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I. — INTRODUCTION

Spatial regression methods allow us to account for dependence between
observations, which often arises when observations are collected from points
or regions located in space. The observations could represent income, employ-
ment or population levels, tax rates, and so on, for European Union regions
delineated into NUTS regions, countries, postal or census regions (1). We
might also have individual firm establishment point locations referenced by
latitude-longitude coordinates that can be found by applying geo-coding soft-
ware to the postal address. It is commonly observed that sample data collected
for regions or points in space are not independent, but rather spatially depen-
dent, which means that observations from one location tend to exhibit values
similar to those from nearby locations.

There are a number of theoretical motivations for the observed dependence
between nearby observations. For example, Ertur and Koch (2007) use a theo-
retical model that posits physical and human capital externalities as well as
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technological interdependence between regions. They show that this leads to a
reduced form growth regression that should include an average of growth rates
from neighboring regions. In time series, time dependence is often justified by
theoretical models that include costly adjustment or other behavioral frictions
which give rise quite naturally to time lags of the dependent variable. The
theoretical work of Ertur and Koch (2007) is similar in spirit, using the notion
of « spatial diffusion with friction » to provide a motivation for a spatial lag,
which takes the form of an average of neighboring regions.

Another justification is that observed variation in the dependent variable
may arise from unobserved or latent influences. Latent unobservable
influences related to culture, infrastructure, recreational amenities and a host
of other factors for which we have no available sample data can be accounted
for by relying on neighboring values taken by the dependent variable. This
works when the latent influences change slowly as we moved across regions.

Conventional regression models commonly used to analyze cross-section
and panel data assume that observations/regions are independent of one ano-
ther. As an example, a conventional regression model that relates commuting
times to work for region i to the number of persons in region i utilizing diffe-
rent commuting modes and the density of commuters in region i, assumes that
mode choice and density of a neighboring region, say j does not have an
influence on commuting time for region i. Since it seems unlikely that region
i’s network of vehicle and public transport infrastructure is independent from
that of region j, we would expect this assumption to be unrealistic. Ignoring
this violation of independence between observations will produce estimates
that are biased and inconsistent.

Spatial econometrics is a field whose analytical techniques are designed to
incorporate dependence among observations (regions or points in space) that
are in close geographical proximity. Extending the standard linear regression
model, spatial methods identify cohorts of « nearest neighbors » and allow for
dependence between these regions/observations (Anselin, 1988 ; LeSage,
2005). Note that even with observational units such as firms operating in world
markets where the notion of spatial proximity is not appropriate, we might still
see dependence in behavior of « peer institutions », those that are most similar
to each other. The spatial regression methods described here can be applied to
these situations by relying on the analogy that the set of say « m-nearest neigh-
bors  from the case of spatial regression can be construed as a group of « m peer
institutions ». This is a generalization of neighbors based on distance that could
be used to structure dependence in behavior, leading to a model that is formal-
ly analogous to the geographical « nearest-neighbors » considered here.

The next section introduces a spatial regression methodology that accom-
modates spatial dependence. Spatial autoregressive processes are introduced
since they are a key component of these models. Use of these models for cases
involved non-spatial structured dependence between cross-sectional observa-
tions is also discussed.
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In section 3 we discuss methods for estimating these models and ways to
compare models based on different specifications and spatial connectivity
structures. Examples are provided using our applied example based on a com-
muting time regression relationship.

Interpretation of the parameter estimates from these models is the subject of
section 4.

Section 5 illustrates spatial regression estimates and inferences along with
analysis of spatial feedback impacts using an applied illustration that relates
commuting times and explanatory variables based on a Census sample of
3,110 US counties in the lower 48 states and District of Columbia.

II. — SPATIAL REGRESSION MODELS

Relaxing the conventional assumption of independent observations in a
cross-sectional setting requires that we provide a parsimonious way to specify
structure for the dependence between the n observational units that make up
our size n data sample. In our application, we wish to structure the dependen-
ce to reflect the relationship between commuting times from one observation
(county) and neighboring counties.

2.1. Spatial autoregressive processes

The spatial autoregressive process shown in (1) and the implied data gene-
rating process in (2) provide a parsimonious approach to representing the
dependence structure.

y = αιn + ρWy + ε (1)

(In – ρW)y = αιn + ε

y = (In – ρW )–1ιnα + (In – ρW )–1ε (2)

ε ∼ N(0nx1, σ
2In)

We introduce a constant term vector ιn and associated parameter α to accom-
modate situations where the vector y does not have a mean value of zero. The
n by 1 vector y contains our dependent variable and ρ is a scalar parameter,
with W representing an n by n spatial weight matrix. We assume that ε follows
a multivariate normal distribution, with zero mean and a constant scalar dia-
gonal variance-covariance matrix σ 2In.

The matrix W quantifies the connections between regions, which we illus-
trate by first considering a 5 by 5 matrix W associated with 5 regions. For sim-
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plicity, consider that connections only exist between each region and m = 2
neighboring regions.

Given these assumptions, we can form an n by n binary indicator matrix P
shown in (3), where the rows of the matrix correspond to observations/regions
1 to 5. Values of 1 are used in each column to indicate « neighboring » obser-
vations associated with each row. For example, P(1,2) = 1 and P(1,3) = 1 indi-
cates that the second and third observations/regions represent the two nearest
(measured using distance from the center of each region). This reflects that
regions #2 and #3 are the nearest neighbors to region #1, which meets our defi-
nition of m = 2 neighbors. Similarly, in row 2 we have P(2,1) = 1 and P(2,3)
= 1, indicating that regions 1 and 3 are the m = 2 nearest neighbors to region
#2. Similarly, region #5 is a neighbor to regions #3 and #4.

0  1  1  0  0
1  0  1  0  0

P = ( 0  1  0  1  0 ) (3)
0  0  1  0  1
0  0  1  1  0

The main diagonal elements of P are zero to prevent an observation from
being defined as a neighbor to itself. We can normalize the matrix P to have
row-sums of unity by dividing all elements of the matrix P by the number of
neighbors, in this case m = 2. This leads to a matrix we label W. This row-
stochastic form of the spatial weight matrix will be useful for expressing our
spatial regression model.

0    0.5   0.5    0     0
0.5  0 0.5 0     0

W = ( 0    0.5    0    0.5    0  ) (4)
0     0 0.5    0   0.5
0     0  0.5   0.5   0

Consider the product of the matrix W and a vector of observations y on com-
muting times for the five regions shown in (5). This matrix product known as
a spatial lag produces an n by 1 vector containing an average of commuting
times from regions defined as neighbors by the matrix P.

0    0.5   0.5    0     0          y1

0.5    0    0.5    0   0          y2

Wy =    ( 0    0.5    0    0.5    0  ) ( y3 )0    0    0.5    0    0.5         y4

0    0    0.5   0.5    0          y5



REVUE D’ÉCONOMIE INDUSTRIELLE — n°123, 3ème trimestre 2008 23

1/2y2 + 1/2y3

1/2y1 + 1/2y3

= ( 1/2y2 + 1/2y4 ) (5)
1/2y3 + 1/2y5

1/2y3 + 1/2y4

2.2. Spatial regression models

We can use the spatial autoregressive process in (3) to construct an extension
of the conventional regression model shown in (6), along with the associated
data generating process in (7). The model has been labeled the spatial autore-
gressive (SAR) model. The dependent variable vector y is of dimension n by
1, containing (logged) commuting times for each region/observation. The n by
k matrix X contains exogenous explanatory variables possibly including a
constant term vector, and the k by 1 vector β are associated regression para-
meters. The n by 1 spatial lag vector Wy reflects an average of (log) commu-
ting times from neighboring regions specified by the matrix W, and the asso-
ciated scalar parameter ρ reflects the strength of spatial dependence. When the
scalar parameter ρ takes on a value of zero, the model in (6) simplifies to the
conventional linear regression model. Finally, we assume the n by 1 distur-
bance vector ε contains independent, normally distributed terms with a vector
mean zero (0nx1), constant variance, (σ2).

y = ρWy + X β + ε (6)

y = (In – ρW )–1 X β + (In – ρW )–1ε (7)

ε ∼ N(0nx1, σ
2In)

The spatial regression model adds a spatial lag vector reflecting the average
commuting times from neighboring regions to help explain variation in com-
muting times across the regions. Intuitively, the model states that commuting
times in each region are related to the average commuting times from neigh-
boring regions. The average strength of this relationship across the sample of
regions will be determined during estimation by the scalar parameter ρ.

Note that ρ is not a conventional correlation coefficient between the vector
y and the spatial lag vector Wy, since this parameter is not generally restricted
to the range –1 to 1 (see LeSage and Pace (2004b) for details regarding the
bounds on the parameter ρ). From (7) we can see that the variance-covariance
for the spatial regression is : E[(In – ρW )–1 εε ′ (In – ρW )–1′]. We need to ensu-
re that (I – ρW ) is non-singular and that the product (I – ρW )–1 (I – ρW′)–1

which equals the variance-covariance matrix is positive-definite. For row-sto-
chastic weight matrices W where the row elements sum to unity, a sufficient
condition for positive-definite variance covariance matrices is that –1 < ρ < 1.
The eigenvalues of non-symmetric weight matrices can be complex, but this
overly strong restriction ensures invertibility and positive definiteness.
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2.3. Simultaneous feedback

Simultaneous feedback is a feature of the spatial regression model that arises
from dependence relations. These lead to feedback effects from changes in
commuting times in neighboring regions j that arise from a change originating
in region i. To see this, consider the data generating process associated with the
spatial regression model, shown in (8).

y = (In – ρW )–1 X β + (In – ρW )–1ε (8)

The model statement in (8) can be interpreted as indicating that the expected
value of each observation yi will depend on the mean value X β plus a linear
combination of values taken by neighboring observations scaled by the depen-
dence parameter ρ. The data generating process statement in (8) expresses the
simultaneous nature of the spatial autoregressive process. To further explore
the nature of this, we use the following well-known expansion to express the
inverse as an infinite series Debreu and Herstein (1953) :

(In – ρW )–1 = In + ρW + ρ2W 2 + ρ3W 3 + … (9)

Which leads to a re-expression of spatial autoregressive data generating pro-
cess for a variable vector y :

y = (In – ρW )–1 X β + (In – ρW )–1ε

y = X β + ρWXβ + ρ2W 2 X β + …

+ ε + ρWε + ρ2W 2ε + ρ3W 3ε + … (10)

Consider powers of the row-stochastic spatial weight matrices W2,W 3,… that
appear in (10), where we assume that rows of the weight matrix W are
constructed to represent first-order contiguous neighbors. The matrix W2 will
reflect second-order contiguous neighbors, those that are neighbors to the
first-order neighbors. Since the neighbor of the neighbor (second-order neigh-
bor) to an observation i includes observation i itself, W2 has positive elements
on the diagonal. That is, higher-order spatial lags can lead to a connectivity
relation for an observation i such that W2ε will extract observations from the
vector ε that point back to the observation i itself. This is in stark contrast with
the conventional independence relation in ordinary least-squares regression
where the Gauss-Markov assumptions rule out dependence of εi on other
observations j, by assuming zero covariance between observations i and j in
the data generating process.

2.4. Steady-state equilibrium intrepretation

One might suppose that feedback effects would take time, but there is no
explicit role for passage of time in our cross-sectional model. Instead, we view
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the cross-sectional sample of regions as reflecting an equilibrium outcome or
steady state of the commuting time generation process where the regional cha-
racteristics change slowly relative to commuting times. To elaborate this point,
consider a relationship where travel time to work at time t is denoted by yt, and
this depends on current period own-region characteristics Xtβ plus the spatial
dependence on observed travel times from an average of neighboring regions
from a single past period, t –1. This is represented by a space-time lag variable
Wyt–1, leading to the model in (11), where the regional characteristics in the
matrix of explanatory variables Xt are assumed to not change over time.

yt = ρWyt–1 + X β + εt (11)

Intuitively, ignoring the time subscript for regional characteristics in (11)
seems reasonable, since choice of transportation mode by population living in
a region, regional transportation infrastructure, commuting density, etc., are
not likely to exhibit a great deal of variation over time (2).

Note that we can replace yt–1 on the right-hand-side of (11) with: yt–1 = ρWyt–2

+ X β + εt–1 and continue this for q past periods leading to (12) and (13).

yt = (In + ρW + ρ2W2 + … + ρ qWq) X β + ρqWqyt–q + u (12)

u = εt + ρWεt–1 + ρ2W2εt–2 + … + ρ q–1Wq–1εt–(q–1) (13)

In (13), E(u) = 0 since E(εt–i) = 0,i = 0,…,q, The magnitude of ρ qWq becomes
small for large q, since ρ < 1 and the maximum eigenvalue for a row-stochas-
tic matrix W is one. In the limit, as q → ∞, ρqWqyt–q approaches a vector of
zeros.

Therefore, the long-run expectation, which can be interpreted as the steady-
state equilibrium, takes a form consistent with the data generating process for
our cross-sectional spatial regression model :

lim
q→∞

E(yt) = (In + ρW + ρ2W2 + … + ρ qWq) X β + ρ qWq yt–q + u

= (I – ρ W)–1 X β (14)

Simultaneous feedback is a feature of the equilibrium steady-state for the
spatial regression model. Feedback effects can arise from changes in commu-
ting times of one region that will potentially exert impacts on all other regions.
However, the fact that the parameter –1 < ρ < 1 leads to a decay of influence
as we move to higher-order neighbors.

(2) It is possible to produce a similar result as that shown here if the explanatory variables 
Xt evolve over time in a number of ways. For example, a stochastic trend, stochastic geome-
tric, or exponential growth in Xt with mean zero randomness, a stationary autoregressive time
or spatial process governing Xt . Therefore, the assumption of fixed X is for simplicity.
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Intuitively, if changes arise in neighboring regions travel times and region i’s
travel time is dependent on neighboring region commuting times, these
changes will exert an impact on travel times of region i. Similarly, any changes
in region i’s commuting times arising from these impacts will in turn influen-
ce regions that are neighbors to i, which will in turn influence neighbors of the
neighbors, and so on. In the context of our static cross-sectional model where
we treat the observed sample as reflecting a steady state equilibrium outcome,
these feedback effects appear as instantaneous, but they should be interpreted
as reflecting a movement to the next steady state.

2.5. Non-spatial structured dependence

Social science regression models commonly applied to cross-section and
panel data assume observations on decision-making units are independent of
one another. This assumption is important to contemplate since violation
results in regression estimates that are biased and inconsistent. If there is a pat-
tern of dependence between the observations that quantified using the matrix
W presented in section 1, then spatial regression methods can be employed in
these non-spatial contexts.

For example, in the case of a cross-sectional sample of firms, one might
replace geographical distance with measures of similarity such as firm size or
industry similarity. Blankmeyer et al. (2007) point out that salary benchmar-
king practices used in determining US management compensation violate the
assumption of independence. Salary benchmarking is a US practice that
adjusts top-level management compensation to reflect salaries offered by
« peer institutions », those against which firms compete when hiring high-
level managers. They point out that spatial regression models based on « nea-
rest neighbors » that allow dependence between observations can be extended
to the case of management compensation. In this setting, the observational
units are institutions, not regions or points located in space. However, they rely
on the analogy that the set of say « m-nearest neighbors » from the case of spa-
tial regression can be construed as a group of « m peer institutions » that are
most similar to each observation/institution in the sample. They point out that
use of generalized notions of distance allows geographical « nearest-neigh-
bors » to be treated formally as analogous to institutional peer groups.

A key step is to replace measures of geographical proximity based on dis-
tances by a criterion that reflects the degree of similarity among institutions for
the case of a cross-section of firms. The context of similarity would be specific
to each problem, so this might reflect similarity in size of the firms, production
processes, resource or product markets in which the firms operate, etc.
Blankmeyer et al. (2007) illustrate these ideas applying spatial regression
models to management compensation in Texas nursing facilities. Similar or
« peer institutions » were defined using alternative measures of size such as the
square foot area of the facilities, the size of the nursing staff and expenditures
related to the nursing functions. Given univariate or multivariate criteria of ins-
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titutional similarity, conventional measures of univariate or multivariate dis-
tance (e.g. Euclidean or Mahalanobis distance) can be calculated. Peer institu-
tions to each observation were identified as those that are most similar, that is,
those that exhibited smaller distances constructed using the similarity criterion.

Another structured dependence context in which spatial regression models
might be used would be what is known as network autocorrelation. Black
(1992) distinguished between network autocorrelation and spatial autocorrela-
tion affecting bilateral flows, and suggested these would lead to bias in classi-
cal estimation procedures typically used for spatial interaction models. He sug-
gested that « spatial autocorrelation usually concerns itself with variable
values at given locations being influenced by variables values at nearby or
(contiguous) locations in a spatial context. Network autocorrelation concerns
the dependence of variable values on given links to such values on other links
to which it is connected in a network context ». Then, he suggested that « auto-
correlation may also exist among random variables associated with the links
of a network, although this has not been examined previously ». This suggests
uses for the spatial regression models in the context of various types of flows
between firms operating in a connected network context.

It is interesting to note that the social networking literature has relied on a
similar approach to defining connectivity between individuals located at nodes
in a network of social relationships. (Katz, 1953 ; Bonacich, 1987) interpret
the vector b = (In – ρP)–1ιn as a measure of centrality of individuals in a social
network, where the matrix P is a binary matrix like our (3). In this case, the
vector b reflects row sums of the matrix inverse and has been referred to as
Katz-Bonacich Centrality in social networking. This measures the number of
direct and indirect connections that an individual in a social network has. For
example, if the matrix P identifies friends, then P2 points to friends of friends,
P3 to friends of friends of friends, and so on. In social networking, individuals
are considered located at nodes in a network, and the parameter ρ reflects a
discount factor that creates decay of influence for friends/peers that are loca-
ted at more distant nodes.

Also interesting is that Ballester Calvó-Armengol and Zenou (2006) use this
social networking context to considering players in a noncooperative network
game with linear quadratic payoffs as a return to effort inputs, where the game
exhibits local complementarity with efforts of other players. They show that in
the case of a simultaneous move n player game, there is a unique (interior) Nash
equilibrium for effort exerted (Ballester Calvó-Armengol and Zenou, 2006,
Theorem 1, Remark 1). The equilibrium effort exerted by each player is propor-
tional to a heterogenous variant of the Katz-Bonacich centrality of the player’s
node in the network that replaces the vector ιn in the measure b with a heteroge-
neous vector. Their results apply to both symmetric and asymmetric structures of
complementarity across the players represented by the n by n matrix P.

A final motivation arises from the interregional trade and input-output lite-
rature, where obvious connections exist between the Bonacich index and
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« feedback loops analysis » developed in the input-output literature (Sonis,
Hewings and Okuyama, 2001). Their goal was identifying hierarchies of
regions based on their interregional sectoral linkages in an interregional fra-
mework, where the chain of bilateral interregional/interindustry influences
was based on sectoral linkages. The economic interpretation of a feedback
loop indicates how strongly each region is tied to all other regions included in
that loop. Focusing on feedback loops, they evaluated the position of each
region vis-à-vis all other regions. Of course, usually the rank of these bilateral
relations between regions is conditioned by the distance between them (conti-
guity), the presence of common factor endowments, similar or complementa-
ry sectoral structures (clusters) and strong networking linkages.

Note that both the Bonacich index and feedback loop approach focus on
measuring centrality of an element within a system in space using their lin-
kages with other elements in the network, but this could also be done for the
cases of industry sectoral structure or size similarity as noted earlier. In all
cases, the measure of inter-linkages is based on identifying the number of pos-
sible complete loops that start and end at each node based on connections with
the remaining elements in the system.

We do not explore these non-spatial uses of spatial regression, since our
focus is on exposition of statistical modeling implications of spatial depen-
dence. However, in the conclusion of this article a number of issues that may
arise in extending spatial regression methods to the case of structured depen-
dence relations between firms are discussed.

2.6. Alternative spatial regression specifications

We will employ a variation of model (6) in our application. Our model spe-
cification will allow characteristics that determine commuting times (variables
contained in the matrix X) from neighboring regions to exert an influence on
commuting times of region i. This is accomplished by entering an average of
the explanatory variables from neighboring regions, created using the matrix
product W X. The resulting model is shown in (15), where we have eliminated
the constant term vector ιn from the explanatory variables matrix X (3).

y = ρWy + αι + X β + W X θ + ε (15)

ε ∼ N(0nx1, σ2 In)

This variant of our original model often labeled the spatial Durbin model
(SDM) allows commuting times for each region to depend on own-region fac-

(3) This is necessary because Wιn = ιn (for row-stochastic matrices W), which would result in
the explanatory variables set ( X W X ) containing a perfect linear combination.
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tors from the matrix X that influence commuting times, plus the same factors
averaged over the m neighboring regions, W X. 

Other specifications that rely on the spatial autoregressive process can be
used to produce spatial regression models that exhibit: spatial dependence in
the disturbance process ε which leads to a spatial error model (SEM) (shown
in (16)); and a general model that exhibits spatial dependence in both the
dependent variable y and the disturbances leading to a model we label SAC
(shown in (17)). The SAC model in (17) can be implemented with a single spa-
tial weight matrix, W1 = W2 = W.

y = X β + u,    u = λWu + ε (16)

y = ρW1y + X β + u,      u = λW2u + ε (17)

There are some other more exotic spatial regression models that have been
implemented in the literature. For example, Lacombe (2004) uses the model
shown in (18) to analyze policies that varied across states.

y = ρ1W1y + ρ2W2y + X β + ε (18)

The model involves a sample of counties that lie on the borders of US states,
and the spatial weights W1 represent an average of the variable y based on
neighboring counties within the state, while the weights W2 reflect an average
of the dependent variable from neighboring counties in the bordering state.
This model separates the influence of within- and between-state neighbors on
the dependent variable y.

There is also the SARMA model shown in (20), where we could implement
the model with W = W1 = W2.

y = ρW1y + X β + u,      u = (In – θW2)ε (19)

For the case of a single matrix W, the spatial process applied to the distur-
bances in this model can be written in expanded form as :

(In – ρW )–1(In – θW ) = In – θW + ρW(In – θW ) + ρ2W2(In – θW ) + …

= In – θW – ρθW2 – ρ2θW3 + …

+ ρW + ρ2W2 + … (20)

This suggests a relatively rapid decay of influence for the terms in (20)
contributed by the spatial moving average, those involving the parameter θ. To
see this, consider parameter values of ρ = θ = 0.5, which would result in the
terms – ρθ, – ρ2θ, ρ3θ taking on values of 0.25, 0.125, 0.0625. Further, these
decay factors are being applied to smaller and smaller weight elements contai-
ned in the higher powers of the matrix W. These models have a « local inter-
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pretation » in contrast to the SAR, SAC, SDM models that are interpreted as
modeling « global influences ». They have received much less attention in the
spatial econometrics literature.

III. — ESTIMATION AND MODEL COMPARISON

Ordinary least-squares cannot be used to produce consistent estimates for
spatial regression models. A number of different approaches have been propo-
sed for estimating the parameters of spatial regression models, including:
maximum likelihood estimation (Ord, 1975), an instrumental variables gene-
ralized moments (IV/GM) approach suggested by (Kelejian and Prucha, 1998,
1999), spatial filtering (Griffith, 2003), Bayesian Markov Chain Monte Carlo
(LeSage, 1997), generalized maximum entropy (Marsh and Mittelhammer,
2004), and use of matrix exponential transformations (LeSage and Pace,
2007).

There have also been methods proposed for extensions of spatial regression
models that deal with: binary dependent variables (LeSage, 2000 ; Smith and
LeSage, 2004), polychotomous dependent variables (Autant-Bernard, LeSage
and Parent, 2007), poisson distributed dependent variables (LeSage, Fischer
and Scherngell, 2007), censored and missing values of the dependent variables
(LeSage and Pace, 2007), and space-time panel data settings that involve
continuous (Elhorst, 2003), and binary dependent variables (Kazuhiko,
Polasek, Wago, 2007). 

Details are beyond the scope of this work, but a great deal of public domain
software allows these models to be estimated in a relatively straightforward
manner (Anselin, 2006 ; LeSage, 1999 ; Pace, 2003). 

The log likelihood function for the SAR and SDM models takes the form in
(22) (Anselin, 1988, p. 63), where : Z = (ιn X) for the SAR model, and Z = (ιn
X  W X) for the SDM model. In applied practice, this is usually concentrated
with respect to the coefficient vector δ and the noise variance parameter σ2,
(see Pace and Barry (1997) for details).

InL = – (n/2)In(πσ2) + In|In – ρW| – (1/2σ2)(e′e) (21)

e = y – ρWy – Zδ

δ = (Z′Z)–1 Z′(In – ρW )y

σ2 = e′e/(n – k)

The most challenging part of maximizing the log-likelihood involves com-
puting the term : In|In – ρW| which involves an n by n matrix, and this same
issue arises for Bayesian MCMC estimation. A number of suggestions have
been made for dealing with this in a computationally efficient manner (Pace
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and Barry, 1997 ; Barry and Pace, 1999), which are discussed in detail by
LeSage and Pace (2004b).

3.1. Model comparison

An issue that arises in applied practice is the need to compare models based
on : 1) alternative spatial weight matrix specifications (e.g., five versus six
nearest neighbors, or contiguity-based W versus distance or nearest neighbors
structures), 2) alternative sets of explanatory variables for the matrix X, and 3)
varying spatial regression model specifications (e.g., the SAR versus SDM or
other model specifications).

For models estimated using maximum likelihood methods, likelihood ratio
test statistics can be used to address some of these model comparison issues
such as alternative specifications for the spatial weight matrix, or perhaps dif-
ferent sets of explanatory variables. Comparison of different model specifica-
tions using likelihood-based testing is set forth in (Florax and Folmer, 1992 ;
Florax, Folmer and Rey, 2003).

There is a great deal of literature on Bayesian model comparison for regres-
sion models, where alternative models consist of those based on differing
matrices of explanatory variables. For example, Koop (2003) sets forth the
basic Bayesian theory behind model comparison for the case where a finite,
discrete set of m alternative models M = M1, M2,…,Mm is under consideration.
The approach involves specifying prior probabilities for each model as well as
prior distributions for the parameters π (η ), where η = (ρ,δ,σ) [e.g., Koop
(2003)]. Posterior model probabilities are then calculated and used for infe-
rences regarding the alternative models based on different sets of explanatory
variables. 

We illustrate model comparison based on differing numbers of neighbors m
used to define the spatial weight matrix in our applied illustration. If the
sample data are to determine the posterior model probabilities, the prior pro-
babilities should be equal, making each model equally likely a priori. These
are combined with the likelihood for y conditional on η as well as the set of
models M, which we denote p(y|η, M). The joint probability for M,η, and y
takes the form :

p(M,η,y) = π (M )π (η|M )p(y|η, M ). (22)

Application of Bayes rule produces the joint posterior for both models and
parameters as :

π (M )π (η|M )p(y|η, M )
p(M,η,y) = —————————— . (23)

p(y)
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The posterior probabilities for the models take the form :

p(M|y) = ∫ p(M, η|y)dη, (24)

which requires integration over the parameter vector η.

An issue in Bayesian model comparison is that posterior model probabilities
can be sensitive to alternative specifications for the prior information. In our
applied illustration, we avoid this problem by relying on diffuse priors for the
model parameters. Since the explanatory variables are fixed in alternative
models with changes in only the spatial weight matrix, the log-marginal like-
lihood is well-defined for models based on uninformative priors [see (Koop,
2003)]. For other types of model comparisons, see LeSage and Parent (2007)
who describe assignment of strategic priors that produce inferences that are
robust with respect to the prior setting.

LeSage and Parent (2007) derive explicit expressions for the log-marginal
likelihood needed for our comparison of models based on differing numbers of
neighbors. The resulting expression requires univariate numerical integration
of the parameter ρ over the (-1,1) interval. In conclusion, we can compare
alternative model specifications based on varying numbers of neighbors used
in constructing the spatial weight matrix. It is also possible to compare models
with weight matrices based on different distance measures used to define
neighboring regions, for example « travel time distances » versus « map dis-
tances ». This would involve application of the same methods to an additional
set of m models, m = 1,…, M based on an alternative weight matrix, say W̃.
Posterior model probabilities could then be calculated for the set of 2M models
to determine both the number of neighbors as well as the appropriate distance
criterion.

IV. — INTERPRETING THE PARAMETER ESTIMATES

If ρ ≠ 0, then the interpretation of the parameter vectors β (and θ ) in the spa-
tial Durbin model is different from a conventional least squares interpretation,
(Pace and LeSage, 2006). In least-squares the r th parameter, βr, from the vec-
tor β, is interpreted as representing the partial derivative of y with respect to a
change in the r th explanatory variable from the matrix X, which we write as
xr. Specifically, in standard least-squares regression where the dependent
variable vector contains independent observations, y = Σr =1

k xrβr + ε, and the
partial derivatives of yi with respect to xir have a simple form : ∂yi /∂xir = βr for
all i, r ; and  ∂yi /∂xjr = 0, for j ≠ i and all variables r.

One way to think about this is that the information set in least-squares for an
observation i consists only of exogenous or predetermined variables associa-
ted with observation i. Thus, a linear regression specifies : E(yi) = Σr =1

k xrβr, and
takes a restricted view of the information set by virtue of the independence
assumption.
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4.1. Spatial regression model partial derivatives

In our spatial dependence model, the least-squares interpretation is not valid.
In essence, dependence expands the information set to include information
from neighboring regions. To see the impact of this, consider the SDM model
from (15) expressed as :

(In – ρW )y = X β + W Xθ + ιnα + ε

y = ∑
r=1

k
Sr (W )xr + V(W )ιnα + V(W )ε (25)

Sr(W ) = V(W )(Inβr + Wθr)

V(W) = (In – ρW)–1 = In + ρW + ρ2W2 + ρ3W 3 + …

To illustrate the role of Sr(W ), consider the expansion of the data generating
process in (26) as shown in (27).

y1 Sr(W )11 Sr(W )12 ...  Sr(W )1n x1r

y2 Sr(D)21 Sr(W )22 x2r( ) =  ∑
r=1

k ( ) ( ) (26)... ... ... ... ...

yn Sr(W )n1 Sr(W )n2 ...  Sr(W )nn xnr

+ V(W )ιnα + V(W )ε

To make the role of Sr(W ) clear, consider the determination of a single
dependent variable observation yi shown in (27).

yi = ∑
r=1

k
[(Sr (W )i1x1r + Sr (W )i2x2r + … + Sr (W )inxnr]

+ V(W )ιnα + V(W )ε (27)

It follows from (28) that the derivative of yi with respect to xjr takes a much
more complicated form :

∂yi—— = Sr (W )ij (28)
∂xjr

In contrast to the least-squares case, the derivative of yi with respect to xir
usually does not equal βr, and the derivative of yi with respect to xjr for j ≠ i
usually does not equal 0. Therefore, any change to an explanatory variable in
a single region (observation) can affect the dependent variable (commuting
time) in all regions (observations). This is of course a logical consequence of
our simultaneous spatial dependence model since it takes into account other
regions’ commuting times, and these are determined by the characteristics of
those regions. Any change in the characteristics of neighboring regions that set
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in motion changes in commuting times will impact commuting times of neigh-
boring regions, and so on.

In the case of the own derivative for the ith region,

∂yi—— = Sr (W )ii (29)
∂xir

Sr(W)ii expresses the impact on the dependent variable observation i from a
change in xir as a combination of direct and indirect (neighborhood) influences.
These spatial spillovers arise as a result of impacts passing through neighbo-
ring regions and back to the region itself. The magnitude of this type of feed-
back will depend upon : (1) the position of the region in space (or in general
in the connectivity structure), (2) the degree of connectivity among regions
governed by the weight matrix W used in the model, (3) the parameter ρ mea-
suring the strength of spatial dependence, and (4) the magnitude of the coeffi-
cient estimates for β and θ.

Since the impact of changes in an explanatory variable differs over all
regions, it seems desirable to find a summary measure of these varying
impacts. Pace and LeSage (2006) set forth the following scalar summary mea-
sures that can be used to average these impacts across all institutions.

The Average Direct effect – averaged over all n regions/observations pro-
viding a summary measure of the impact arising from changes in the ith obser-
vation of variable r. For example, if region i increases the number of commu-
ters who use public transportation, what will be the average impact on the
commuting times in region i ? This measure will take into account feedback
effects that arise from the change in the ith region’s public transportation usage
on commuting times of neighboring regions in the system of spatially depen-
dent regions.

The Average Total effect = Average Direct effect + Average Indirect
effect. This scalar summary measure has two interpretations. Interpretation 1),
if all regions raise public transportation usage, what will be the average total
impact on commuting times of the typical region ? This total effect will inclu-
de both the average direct impact plus the average indirect impact.
Interpretation 2) measures the total cumulative impact arising from one region
j raising its public transportation usage on commuting times of all other
regions (on average).

(Pace and LeSage, 2006) show that the numerical magnitudes arising from
calculation of the average total effect summary measure using interpretation 1)
or 2) are equal. They argue this is a feature of spatial lag regression models that
has been ignored by practitioners using these models.



REVUE D’ÉCONOMIE INDUSTRIELLE — n°123, 3ème trimestre 2008 35

Finally, the Average Indirect effect = Average Total effect - Average
Direct effect by definition. As an example, this effect could be used to mea-
sure the impact of all other regions raising their public transportation usage on
the commuting times of an individual region, again averaged over all regions. 

We note that these summary measures of the impacts arising from changes
in the explanatory variables of the model average over all institutions or obser-
vations in the sample, as is typical of regression model interpretations of the
parameters  β̂r. Of course, one could examine impacts for an individual region
i arising from changes in explanatory variables of region i, or a neighboring
region j without averaging. For example, Hondroyiannis, Kelejian, Tavlas
(2006) examine the impact of financial contagion arising from a single coun-
try on other countries in the model, reflecting a situation where interest is in
the total impact that arises from a change in an explanatory variable r in a par-
ticular country i. Other examples include : Anselin and Le Gallo (2006) who
examine diffusion of point source air pollution, and Le Gallo, Ertur and
Baumont (2003), and Dall’erba and Le Gallo (2007) where the impact of chan-
ging explanatory variables (such as European Union structural funds) in stra-
tegic regions is considered on overall economic growth. In these cases the
impacts take the form of an n by 1 vector, greatly complicating interpretation. 

4.2. Statistical significance of the impacts

For inference regarding the significance of these impacts, we need the dis-
tribution in addition to the point estimates discussed above. There are two
ways to proceed here, one involves simulating impacts based on the model
estimates and expression (29). The other approach is to rely on Bayesian
Markov Chain Monte Carlo estimation that provides a large number of draws
for the model parameters, ρ, β, θ, α and σ2. As shown by Gelfand and Smith
(1990), using these draws of the parameters to evaluate (29) will produce esti-
mates of dispersion based on simple variance calculations applied to the
results.

V. — AN APPLIED ILLUSTRATION

To illustrate the ideas discussed we present maximum likelihood estimates
from the SDM spatial regression model using logged commuting to work
times (in minutes) for 3,110 US counties taken from the year 2000 census as
the dependent variable. A simple way to examine the extent of spatial depen-
dence in commuting times is a Moran scatter plot, shown in Figure 1 (see next
page), with an accompanying map shown in Figure 2 (see next page).

The Moran scatter plot shows the relation between the commuting times
dependent variable vector y (in deviation from means form) and the average
values of neighboring observations in the spatial lag vector Wy, where we
relied on the ten nearest neighboring counties to form the matrix W. The moti-
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vation for using ten nearest neighbors will become clear when we compare
models based on different spatial weight matrices. By virtue of the transfor-
mation to deviation from means, we have four Cartesian quadrants in the scat-
ter plot centered on zero values for the horizontal and vertical axes. These four
quadrants reflect :

Quadrant I (upper right) counties that have commuting times above the
mean, where the average of neighboring counties commuting times are also
above the mean,

Quadrant II (lower right) counties that are below the mean commuting time,
but the average of neighboring county commuting times is above the mean,

Quadrant III (lower left) counties that are below the mean commuting time,
where the average of neighbors is also below the mean,

Quadrant IV (upper left) counties that have commuting times above the
mean, and the average of neighboring county commuting times is below the
mean.

FIGURE 1 : Moran scatter plot of commuting times
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From the scatter plot, we see a positive association between points y asso-
ciated with the horizontal axis and points Wy from the vertical axis, suggesting
positive spatial dependence in county-level commuting times. In fact, the
magnitude of the slope from a line fitted through the points in the Moran scat-
ter plot would equal Moran’s I–statistic often used to formally test for spatial
dependence. (The alternative hypothesis in this test is that the slope equals
zero, indicating no spatial dependence). Another way to consider the strength
of positive association is to note that there are very few Quadrant II and
Quadrant IV in the scatter plot. Quadrant II represent observations from the
vector y below the mean and those from Wy above the mean. The converse is
true of the Quadrant IV, that is observations from y are above the mean and
those from Wy are below the mean. A large number of points in quadrants II
and IV with few points in quadrants I and III would suggest negative spatial
dependence.

Points in the scatter plot can be placed on a map using the same coding
scheme, as in Figure 2. Dark counties are those with higher than commuting
times where the average of neighboring county commuting times is also
above the mean. The map shows a clustering of counties in the midwest that
have lower than average commuting times and are surrounded by neighboring
counties that also have low commuting times. The east and west coasts as well
as the southeastern counties have higher than average commuting times, and

FIGURE 2 : Moran plot map of county-level commuting times
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are surrounded by counties that also have higher than average commuting
times.

As explanatory variables in our SDM regression model we use population
density, a constant term, and in- and out-migration of population to the coun-
ty over the 1995-2000 period. Since this is a spatial Durbin model, the expla-
natory variables also include the average of these variables from neighboring
counties, which we label as W ⋅ Population density, W ⋅in-migration, W ⋅out-
migration.

Bayesian model comparison methods were used to compare models based
on spatial weight matrices ranging between 1 and 15 nearest neighbors, with
results for 4 to 14 neighbors shown in Table 1.

TABLE 1 : Models based on 6 to 14 nearest neighbors

From the table we see that a weight matrix based on ten neighbors produces
the highest posterior model probability. Differences between the log-marginal
likelihood function values are log Bayes factors for a comparison of two
models. Specifically, the log-marginal for model 1 minus the log-marginal for
model 2 provides evidence in favor of model 1 versus model 2. According to
a scale developed by Jeffreys (1961), differences in the ranges of (0,1.15), pro-
vide « very slight » evidence in favor of model 1 versus 2, differences between
(1.15,3.45), provide « slight evidence », whereas the range (3.45,4.60), repre-
sents « strong evidence » and the range (4.60, ∞) indicates « decisive eviden-
ce » in favor of model 1 versus 2. The last column of the table shows the log
Bayes factors based on a comparison of the best model based on ten nearest
neighbors and other models. These provide « slight evidence » in favor of the
model with ten neighbors relative to models based on 9, 11 and 12 neighbors
since the log Bayes factors are in the range (1.15,3.45) for these, and «strong
evidence» relative to all others, since these are in the range (3.45,4.60).

# nearest Model log-marginal difference in
neighbors Probabilities likelihood log-marginals

6 0.0000 1200.9201 36.8444

7 0.0000 1214.5424 23.2220

8 0.0000 1227.1382 10.6262

9 0.1142 1235.9867 1.7778

10 0.6864 1237.7645 0.0000

11 0.0890 1235.7055 2.0590

12 0.1063 1235.8700 1.8945

13 0.0041 1232.5908 5.1737

14 0.0000 1227.4054 10.3591
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Table 2 presents least-squares and SDM model estimates based on ten nea-
rest neighbors. Since the estimate for the parameter ρ is significantly different
from zero, least-squares estimates are biased and inconsistent. From the table,
it seems clear that the bias in least-squares is upward. Typically, non-spatial
models tend to attribute variation in the dependent variable to the explanatory
variables leading to larger (in absolute value terms) estimates, whereas the
SDM model assigns this variation to the spatial lag of the dependent variable,
producing smaller estimates.

As noted in section 41, the SDM model estimates cannot be interpreted as
partial derivatives in the typical regression model fashion. To assess the signs
and magnitudes of impacts arising from changes in the three explanatory
variables, we turn to the summary measures of direct, indirect and total
impacts presented in Table 3 (see next page).

From the table we see that the direct impact of increasing population densi-
ty is not significant, suggesting this will not have an impact on commuting
times. However, the indirect effect of increasing population density in neigh-
boring regions is positive and significant. This suggests that increased popula-
tion density in neighboring counties has a positive impact on commuting
times, which seems intuitively plausible. The total effect from population den-
sity is positive and comprised mostly of the indirect impact.

In-migration also exerts a positive direct and indirect impact on commuting
times, suggesting that we would see increased commuting times in counties
experiencing positive in-migration. The indirect impacts from in-migration in

SDM model Least-squares
coefficient t–statistic coefficient t–statistic

Intercept 0.9990 10.89 3.912 63.90

Population Density -0.0005 -0.09 0.1080 24.11

In-migration 0.1246 11.87 0.2334 19.31

Out-migration -0.1649 -15.15 -0.2959 -24.20

W ⋅ Population Density 0.0337 4.16 na na

W ⋅ In-migration -0.0096 -0.50 na na

W ⋅ Out-migration 0.0572 2.92 na na

ρ 0.6837 36.27 na na

σ 2 0.0230 0.0431

R-squared 0.4903 0.3530

na = not applicable

TABLE 2 :
Least-squares versus Spatial estimates for the commuting time model
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nearby counties is nearly twice the magnitude of the direct impact, suggesting
a large spillover impact from in-migration. The total impact is positive, with
about two-third of this comprised of the spillover effects from in-migration in
neighboring counties.

Finally, the direct and indirect impacts of out-migration are negative, as we
would expect. These two impacts are equal in magnitude, leading to a total
impact that consists of equal parts direct and indirect impact. The net direct
impact of migration (in-migration minus out-migration) is negative, since the
negative direct impact from out-migration exceeds that of the positive impact
from in-migration. In contrast, the net indirect impact of migration is positive,
since the positive indirect impact from in-migration is greater than the negati-
ve indirect impact from out-migration. The net total impact of migration is
small but positive (0.3650 - 0.3420 = 0.023).

VI. — CONCLUSIONS

Spatial autoregressive processes represent a parsimonious way to model
structured dependence between observations that often arise in economic
research. One type of structured dependence is spatial dependence, but other
examples include situations where actions of one economic agent depend on
that of others. For example, Blankmeyer et al. (2007) model dependence bet-
ween CEO compensation using these models in a structured dependence set-

TABLE 3 : Effects of Changes in the Regressors on Commuting Times

Mean t–statistic t–probability

Direct effects

Population density 0.0031 0.4923 0.6225

In-migration 0.1331 12.6698 0.0000

Out-migration -0.1711 -15.7163 0.0000

Indirect effects

Population density 0.1021 6.0220 0.0000

In-migration 0.2319 4.1527 0.0000

Out-migration -0.1708 -2.9921 0.0028

Total effects

In-migration 0.1052 6.5284 0.0000

Out-migration 0.3650 6.3123 0.0000

Total effects -0.3420 -5.7814 0.0000
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ting. Links to work in the area of social networking were also made in our pre-
sentation.

For the case of spatial dependence considered here, we show how basic
regression models can be augmented with spatial autoregressive processes to
produce models that incorporate simultaneous feedback between regions loca-
ted in space. Least-square regressions that ignore this feedback result in bia-
sed and inconsistent estimates.

Interpretation of estimates and inferences regarding the relationships mode-
led require a steady-state view, where changes in the explanatory variables
lead to a series of simultaneous feedbacks that produce a new steady-state
equilibrium. Because we are working with cross-sectional sample data, these
model adjustments appear as if they are simultaneous, but we demonstrated
that an implicit time dimension exists in these models.

The availability of public domain software to implement estimation and
inference for the models described here should make these methods widely
accessible (Anselin, 2006 ; Bivand, 2002 ; LeSage, 1999 ; Pace, 2003). 

A number of problems are likely to arise when attempting to extend the spa-
tial regression methods described here to the case of non-spatial structured
dependence that would be more appropriate for sample data involving indivi-
dual firms. These issues outlined below require further research.

One controversial issue would be criterion used to quantify the dependence
structure between firms. Related to this, the observations identified as « neigh-
bors or peer firms » and the associated dependence structure must be exoge-
nous with respect to the explanatory variables in the model. This means that
any variables used to produce the « generalized distance » matrix cannot be
included as explanatory variables in the regression equation itself. For
example, inclusion of a size variable used to define neighboring firms and the
associated dependence structure as an explanatory variable in the regression
would lead to interpretative complications when considering the partial deri-
vative impact of changes in this variable. Any change in the size variable
would have two impacts on the model, one associated with the change in this
explanatory variable, and another arising from the implied change in the
dependence structure. These issues do not arise in spatial regression modeling
where Euclidean distance between observations/regions is the accepted crite-
rion for defining neighbors, and it is relatively easy to exclude this variable
from the explanatory variable set. Further work needs to be done in this area.

Another potential issue for structured versus spatial dependence is that the
bounds on the scalar dependence parameter ρ are determined by the minimum
and maximum eigenvalues of the matrix W in the model. For spatial models, a
symmetric matrix W (or a similar matrix having the same eigenvalues) is typi-
cally employed. In the case of structured dependence between firms, asymme-
tric relations are likely to be more realistic, and an asymmetric weight matrix
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can have complex eigenvalues. Blankmeyer et al. (2007) suggest use of an
overly restrictive bound –1 < ρ < 1 as a sufficient condition to ensure a posi-
tive-definite variance covariance matrix in these models.

Working with samples of individual firms also leads to issues regarding
sample selection bias and would tend to increase heterogeneity and perhaps
outliers. Note that we have assumed homoscedastic disturbance variances in
our spatial regression model. For a Bayesian generalization that accommo-
dates non-constant variance and downweights outliers see LeSage (1997). The
heterogeneity may also lead to variation in the parameters of the relationship
being explored, an issue explored in a spatial setting by Ertur, Le Gallo and
LeSage (2007). 

For the case of analyzing binary decisions made by firms in a structured
dependence setting, each firm’s decision may depend on those of « neighbo-
ring » firms. Since this violates the usual independence assumption, use of
conventional logit and probit models is inappropriate. Spatial regression
models have been extended for these situations by LeSage (2000), Smith and
LeSage (2004) and for the case of multinomial probit see Autant-Bernard,
LeSage and Parent (2007).

Summarizing, there is a great deal of potential for use of spatial regression
models in modeling interdependence between cross-sectional and panel data
samples of firms. However, extending the spatial methods requires caution to
avoid potential pitfalls that have not been explored in the spatial econometrics
literature. Nonetheless, the expanding literature on spatial econometrics
should provide a good starting point for those interested in use of these
methods in non-spatial settings. 
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