed below. For generalizations and extensions, we refer

to Chapters 3 and 5 of this volume.

Next, we require an orthogonal transformation to change the orientations of the

waveforms. The most obvious choice seems to be the rotation operator. However,

rotations destroy the structure of the integer lattice Z2 whenever the rotation angle

is different from 0, ±π
2

, ±π , ± 3π
2

. This issue becomes a serious problem for the

transition from the continuum to the digital setting. As an alternative orthogonal

transformation, we choose the shearing operator DSs , s ∈ R, where the shearing

matrix Ss is given by

Ss =

(
1 s

0 1

)
.

The shearing matrix parameterizes the orientations using the variable s associated

with the slopes rather than the angles, and has the advantage of leaving the integer

lattice invariant, provided s is an integer.

Finally, for the translation operator we use the standard operator Tt given by (8).

Combining these three operators, we define continuous shearlet systems as fol-

lows.

Definition 2. For ψ ∈ L2(R2), the continuous shearlet system SH(ψ) is defined by

SH(ψ) = {ψa,s,t = Tt DAa DSs ψ : a > 0,s ∈ R, t ∈ R2}.

The next section will answer the question of how to choose a suitable generating

function ψ so that the system SH(ψ) satisfies a reproducing formula for L2(R2).
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4.1 Continuous Shearlet Systems and the Shearlet Group

One important structural property of the systems introduced in Definition 2 is their

membership in the class of affine systems. Similar to the relation of wavelet systems

to group representation theory discussed in Subsection 3.4, the theory of continuous

shearlet systems can also be developed within the theory of unitary representations

of the affine group and its generalizations [9].

To state this relation precisely, we define the so-called shearlet group, denoted

by S, as the semi-direct product

(R+×R)⋉R2,

equipped with group multiplication given by

(a,s, t) · (a′,s′, t ′) = (aa′,s+ s′
√

a, t +SsAat ′).

A left-invariant Haar measure of this group is da
a3 dsdt. Letting the unitary represen-

tation σ : S→ U (L2(R2)) be defined by

σ(a,s, t)ψ = Tt DAa DSsψ,

where U (L2(R2)) denotes the group of unitary operators on L2(R2), a continuous

shearlet system SH(ψ) can be written as

SH(ψ) = {σ(a,s, t)ψ : (a,s, t) ∈ S}.

The representation σ is unitary but not irreducible. If this additional property is

desired, the shearlet group needs to be extended to (R∗ ×R)⋉R2, where R∗ =
R\{0}, yielding the continuous shearlet system

SH(ψ) = {σ(a,s, t)ψ : a ∈ R∗,s ∈ R, t ∈ R2}.

This point of view and its generalizations to higher dimensions will be examined in

detail in Chapter 4 of this volume.

In the following, we provide an overview of the main results and definitions

related to continuous shearlet systems for L2(R2).

4.2 The Continuous Shearlet Transform

Similar to the Continuous Wavelet Transform, the Continuous Shearlet Transform

defines a mapping of f ∈ L2(R2) to the components of f associated with the ele-

ments of S.

Definition 3. For ψ ∈ L2(R2), the Continuous Shearlet Transform of f ∈ L2(R2) is

the mapping
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L2(R2) ∋ f → SH ψ f (a,s, t) = ⟨ f ,σ(a,s, t)ψ⟩, (a,s, t) ∈ S.

Thus, SH ψ maps the function f to the coefficients SH ψ f (a,s, t) associated with

the scale variable a > 0, the orientation variable s ∈ R, and the location variable

t ∈ R2.

Of particular importance are the conditions on ψ under which the Continuous

Shearlet Transform is an isometry, since this is automatically associated with a re-

construction formula. For this, we define the notion of an admissible shearlet, also

called continuous shearlet.

Definition 4. If ψ ∈ L2(R2) satisfies

∫

R2

|ψ̂(ξ1,ξ2)|2
ξ 2

1

dξ2 dξ1 < ∞,

it is called an admissible shearlet.

Notice that it is very easy to construct examples of admissible shearlets, including

examples of admissible shearlets which are well localized. Essentially any function

ψ such that ψ̂ is compactly supported away from the origin is an admissible shearlet.

Of particular importance is the following example, which is called classical shear-

let. This was originally introduced in [39] and later slightly modified in [30, 61].

Definition 5. Let ψ ∈ L2(R2) be defined by

ψ̂(ξ ) = ψ̂(ξ1,ξ2) = ψ̂1(ξ1) ψ̂2(
ξ2

ξ1
),

where ψ1 ∈ L2(R) is a discrete wavelet in the sense that it satisfies the discrete

Calderón condition, given by

∑
j∈Z

|ψ̂1(2
− jξ )|2 = 1 for a.e. ξ ∈ R, (10)

with ψ̂1 ∈ C∞(R) and supp ψ̂1 ⊆ [− 1
2
,− 1

16
]∪ [ 1

16
, 1

2
], and ψ2 ∈ L2(R) is a bump

function in the sense that

1

∑
k=−1

|ψ̂2(ξ + k)|2 = 1 for a.e. ξ ∈ [−1,1], (11)

satisfying ψ̂2 ∈C∞(R) and supp ψ̂2 ⊆ [−1,1]. Then ψ is called a classical shearlet.

Thus, a classical shearlet ψ is a function which is wavelet-like along one axis and

bump-like along another one. The frequency support of a classical shearlet is illus-

trated in Figure 3a. Notice that there exist several choices of ψ1 and ψ2 satisfying

conditions (10) and (11). One possible choice is to set ψ1 to be a Lemariè–Meyer

wavelet and ψ̂2 to be a spline (cf. [22, 31]).

The notion of admissible shearlets allows us to state sufficient conditions for a

reconstruction formula in L2(R2).
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(a) Support of the Fourier transform of a

classical shearlet.

(b) Fourier domain support of several el-

ements of the shearlet system, for differ-

ent values of a and s.

Fig. 3 Classical shearlets.

Theorem 3 ([9]). Let ψ ∈ L2(R2) be an admissible shearlet, and define

C+
ψ =

∫ ∞

0

∫

R

|ψ̂(ξ1,ξ2)|2
ξ 2

1

dξ2 dξ1 and C−
ψ =

∫ 0

−∞

∫

R

|ψ̂(ξ1,ξ2)|2
ξ 2

1

dξ2 dξ1.

If C−
ψ =C+

ψ = 1, then SH ψ is an isometry.

Proof. By the Plancherel theorem, we obtain

∫

S
|SH ψ f (a,s, t)|2 da

a3
dsdt

=
∫

S
| f ∗ψ∗

a,s,0(t)|2 dt ds
da

a3

=
∫ ∞

0

∫

R

∫

R2
| f̂ (ξ )|2|ψ̂∗

a,s,0(ξ )|2 dξ ds
da

a3

=
∫ ∞

0

∫

R2

∫

R
| f̂ (ξ )|2a−

3
2 |ψ̂(aξ1,

√
a(ξ2 + sξ1))|2 dsdξ da,

where we used the notation ψ∗(x) = ψ(−x). By appropriate changes of variables,

∫

S
|SH ψ f (a,s, t)|2 da

a3
dsdt

=
∫

R

∫ ∞

0

∫ ∞

0

∫

R
| f̂ (ξ )|2a−2ξ−1

1 |ψ̂(aξ1,ω2)|2 dω2 dadξ1dξ2

−
∫

R

∫ 0

−∞

∫ ∞

0

∫

R
| f̂ (ξ )|2a−2ξ−1

1 |ψ̂(aξ1,ω2)|2 dω2 dadξ1dξ2

=
∫

R

∫ ∞

0
| f̂ (ξ )|2 dξ1dξ2

∫ ∞

0

∫

R

|ψ̂(ω1,ω2)|2
ω2

1

dω2 dω1

+
∫

R

∫ 0

−∞
| f̂ (ξ )|2 dξ1dξ2

∫ 0

−∞

∫

R

|ψ̂(ω1,ω2)|2
ω2

1

dω2 dω1.

The claim follows from here. ⊓⊔
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The classical shearlets, given in Definition 5, satisfy the hypothesis of admissi-

bility, as the following result shows. The proof is straightforward; therefore we omit

it.

Lemma 1 ([9]). Let ψ ∈ L2(R2) be a classical shearlet. Retaining the notation from

Theorem 3 we have C−
ψ =C+

ψ = 1.

4.3 Cone-Adapted Continuous Shearlet Systems

Although the continuous shearlet systems defined above exhibit an elegant group

structure, they do have a directional bias, which is already recognizable in Figure

3b. To illustrate the impact of this directional bias, consider a function or distri-

bution which is mostly concentrated along the ξ2 axis in the frequency domain.

Then the energy of f is more and more concentrated in the shearlet components

SH ψ f (a,s, t) as s → ∞. Hence, in the limiting case in which f is a delta distribu-

tion supported along the ξ2 axis – the typical model for an edge along the x1 axis

in spatial domain – f can only be “detected” in the shearlet domain as s → ∞. It is

clear that this behaviour can be a serious limitation for some applications.

One way to address this problem is to partition the Fourier domain into four

cones, while separating the low-frequency region by cutting out a square centered

around the origin. This yields a partition of the frequency plane as illustrated in

Figure 4. Notice that, within each cone, the shearing variable s is only allowed to

vary over a finite range, hence producing elements whose orientations are distributed

more uniformly.

C1

C2

C3

R

C4

Fig. 4 Resolving the problem of biased treatment of directions by continuous shearlet systems.

The frequency plane is partitioned into four cones Ci, i = 1, . . . ,4, and the low frequency box

R = {(ξ1,ξ2) : |ξ1|, |ξ2| ≤ 1}.

Thus, we define the following variant of continuous shearlet systems.

Definition 6. For φ ,ψ, ψ̃ ∈ L2(R2), the cone-adapted continuous shearlet system

SH(φ ,ψ , ψ̃) is defined by
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SH(φ ,ψ, ψ̃) = Φ(φ)∪Ψ(ψ)∪Ψ̃(ψ̃),

where

Φ(φ) = {φt = φ(·− t) : t ∈ R2},
Ψ(ψ) = {ψa,s,t = a−

3
4 ψ(A−1

a S−1
s ( · − t)) : a ∈ (0,1], |s| ≤ 1+a1/2, t ∈ R2},

Ψ̃(ψ̃) = {ψ̃a,s,t = a−
3
4 ψ̃(Ã−1

a S−T
s ( · − t)) : a ∈ (0,1], |s| ≤ 1+a1/2, t ∈ R2},

and Ãa =diag(a1/2,a).

In the following, the function φ will be chosen to have compact frequency support

near the origin, which ensures that the system Φ(φ) is associated with the low fre-

quency region R = {(ξ1,ξ2) : |ξ1|, |ξ2| ≤ 1}. By choosing ψ to satisfy the conditions

of Definition 5, the system Ψ(ψ) is associated with the horizontal cones C1 ∪C3 =
{(ξ1,ξ2) : |ξ2/ξ1| ≤ 1, |ξ1| > 1}. The shearlet ψ̃ can be chosen likewise with the

roles of ξ1 and ξ2 reversed, i.e., ψ̃(ξ1,ξ2) = ψ(ξ2,ξ1). Then the system Ψ̃(ψ̃) is

associated with the vertical cones C2 ∪C4 = {(ξ1,ξ2) : |ξ2/ξ1|> 1, |ξ2|> 1}.

4.4 The Cone-Adapted Continuous Shearlet Transform

Similar to the situation of continuous shearlet systems, an associated transform can

be defined for cone-adapted continuous shearlet systems.

Definition 7. Set

Scone = {(a,s, t) : a ∈ (0,1], |s| ≤ 1+a1/2, t ∈ R2}.

Then, for φ ,ψ, ψ̃ ∈ L2(R2), the Cone-Adapted Continuous Shearlet Transform of

f ∈ L2(R2) is the mapping

f → SH φ ,ψ,ψ̃ f (t ′,(a,s, t),(ã, s̃, t̃)) = (⟨ f ,φt ′⟩,⟨ f ,ψa,s,t⟩,⟨ f , ψ̃ã,s̃,t̃⟩),

where

(t ′,(a,s, t),(ã, s̃, t̃)) ∈ R2 ×S2
cone.

Similar to the situation above, conditions on ψ , ψ̃ , and φ can be formulated for

which the mapping SH φ ,ψ ,ψ̃ is an isometry. In fact, a similar argument to the one

used in the proof of Theorem 3 yields the following result.

Theorem 4 ([52]). Retaining the notation of Theorem 3, let ψ, ψ̃ ∈ L2(R2) be ad-

missible shearlets satisfying C+
ψ = C−

ψ = 1 and C+
ψ̃ = C−

ψ̃ = 1, respectively, and let

φ ∈ L2(R2) be such that, for a.e. ξ = (ξ1,ξ2) ∈ R2,

|φ̂(ξ )|2 +χC1∪C3
(ξ )

∫ 1

0
|ψ̂1(aξ1)|2

da

a
+χC2∪C4

(ξ )
∫ 1

0
|ψ̂1(aξ2)|2

da

a
= 1.
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Then, for each f ∈ L2(R2),

∥ f∥2 =
∫

R
|⟨ f ,Tt φ⟩|2 dt +

∫

Scone

|⟨( f̂ χC1∪C3
)∨,ψa,s,t⟩|2

da

a3
dsdt

+
∫

Scone

|⟨( f̂ χC2∪C4
)∨, ψ̃ã,s̃,t̃⟩|2

dã

ã3
ds̃dt̃.

In this result, the functions φ ,ψ, and ψ̃ can in fact be chosen to be in C∞
c (R

2). In

addition, the cone-adapted shearlet system can be designed so that the low frequency

and high frequency parts are smoothly combined.

A more detailed analysis of the (Cone-Adapted) Continuous Shearlet Transform

and its generalizations can be found in [27] and in Chapter 2 of this volume.

4.5 Microlocal Properties and Characterization of Singularities

As observed in Subsection 3.5, the Continuous Wavelet Transform is able to pre-

cisely characterize the singular support of functions and distributions. However, due

to its isotropic nature, this approach fails to provide additional information about

the geometry of the set of singularities in the sense of resolving the wavefront set.

In contrast to this behaviour, the anisotropic shape of elements of a cone-adapted

continuous shearlet system enables the Continuous Shearlet Transform to very pre-

cisely characterize the geometric properties of the singulary set. For illustration pur-

poses, let us examine the linear delta distribution µp(x1,x2) = δ (x1 + px2), p ∈ R,

defined by

⟨µp, f ⟩=
∫

R
f (−px2,x2)dx2,

as a simple model for a distributed singularity. For simplicity, we assume that |p| ≤
1. Letting φ be a scaling function and ψ, ψ̃ be classical shearlets, the asymptotic

analysis of its Cone-Adapted Continuous Shearlet Transform SH φ ,ψ ,ψ̃ µp shows

that this transform precisely determines both the position and the orientation of the

linear singularity by its decay behaviour at fine scales. Specifically, we have the

following result.

Proposition 1 ([52]). Let t ′ ∈R2 and (ã, s̃, t̃)∈ Scone be a fixed value. For t1 =−pt2
and s = p, we have

SH φ ,ψ ,ψ̃ µp(t
′,(a,s, t),(ã, s̃, t̃))∼ a−

1
4 as a → 0.

In all other cases, SH φ ,ψ ,ψ̃ µp(t
′,(a,s, t),(ã, s̃, t̃)) decays rapidly as a → 0; that is,

for all N ∈ N, there is a constant CN such that

SH φ ,ψ ,ψ̃ µp(t
′,(a,s, t),(ã, s̃, t̃))≤CN aN as a → 0.
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In fact, it can be proven that the Cone-Adapted Continuous Shearlet Transform pre-

cisely resolves the wavefront set for more general distributions [52, 26]. Further-

more, it can be used to provide a precise characterization of edge-discontinuities

of functions of two variables. In particular, consider a function f = χB ⊂ L2(R2),
where B ⊂R2 is a planar region with piecewise smooth boundary. Then SH φ ,ψ ,ψ̃ f

characterizes both the location and orientation of the boundary edge ∂B by its decay

at fine scales [32, 38]. This property is very useful in applications which require the

analysis or detection of edge discontinuities. For example, using these observations,

a shearlet-based algorithm for edge detection and analysis was developed in [74],

and related ideas were exploited to develop algorithms for the regularized inversion

of the Radon transform in [6].

A more detailed discussion of these issues, including the extensions to higher

dimensions, will be the content of Chapters 2 and 3 of this volume.

5 Discrete Shearlet Systems

Starting from continuous shearlet systems defined in Definition 2, several discrete

versions of shearlet systems can be constructed by an appropriate sampling of the

continuous parameter set S or Scone. Various approaches have been suggested, aim-

ing for discrete shearlet systems which preferably form an orthonormal basis or a

tight frame for L2(R2).
One approach proposed in [8] and continued in [10] and [12] applies a power-

ful methodology called coorbit theory, which is used to derive different discretiza-

tions while ensuring frame properties. In fact, the regular shearlet frame which will

be introduced in the next subsection can be derived using this machinery, and this

approach will be further discussed in Chapter 4 of this volume. A different path,

which also relies on the group properties of continuous shearlet systems, is taken in

[50]. In this paper, a quantitative density measure for discrete subsets of the shearlet

group S is introduced, adapted to its group multiplication, which is inspired by the

well-known Beurling density for subsets of the Abelian group R2. These measures

are shown to provide necessary conditions on the density of the sampling set for

the existence of shearlet generators which yield a frame, thereby linking geomet-

ric properties of the sampling set to the frame properties of the resulting shearlet

system. Notice, however, that the conditions derived using this approach are nec-

essary but not sufficient. In a third approach [51], sufficient conditions are derived

by studying the classical tq-equations from the theory of wavelets. Recall that these

equations are part of the sufficient conditions needed for an affine system to form

a wavelet orthonormal basis or a tight frame (see [47] for a detailed discussion on

this topic). Due to the close relationship between shearlet systems and affine sys-

tems discussed in Subsection 4.1, this ansatz can be transferred to the situation of

cone-adapted continuous shearlet systems [49].
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5.1 Discrete Shearlet Systems and Transforms

Discrete shearlet systems are formally defined by sampling continuous shearlet sys-

tems on a discrete subset of the shearlet group S. This leads to the following defini-

tion.

Definition 8. Let ψ ∈ L2(R2) and Λ ⊆ S. An irregular discrete shearlet system as-

sociated with ψ and Λ , denoted by SH(ψ,Λ), is defined by

SH(ψ,Λ) = {ψa,s,t = a−
3
4 ψ(A−1

a S−1
s ( · − t)) : (a,s, t) ∈ Λ}.

A (regular) discrete shearlet system associated with ψ , denoted by SH(ψ), is de-

fined by

SH(ψ) = {ψ j,k,m = 2
3
4 jψ(SkA2 j · −m) : j,k ∈ Z,m ∈ Z2}.

Notice that the regular versions of discrete shearlet systems are derived from the

irregular systems by choosing Λ = {(2− j,−k,S−kA2 j m) : j,k ∈Z,m ∈Z2}. We also

remark that, in the definition of a regular discrete shearlet system, the translation

parameter is sometimes chosen to belong to c1Z× c2Z for some (c1,c2) ∈ (R+)2.

This provides some additional flexibility which is useful for some constructions.

Our goal is to apply shearlet systems as analysis and synthesis tools. Hence, it

is of particular interest to examine the situation in which a discrete shearlet system

SH(ψ) forms a basis or, more generally, a frame. Similar to the wavelet case, we are

particularly interested not only in finding generic generator functions ψ but also in

selecting a generator ψ with special properties, e.g., regularity, vanishing moments,

and compact support, so that the corresponding basis or frame of shearlets has sat-

isfactory approximation properties. Particularly useful examples are the classical

shearlets from Definition 5. As the following result shows, these shearlets generate

shearlet Parseval frames for L2(R2).

Proposition 2. Let ψ ∈ L2(R2) be a classical shearlet. Then SH(ψ) is a Parseval

frame for L2(R2).

Proof. Using the properties of classical shearlets as stated in Definition 5, a direct

computation gives that, for a.e.ξ ∈ R2,

∑
j∈Z

∑
k∈Z

|ψ̂(ST
−kA2− j ξ )|2 = ∑

j∈Z
∑
k∈Z

|ψ̂1(2
− j ξ1)|2 |ψ̂2(2

j/2 ξ2

ξ1
− k)|2

= ∑
j∈Z

|ψ̂1(2
− j ξ1)|2 ∑

k∈Z
|ψ̂2(2

j/2 ξ2

ξ1
+ k)|2 = 1.

The claim follows immediately from this observation and the fact that supp ψ̂ ⊂
[− 1

2
, 1

2
]2. ⊓⊔

Since a classical shearlet ψ is a well localized function, Proposition 2 implies

that there exit Parseval frames SH(ψ) of well localized discrete shearlets. The well
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localization property is critical for deriving superior approximation properties of

shearlet systems and will be required for deriving optimally sparse approximations

of cartoon-like images (cf. Subsection 5.4).

By removing the assumption that ψ is well localized in Definition 5, one can

construct discrete shearlet systems which form not only tight frames but also or-

thonormal bases, as indicated in [39, 41]. This naturally raises the question whether

well localized shearlet orthonormal bases do exit. Unfortunately, the answer seems

to be negative, according to the recent work in [48]. Thus, loosely speaking, a well

localized discrete shearlet system can form a frame or a tight frame but (most likely)

not an orthonormal basis.

To achieve spatial domain localization, compactly supported discrete shearlet

systems are required. It was recently shown that one can formulate sufficient con-

ditions on ψ to generate a discrete shearlet frame of compactly supported functions

with controllable frame bounds. This will be discussed in Subsection 5.3.

Finally, similar to the continuous case, we define a Discrete Shearlet Transform

as follows. We state this definition only for the regular case, with obvious extension

to the irregular shearlet systems.

Definition 9. For ψ ∈ L2(R2), the Discrete Shearlet Transform of f ∈ L2(R2) is the

mapping defined by

f → SH ψ f ( j,k,m) = ⟨ f ,ψ j,k,m⟩, ( j,k,m) ∈ Z×Z×Z2.

Thus, SH ψ maps the function f to the coefficients SH ψ f ( j,k,m) associated with

the scale index j, the orientation index k, and the position index m.

5.2 Cone-Adapted Discrete Shearlet Systems and Transforms

Similar to the situation of continuous shearlet systems, discrete shearlet systems also

suffer from a biased treatment of the directions. As expected, this problem can be

addressed by dividing the frequency plane into cones similar to Subsection 4.3. For

the sake of generality, let us start by defining cone-adapted discrete shearlet systems

with respect to an irregular parameter set.

Definition 10. Let φ ,ψ, ψ̃ ∈ L2(R2), ∆ ⊂R2, and Λ ,Λ̃ ⊂ Scone. Then the irregular

cone-adapted discrete shearlet system SH(φ ,ψ , ψ̃;∆ ,Λ ,Λ̃) is defined by

SH(φ ,ψ, ψ̃;∆ ,Λ ,Λ̃) = Φ(φ ;∆)∪Ψ(ψ;Λ)∪Ψ̃(ψ̃;Λ̃),

where

Φ(φ ;∆) = {φt = φ(·− t) : t ∈ ∆},
Ψ(ψ;Λ) = {ψa,s,t = a−

3
4 ψ(A−1

a S−1
s ( · − t)) : (a,s, t) ∈ Λ},

Ψ̃(ψ̃;Λ̃) = {ψ̃a,s,t = a−
3
4 ψ̃(Ã−1

a S−T
s ( · − t)) : (a,s, t) ∈ Λ̃}.
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The regular variant of the cone-adapted discrete shearlet systems is much more

frequently used. To allow more flexibility and enable changes to the density of the

translation grid, we introduce a sampling factor c = (c1,c2) ∈ (R+)
2 in the transla-

tion index. Hence we have the following definition.

Definition 11. For φ ,ψ, ψ̃ ∈ L2(R2) and c = (c1,c2) ∈ (R+)
2, the (regular) cone-

adapted discrete shearlet system SH(φ ,ψ, ψ̃;c) is defined by

SH(φ ,ψ, ψ̃;c) = Φ(φ ;c1)∪Ψ(ψ;c)∪Ψ̃(ψ̃;c),

where

Φ(φ ;c1) = {φm = φ(·− c1m) : m ∈ Z2},
Ψ(ψ;c) = {ψ j,k,m = 2

3
4 jψ(SkA2 j ·−Mcm) : j ≥ 0, |k| ≤ ⌈2 j/2⌉,m ∈ Z2},

Ψ̃(ψ̃;c) = {ψ̃ j,k,m = 2
3
4 jψ̃(ST

k Ã2 j ·−M̃cm) : j ≥ 0, |k| ≤ ⌈2 j/2⌉,m ∈ Z2},

with

Mc =

(
c1 0

0 c2

)
and M̃c =

(
c2 0

0 c1

)
.

If c = (1,1), the parameter c is omitted in the formulae above.

The generating functions φ will be referred to as shearlet scaling functions

and the generating functions ψ, ψ̃ as shearlet generators. Notice that the system

Φ(φ ;c1) is associated with the low frequency region, and the systems Ψ(ψ;c) and

Ψ̃(ψ̃;c) are associated with the conic regions C1 ∪C3 and C2 ∪C4, respectively (cf.

Figure 4).

Fig. 5 Tiling of the frequency plane induced by a cone-adapted Parseval frame of shearlets.

We already discussed the difficulties – or even the impossibility – to construct a

discrete shearlet orthonormal basis. Hence, one aims to derive Parseval frames. A

first step towards this goal is the observation that a classical shearlet, according to
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Definition 5, is a shearlet generator of a Parseval frame for the subspace of L2(R2)
of functions whose frequency support lies in the union of two cones C1 ∪C3.

Theorem 5 ([30]). Let ψ ∈ L2(R2) be a classical shearlet. Then the shearlet system

Ψ(ψ) = {ψ j,k,m = 2
3
4 jψ(SkA2 j ·−m) : j ≥ 0, |k| ≤ ⌈2 j/2⌉,m ∈ Z2}

is a Parseval frame for L2(C1 ∪C3)
∨ = { f ∈ L2(R2) : supp f̂ ⊂ C1 ∪C3}.

Proof. Let ψ be a classical shearlet. Then equation (11) implies that, for any j ≥ 0,

∑
|k|≤⌈2 j/2⌉

|ψ̂2(2
j/2ξ + k)|2 = 1, |ξ | ≤ 1.

Thus, using this observation together with equation (10), a direct computation gives

that, for a.e. ξ = (ξ1,ξ2) ∈ C1 ∪C3,

∑
j≥0

∑
|k|≤⌈2 j/2⌉

|ψ̂(ST
−kA2− j ξ )|2 = ∑

j≥0
∑

|k|≤⌈2 j/2⌉
|ψ̂1(2

− j ξ1)|2 |ψ̂2(2
j/2 ξ2

ξ1
− k)|2

= ∑
j≥0

|ψ̂1(2
− j ξ1)|2 ∑

|k|≤⌈2 j/2⌉
|ψ̂2(2

j/2 ξ2

ξ1
+ k)|2 = 1.

The claim follows immediately from this observation and the fact that supp ψ̂ ⊂
[− 1

2
, 1

2
]2. ⊓⊔

It is clear that, if ψ is a replaced by ψ̃ , a result very similar to Theorem 5 holds

for the subspace of L2(C2 ∪C4)
∨. This indicates that one can build up a Parseval

frame for the whole space L2(R2) by piecing together Parseval frames associated

with different cones on the frequency domain together with a coarse scale system

which takes care of the low frequency region. Using this idea, we have the following

result.

Theorem 6 ([30]). Let ψ ∈ L2(R2) be a classical shearlet, and let φ ∈ L2(R2) be

chosen so that, for a.e. ξ ∈ R2,

|φ̂(ξ )|2 + ∑
j≥0

∑
|k|≤⌈2 j/2⌉

|ψ̂(ST
−kA2− j ξ )|2χC + ∑

j≥0
∑

|k|≤⌈2 j/2⌉
| ˆ̃ψ(S−kÃ2− j ξ )|2χ

C̃
= 1.

Let PCΨ(ψ) denote the set of shearlet elements in Ψ(ψ) after projecting their

Fourier transforms onto C = {(ξ1,ξ2) ∈ R2 : |ξ2/ξ1| ≤ 1}, with a similar definition

holding for P
C̃
Ψ̃(ψ̃) where C̃ = R2 \C. Then the modified cone-adapted discrete

shearlet system Φ(φ)∪PCΨ(ψ)∪P
C̃
Ψ̃(ψ̃) is a Parseval frame for L2(R2).

Notice that, despite its simplicity, the Parseval frame construction above has one

drawback. When the cone-based shearlet systems are projected onto C and C̃, the

shearlet elements overlapping the boundary lines ξ1 =±ξ2 in the frequency domain

are cut so that the “boundary” shearlets lose their regularity properties. To avoid
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this problem, it is possible to redefine the “boundary” shearlets in such a way that

their regularity is preserved. This require to slightly modify the definition of the

classical shearlet. Then the boundary shearlets are obtained, essentially, by piecing

together the shearlets overlapping the boundary lines ξ1 = ±ξ2 which have been

projected onto C and C̃. This modified construction yields smooth Parseval frames of

band-limited shearlets and can be found in [37], where also the higher dimensional

versions are discussed.

The tiling of the frequency plane induced by this Parseval frame of shearlets is

illustrated in Figure 5. The shearlet transform associated to regular cone-adapted

discrete shearlet systems is defined as follows.

Definition 12. Set Λ =N0 ×{−⌈2 j/2⌉, . . . ,⌈2 j/2⌉}×Z2. For φ ,ψ, ψ̃ ∈ L2(R2), the

Cone-Adapted Discrete Shearlet Transform of f ∈ L2(R2) is the mapping defined

by

f → SH φ ,ψ,ψ̃ f (m′,( j,k,m),( j̃, k̃, m̃)) = (⟨ f ,φm′⟩,⟨ f ,ψ j,k,m⟩,⟨ f , ψ̃ j̃,k̃,m̃⟩),

where

(m′,( j,k,m),( j̃, k̃, m̃)) ∈ Z2 ×Λ ×Λ .

5.3 Compactly Supported Shearlets

The shearlet systems generated by classical shearlets are band-limited, i.e., they

have compact support in the frequency domain and, hence, cannot be compactly

supported in the spatial domain. Thus, a different approach is needed for the con-

struction of compactly supported shearlet systems.

We start our discussion by examining sufficient conditions for the existence of

cone-adapted discrete shearlet systems which are compactly supported and form a

frame for L2(R2). These conditions can be derived by extending the classical tq-

equations from the theory of wavelets to this situation (cf. [47]). Before stating the

main result, let us first introduce the following notation.

For functions φ ,ψ, ψ̃ ∈ L2(R2), we define Θ : R2 ×R2 → R by

Θ(ξ ,ω) = |φ̂(ξ )||φ̂(ξ +ω)|+Θ1(ξ ,ω)+Θ2(ξ ,ω),

where

Θ1(ξ ,ω) = ∑
j≥0

∑
|k|≤⌈2 j/2⌉

∣∣ψ̂(ST
k A2− j ξ )

∣∣ ∣∣ψ̂(Sk
T A2− j ξ +ω)

∣∣

and

Θ2(ξ ,ω) = ∑
j≥0

∑
|k|≤⌈2 j/2⌉

∣∣ ˆ̃ψ(SkÃ2− j ξ )
∣∣ ∣∣ ˆ̃ψ(SkÃ2− j ξ +ω)

∣∣ .

Also, for c = (c1,c2) ∈ (R+)
2, let
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R(c) = ∑
m∈Z2\{0}

(
Γ0(c

−1
1 m)Γ0(−c−1

1 m)
) 1

2 +
(
Γ1(M

−1
c m)Γ1(−M−1

c m)
) 1

2

+(Γ2(M̃
−1
c m)Γ2(−M̃−1

c m))
1
2 ,

where

Γ0(ω) = esssup
ξ∈R2

|φ̂(ξ )||φ̂(ξ +ω)| and Γi(ω) = esssup
ξ∈R2

Θi(ξ ,ω) for i = 1,2.

Using this notation, we can now state the following theorem from [49].

Theorem 7 ([49]). Let φ ,ψ ∈ L2(R2) be such that

φ̂(ξ1,ξ2)≤C1 ·min{1, |ξ1|−γ} ·min{1, |ξ2|−γ}

and

|ψ̂(ξ1,ξ2)| ≤C2 ·min{1, |ξ1|α} ·min{1, |ξ1|−γ} ·min{1, |ξ2|−γ},
for some positive constants C1,C2 < ∞ and α > γ > 3. Define ψ̃(x1,x2) = ψ(x2,x1),
and let Linf,Lsup be defined by

Linf = ess inf
ξ∈R2

Θ(ξ ,0) and Lsup = esssup
ξ∈R2

Θ(ξ ,0).

Then there exists a sampling parameter c = (c1,c2) ∈ (R+)2 with c1 = c2 such that

SH(φ ,ψ , ψ̃;c) forms a frame for L2(R2) with frame bounds A and B satisfying

0 <
1

|detMc|
[Lin f −R(c)]≤ A ≤ B ≤ 1

|detMc|
[Lsup +R(c)]< ∞.

It can be easily verified that the conditions imposed on φ and ψ by Theorem 7

are satisfied by many suitably chosen scaling functions and classical shearlets. In

addition, one can construct various compactly supported separable shearlets that

satisfy these conditions.

The difficulty however arises when aiming for compactly supported separable

functions φ and ψ which ensure that the corresponding cone–adapted discrete shear-

let system is a tight or almost tight frame. Separability is useful to achieve fast al-

gorithmic implementations. In fact, it was shown in [49] that there exists a class of

functions generating almost tight frames, which have (essentially) the form

ψ̂(ξ ) = m1(4ξ1)φ̂(ξ1)φ̂(2ξ2), ξ = (ξ1,ξ2) ∈ R2,

where m1 is a carefully chosen bandpass filter and φ an adaptively chosen scaling

function. The proof of this fact is highly technical and will be omitted. We refer the

reader to Chapter 5 of this volume and to [11, 53] for more details about compactly

supported shearlets.
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5.4 Sparse Approximations by Shearlets

One of the main motivations for the introduction of the shearlet framework is the

derivation of optimally sparse approximations of multivariate functions. In Subsec-

tion 3.5, we presented a heuristic argument to justify why traditional wavelets are

unable to take advantage of the geometry of typical functions of two variables. In

fact, since traditional wavelets are not very efficient at dealing with anisotropic fea-

tures, they do not provide optimally sparse approximations of images containing

edges. As discussed above, shearlet systems are able to overcome these limitations.

Before stating the main results, it is enlightening to present a heuristic argument

similar to the one used in Subsection 3.5, in order to describe how shearlet expan-

sions are able to achieve optimally sparse approximations of cartoon-like images.

For this, consider a cartoon-like function f , and let SH(φ ,ψ, ψ̃;c) be a shearlet

system. Since the elements of SH(φ ,ψ, ψ̃;c) are effectively or – in case of com-

pactly supported elements – exactly supported inside a box of size 2− j/2 × 2− j, it

follows that at scale 2− j there exist about O(2 j/2) such waveforms whose support is

tangent to the curve of discontinuity. Similar to the wavelet case, for j sufficiently

large, the shearlet elements associated with the smooth region of f , as well as the

elements whose overlap with the curve of discontinuity is non-tangential, yield neg-

ligible shearlet coefficients ⟨ f ,ψ j,k,m⟩ (or ⟨ f , ψ̃ j,k,m⟩). Each shearlet coefficient can

be controlled by

|⟨ f ,ψ j,k,m⟩| ≤ ∥ f∥∞ ∥ψ j,k,m∥L1 ≤C 2−3 j/4,

similarly for ⟨ f , ψ̃ j,k,m⟩. Using this estimate and the observation that there exist at

most O(2 j/2) significant coefficients, we can conclude that the Nth largest shearlet

coefficient, which we denote by |sN( f )|, is bounded by O(N−3/2). This implies that

∥ f − fN∥2
L2 ≤ ∑

ℓ>N

|sℓ( f )|2 ≤C N−2,

where fN denotes the N-term shearlet approximation using the N largest coefficients

in the shearlets expansion. This is exactly the optimal decay rate for the upper bound

stated in Theorem 2. Even though this is a simple heuristic argument, it provides an

error rate which – up to a log-like factor – coincides exactly with what can be proved

using a rigorous argument.

Indeed, the following result holds.

Theorem 8 ([31]). Let Φ(φ)∪PCΨ(ψ)∪P
C̃
Ψ̃(ψ̃) be a Parseval frame for L2(R2)

as defined in Theorem 6, where ψ ∈ L2(R2) is a classical shearlet and φ̂ ∈C∞
0 (R

2).
Let f ∈ E

2(R2) and fN be its nonlinear N-term approximation obtained by se-

lecting the N largest coefficients in the expansion of f with respect to this shearlet

system. Then there exists a constant C > 0, independent of f and N, such that

∥ f − fN∥2
2 ≤C N−2 (logN)3

as N → ∞.
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Since a log-like factor is negligible with respect to the other terms for large N, the

optimal error decay rate is essentially achieved. It is remarkable that an approx-

imation rate which is essentially as good as the one obtained using an adaptive

construction can be achieved using a nonadaptive system,. The same approximation

rate – with the same additional log-like factor – is obtained using a Parseval frame

of curvelets, see [4].

Interestingly, the same error decay rate is also achieved using approximations

based on compactly supported shearlet frames, as stated below.

Theorem 9 ([55]). Let SH(φ ,ψ , ψ̃;c) be a frame for L2(R2), where c > 0, and

φ ,ψ, ψ̃ ∈ L2(R2) are compactly supported functions such that, for all ξ = (ξ1,ξ2)∈
R2, the shearlet ψ satisfies

(i) |ψ̂(ξ )| ≤C1 min{1, |ξ1|α} min{1, |ξ1|−γ} min{1, |ξ2|−γ} and

(ii)

∣∣∣ ∂
∂ξ2

ψ̂(ξ )
∣∣∣≤ |h(ξ1)|

(
1+ |ξ2|

|ξ1|

)−γ
,

where α > 5, γ ≥ 4, h ∈ L1(R), C1 is a constant, and the shearlet ψ̃ satisfies (i) and

(ii) with the roles of ξ1 and ξ2 reversed.

Let f ∈ E
2(R2) and fN be its nonlinear N-term approximation obtained by se-

lecting the N largest coefficients in the expansion of f with respect to the shearlet

frame SH(φ ,ψ , ψ̃;c). Then there exists a constant C > 0, independent of f and N,

such that

∥ f − fN∥2
2 ≤C N−2 (logN)3

as N → ∞.

Conditions (i) and (ii) are rather mild conditions and might be regarded as a weak

version of directional vanishing moment conditions.

The topic of sparse shearlet approximations, including extensions to higher di-

mensions, will be the main topic of Chapter 5 of this volume.

5.5 Shearlet Function Spaces

As already mentioned in Subsection 2.2, the study of the smoothness spaces as-

sociated with shearlet coefficients is particularly useful to thoroughly understand

and take advantage of the approximation properties of shearlet representations. Intu-

itively, shearlet systems can be described as directional versions of wavelet systems.

Hence, since wavelets are known to be naturally associated with Besov spaces (in

the sense that Besov spaces are characterized by the decay of wavelet coefficients),

it seems conceivable that shearlet systems could be effective at characterizing some

anisotropic version of Besov spaces.

The theory of coorbit spaces was applied as a systematic approach towards the

construction of shearlet spaces in the series of papers [8, 10, 11, 12]. This ansatz

leads to the so-called shearlet coorbit spaces, which are associated to decay prop-

erties of shearlet coefficients of discrete shearlet frames. The main challenge then

consists in relating these spaces to known function spaces such as Besov spaces
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and deriving appropriate embedding results. Chapter 4 of this volume provides a

thorough survey of this topic.

5.6 Extensions and Generalizations

A number of recent studies have focused on the construction of shearlet systems

which are tailored to specific tasks or applications.

• Shearlet on bounded domains. Some applications such as the construction of nu-

merical solvers of certain partial differential equations require systems defined

on bounded domains. This could be a rectangle or, more generally, a polygonal-

shaped domain. When shearlets are used for the expansion of functions – ex-

plicitly or implicitly given – defined on a bounded domain, the treatment of the

boundary is crucial. One typical challenge is to set zero boundary conditions

without destroying necessary (directional) vanishing moment conditions. A first

attempt in this direction was undertaken in [57], but many challenges still remain.

• Multidimensional extensions. Many current high-impact applications such as,

for example, the analysis of seismic or biological data require dealing with 3-

dimensional data. The computational challenges in this setting are much more

demanding than in two dimensions, and sparse approximations are in great de-

mand. Due to the simplicity of the mathematical structure of shearlets, their ex-

tensions to higher dimensions is very natural. Indeed, some basic ideas were

already introduced in [41], where it was observed that there exist several ways

to extend the shearing matrix to higher dimensions. A new construction yield-

ing smooth Parseval frames of discrete shearlets in any dimensions was recently

introduced in [37]. Several other results have also recently appeared, including

the extension of the optimally sparse approximation results and the analysis and

detection of surface singularities [10, 33, 34, 35, 36, 54].

In 3-dimensional data, different types of anisotropic features occur, namely, sin-

gularities on 1-dimensional and 2-dimensional manifolds. This situation is there-

fore very different from the situation in 2 dimensions, since anisotropic features

of two different dimensions are involved. This is reflected in the following two

main approaches to extend the parabolic scaling matrix:




2 j 0 0

0 2 j/2 0

0 0 2 j


 or




2 j 0 0

0 2 j/2 0

0 0 2 j/2


 .

The first choice leads to needle-like shearlets, which are intuitively better suited

to capture 1-dimensional singularities. The second choice leads to plate-like

shearlets, which are more suited to 2-dimensional singularities. Intriguingly, both

systems are needed if the goal is to distinguish these two types of singularities.

However, for the construction of (nearly) optimally sparse approximations which
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extend the results of Subsection 5.4, it turns out that the plate-like shearlets are

the right approach [34, 35, 36, 54].

These topics will be further discussed in the Chapters 3, 4 and 5 of this volume.

6 Algorithmic Implementations of the Shearlet Transform

One major feature of the shearlet approach is a unified treatment of the continuum

and digital setting. The numerical implementations which have been developed in

the literature aim – and succeed – to faithfully digitalize the Discrete Shearlet Trans-

form. This ensures that microlocal and approximation properties of shearlet expan-

sions, which are proven in the continuum realm, can be carried over to the digital

setting.

To date, several distinct numerical implementations of the Discrete Shearlet

Transform have been proposed [22, 46, 58, 60, 64] and some additional imple-

mentations were introduced to address specific applications such as edge detection

[74]. Furthermore, several attempts were made to develop a multiresolution analy-

sis similar to the one associated with wavelets, in an effort to develop MRA-based

implementations [41, 46, 58]. We also refer to [28] for useful observations about

shearlet-based numerical shearlet decompositions.

Finally, we remark that numerical shearlet algorithms are available and down-

loadable at the webpages www.math.uh.edu/∼dlabate (associated with [22])

and www.ShearLab.org (associated with [60, 64]).

Let us next briefly describe the different approaches developed so far, by group-

ing these into two categories: The approaches which are Fourier-domain based and

those which are spatial-domain based. All these topics will be discussed in much

more detail in Chapters 6, 7 and 8 of this volume.

6.1 Fourier–Based Implementations

The Cone-Adapted Discrete Shearlet Transform provides a particular decomposi-

tion of the frequency plane into frequency regions associated with different scales

and orientations, as illustrated in Figure 5. Hence, a very natural and direct ap-

proach to a digitalization of the Discrete Shearlet Transform is a Fourier-based ap-

proach, which aims to directly produce the same frequency tiling. This approach

was adopted in the following two contributions.

• The first numerical implementation of the Discrete Shearlet Transform was intro-

duced in [22] as a cascade of a subband decomposition, based on the Laplacian

Pyramid filter followed by a directional filtering stage which uses the Pseudo-

Polar Discrete Fourier Transform.
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• A different approach, which was introduced in [59, 60], consists of a carefully

weighted Pseudo-Polar transform ensuring isometry followed by windowing and

inverse FFT. This transform is associated with band-limited tight shearlet frames,

thereby allowing the adjoint frame operator for reconstruction.

6.2 Spatial–Domain–Based Implementations

A spatial domain approach is a method where the filters associated with the trans-

form are implemented by a convolution in the spatial domain. This approach is

exploited from different viewpoints in the following four contributions.

• A numerical implementation of the Discrete Shearlet Transform is presented

in [22] where the directional filters are obtained as approximations of the inverse

Fourier transforms of digitized band-limited window functions in the Fourier

domain. With respect to the corresponding Fourier-based implementation also

in [22], this alternative approach ensures that the filters have good spatial local-

ization.

• In contrast to the method in [22], separable window functions – which allow

compactly supported shearlets – are exploited in [64]. This algorithm enables the

application of fast transforms separably along both axes, even if the correspond-

ing transform is not associated with a tight frame.

• Yet another approach is adopted in [58], which explores the theory of subdivision

schemes, leading to an associated multiresolution analysis. The main idea here

is to adapt the construction of a multiresolution analysis for wavelets, which

can also be regarded as being generated by subdivision schemes. This approach

allows the possibility to obtain scaling functions “along the way”.

• Related to [58], the approach developed in [46] introduces a general unitary ex-

tension principle, which – applied to the shearlet setting – determines the condi-

tions on the filters needed for deriving a shearlet frame.

7 Shearlets in Applications

Shearlets were introduced to tackle a number of challenges in the representation and

processing of multivariate data, and they have been successfully employed in several

numerical applications. Let us briefly summarize the main applications below and

refer to Chapter 8 of this volume for a detailed overview.

• Imaging Applications. The sparsity of shearlet expansions is beneficial for var-

ious problems of data restoration and feature extraction. In particular, one class

of imaging applications where shearlets have been proven very successful is im-

age denoising problems and several shearlet-based image denoising algorithms

were proposed, including those in [22, 64], which adapt wavelet thresholding to
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the shearlet setting, and the method in [21], which combines thresholding with

minimization of bounded variation. Extensions to these ideas to video denoising

were proposed in [62, 67]. Another class of imaging applications for which the

microlocal properties of shearlets have been successfully exploited is the analysis

and detection of edges [74].

• Data Separation. In several practical applications, it is important to separate data

into their subcomponents. In astronomical imaging, it is very useful to separate

stars from galaxies and in neurobiological imaging, spines from dendrites. In

both cases, the goal is the separation of point- and curve-like structures. Using

methodologies from sparse approximation and combining wavelet and shearlet

expansions, a very effective method for data separation was developed in [17, 18,

56].

• Inverse Problems. Shearlet-based methods have also been applied to construct

a regularized inversion algorithm for the Radon transform. This transform is at

the basis of computerized tomography [6]. Similar ideas were also shown to be

useful when dealing with more general classes of inverse problems, such as de-

blurring and deconvolution [69].
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