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MMSE minimum mean square error
MRC maximum ratio combining
MSI multistream interference
MUSIC multiple signal classification
OFDM orthogonal frequency division multiplexing
OSTBC orthogonal space-time block code/codes/coding
OSUC ordered successive cancellation
PAM pulse amplitude modulation
PAR peak-to-average ratio
PDF probability density function
PEP pairwise error probability
PER packet error rate
PSK phase shift keying
QAM quadrature amplitude modulation
QoS quality of service
QPSK quadrature phase shift keying
RF radio frequency
RHS right-hand side
RMS root mean square
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ROC region of convergence
SC single carrier
SDD standard delay diversity
SDMA space division multiple access
SER symbol error rate
SIMO single input multiple output
SINR signal to interference and noise ratio
SIR signal to interference ratio
SISO single input single output
SM spatial multiplexing
SNR signal to noise ratio
SS spread spectrum
ST space-time
STBC space-time block code/codes/coding
STTC space-time trellis code/codes/coding
SUC successive cancellation
SUI Stanford University interim
SVD singular value decomposition
TDD time division duplexing
TDM time division multiplexing
TDMA time division multiple access
UMTS universal mobile telecommunications system
US uncorrelated scattering
VE vertical encoding
WSS wide sense stationarity
WSSUS wide sense stationary uncorrelated scattering
XIXO (single or multiple) input (single or multiple) output
XPC cross-polarization coupling
XPD cross-polarization discrimination
ZF zero forcing
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⊗ Kronecker product
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0m m × m all zeros matrix
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1D,L 1× L row vector with [1D,L ]1,i =
{
1 if i = D
0 if i = D

|a| magnitude of the scalara
A∗ elementwise conjugate ofA
A† Moore–Penrose inverse (pseudoinverse) ofA
[A] i, j i j th element of matrixA
‖A‖2F squared Frobenius norm ofA
AH conjugate transpose ofA
AT transpose ofA
c(X ) cardinality of the setX
δ(x) Dirac delta (unit impulse) function
δ[x] Kronecker delta function, defined as

δ[x] =
{
1 if x = 0
0 if x = 0, x ∈ Z

det(A) determinant ofA
diag{a1, a2, . . ., an} n × n diagonal matrix with [diag{a1, a2, . . ., an}] i,i = ai

E expectation operator
f (x) PDF of the random variableX
f (x1, x2, . . ., xN) joint PDF of the random variablesX1, X2, . . ., XN

F(x) CDF of the random variableX
F(x1, x2, . . ., xN) joint CDF of the random variablesX1, X2, . . ., XN

Im m × m identity matrix
min(a1, a2, . . ., an) minimum ofa1, a2, . . ., an

Q(x) Q-function, defined asQ(x) = (1/
√
2π )

∫ ∞
x e−t2/2dt
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r (A) rank of the matrixA
R real field
�{A}, �{A} real and imaginary parts ofA, respectively
Tr(A) trace ofA

u(x) unit step function, defined asu(x) =
{
1 if x ≥ 0, x ∈ R
0 if x < 0, x ∈ R

vec(A) stacksA into a vector columnwise1
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{
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Z integer field

1 If A = [a1 a2 · · · an] is m × n, then vec(A) = [aT
1 aT

2 · · · aT
n ]

T ismn× 1.



1 Introduction

The radio age began over a 100 years ago with the invention of the radiotelegraph by
Guglielmo Marconi and the wireless industry is now set for rapid growth as we enter a
new century and a new millennium. The rapid progress in radio technology is creating
new and improved services at lower costs, which results in increases in air-time usage
and the number of subscribers. Wireless revenues are currently growing between 20%
and 30% per year, and these broad trends are likely to continue for several years.
Multiple accesswireless communications is beingdeployed for both fixedandmobile

applications. In fixed applications, the wireless networks provide voice or data for fixed
subscribers. Mobile networks offering voice and data services can be divided into two
classes: high mobility, to serve high speed vehicle-borne users, and low mobility, to
servepedestrianusers.Wireless systemdesignersare facedwithanumberof challenges.
These include the limited availability of the radio frequency spectrum and a complex
time-varying wireless environment (fading and multipath). In addition, meeting the
increasing demand for higher data rates, better quality of service (QoS), fewer dropped
calls, higher network capacity and user coverage calls for innovative techniques that
improve spectral efficiency and link reliability. The use of multiple antennas at the
receiver and/or transmitter in a wireless system, popularly known as space-time (ST)
wireless or multiantenna communications or smart antennas is an emerging technology
that promises significant improvements in thesemeasures. This book is an introduction
to the theory of ST wireless communications.

1.1 History of radio, antennas and array signal processing

The origins of radio date back to 1861 when Maxwell, while at King’s College in
London, proposed a mathematical theory of electromagnetic (EM) waves. A practical
demonstration of the existence of such waves was performed by Hertz in 1887 at the
University of Karlsruhe, using stationary (standing) waves. Following this, improve-
ments in the generation and reception of EM waves were pursued by many researchers
in Europe. In 1890, Branly in Paris developed a “coherer” that could detect the presence
of EM waves using iron filings in a glass bottle. The coherer was further refined by

1
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Righi at the University of Bologna and Lodge in England. Other contributions came
from Popov in Russia, who is credited with devising the first radio antenna during his
attempts to detect EM radiation from lightning.
In the summer of 1895,Marconi, at the ageof 21,was inspired by the lectures on radio

wavesbyRighi at theUniversity of Bolognaandhebuilt anddemonstrated the first radio
telegraph. He usedHertz’s spark transmitter, Lodge’s coherer and added antennas to as-
semblehis instrument. In 1898,Marconi improved the telegraphbyaddinga four-circuit
tuning device, allowing simultaneous use of two radio circuits. That year, his signal
bridged theEnglishChannel, 52kmwide,betweenWimereuxandDover.Hisother tech-
nical developments around this time included the magnetic detector, which was an im-
provement over the less efficient coherer, the rotatory spark and the use of directive an-
tennas to increase the signal level and to reduce interference in duplex receiver circuits.
In the next few years, Marconi integrated many new technologies into his increasingly
sophisticated radio equipment, including the diode valve developed by Fleming, the
crystal detector, continuous wave (CW) transmission developed by Poulsen, Fessenden
and Alexanderson, and the triode valve or audio developed by Forrest.
Civilian use of wireless technologybegan with the installation of thefirst 2 MHz

landmobile radiotelephone system in 1921 by the Detroit Police Department for police
car dispatch. The advantages of mobile communications were quickly realized, but its
wider use was limited by the lack of channelsin the low frequency band. Gradually,
higher frequency bands were used, opening up the use of more channels. A key ad-
vancewasmade in 1933, whenArmstrong invented frequencymodulation (FM), which
made possible high quality radio communications. In 1946, a Personal Correspondence
System introduced byBell Systemsbegan service and operated at 150MHzwith speech
channels 120 kHz apart. As demand for public wireless services began to grow, the
Improved Mobile Telephone Service (IMTS) using FM technology was developed by
AT&T. These were the first mobile systems to connect with the public telephone net-
work using a fixed number of radio channels in a single geographic area. Extending
such technology to a large number of users with full duplex channels needed excessive
bandwidth. A solution was found in the cellular concept (known as cellularization)
conceived by Ring at Bell Laboratories in 1947. This concept required dividing the
service area into smaller cells, and using a subset of the total available radio channels
in each cell. AT&T proposed the first high capacity analog cellular telephone system
called the Advanced Mobile Phone Service (AMPS) in 1970. Mobile cellular systems
have evolved rapidly since then, incorporating digital communication technology and
serve nearly one billion subscribers worldwide today. While the Global System for
Mobile (GSM) standard developed in Europe has gathered the largest market share,
cellular networks in the USA have used the IS-136 (using time division multiple access
or TDMA) and IS-95 (usingCodeDivisionMultiple Access orCDMA) standards.With
increasing use of wireless internet in the late 1990s, the demand for higher spectral effi-
ciency and data rates has led to the development of the so called Third Generation (3G)
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Table 1.1. Performance goals for antennas in wireless
communications

Antenna design AOA estimation Link performance

Gain Error variance Coverage
Bandwidth Bias Quality
Radiation pattern Resolution Interference reduction
Size Spectral efficiency

Active integrated

Phased arrays

Patch

Yagi--Uda

Directive

Hertz/Marconi/Popov 1880--1890s

1900s

1920s

1950s

1960s

1980s

Figure 1.1: Developments in antenna (EM) technology.

wireless technologies. 3G standardization failed to achieve a single common world-
wide standard and now offers UMTS (wideband CDMA) and 1XRTT as the primary
standards. Limitations in the radio frequency (RF) spectrum necessitate the use of
innovative techniques to meet the increased demand in data rate and QoS.
The use of multiple antennas at the transmitter and/or receiver in a wireless commu-

nication link opens a new dimension – space, which if leveraged correctly can improve
performance substantially. Table 1.1 details the three main areas of study in the field of
radio antennas and their applications. The first covers the electromagnetic design of the
antennas and antenna arrays. The goals here are to meet design requirements for gain,
polarization, beamwidth, sidelobe level, efficiency and radiation pattern. The second
area is the angle-of-arrival (AOA) estimation and, as the name indicates, focuses on
estimating arrival angles of wavefronts impinging on the antenna array with minimum
error and high resolution. The third area of technology that this book focuses on is the
use of antenna arrays to improve spectral efficiency, coverage and quality of wireless
links.
A timeline of the key developments in the field of antenna design is given in Fig. 1.1.

The original antenna design work came from Marconi and Popov among others in the
early 1900s. Marconi soon developed directional antennas for his cross-Atlantic links.
Antenna design improved in frequency of operation and bandwidth in the early part of
the twentieth century. An important breakthrough was the Yagi–Uda arrays that offered
high bandwidth and gain. Another important development was the patch antenna that
offers low profile and cost. The use of antennas in arrays began inWorldWar II, mainly
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Figure 1.2: Developments in AOA estimation.

for radar applications. Array design brought many new issues to the fore, such as gain,
beamwidth, sidelobe level, and beamsteering.
The area of AOA estimation had its beginnings in World War I when loop antennas

were used to estimate signal direction (see Fig. 1.2 for a timeline of AOA technol-
ogy). Adcock antennas were a significant advance and were used in World War II.
Wullenweber arrays were developed in 1938 for lower frequencies and where accuracy
was important, and are used in aircraft localization to this day. These techniques ad-
dressed the single source signal wavefront case. If there aremultiple sources in the same
frequencychannel ormultipatharrivals fromasinglesource, new techniquesareneeded.
The problem of AOA estimation in the multisource case was properly addressed in the
1970sand1980s.Capon’smethod[Caponet al., 1967], awell-known technique, offered
reasonable resolution performance although it suffered from bias even in asymptoti-
cally large data cases. The multiple signal classification (MUSIC) technique proposed
by Schmidt in 1981 was a major breakthrough. MUSIC is asymptotically unbiased and
offers improved resolution performance. Later a method called estimation of signal
parameters via rotational invariance techniques (ESPRIT) that has the remarkable ad-
vantage of not needing exact characterization of the array manifold and yet achieves
optimal performance was proposed[Paulrajet al., 1986; Royet al., 1986].
The third area of antenna applications in wireless communications is link enhance-

ment (see Fig. 1.3). The use of multiple receive antennas for diversity goes back to
Marconi and the early radio pioneers. So does the realization that steerable receive
antenna arrays can be used to mitigate co-channel interference in radio systems. The
use of antenna arrays was an active reseach area during and after World War II in radar
systems. More sophisticated applications of adaptive signal processing at the wireless
receiver for improving diversity and interference reduction had to wait until the 1970s
for the arrival of digital signal processors at which point these techniques were vigor-
ously developed for military applications. The early 1990s saw new proposals for using
antennas to increase capacity of wireless links. Roy and Ottersten in 1996 proposed the
use of base-station antennas to supportmultiple co-channel users. Paulraj andKailath in
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Figure 1.3: Developments in antenna technology for link performance.
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Figure 1.4: Data rate (at 95% reliability) vs SNR for different antenna configurations. Channel
bandwidth is 200 KHz.

1994 proposed a technique for increasing the capacity of a wireless link using multiple
antennas at both the transmitter and the receiver. These ideas along with the fundamen-
tal research done at Bell Labs[Telatar, 1995; Foschini, 1996; Foschini and Gans, 1998;
Tarokhet al., 1998] began a new revolution in information and communications theory
in themid 1990s. The goal is to approach performance limits and to explore efficient but
pragmatic coding and modulation schemes for wireless links using multiple antennas.
Clearly much more work has yet to be done and the field is attracting considerable
research talent.
The leverage of ST wireless technology is significant. Figure 1.4 plots the maximum

error-free data rate in a 200 KHz fading channel vs the signal to noise ratio (SNR)
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Figure 1.5: Antenna configurations in ST wireless systems (Tx: Transmitter, Rx: Receiver).

that is guaranteed at 95% reliability. Assuming a target receive SNR of 20 dB, current
single antenna transmit and receive technology can offer a data rate of 0.5 Mbps. A
two-transmit and one-receive antenna systemwould achieve 0.8Mbps. A four-transmit
and four-receive antenna system can reach 3.75Mbps. It is worth noting that 3.75Mbps
is also achievable in a single antenna transmit and receive technology, but needs 105

times higher SNR or transmit power compared with a four-transmit and four-receive
antenna configuration. The technology that can deliver such remarkable gains is the
subject of this book.

1.2 Exploiting multiple antennas in wireless

Figure 1.5 illustrates different antenna configurations for ST wireless links. SISO (sin-
gle input single output) is the familiar wireless configuration, SIMO (single input
multiple output) has a single transmit antenna and multiple (MR) receive antennas,
MISO (multiple input single output) has multiple (MT ) transmit antennas and a sin-
gle receive antenna and MIMO (multiple input multiple output) has multiple (MT )
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transmit antennas and multiple (MR) receive antennas. The MIMO-MU (MIMO mul-
tiuser) configuration refers to the case where a base-station with multiple (M) antennas
communicates withP users each with one or more antennas. Both transmit and re-
ceive configurations are shown. We sometimes abbreviate SIMO, MISO and MIMO
configurations as XIXO.

1.2.1 Array gain

Array gain refers to the average increase in the SNR at the receiver that arises from the
coherent combining effect of multiple antennas at the receiver or transmitter or both.
Consider, as an example, a SIMO channel. Signals arriving at the receive antennas
have different amplitudes and phases. The receiver can combine the signals coherently
so that the resultant signal is enhanced. The average increase in signal power at the
receiver is proportional to the number of receive antennas. In channels with multiple
antennas at the transmitter (MISO or MIMO channels), array gain exploitation requires
channel knowledge at the transmitter.

1.2.2 Diversity gain

Signal power in a wireless channel fluctuates (or fades). When the signal power drops
significantly, the channel is said to be in a fade. Diversity is used in wireless channels
to combat fading.
Receive antenna diversity can be used in SIMO channels[Jakes, 1974]. The receive

antennas see independently faded versions of the same signal. The receiver combines
these signals so that the resultant signal exhibits considerably reduced amplitude vari-
ability (fading) in comparison with the signal at any one antenna. Diversity is charac-
terized by the number of independently fading branches, also known as the diversity
order and is equal to the number of receive antennas in SIMO channels.
Transmit diversity is applicable to MISO channels and has become an active area for

research[Wittneben, 1991; Seshadri and Winters, 1994; Kuo and Fitz, 1997; Olofsson
et al., 1997; Heath and Paulraj, 1999]. Extracting diversity in such channels is possible
with or without channel knowledge at the transmitter. Suitable design of the transmitted
signal is required to extract diversity. ST diversity coding [Seshadri andWinters, 1994;
Gueyet al., 1996; Alamouti, 1998; Tarokhet al., 1998, 1999b] is a transmit diversity
technique that relies on coding across space (transmit antennas) to extract diversity
in the absence of channel knowledge at the transmitter. If the channels of all transmit
antennas to the receive antenna have independent fades, the diversity order of this
channel is equal to the number of transmit antennas.
Utilization of diversity in MIMO channels requires a combination of the receive and

transmit diversity described above. The diversity order is equal to the product of the
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number of transmit and receive antennas, if the channel between each transmit–receive
antenna pair fades independently.

1.2.3 Spatial multiplexing (SM)

SM offers a linear (in the number of transmit–receive antenna pairs or min(MR, MT ))
increase in the transmission rate (or capacity) for the same bandwidth and with no
additional power expenditure. SM is only possible in MIMO channels[Paulraj and
Kailath, 1994; Foschini, 1996; Telatar, 1999a]. In the following we discuss the basic
principles of SM for a system with two transmit and two receive antennas. The concept
can be extended to more general MIMO channels.
The bit stream to be transmitted is demultiplexed into two half-rate sub-streams,

modulated and transmitted simultaneously from each transmit antenna. Under favor-
able channel conditions, the spatial signatures of these signals induced at the receive
antennas are well separated. The receiver, having knowledge of the channel, can dif-
ferentiate between the two co-channel signals and extract both signals, after which
demodulation yields the original sub-streams that can now be combined to yield the
original bit stream.ThusSM increases transmission rate proportionallywith the number
of transmit–receive antenna pairs.
SM can also be applied in a multiuser format (MIMO-MU, also known as space

division multiple access or SDMA). Consider two users transmitting their individual
signals, which arrive at a base-station equipped with two antennas. The base-station
can separate the two signals to support simultaneous use of the channel by both users.
Likewise the base-station can transmit two signals with spatial filtering so that each
user can decode its own signal adequately. This allows a capacity increase proportional
to the number of antennas at the base-station and the number of users.

1.2.4 Interference reduction

Co-channel interference arises due to frequency reuse in wireless channels. Whenmul-
tiple antennas are used, the differentiation between the spatial signatures of the desired
signal and co-channel signals can be exploited to reduce the interference. Interference
reduction requires knowledge of the channel of the desired signal. However, exact
knowledge of the interferer’s channel may not be necessary.
Interference reduction (or avoidance) can also be implemented at the transmitter,

where the goal is to minimize the interference energy sent towards the co-channel users
while delivering the signal to the desired user. Interference reduction allows the use of
aggressive reuse factors and improves network capacity.
We note that it may not be possible to exploit all the leverages simultaneously due

to conflicting demands on the spatial degrees of freedom (or number of antennas). The
degree to which these conflicts are resolved depends upon the signaling scheme and
receiver design.
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Figure 1.6: Schematic of a ST wireless communication system.

1.3 ST wireless communication systems

Figure 1.6 shows a typical ST wireless system withMT transmit antennas andMR

receive antennas. The input data bits enter a ST coding block that adds parity bits
for protection against noise and also captures diversity from the space and possibly
frequency or time dimensions in a fading environment. After coding, the bits (or words)
are interleaved across space, time and frequency and mapped to data symbols (such
as quadrature amplitude modulation (QAM)) to generateMT outputs. TheMT symbol
streams may then be ST pre-filtered before being modulated with a pulse shaping
function, translated to the passband via parallel RF chains and then radiated fromMT

antennas. These signals pass through the radio channel where they are attenuated and
undergo fading in multiple dimensions before they arrive at theMR receive antennas.
Additive thermal noise in theMR parallel RF chains at the receiver corrupts the received
signal. Themixture of signal plus noise is matched-filtered and sampled to produceMR

output streams. Some form of additional ST post-filtering may also be applied. These
streams are then ST deinterleaved and ST decoded to produce the output data bits.
The difference between a ST communication system and a conventional system

comes from the use of multiple antennas, ST encoding/interleaving, ST pre-filtering
and post-filtering and ST decoding/deinterleaving.
Weconclude this chapterwith abrief overviewof theareasdiscussed in the remainder

of this book. Chapter 2 overviews ST propagation.We develop a channel representation
as a vector valued ST random field and derive multiple representations and statistical
descriptions of ST channels. We also describe real world channel measurements and
models.
Chapter 3 introduces XIXO channels, derives channels from statistical ST channel

descriptions, proposes general XIXO channel models and test channel models and ends
with a discussion on XIXO channel estimation at the receiver and transmitter.
Chapter 4 studies channel capacity of XIXO channels under a variety of conditions:

channel known and unknown to the transmitter, general channel models and frequency
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selective channels. We also discuss the ergodic and outage capacity of random XIXO
channels.
Chapter 5 overviews the spatial diversity for XIXO channels, bit error rate perfor-

mance with diversity and the influence of general channel conditions on diversity and
ends with techniques that can transform spatial diversity at the transmitter into time or
frequency diversity at the receiver.
Chapter 6 develops ST coding for diversity, SMand hybrid schemes for single carrier

modulation where the channel is not known at the transmitter. We discuss performance
criteria in frequency flat and frequency selective fading environments.
Chapter 7 describes ST receivers for XIXO channels and for single carrier modula-

tion. We discuss maximum likelihood (ML), zero forcing (ZF), minimummean square
error (MMSE) and successive cancellation (SUC) receiver structures. Performance
analysis is also provided.
Chapter 8 addresses exploiting channel knowledge by the transmitter through trans-

mit pre-processing, both for the case where the channel is perfectly known and the case
where only statistical or partial channel knowledge is available.
Chapter 9 overviews how XIXO techniquescan be applied to orthogonal frequency

division multiplexing (OFDM) and spread spectrum (SS) modulation scheme. It also
discusses how ST coding for single carrier modulation can be extended to the space-
frequency or space-code dimensions.
Chapter 10 addresses MIMO-MU where multiple users (each with one or more

antennas) communicate with the base (with multiple antennas). A quick summary of
capacity, signaling and receivers is provided.
Chapter 11 discusses how multiple antennas can be used to reduce co-channel

interference for XIXO signal and interference models. A short review of interference
diversity is also provided.
Chapter 12 overviews performance limits of ST channels with optimal and sub-

optimal signaling and receivers.


