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Introduction 

A growing body of evidence suggests that fluids are intimately 
linked to a variety of faulting processes. These include the long- 
term structural and compositional evolution of fault zones; fault 

creep; and the nucleation, propagation, arrest, and recurrence of 
earthquake ruptures. Besides the widely recognized physical role 

of fluid pressures in controlling the strength of crustal fault zones, 

it is also apparent that fluids can exert mechanical influence 

through a variety of chemical effects. 

The United States Geological Survey sponsored a Conference 

on the Mechanical Effects of Fluids in Faulting under the auspices 
of the National Earthquake Hazards Reduction Program at Fish 

Camp, California, from June 6 to 10, 1993. The purpose of the 

conference was to draw together and to evaluate the disparate 

evidence for the involvement of fluids in faulting; to establish 

communication on the importance of fluids in the mechanics of 

faulting between the different disciplines concerned with fault 

zone processes; and to help define future critical investigations, 

experiments, and observational procedures for evaluating the role 

of fluids in faulting. This conference drew together a diverse 

group of 45 scientists, with expertise in electrical and magnetic 
methods, geochemistry, hydrology, ore deposits, rock mechanics, 

seismology, and structural geology. Some of the outstanding 
questions addressed at this workshop included the following: 

1. What are fluid pressures at different levels within seismically 
active fault zones? Do they remain hydrostatic throughout the 

full depth extent of the seismogenic regime, or are they generally 
superhydrostatic at depths in excess of a few kilometers7 

2. Are fluid pressures at depth within fault zones constant 
through an earthquake cycle, or are they time-dependent? What 
is the spatial variability in fluid pressures? 

3. What is the role of crustal fluids in the overall process of 
stress accumulation, release, and transfer during the earthquake 

cycle? Through what mechanisms might fluid pressure act to 
control the processes of rupture nucleation, propagation, and 
arrest? 

4. What is the chemical role of fluids in facilitating fault creep, 
including their role in aiding solid-state creep and brittle fracture 
processes and in facilitating solution-transport deformation 
mechanisms? 
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5. What are the chemical effects of aqueous fluids on constitu- 

rive response, frictional stability, and long-term fault strength? 

6. What are the compositions and physical properties of fault 
fluids at different crustal levels? 

7. What are the mechanisms by which porosity and permeabil- 

ity are either created or destroyed in the middle to lower crust? 

What factors control the rates of these processes? How should 

these effects be incorporated into models of time-dependent fluid 

transport in fault zones? 

8. What roles do faults play in distributing fluids in the crust 

and in altering pressure domains? In other words, when and by 

what mechanisms do faults aid in or inhibit fluid migration? 

What are the typical fluid/rock ratios, flow rates, and discharges 

for fault zones acting as fluid conduits? 

9. Are fluids present in the subseismogenic crust, and by what 

transformation and/or transport processes are they incorporated 

into the shallower seismogenic portions of faults? 

In spite of the enormous amount of field, laboratory, and theo- 
retical work that has been directed toward the role of fluids in 

faulting over the past several decades, many of these questions 

remain unresolved due to the difficulty of either directly observ- 

ing or inferring (with some degree of confidence) physical 

properties and deformation mechanisms along faults in the middle 
to lower crust. 

Selected articles arising from this conference have been incor- 

porated into this special section of the Journal of Geophysical 
Research; early versions of most of these papers appeared in the 

conference proceedings volume [Hickman et al., 1994]. To set 

the stage for these articles, in this Introduction we first present 

some of the key field evidence for the involvement of fluids in the 

mechanics of faulting and then discuss several of the recent 

conceptual models that have been developed for fluid flow and 
fluid-assisted deformation along fault zones. We then present 

brief synopses of the articles appearing in this special section and 
conclude with a summary of the key areas in which future 

research on the mechanical involvement of fluids in faulting is 

most urgently needed, based upon group discussions held at the 
conference. 

Evidence for the Involvement of Fluids 

in Faulting: A Historical Perspective 

Recognition of the role of faults as fluid conduits extends far 
back into mining history. While Von Oppel [1749] recognized 
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that mineral veins occupied faults as well as fissure veins,. .and Vrolijik, 1992]. The existence of weak intraplate thrust faul• 
Agricola [ 1556, p. 47] had earlier identified water as the causative 

agent in vein formation, stating that "...the force of the water 

crushes and splits the brittle rocks", thereby preempting modern 

understanding of hydraulic fracturing [Hubbert and Willis, 1957] 

by some four centuries! Buckland [1836, p. 548] subsequently 

noted that "...the greater part of metalliferous veins originated in 

enormous cracks and crevices penetrating irregularly and 

obliquely downward to enormous depth, and resembling the rents 

and chasms which are produced by modern earthquakes." It is 

scarcely surprising therefore that much of the structural terminol- 

ogy used for faults (e.g., hanging wall, footwall) derives directly 

from miner's parlance. Mining geologists had also noted that the 

textural characteristics of fault-hosted hydrothermal veins showed 

that the passage of hydrothermal fluids was generally episodic, 

and possibly coupled to incremental fault slip [e.g., Hulin, 1925; 

Knopf, 1929]. Interestingly, it was about this time that Mead 

[1925] published his classic paper calling attention to the geologic 

role of clilatancy. Newhouse [1942, p. 34] later commented that 

"...epigenetic ore deposits...appear rarely to have been introduced 
into dead or static structural features..." and went on to infer that 

"...evidence for repeated faulting or intermineralization fracturing 

is widespread..." during mineral deposition. 

While McKinstry [1948] and other mining geologists had 

clearly achieved a qualitative appreciation of the role of fluid 

pressure in counteracting normal stress during faulting and vein 

formation, the seminal paper of Hubbert and Rubey[1959] stands 

out as the foundation work in structural geology applying 

Terzaghi's [1924] concept of effective stress in a quantitative 

manner to faulting in fluid-saturated rock. By recognizing the 
widespread development of fluids overpressured well above 

hydrostatic to near-lithostatic levels in sedimentary basins and 

applying the principle of effective stress, Hubbert and Rubey 

[1959] identified an important mechanism for lowering the 
strength of thrust faults, thereby reducing the basal frictional 

resistance to overthrust blocks. Recognition of overpressuring at 
depths of more than a few kilometers in sedimentary basins has 

since become widespread [Fertl et al., 1976], especially in basins 

undergoing active deformation, and the belief that much crustal 

deformation is focused in areas of fluid overpressure is now 

widely accepted in the structural geology literature [e.g., Fyfe et 

al., 1978]. A point to note is that there is good evidence that 
seismic rupturing, in at least some instances (e.g., the Western 
Taiwan fold and thrust belt and the western margin of the Great 

Valley adjacent to the San Andreas fault), is occurring in fluid- 
overpressured crust [Davis et al., 1983; Sibson, 1990]. 

The concept that high fluid pressures and the localization of 

deformation are linked has been reinforced by studies of active 
accretionary prisms in subduction complexes and their fossil 
equivalents. Accretionary prisms and foreland fold-and-thrust 

belts are the best documented examples of large-scale mountain 
systems where fluid pressure controls not only faulting but also 
the shape of the entire mountain belt [see Dahlen, 1990]. The low 

taper angles of many active prisms and fold-and-thrust belts, 

coupled with direct borehole measurements of fluid pressure in 
areas such as Taiwan, provide strong evidence for significant 
overpressuring within the prism and along the basal decollement 

[e.g., Davis et al., 1983]. Additional evidence for superhydro- 
static fluid pressures is gleaned from natural exposures of uplifted 
prism rocks, which contain vein networks filled with calcite, 

zeolite, quartz, and other hydrothermal precipitates thereby 
suggesting that fluid pressures frequently exceeded the least 
principal stress down to depths of 45 km [e.g., Platt, 1986; Moore 

beneath accretionary prisms and at greater depths within subduc. 

tion zones, perhaps indicative of elevated fluid pressures atoag 
these faults, is also supported by observations of near-surface he• 
flow, earthquake focal mechanisms in the adjacent crust, spatial 
variations in the orientation of folds and faults in upper plate 
rocks, and metamorphic mineral assemblages in exhumed forearc 
terranes [van den Beukel and Wortel, 1988; Byrne and Fisher, 
1990; Barr and Dahlen, 1990; Magee and Zoback, 1993]. 

An exciting recent development has been the revelation frora 
careful borehole measurements of abrupt transitions, both 
vertically and laterally, between distinct fluid pressure regimes in 
some sedimentary basins. These "fluid pressure compartments • are bounded by seals which in some cases are stratigraphic (e.g., 

shale horizons) but in others are gouge-rich faults or thin zones o• 

hydrothermal cementatiofi which cut across stratigraphy [Hunt, 
1990; Powley, 1990]. 

Important issues are whether fluid overpressures are common 

in other than compressional thrust regimes (overpressures in 
shale-rich sediments along the Gulf Coast of North America 

demonstrate that this may also happen in normal faulting regimes) 
and in crystalline basement rocks as well as in the sedimentary 
cover. Widespread development of "crack seal" extensional veins 

inferred to have developed by hydraulic fracturing in rocks 

deforming under greenschist and greater metamorphic grades 
[Ramsay, 1980; Etheridge et aL, 1984] suggests that fluid 

overpressures may occur over broad regions during prograde 
metamorphism, and the association of arrays of extensional 

•hydrofractures with mesothermal gold-quartz vein systems hosted 
in shear zones within crystalline basement points to the role of the 

shear zones as conduits for focused flow of overpressured fluids 
[Kerrich and Allison, 1978; Robert et al., 1983; Cox et al., 1986]. 

The possibility of active crustal-penetrating faults acting as 
conduits for high-pressure mantle-derived fluids has been •sed 
by a number of workers, but definitive evidence remains elusive 

[see discussion by Rice, 1992]. Irwin and Barnes [1980] noted 

the worldwide association of CO2-rich springs with seismic belts, 
inferring a possible mantle source. Elevated 3He/4He ratios, 
attributed to a mantle gas component, have been correlated with 
areas of extensional tectonic activity in western Europe [Oxburgh 
and O'Nions, 1987] and with areas of earthquake swarm activity 

in Japan [Wakita et al., 1987]. More recently, Giggenbach et al. 

[1993] have reported elevated 3He/4He ratios in seismically active 
areas of compressional tectonics in New Zealand, as well as in 

volcanically active regions in extensional tectonic regimes. 
Direct evidence of the effect of fluid pressure on fault stability 

has come from earthquakes induced in intraplate regions either 
through direct injection of fluids down boreholes, as at Denver 

and Rangely in Colorado [Healy et al., 1968; Raleigh et al., 1976] 
and in Comwall in SW England [Pine and Batchelor, 1984], or 

from the filling of large reservoirs with subsequent infiltration of 
water into the underlying rock mass (distinct from the direct 

loading effect of the reservoir water mass) [Simpson, 1986]. In 
the few cases where sufficient information has been available on 

the state of stress, fluid pressure levels, and rock strength/friction 
parameters, the induced seismicity has provided good confirma- 

tion of the applicability of the principle of effective stress coupled 
to the Coulomb failure criterion in at least the top few kilometers 
of the crust [Raleigh et al., 1976; Zoback and Hickman, 1982; 

Zoback and Healy, 1984; Nicholson and Wesson, 1990]. 

Additional evidence for fluid involvement in faulting also 

comes from the substantial changes in both groundwater level and 
surface discharge (107-109 m 3) that have been observed to follow 
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some earthquakes in the shallow crest. However, simple inter- 

p•tafions of these discharges as resulting from the rapturing of 
permeability barriers along faults (e.g., as predicted by the fault 
valve model of Sibson [ 1981 ]) do not seem to work in most cases, 

as the observed upwellings are typically not localized to the fault 
z•nes [see Muir-Wood and King, 1993]. There is also consider- 
abile debate on the sources of the discharging fluids: whether they 

originate from depths of the order of several kilometers due to 
coseismic strain changes in the surrounding crest [e.g., Muir- 

Wood and King, 1993] or are largely the result of near-surface 

•anges in fracture permeability induced by strong ground motion 
[Rojstaczer and Wolf, 1992; Hickman and Rojstaczer, 1994]. 

Recent Conceptual Models 

Interest in the role of fluids in faulting has been rekindled in 

recent years by measurements of heat flow and stress orientations 
indicating that the San Andreas fault, and perhaps other major 

plate boundary faults as well, is anomalously weak with respect to 
much of the Earth's crust (see review by Hickman [1991]). A 

number of theories have been proposed to explain the weakness 

of the San Andreas fault, most of which call upon superhydro- 
static fluid pressures or the presence of chemically reactive fluids 

within the fault zone. Although it is often proposed that the 

presence of clays along faults might lead to anomalously low 
friction, tests on natural clay-rich fault gouges collected from the 

San Andreas at depths of less than 0.4 km [Morrow et al., 1982] 

and on synthetic clay-rich fault gouges [Logan and Rauenzahn, 
1987; Marone et al., 1990; Morrow et al•, 1992] indicate coeffl- 

rems of friction at hydrostatic fluid pressures and realistic in-situ 

confining pressures that are too high to be reconciled with either 

the heat flow or stress orientation data [e.g., Lachenbruch and 
Sass, 1980; Zoback et at., 1987]. 

Both Rice [1992] and Byertee [1990] have proposed that large- 

scale yielding could lead to a rotation and an increase in the 

magnitudes of the principal stresses within the fault zone relative 

to their values immediately outside of the fault. If so, this would 

allow the fluid pressure within the fault zone to exceed signifi- 

cantly the magnitude of the least principal stress in the country 

rock. In this manner, permanently high pore pressures within an 

intrinsically strong (i.e., high coefficient of friction) San Andreas 
fault zone, in conjunction with near-hydrostatic fluid pressures in 
the surrounding rock, might lower the fault strength sufficiently to 
satisfy both the heat flow and stress orientation constraints. The 

high fluid pressures within the fault required by these models 
might be generated and maintained by continued upwelling of 
0verpressured fluids within the fault zone and leakage of these 

fluids into the country rock [Rice, 1992]. Alternatively, high fluid 
pressures might result from the sealing of locally derived high- 

pressure fluids within the fault zone once pressure gradients drop 

below a critical "threshold" required to overcome forces between 
molecular water and mineral surfaces in very small cracks and 

pores [Byerlee, 1990]. 

Solution transport deformation mechanisms such as pressure 
solution, fluid-assisted mineral reactions, and crack healing may 

be quite important in determining the rheology of fault zones 
[e.g., Rutter and Mainprice, 1979; Sibson, 1983' Blanpied et al., 
1992] and the timescales of interseismic strength recovery [e.g., 
Angevine et al., 1982; Chester and Logan, 1986]. The establish- 
ment of impermeable barriers along fault zones through fracture 
healing and sealing, followed by episodic fracturing and perme- 
ability enhancement during earthquakes, has been proposed as 

one mechanism whereby fluid pressures might be intermittently 

high and intimately linked to the earthquake cycle [e.g., Sibson, 
1992; Sleep and Blanpied, 1992; Byerice, 1993]. 

Alternative models which might explain the low long-term 
strength of the San Andreas, at least along seismically active 

segments of the fault, have called upon processes directly 

associated with earthquake rapture propagation. These dynamic 
weakening mechanisms include shear heating during slip, leading 
to transiently high fluid pressures (see below), and reductions in 

normal stress accompanying the propagation of dilational waves 
along the fault [Brune, 1993]. 

Sources of Fluids in Faults and Shear Zones 

Potential sources of fluids in brittle faults and shear zones 

include metamorphic fluid generated by dehydration of minerals 

during prograde metamorphism (including shear heating), fluid 

trapped in pore space as sedimentary formation brines, and 

meteoric water carried downward by circulation [Kerrich et al., 

1984]. Fluid exsolved from magma is another potential source, at 

least in certain thermal regimes, and, as discussed above, there is 

isotopic and geochemical evidence that mantle-derived water and 
carbon dioxide may be upwelling along some major crustal- 

penetrating faults. 

Fluids in the forearc regions of subruction zones can originate 
from a variety of sources. Consolidation of underthrust sediments 

appears to provide most of the fluid in the upper several kilome- 

ters of accretionary prisms [Bekins and Dreiss, 1992]. Other 
sources of fluid that become increasingly important at greater 

depths along subduction zones are mineral dehydration reactions, 

including the smectite-to-illite transition and the dehydration of 

zeolites and other hydrous minerals in altered seafloor basalt. 

Maturation of organic matter may also play a major role in 

controlling fluid pressure through the generation of both liquid 
and gaseous hydrocarbons [Moore and Vrolijk, 1992]. 

Geological, geochemical, and isotopic studies of fault-hosted 

hydrothermal minerals provide important constraints on the origin 
of fluids. Kerrich et al. [ 1984] studied hydrothermal minerals in 

several fault and shear zones and suggested a general sequence of 

flow regimes that evolves during shear zone evolution. Initial 

alteration in deep-seated shear zones is characterized by locally 
derived fluids and low water/rock ratios, presumably due to 

restricted permeability during the early stages of shear localiza- 
tion. Subsequent alteration occurs under higher fluid fluxes, with 
contributions from both metamorphic and cormate fluids as the 

shear zone grows and intersects more distant crustal reservoirs. 
This flow regime is characterized by high water/rock ratios and 

chemically reduced fluid. Incursion of oxidizing fluids derived 
from near-surface reservoirs is often observed at higher crustal 

levels, in the regime dominated by brittle deformation. 

The composition of fault zone fluids varies widely, depending 
on the source for the fluid, the amount of water-rock interaction 

along the flow path, and the direction and amount of fault offset 
[Parry, 1994]. For example, deep seated crystalline rocks in the 

hanging wall of reverse faults may move upward, over the top of 

sedimentary sequences, allowing formation brines to percolate 
into the hanging wall. Alternatively, subsidence of the hanging 
wall in normal faulting regimes may mix near-surface-derived 

fluids with metamorphic fluids expelled from the deeply seated 
footwall. Lateral displacement along large strike-slip faults can 

juxtapose rock units of markedly different lithologies and fluid 
compositions, leading to spatial and temporal variations in fluid 
chemistry within the fault zone [e.g., Evans and Chester, this 
issue]. 
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Large fluxes of deep-seated fluid are required for the deposi- 
tion of veins and associated hydrothermal alteration in many 

shear zones and fault systems [e.g., Cox et aI., 1986; Boullier and 
Robert, 1992]. This observation is consistent with some of the 

more recent models that have been proposed for the hy- 
dromechanical behavior of fault zones, such as the fault valve 

model [Sibson, 1981; 1992; Sibson et al., 1988] and Rice's [1992] 

steady state permeability model. The fault valve model requires a 

large volume of high-pressure fluid to accumulate beneath a low- 

permeability seal at the base of a fault zone during the interseis- 
mic period; this seal is then ruptured and the fluid surges upward 
immediately following the earthquake. In contrast, Rice's model 

requires the continual upwelling of overpressured fluid from the 
ductile root of a fault zone and does not consider possible 

variations in fluid pressure during the seismic cycle In other 

faulting environments, however, there is some indication that 

mass transfer is a more localized process, with crack-sealing 

minerals and vein deposits derived from nearby sources through 

pressure solution and other diffusive-mass-transfer processes 
[Gratier et al., 1994]. 

Permeability Structure and Flow Paths 

The permeability structure of shear zones and brittle faults has 
recently been the focus of field studies that both confirm and 

extend observations made years ago by mining geologists [e.g., 

Knopf, 1929; McKinstry, 1948; Gullbert and Park, 1985]. Large 
faults are not discrete surfaces but rather are a braided array of 

slip surfaces encased in a highly fractured and often hydrother- 
mally altered transition or "damage" zone [Smith et al., 1990; 
Bruhn et al., 1990, 1994; Chester et al., 1993]. Structural and 

mineralogical textures indicate that episodic fracturing and 

brecciation are followed by cementation and crack healing, 

leading to cycles of permeability enhancement and reduction 

along faults. 

A number of recent experimental studies carried out at hy- 

drothermal conditions allow one to estimate the time required for 

processes such as crack healing and sealing and hydrothermal 

alteration to significantly alter fault zone permeability. In most 

cases, these processes operate at rates that are rapid with respect 

to the 100- to 10,000-year recurrence intervals for large earth- 

quakes [e.g., Brantley et al, 1990; Blanpied eta!., 1992; Moore et 

al., 1994]. Recognition of the high rates at which these solution 

transport processes operate is perhaps one of the most important 

conceptual breakthroughs in understanding the hydromechanical 

behavior of fault zones during the last decade. In shearing 
experiments on granite gouge sandwiched between granite 
forcing blocks, Blanpied et al. [ 1992] showed that redistribution 

of material in solution can quickly reduce the granite permeabil- 
ity, causing a self-generated impermeable seal which isolates the 

deforming fault from the nearby country rock. Compaction of the 
fault gouge before and during shear then causes fluid pressure in 
the fault zone to rise, allowing slip at low shear stress. Subse- 
quent theoretical modeling [Sleep and Blanpied, 1992, 1994] 

showed that the generation of dilatant pores and microcracks 
during earthquakes in a hydraulically isolated fault zone, followed 

by creep compaction between earthquakes, might lead to cycli- 
cally high fluid pressures along faults. 

Geothermal fields provide an active hydrothermal environment 

where permeability destruction by crack healing and mineral 

precipitation competes with, and may overwhelm, permeability 
creation by distributed faulting and fracturing [Batz!e and 
Simmons, 1977]. Permeability destruction in some fields is, in 

fact, sufficiently fast for them to generate and maintain their owa 
cap rocks through this process of hydrothermal self-sealiaõ 
[Facca and Tonani, 1967]. In the Wairakei and Broadland fiel• 
in the North Island of New Zealand, high-permeability fault 
breccia zones for steam production are found only along the most 
recently reactivated structures, older faults having become chokerl 

with hydrothermal precipitates (quartz, calcite, zeolites, adulafia, 
etc.)[Grindley and Browne, 1976]. Though precipitation is 
extremely rapid in the near-surface hydrostatic boiling regime (as 
evidenced by the gold-plating of pressure reduction valves at 
Broadlands [Brown, 1986]), these geothermal systems provide 
important analogs to the competing processes of permeabili• 
creation and destruction likely to operate at significant depth in 
major crustaI fault zones, especially in the region toward the base 

of the seismogenic zone. The analogy may be extended still 

further if there is a transition from approximately hydrostatic 

pressures in the near-surface to near-lithostatically pressured 

fluids at the base of some geothermal fields, as Fournier [1991] 
has suggested. 

Fault-hosted fracture arrays differ markedly between reverse, 
normal, and strike-slip faulting regimes, with important implica- 
tions for the development of rock permeability and fluid conduits. 

Fault displacement is concentrated on undulating surfaces which 

generate and destroy void space during slip as the result of 

mismatched surface topography [Newhouse, 1940]. The void 

space, which is partly filled with breccia, cataclasite, and gouge, 
is elongated parallel to the slip direction and provides tortuous 

conduits that channel fluid flow [Newhouse, 1940; Bruhn et ai., 

1994]. Fracture arrays in the damaged rock surrounding the 
primary slip zone provide local reservoirs for fluid accumulation 

and expulsion but become partly sealed over time by hydrother- 

mal processes. Reverse faults may be characterized by subhori- 

zontal veins which extend into the country rock on either side o,f 

the main fault zone [e.g., Robert et al., 1983; Cox et al., 1986]. 

When they are areally extensive, these veins are thought to 

develop by episodic influx of fluid at pressure equal to or even 

slightly in excess of the overburden pressure [Sibson, 1992]. 

Normal and strike slip faults may be characterized by steeply 

dipping extension fractures, which develop either as small-scale 

"wing" cracks emanating off of moderately dipping to vertical 
shear fractures or as more extensive arrays of tensile fractures 

[Tchalenko, 1970; Bruhn et al., 1994]. 

By analogy with the fluid pressure compartments observed in 

some sedimentary basins, Byerlee [1993] proposed a model in 
which contiguous vertical and horizontal seals within a fault zone 

would lead to discrete fluid pressure compartments (i.e., tabular 

lenses), the rupture of which might be important in earthquake 

nucleation and propagation. Although direct evidence for these 

fault zone fluid compartments is lacking, negative polarity 
reflections (bright spots) on seismic reflection images acquired 
over some accretionary prisms have been interpreted to indicate 

the existence of high-pressure fluid compartments along the basal 
decollements [Moore and Vrolijk, 1992; Shipley et al., 1994]. 

Transient Fluid Pressure Effects 

For the most part, the Hubbert and Rubey [ 1959] analysis and 
those that followed it in the structural geology literature were 

quasi-static, taking no account of the mode of fault slip or of •e 
variations in permeability and fluid pressure that might arise from 
faulting. This quasi-static, high fluid pressure approach to 
faulting contrasts with the dilatancy/fluid diffusion hypothesis for 
shallow crustal earthquakes evolved by the seismology/rock 
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n,•echanics community [e.g., Nur, 1972; Scholz et al., 1973], 
wl•re massive fluid redistribution at close to ambient hydrostatic 
fluid pressures was inferred to occur in response to the earthquake 
cycle of shear stress accumulation and release. While belief in 
extensive microcrack dilatancy formed under high differential 
stress levels as an earthquake precursor has waned, it is almost 

inevitable that some form of stress-dependent dilatancy is 
associated with active faulting, though significant dilatant strains 

may be restricted to the immediate vicinity of fault zones [Sibson, 
1994]. 

A range of physical effects arising from the mechanical re- 

spoase of fluid-saturated crust has been invoked to account for 
time-dependent phenomena associated with faulting such as slow 

earthquakes, creep events, afterslip, and aftershock activity and its 
decay [e.g., Nur and Booker, 1972; Rice and Cleary, 1976]. 
Transient changes in fluid pressure and effective stress have also 

been suggested to play a direct role in rupture propagation and 
arrest. Shear resistance on the rupture surface may be dramati- 

cally lowered by localized increases in fluid pressure from 
frictional heating or locally elevated as a consequence of pore 
fluid diffusion and dilatant hardening at fault jogs and other 
irregularities [Sibson, 1973, 1985; Lachenbruch, 1980; Mase and 

Smith, 1987; Rudnicki, 1988]. Our understanding of the impor- 
tance of these various processes in the Earth has, however, been 

hampered by our lack of detailed knowledge of the appropriate 
hydraulic parameters (especially the permeability structure) in 

and around active fault zones. The issue is further complicated by 
the possibility of chemical water-weakening effects such as stress 

corrosion, which could by themselves account for many of the 
longer-term time-dependent effects [Das and Scholz, 1981 ]. 

Chemical Effects of Fluids on Fault Zone Rheology 

Over the past several years a number of fault mechanics models 

have either been developed or refined that incorporate competing, 
solution transport deformation mechanisms that at times weaken 
and/or destabilize the fault zone and at other times act to cement 

the fault zone together, thereby increasing fault strength. The 
experimental and theoretical studies on which these models are 

based are now focusing on processes that have long been inferred 
as being important from field observations of natural fault and 

shear zones, such as pressure solution, fluid-assisted retrograde 
mineral reactions, crack healing, and cementation [e.g., Kerrich et 
al., 1984; Power and Tullis, 1989; Bruhn et aL, 1990; BoulIier 

and Robert, 1992; Chester et al., 1993]. These deformation 

mechanisms are all interrelated, in that they depend upon ther- 
mally activated chemical reactions between the rock and pore 
fluid as well as the rates at which dissolved species are trans- 
ported through the pore fluid. 

Laboratory and theoretical investigations have shown that 
pressure solution may be important in reducing long-term fault 

strength and in promoting aseismic slip (i.e., creep) along faults 
[e.g., Rutter and Mainprice, 1979; Tada et al., 1987; Chester and 
Higgs, 1992]. This is especially likely in the middle to lower 
crust where high confining pressures and low-to-moderate 
temperatures inhibit both frictional sliding and crystal-plastic 

deformation, respectively [e.g., Kirby, 1980; $ibson, !983]. In 
contrast, in addition to allowing the formation of pressure seals, 

solution transport processes such as crack healing and sealing and 
cementation may cause the welding together of asperities or fault 

gouge, leading to time-dependent fault strengthening between 

earthquakes [e.g., Angevine et al., 1982; Hickman and Evans, 
1992; Fredrich and Evans, !992]. Laboratory friction experi- 

ments conducted under hydrothermal conditions suggest that a 

change in dominant deformation mechanism with increasing 
depth from brittle deformation to solution transport creep might 
control the depth at which the seismic-to-aseismic transition 

occurs in the crust [Blanpied et ai., 1991]. Ultra-fine-grained 
fault gouge and cataclasites should be particularly reactive in the 
presence of aqueous pore fluids, allowing solution transport fault 
creep to proceed under relatively low resolved shear stresses [e.g., 
Chester and Higgs, 1992]. 

Hydrothermal mineral reactions can also weaken crustal rocks 

when the reaction products are weaker than the reactants [e.g., 
Janecke and Evans, 1988; Shea and Kronenberg, 1993]. Janecke 
and Evans [1988] showed that muscovite formed from the 

breakdown of feldspar in granite dramatically lowered the ductile 

shear strength of the granite (presumably due to basal plane 

dislocation glide in the micas), even at temperatures well below 

those necessary for the plastic flow of quartz. At least at shallow 

depths, fault zones such as the San Andreas are mostly composed 

of clay- and mica-rich gouge resulting from the hydrolysis of 
feldspar [e.g., Wu, 1978], suggesting an enhancement of the 
feldspar breakdown reaction within the fault zone. Stress- 

enhanced hydrothermal mineral reactions are also recognized to 
be important in weakening crustal rocks, even when both the 

reactant and product phases are strong [e.g., Rubie, 1983]. For 

example, reactions in the olivine-talc-serpentine-water system 

have been demonstrated to dramatically lower the shear strength 
of ultramafic rocks in laboratory friction experiments [Pinkston et 
al., 1987]. 

Synopses of Papers 

The papers by Cox and by Robert, Boullier, and Firdaous 

provide evidence from fault-hosted hydrothermal vein systems 

(mesothermal gold-quartz lodes) for faulting under near- 

lithostatic fluid pressure conditions in the lower regions of the 

continental seismogenic zone. Development of such major go!d- 
quartz assemblages requires throughput of substantial fluid 

volumes and cannot be accounted for by local fluid redistribution. 

The vein systems are inferred to have developed through extreme 

fault valve action on steep reverse faults, with episodic postseis- 

mic flushing of deep crustal fluids through the fault zones 

accompanied by large-amplitude fluid pressure cycling. Impor- 

tant facets of these studies are the recognition from the vein 

structures of evidence for total stress relief accompanying 

increments of fault slip and the semiquantitative estimates of both 

the fluid volume discharged per slip increment (Cox) and the 

magnitude of the fluid pressure drop accompanying discharge 
(Robert et al.). Cox focuses on a single vein system in the 

Paleozoic Victorian gold field, Australia, while Robert et al. 

discuss the extensive late Archean vein field occupying second- 

and third-order structures in the Val d'Or mining district, Quebec, 

and speculate on its possible relationship to either foreshock or 
aftershock activity accompanying large rupture events on the 

adjoining Larder Lake-Cadillac Break, a crustal-scale fault 
structure. 

Three papers in this issue deal with fault strength and fluid 
pressures in the forearc regions of subduction zones. Fisher, 
BrantIcy, Everett, and Wambold discuss evidence for cyclic fluid 

flow deep in the interior of accretionary prisms, through an 

analysis of pervasive crack sea! vein systems within the accre- 

tionary prism exposed on Afognak Island, Alaska. These near- 
vertical, en echelon vein arrays form part of the plumbing system 

for fluid transport within a sequence of sedimentary rocks that 
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were underplated near the base of the accretionary wedge at 
depths of 8 to 12 km. Vein textures and rock chemistry indicate 
that the veins episodical!y dilated and collapsed during the history 
of fluid influx and outflow, suggestive of an interconnected 
fracture network that grew either quasi-statically or suddenly 

during earthquakes. They propose a novel "zipper model" for 
quasi-static vein formations, in which lenses of fluid less than a 
meter in length move upward through the veins as silica diffuses 
from the wall rock to the base of the vein, where quartz is 

precipitated to seal the fracture shut. 

Moore, Moore, and Cochrane present new geophysical evi- 
dence for overpressured fluid compartments in faults associated 
with the Oregon accretionary prism through an analysis of 
multichannel seismic reflection data. High amplitude reversed- 

polarity reflections were seen both along the main frontal thrust 
zone and along more distributed smaller-scale protothrusts 

seaward of the prism. The reversed-polarity zones along the 
frontal thrust occur as discrete bands extending about 3 km 

parallel to the strike of the fault and about 1 km downdip; similar 
but smaller zones occur along the protothrusts. Of the two 

possible explanations considered for these reversed-polarity 
reflections, overpressured fault-zone fluid compartments and the 
thrusting of higher- over lower-impedance sediments, analysis of 

fault displacements and stratigraphically controlled variations in 
velocity/density structure across the faults shows that overpres- 

sured fluid compartments are the most likely. Modeling of the 

seismic waveforms suggests that the overpressured compart- 

ments, or lenses, inferred within the major frontal thrust zone are 
about 10 m thick. 

From the low surface heat flow in the forearc of the northern 

Cascadia subduction zone and the character of focal mechanisms 

which indicate strike-parallel compression along the margin, 

Wang, Mulder, Rogers, and Hyndman constrain the average shear 
strength of the main subduction interface to be less than 20 MPa 

(i.e., comparable to the inferred shear resistance of the San 

Andreas fault at depths of 0-14 km [Lachenbruch and Sass, 

1980]). They propose that high fluid pressure along the contact is 

one potential mechanism for maintaining this low shear strength. 
If so, then it is interesting to speculate that these fluids might have 

been incorporated into the main subruction interface in the form 

of overpressured compartments like those interpreted to exist at 

shallower depths by Moore et al. (this issue) along the nearby 

Oregon margin. 

Citing numerous case studies, Eberhart-Phillips, Stanley, Ro- 
driguez, and Lutter present a thorough review of surface-based 

seismic and electrical methods that have proven useful in imaging 

fault zones and discuss their strengths and limitations in inferring 

porosity, fluid pressure, and fault zone geometry at depth. Using 

synthetic seismic and magnetotelluric images of fault zones, they 

also test the resolution of these techniques for fault zone velocity 

and electrical conductivity structures under idealized conditions. 

For a simple fault geometry, these simulations indicate that it 

should be possible to image even a thin (-0.5 km) fault zone with 

a 20% reduction in P-wave velocities at 9 km depth using to- 

mographic ray-tracing techniques if numerous earthquakes are 
available as sources within the fault zone. Similarly, magne- 

totelluric methods are shown to be capable of imaging conductive 

fault zone cores of the order of 1 km in thickness down to a depth 
of about 10 km. 

Two papers present geophysical evidence for the breaching of 

fluid pressure compartments along the San Andreas fault system 

during earthquakes. Johnson and McEvil!y present an analysis of 

the clustering and migration of microearthquake activity along the 

transition from creeping to locked segments of the San Andreas 
fault at Parkfield, California. The activity occurs within and near 
the edges of a tabular zone of low velocity, anisotropic material 
with a high V•,/Vs ratio inferred to represent a dilatant, and 
possibly overpressured, fault zone. The expansion of these 
earthquake clusters with time is consistent with the migration of 

overpressured fluids from breached compartments. Fenoglio, 
Johnston, and Byedee explore the electromagnetic consequeaees 
of rupture and fluid flow along the fault zone. Their analysis 
shows that the fields generated could explain the precursory 
anomalous ultra-low-frequency electromagnetic emissions that 

were observed in the epicentral region of the 1989 M=7.1 Loma 

Prieta earthquake in California. They conclude that electrokinetic 
effects accompanying the rupturing of overpressured fluid 

compartments with impermeable seals provide the most plausible 
mechanism for these emissions. 

As a means cif characterizing fault zone heterogeneity using 
earthquake statistics, Ben-Zion and Rice conduct numerical 

simulations of slip instabilities on a vertical strike-slip fault using 
a variety of assumptions about the nature and scale of this 

heterogeneity. These heterogeneities include geometrical 

irregularities, variations in intrinsic frictional response, and a 

variety of nonhydrostatic fluid pressure distributions. By 
comparing the frequency-size distributions of earthquakes 
predicted by these simulations with seismological observations, 
they conclude that gradual pore pressure variations along faults, 
in and of themselves, cannot explain the spatial and temporal 

complexity exhibited by seismic slip. Rather, they propose •t 
either strong fluid pressure compartmentalization, geometric 

disorder, or variations in intrinsic frictional properties within fa•t 

zones are required to generate realistic earthquake statistics. 

The 1992 Landers, California, earthquake (M=7.2) triggered • 

abrupt increase in seismicity over much of the western United 

States. Hill, Johnston, Langbein, and Bilham present a detailed 

analysis of this triggered response at the Long Valley caldera, 

located about 400 km from the epicenter, using a unique data set 

consisting of local recordings of earthquake locations, tilt, 

volumetric strain, and geodetic line length changes. This re. 

sponse consisted of a surge in seismicity and a transient strain 

pulse that initiated immediately after passage of the Landers S- 

wave and then exponentially decayed over a period of several 
days. Mechanisms proposed to explain this response include a 

surge in fluid pressure within the seismogenic crust due to de 

cascading rupture of superhydrostatic fluid pressure compart- 

ments and the transient pressurization of shallow magma bodies 
by advective overpressure. However, Hill et al. prefer models 

calling upon the triggered shear relaxation of a partially crystal- 
lized magma body or dike intrusion into the lower crust, as these 
models are able to satisfy all of the observations with a single 
deformation source. This raises the intriguing possibility that 
large earthquakes can trigger the episodic recharge of the deep 
mots of crustal magma systems over a very large area. 

Evans and Chester report on the effects of mechanical mixing 
and fluid alteration in the San Gabriel fault zone, an exhumed part 

of the San Andreas fault system. The protolith was strongly 
deformed and locally altered during faulting to form a narrow, 

well-defined fault core consisting of ultra-cataclasite sandwiched 
between a layer of foliated cataclasite. They cite evidence for 
heterogeneous fluid flow and alteration in the fault zone. In some 
areas, rocks in the fault core were deformed. and altered in a 

closed fluid system, where wall rock material was mixed and 
altered without extensive in- or out-flux of chemical species. At 
other localities, however, the chemistry of fault core rocks 
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requires considerable volume loss, which implies significant fluid 
flow and chemical transport of mobile species, particularly silica. 
They emphasize that such heterogeneity may have important 
implications for spatial and temporal variations in the mechanical 
behavior of the fault. 

in a related study, Wintsch, Christofferson, and Kronenberg 
discuss the geochemical conditions under which hydrothermal 
alteration reactions might lead to the chemical weakening of fault 
zones (reaction softening), as strong feldspars are replaced by 
weak phyllosilicates. They suggest that a hydrated phyllosi!icate- 
rich fault rock slipping predominantly by dislocation glide may 
ttevelop a low and pressure-independent shear strength, ap- 
proaching that of mica single crystals (<10 MPa), without fluid 
overpressuring if the phyllosilicate grains are preferentially 
oriented and highly contiguous. They speculate that reaction 

softening promoted by the presence of Mg-rich wall rocks, in 

particular, might explain the low long-term strength of the 
creeping segment of the San Andreas fault in central California. 

The papers by Chester and by Blanpied, Lockner, and Byedee 
use results from laboratory friction experiments at elevated 
temperatures and in the presence of water to make predictions 
about fault strength and the stability of sliding along wet crustal- 

penetrating faults. Chester uses a multimechanism state variable 
friction law previously derived from laboratory experiments on 
fine-grained quartz gouge [Chester and Higgs, 1992; Chester, 

1994] to modify the traditional two-mechanism rheologic law for 

the crest (i.e., based on Byerlee friction and power law creep). 
This new rheologic model incorporates three distinct deformation 

mechanism fields in the frictional regime controlled, to varying 
degrees, by cataclasis and solution transport deformation. As 

Chester's model is cast in terms of shear strain rate, increasing the 

thickness of the fault zone at constant displacement rate is 

predicted to decrease fault strength and promote stable sliding. 
Application of this model to strike-slip faults indicates that their 

frictional strength should be significantly reduced (i.e., to the 

extent expected for a weak San Andreas fault) only for very thick 

fault zones or faults partially weakened by superhydrostatic fluid 

pressures. However, at geological slip rates, this model predicts 

that only very thin faults will display the rate-weakening behavior 
generally assumed necessary for frictional instabilities and the 

nucleation of earthquakes. 

Blanpied, Lockner, and Byedee performed a similar suite of 
experiments on fine-grained granite gouge. Samples deformed at 
low temperatures exhibited coefficients of friction in accord with 

Byedee's law, whereas samples deformed above 400øC were 
significantly weaker than dry samples deformed at the same 
temperatures. As in the Chester study, Blanpied et al. infer that 

solution transport processes combined with cataclasis dominate 
deformation in these wet, high-temperature experiments. By 
fitting their data to Chester and Higg's [1992] multimechanism 
constitutive law, but recast in terms of sliding velocity as opposed 
to strain rate (as appropriate to their granite experiments), 
Blanpied et al. use their data to predict strength as a function of 
depth along strike-slip faults. This analysis suggests that at 
depths greater than about 9 kin, the strength of faults sliding at 
geologic rates may be considerably reduced below values 

expected from low-temperature friction experiments. As in the 

Chester model, however, superhydrostatic fluid pressures must 
also be invoked to explain the apparent weakness of the San 
Andreas fault. Blanpied et al. and Chester both note that addi- 
tional solution-transport weakening of faults might result from 
factors not considered in their studies, including variations in 
mineralogy and pore fluid chemistry. 

The preceding two papers treat fluid pressures along faults as 

time-invariant. In contrast, the paper by Sleep extends earlier 
models by Sleep and Blanpied [1992, 1994] for the cyclic 

generation of superhydrostatic fluid pressures along faults due to 

time-dependent compaction to incorporate rate- and state-variable 
friction. This formalism is able to predict a wide range of faulting 

behaviors, including repeating earthquake cycles and stable 
sliding, as well as the transitions between these two modes of 

behavior. Although earthquakes are produced in these simula- 
tions, even small amounts of dilatancy during the onset of slip are 
predicted to decrease fluid pressure sufficiently that unstable 

sliding is prevented (i.e., through dilatant hardening). To 

circumvent this problem, Sleep proposes either that thermal 
pressurization of pore fluids during slip may be sufficient to offset 

the predicted pore pressure decrease or that the dilatant pores 

created during sliding are sufficiently isolated from the sliding 

surface that the effects of this dilatancy on fluid pressure along 
the sliding surface is not immediately realized. 

The papers by Lockner and Evans and by Dewers and Hajash 

describe laboratory studies of the time-dependent densification of 

quartz powders in the presence of water at elevated temperatures. 

These studies are important for understanding processes that 

could contribute both to permeability reduction in a porous fault 

gouge and to the generation of excess fluid pressures within fault 

zones through creep compaction (e.g., Sleep, this issue). Lockher 
and Evans measured the rate-of-change of porosity and electrical 

conductivity in ultrafine quartz powders compacted wet at high 

temperature (700øC) and moderate effective confining pressures 

(170-340 MPa). Porosity and electrical conductivity decreased 

monotonically during these experiments, with the most rapid 

changes occurring at high porosities (i.e., small elapsed times). 
These data are consistent with a model in which a decrease in 

conductivity results from a loss of total pore volume in the initial 

stages of compaction but is controlled by the uniform shrinkage 

of constrictions, or fluid channels, between pores after compac- 

tion reduces porosity to below 15%. This model predicts that 

under certain conditions pores in a compacting fault gouge could 

remain interconnected, and thus capable of conducting either 

electrical current or fluid, down to very small porosities. 

Dewers and Hajash measured volumetric strain and changes in 

pore-fluid silica concentration during compaction of a naturally 

rounded quartz sand at low temperatures (150-200øC) and low 

effective confining pressures (< 50 MPa). Compaction rates 

increased with increasing effective pressure, temperature, and 

porosity and decreased with increasing grain size. By comparing 
the observed strain rates and silica concentrations with theoretical 

rate laws, they conclude that the dominant mechanism for creep 

compaction was the removal of material from grain-to-grain 

contacts through intergranular pressure solution. The magnitude 

of the increase in silica concentrations observed with changes in 

effective confining pressure was too large to be accounted for by 

increases in elastic or plastic strain energy. This suggests that 
densification was driven by differences in normal stress between 

loaded grain boundaries and open pores. In addition, silica 

concentrations increased with decreasing grain size, providing an 

additional driving force for mass transfer that might promote 

healing and permeability reduction in fault gouges. The rapid 
densification rates observed by Dewers and Hajash and by 

Lockner and Evans reinforce the concept that porosity and 

permeability are dynamic parameters, which may evolve rapidly 
along faults at hydrothermal condi rions. 

In a series of experiments that are analogous to the Dewers and 
Hajash study, but at a much smaller scale, Hickman and Evans 
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focused on identifying the mechanisms and kinetics of pressure 

solution at individual grain-to-grain contacts using in-situ 

observations in a heated microscope stage. In this series of 
experiments, Hickman and Evans measured the convergence 

between convex halite lenses and fused silica plates pressed 

together in brine at temperatures of 8 to 90øC. They conclude 

that diffusion through a thin intergranular fluid film was the rate- 

controlling process in these experiments and that the diffusivity of 

this film increased with decreasing normal stress. As this film has 

diffusivities many orders of magnitude greater than observed for 

solid-state grain boundaries and because no metastable island- 

channel boundary structures were observed, they infer that this 

film was comprised of a tightly adsorbed (i.e., structured) water 

layer. Furthermore, convergence rates increased fivefold in an 

experiment conducted with a thin intergranular montmorillonite 

layer. Collectively, these experiments suggest that fine-grained, 

clay-rich fault gouges in the Earth should be particularly suscep- 

tible to both shear and compaction creep via pressure solution. 

Recommendations for Future Research 

Participants in the Conference on the Mechanical Effects of 

Fluids in Faulting identified a number of key topics for future 

research, each of which requires integration of knowledge from 

several fields and communication between specialists with 

different backgrounds. These research topics fall into three broad 
categories: geological observations of exhumed fault zones, 

laboratory experiments on natural and synthetic fault zone 

materials, and fault zone drilling combined with surface-based 

geophysical and geological investigations. The primary goal of 

these studies is to identify the processes and parameters that are 

most important in controlling fault zone theology and that will 

therefore dominate the mechanics of faulting at different levels in 
the crust. 

Studies of exhumed fault zones must be carefully designed to 
provide information on deformation mechanisms that operate at 
different crustal levels. These include fluid inclusion and mineral 

equilibria analyses that constrain the compositions, pressures, and 

temperatures of fluids both within and adjacent to fault zones. As 

noted by several conference participants, stress heterogeneities 
induced by fault slip and deformation can lead to considerable 

uncertainties in inferring past fluid pressures from observations of 
vein geometry in outcrop. Thus structural and fluid inclu- 

sion/mineralogical techniques must be combined to constrain 

fluid pressures during vein formation at different stages in the 
faulting cycle. Particular attention should also be paid to evi- 
dence for fluid communication, or lack thereof, between fault 

zones and country rock and evidence for or against cyclic 
dilatancy and gouge compaction within fault zones. Careful field 

mapping is needed to document the spatial scales over which 

structural, mineralogical, fluid-chemical, and hydraulic heteroge- 
neity exists. More data on the existence, origin, dimensions, and 

temporal characteristics of abnormally pressured fluid compart- 
ments in and near fault zones are of paramount importance in this 
regard. In all of these investigations, it is important to recognize 
that a complex history of uplift and denudation may have severely 
altered, or even destroyed, evidence for deformation mechanisms 

operative during fault slip. Thus careful microstructural studies 

and determinations of past temperature and pressure conditions 
are required to assess the degree of annealing and other secondary 
alteration on samples collected from exhumed fault zones. 

It is generally accepted that mylonites with well-ordered fabrics 

are predominantly the result of aseismic plastic shearing. In 

contrast, with the rare exception of localized melts generated by 
rapid seismic slip (i.e., the pseudotachylytes occasionally found in 
exhumed fault zones), no reliable way currently exists to distin. 
guish the cataclastic products of seismic versus aseismic slip ia 
fault zones. New laboratory friction experiments are needed at 
high rupture propagation and sliding velocities to constrain the 

mechanisms of dynamic rupture and, hopefully, to identify 
microstructures diagnostic of slip speed and stability. More 
laboratory experimentation is also required to document the 
importance of solution transport reactions and other fluid-rock 
interactions in controlling long-term fault strength, the stability of 
sliding, the evolution of fluid pressures along faults, and t• 
timesca!es for interseismic strength recovery in the middle to 

lower crust. Crucial goals for experimentalists are carefully 
controlled studies to determine the rates at which various defor- 
mation and sealing/strengthening processes operate and how these 

rates depend upon mineralogy, fluid chemistry, grain size, and 

pore geometry. Finally, participants noted the importance of 
electrokinesis as a potential earthquake precursor, along with the 

need for experiments that investigate electromagnetic properties 
of rocks during fluid flow at elevated temperature and pressure. 

Large-scale field experiments pertaining to the mechanical 
involvement of fluids in faulting that combine borehole observa- 

tions with geophysical imaging along active faults are urgently 
needed. These experiments would provide critical tests of 

interpretations and hypotheses arising from laboratory rock 
mechanics experiments and geological observations on exhumed 

faults. Drilling provides the only direct means of measuring pore 
pressure, stress, permeability, and other important parameters 

within and near an active fault zone at depth. It is also the only 
way to collect fluid and rock samples from the fault zone and wall 

rocks at seismogenic depths and to monitor time-dependent 

changes in fluid pressure, fluid chemistry, deformation, tempera. 
ture, and electromagnetic properties at depth during the earth- 

quake cycle. However, fault zone drilling and downhole 

measurements must be accompanied by surface-based geological 

and geophysical observations, including active and passive 

seismic experiments and electrical surveys, to allow extrapolation 

of fluid pressure regimes and fault zone physical properties over a 

much larger volume than sampled by the borehole. For example, 

seismic tomography coupled with borehole monitoring may 

provide one of the best methods for real-time monitoring of both 

temporal and spatial variations in pore pressure during earth- 

quakes and episodic fault slip. 
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