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Abstract

This chapter briefly discusses stochastic processes, in-
cluding Markov processes, Poisson processes, renewal
processes, quasi-renewal processes, and nonhomogeneous
Poisson processes. The chapter also provides a short list of
books for readers who are interested in advanced topics in
stochastic processes.

Keywords

Markov processes · Poisson processes · Renewal
processes · Stochastic processes · Nonhomogeneous
Poisson processes

H. Pham (�)
Department of Industrial and Systems Engineering, Rutgers
University, Piscataway, NJ, USA
e-mail: hopham@soe.rutgers.edu

8.1 Introduction

Stochastic processes are used to describe the operation of
a system over time. There are two main types of stochastic
processes: continuous and discrete. A complex continuous
process is a process describing a system transition from state
to state. The simplest process that will be discussed here is
a Markov process. In this case, the future behavior of the
process does not depend on its past or present behavior. In
many systems that arise in practice, however, past and present
states of the system influence the future states, even if they
do not uniquely determine them.

8.2 Markov Processes

In this section, we will discuss discrete stochastic processes.
As an introduction to the Markov process, let us examine the
following example.

Example 8.1 Consider a parallel system consisting of two
components (see Fig. 8.1). From a reliability point of view,
the states of the system can be described by

State 1: Full operation (both components operating);

State 2: One component is operating and one
component has failed;

State 3: Both components have failed.

Define

Pi(t) = P [X(t) = i]

= P [system is in state i at time t]
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Fig. 8.1 A two-component parallel system

and

Pi (t + dt) = P [X (t + dt) = i]

= P [system is in state i at time t + dt].

Define a random variable X(t) which can assume the values
1, 2, or 3 corresponding to the states mentioned above. Since
X(t) is a random variable, one can discuss P[X(t) = 1],
P[X(t) = 2] or the conditional probability P[X(t1) = 2 |
X(t0) = 1]. Again, X(t) is defined as a function of time t,
while the conditional probability P[X(t1) = 2 | X(t0) = 1]
can be interpreted as the probability of being in state 2 at
time t1, given that the system was in state 1 at time t0. In
this example, the “state space” is discrete, i.e., 1, 2, 3, etc.,
and the parameter space (time) is continuous. The simple
process described above is called a stochastic process: a
process that develops over time (or space) in accordance with
some probabilistic (stochastic) laws. There are many types of
stochastic processes.

Here we emphasize theMarkov process, which is a special
type of stochastic process. Let the system be observed at
discrete moments of time tn, where n = 0, 1, 2, . . . , and let
X(tn) denote the state of the system at time tn.

Definition 8.1 Let t0 < t1 < . . . < tn. If

P
[
X (tn) = xn | X (tn−1)

= xn−1, X (tn−2) = xn−2, . . . , X (t0) = x0
]

= P [X (tn) = xn|X (tn−1) = xn−1]

(8.1)

then the process is called aMarkov process.
From the definition of aMarkov process, given the present

state of the process, its behavior in the future does not depend
on its behavior in the past.

The essential characteristic of a Markov process is that
it is a process that has no memory; its future is determined
by the present and not the past. If, in addition to having
no memory, the process is such that it depends only on the
difference (t + dt) − t = dt and not the value of t – in
other words P[X(t + dt) = j | X(t) = i] is independent of
t – then the process is Markov with stationary transition

probabilities or is homogeneous in time. This is the same
property noted in exponential event times; in fact, refer-
ring back to the graphical representation of X(t), the times
between state changes are exponential if the process has
stationary transition probabilities.

Thus, a Markov process which is homogeneous in time
can describe processes with exponential event occurrence
times. The random variable of the process is X(t), the state
variable rather than the time to failure used in the exponential
failure density. To illustrate the types of processes that can be
described, we now review the exponential distribution and
its properties. Recall that, if X1, X2, . . . , Xn, are independent
random variables, each with exponential density and a mean
of 1/λi, then min{X1, X2, . . . , Xn} has an exponential density
with a mean of (

∑
λi)−1.

The significance of this property is as follows:

1. The failure behavior of components operated simultane-
ously can be characterized by an exponential density with
a mean equal to the reciprocal of the sum of the failure
rates.

2. The joint failure/repair behavior of a system where com-
ponents are operating and/or undergoing repair can be
characterized by an exponential density with a mean equal
to the reciprocal of the sum of the failure and repair rates.

3. The failure/repair behavior of a system similar to that
described in (2) above but further complicated by active
and dormant operating states and sensing and switching
can be characterized by an exponential density.

The above property means that almost all reliability
and availability models can be characterized by a time-
homogeneous Markov process if the various failure times
and repair times are exponential. The notation for theMarkov
process is {X(t), t > 0}, where X(t) is discrete (state space)
and t is continuous (parameter space). By convention, this
type of Markov process is called a continuous-parameter
Markov chain.

From a reliability/availability viewpoint, there are two
types of Markov processes. These are defined as follows:

1. Absorbing process: Contains an “absorbing state,” which
is a state that, once entered, the system can never leave
(e.g., a failure which aborts a flight or a mission).

2. Ergodic process: Contains no absorbing states, meaning
that X(t) can move around indefinitely (e.g., the operation
of a ground power plant where failure only temporarily
disrupts the operation).

Figure 8.2 presents a summary of Markov processes bro-
ken down into absorbing and ergodic categories. Both the
reliability and the availability can be described in terms of
the probability of the process or system being in defined “up”
states, e.g., states 1 and 2 in the initial example. Likewise,
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Fig. 8.2 State transition diagram for a two-component system

the mean time between failures (MTBF) can be described as
the total time spent in the “up” states before proceeding to
the absorbing state or failure state.

Define the incremental transition probability as

Pij (dt) = P [X (t + dt) = j|X(t) = i].

This is the probability that the process [random variable X(t)]
will move to state j during the increment t to (t + dt), given
that it was in state i at time t. Since we are dealing with time-
homogeneous Markov processes (exponential failure and
repair times), the incremental transition probabilities can be
derived from an analysis of the exponential hazard function.
It was shown that the hazard function for an exponential
with a mean of 1/λ was just λ. This means that the limiting
(as dt → 0) conditional probability of an event occurring
between t and t + dt, given that an event had not occurred
at time t, is simply λ, in other words:

h(t) = lim
dt→0

P [t < X < t + dt|X > t]
dt

= λ.

The equivalent statement for the random variable X(t) is

h(t) dt = P [X (t + dt) = j|X(t) = i] = λ dt.

Now, h(t) dt is in fact the incremental transition probability,
so Pij(dt) can be stated in terms of the basic failure and/or
repair rates. Define

Pi(t): the probability that the system is in state i at time t
rij(t): transition rate from state i to state j

In general, the differential equations can be written as
follows:

∂Pi(t)

∂t
= −

∑
j

rij(t)Pi(t) +
∑
j

rji(t)Pj(t). (8.2)

Solving the above differential equations, one can obtain the
time-dependent probability of each state.

Returning to Example 8.1, it is easy to construct a state
transition showing the incremental transition probabilities
between all possible states for the process:

State 1: Both components operating

State 2: One component up and one component down

State 3: Both components down (absorbing state)

The loops in Fig. 8.2 indicate the probability of remaining
in the present state during the dt increment

P11 (dt) = 1 − 2λ dt
P21 (dt) = 0
P31 (dt) = 0

P12 (dt) = 2λ dt
P22 (dt) = 1 − λ dt
P32 (dt) = 0

P13 (dt) = 0
P23 (dt) = λ dt
P33 (dt) = 1

The zeros for Pij, i > j show that the process cannot go
backwards: this is not a repair process. The zero on P13

shows that, for a process of this type, the probability of more
than one event (e.g., failure, repair, etc.) occurring in the
incremental time period dt approaches zero as dt approaches
zero.

Except for the initial conditions of the process (the state in
which the process starts), the process is completely specified
by incremental transition probabilities. The reason that this is
useful is that assuming exponential event (failure or repair)
times allows us to characterize the process at any time t,
since the process depends only on what happens between
t and (t + dt). The incremental transition probabilities can
be arranged into a matrix in a way that depicts all possible
statewide movements. Thus, for parallel configurations,

[Pij (dt)] =
⎛
⎝
1 − 2λdt 2λdt 0

0 1 − λdt λ dt
0 0 1

⎞
⎠

for i, j= 1, 2, or 3. Thematrix [Pij(dt)] is called the incremen-
tal, one-step transition matrix. It is a stochastic matrix (the
rows sum to 1.0). As mentioned earlier, this matrix, along
with the initial conditions, completely describes the process.

Now, [Pij(dt)] gives the probabilities of remaining or
moving to all of the various states during the interval t to
t + dt; hence,

P1 (t + dt) = (1 − 2λ dt)P1(t)
P2 (t + dt) = 2λ dtP1(t) (1 − λ dt)P2(t)
P3 (t + dt) = λ dtP2(t) + P3(t)

By algebraic manipulation, we have
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Fig. 8.3 Markov transition rate diagram for a two-component parallel
system

[P1 (t + dt) − P1(t)]
dt

= −2λ P1(t),

[P2 (t + dt) − P2(t)]
dt

= 2λ P1(t) − λ P2(t),

[P3 (t + dt) − P3(t)]
dt

= λ P2(t).

Taking limits of both sides as dt → 0, we obtain (also see
Fig. 8.3):

P′
1(t) = −2λP1(t),

P′
2(t) = 2λP1(t) − λP2(t),

P′
3(t) = λP2(t).

(8.3)

The above system of linear first-order differential equations
can be easily solved for P1(t) and P2(t), meaning that the
reliability of the configuration can be obtained:

R(t) =
2∑
i=1

Pi(t). (8.4)

Actually, there is no need to solve all three equations,
only the first two, because P3(t) does not appear and also
P3(t) = [1 − P1(t)] − P2(t). The system of linear, first-
order differential equations can be solved by various means,
including both manual and machine methods.We use manual
methods employing the Laplace transform (see Appendix A)
here.

L [Pi(t)] =
∫ ∞

0
e−stPi(t)dt = fi(s),

L [P′
i(t)] =

∫ ∞

0
e−stP′

i(t)dt = sf i(s) − Pi(0).

(8.5)

Application of the Laplace transform will allow us to trans-
form the system of linear, first-order differential equations
into a system of linear algebraic equations that can easily
be solved, and solutions of Pi(t) can be determined via the
inverse transforms.

Returning to the example, the initial condition of a parallel
configuration is assumed to be “fully up”, such that

P1 (t = 0) = 1, P2 (t = 0) = 0, P3 (t = 0) = 0.

Transforming the equations for P1
′
(t) and P2

′
(t) gives

s f1(s) − P1(t)|t=0 = −2λ f1(s),
s f2(s) − P2(t)|t=0 = 2λ f1(s) − λ f2(s).

Evaluating P1(t) and P2(t) at t = 0 gives

s f1(s) − 1 = −2λ f1(s),
s f2(s) − 0 = 2λ f1(s) − λ f2(s).

from which we obtain

(s+ 2λ) f1(s) = 1,
−2λ f1(s) + (s+ λ) f2(s) = 0.

Solving the above equations for f1(s) and f2(s), we have

f1(s) = 1

(s+ 2λ)
,

f2(s) = 2λ

[(s+ 2λ) (s+ λ)]
.

From the inverse Laplace transforms in Appendix A,

P1(t) = e−2λt,
P2(t) = 2e−λt − 2e−2λt,
R(t) = P1(t) + P2(t) = 2e−λt − e−2λt.

(8.6)

The example given above is that of a simple absorbing
process where we are concerned about reliability. If a repair
capability were added to the model in the form of a repair rate
μ, the methodology would remain the same, with only the
final result changing.With a repair rateμ added to the parallel
configuration (see Fig. 8.4), the incremental transition matrix
would be

[Pij (dt)] =
⎛
⎝
1 − 2λ dt 2λ dt 0

μ dt 1 − (λ + μ) dt λ dt
0 0 1

⎞
⎠ .

The differential equations would become (see Fig. 8.4)

P′
1(t) = −2λP1(t) + μP2(t),
P′
2(t) = 2λP1(t) + (λ + μ)P2(t),

and the transformed equations would become

(s+ 2λ) f1(s) − μf2(s) = 1,
−2λ f1(s) + (s+ λ + μ) f2(s) = 0.

Hence, we obtain

f1(s) = (s+ λ + μ)

(s− s1) (s− s2)
,

f2(s) = 2λ

(s− s1) (s− s2)
,

(8.7)
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Fig. 8.4 Markov transition rate diagram for a two-component parallel
repairable system

where

s1 = − (3λ + μ) +
√

(3λ + μ)2 − 8λ2

2
,

s2 = − (3λ + μ) −
√

(3λ + μ)2 − 8λ2

2
.

(8.8)

Using the Laplace transform, we obtain

P1(t) = (s1 + λ + μ) e−s1t

(s1 − s2)
+ (s2 + λ + μ) e−s2t

(s2 − s1)
,

P2(t) = 2λe−s1t

(s1 − s2)
+ 2λe−s2t

(s2 − s1)
,

(8.9)

where s1 and s2 are given in Eq. (8.8).
Thus, the reliability of a two-component parallel

repairable system is given by

R(t) = P1(t) + P2(t)

= (s1 + 3λ + μ) e−s1t − (s2 + 3λ + μ) e−s2t

(s1 − s2)

(8.10)

Example 8.2 Consider a three-unit shared load parallel sys-
tem where

λ0 is the constant failure rate of a unit when all the three units
are operational;

λh is the constant failure rate of each of the two surviving
units, each of which shares half of the total load; and

λf is the constant failure rate of a unit at full load.

For a shared-load parallel system to fail, all the units in the
system must fail. We now derive the reliability of a three-unit
shared-load parallel system using the Markov model.

In reliability analysis, for the three-unit load-sharing sys-
tem to work the following events would be considered:

Event 1: All the three units are working until the end of the
mission time twhere each unit shares one-third of the total
load.

Event 2: All the three units are working until time t1 (each
shares one-third of the total load). At time t1, one of the
units (say unit 1) fails, and the other two units (say units 2

i = 3 i = 0

i = 2 i = 1

1

2lh

1

l f3l0

Fig. 8.5 Markov model diagram for a three-unit shared-load parallel
system

and 3) remain towork until themission time t. Here, once a
unit fails at time t1, the remaining twoworking units would
take half each of the total load and have a constant rate λh.
As for all identical units, there are three possibilities under
this situation.

Event 3: All the three units are working until time t1 (each
shares one-third of the total load) when one (say unit 1)
of the three units fails. At time t2, (t2 > t1) one more unit
fails (say unit 2) and the remaining unit works until the
end of the mission time t. Under this event, there are six
possibilities that the probability of two units failing before
time t and only one unit remains to work until time t.

Define state i represents that i components are working.
Let Pi(t) denote the probability that the system is in state i
at time t for i = 0,1,2,3. Figure 8.5 below shows the Markov
diagram of the system.

The Markov modeling system of differential equations
based on Fig. 8.1 can be easily derived as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dP3(t)

dt
= −3λ0P3(t)

dP2(t)

dt
= 3λ0P3(t) − 2λhP2(t)

dP1(t)

dt
= 2λhP2(t) − λfP1(t)

dP0(t)

dt
= λfP1(t)

P3(0) = 1
Pj(0) = 0, j �= 3
P0(t) + P1(t) + P2(t) + P3(t) = 1

(8.11)

Solving the above differential equations using the Laplace
transform method (see Appendix A), we can easily obtain
the following results:

P3(t) = e−3λ0t
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P2(t) = 3λ0

3λh − 3λ0

(
e−3λ0t − e−2λht

)

P1(t) = 6λ0λh

(2λh − 3λ0)[
e−3λ0t

(λf − 3λ0)
− e−2λht

(λf − 2λh)
+ (2λh − 3λ0) e−λf t

(λf − 3λ0) (λf − 2λh)

]

(8.12)

Hence, the reliability of a three-unit shared load parallel
system can be obtained as follows:

R(t) = P3(t) + P2(t) + P1(t)

= e−3λ0t + 3λ0

2λh − 3λ0

(
e−3λ0t − e−2λht

)

+ 6λ0λh

(2λh − 3λ0)

[
e−3λ0t

(λf − 3λ0)
− e−2λht

(λf − 2λh)

+ (2λh − 3λ0) e−λf t

(λf − 3λ0) (λf − 2λh)

]

(8.13)

8.2.1 SystemMean Time Between Failures

Another parameter of interest for absorbing Markov pro-
cesses is the MTBF. Recalling Example 8.1 of a parallel
configuration with repair, the differential equations P′

1(t) and
P′
2(t) describing the process were

P′
1(t) = −2λP1(t) + μP2(t),
P′
2(t) = 2λP1(t) − (λ + μ)P2(t).

Integrating both sides of the above equations yields

∫ ∞

0
P1

′(t)dt = −2λ
∫ ∞

0
P1(t)dt + μ

∫ ∞

0
P2(t)dt,

∫ ∞

0
P2

′(t)dt = 2λ
∫ ∞

0
P1(t)dt − (λ + μ)

∫ ∞

0
P2(t)dt.

For the repairable system, we have

∫ ∞

0
R(t)dt = MTBF. (8.14)

Similarly,

∫ ∞

0
P1(t)dt = mean time spent in state 1, and

∫ ∞

0
P2(t)dt = mean time spent in state 2.

Designating these mean times as T1 and T2, respectively, we
have

P1(t)dt|∞0 = −2λT1 + μT2,
P2(t)dt|∞0 = 2λT1 − (λ + μ) T2.

But P1(t) = 0 as t → ∞ and P1(t) = 1 for t = 0. Likewise,
P2(t) = 0 as t → ∞ and P2(t) = 0 for t = 0. Thus,

−1 = −2λT1 + μT2,
0 = 2λT1 − (λ + μ)T2,

or, equivalently,

(−1
0

)
=
(−2λ μ

2λ − (λ + μ)

)(
T1
T2

)
.

Therefore,

T1 = (λ + μ)

2λ2
, T2 = 1

λ
,

MTBF = T1 + T2 = (λ + μ)

2λ2
+ 1

λ
= (3λ + μ)

2λ2
.

(8.15)

The MTBF for unmaintained processes is developed in ex-
actly the same way as just shown.

The last case to consider for absorbing processes is that
of the availability of a maintained system. The difference
between reliability and availability is somewhat subtle for
absorbing processes. A good example is that of a commu-
nications system where the mission would continue if such
a system failed temporarily, but if it failed permanently the
mission would be aborted. Consider a cold-standby system
consisting of two units: one main unit and one spare unit [1]:

State 1: Main unit operating and the spare is OK

State 2: Main unit out and restoration underway

State 3: Spare unit is installed and operating

State 4: Permanent failure (no spare available)

The incremental transition matrix is given by

[Pij (dt)] =

⎛
⎜⎜⎝

1 − λdt λ dt 0 0
0 1 − μ dt μ dt 0
0 0 1 − λ dt λ dt
0 0 0 1

⎞
⎟⎟⎠ .

We obtain

P′
1(t) = −λP1(t),
P′
2(t) = λP1(t) − μP2(t),
P′
3(t) = μP2(t) − λP3(t).

Using the Laplace transform, we obtain the following results.
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The probability of full-up performance P1(t) is given by

P1(t) = e−λt.

The probability of a down system that is under repair P2(t) is

P2(t) =
(

λ

(λ − μ)

) (
e−μt − e−λt

)
.

Similarly, the probability of a fully up system with no spare
available P3(t) is

P3(t) =
(

λμ

(λ − μ)2

) [
e−μt − e−λt − (λ − μ) t e−λt

]
.

Hence, the point availability A(t) is given by

A(t) = P1(t) + P3(t). (8.16)

If average or interval availability is required, this is achieved
by

(
1

t

)∫ T

0
A(t)dt =

(
1

t

)∫ T

0
[P1(t) + P3(t)] dt,

where T is the interval of concern.
Ergodic processes, as opposed to absorbing processes, do

not have any absorbing states, and hence movement between
states can go on indefinitely. For the latter reason, availabil-
ity (point, steady-state, or interval) is the only meaningful
measure. As an example of an ergodic process, we will use a
ground-based power unit configured in parallel.

The parallel units are identical, each with exponential
failure and repair times with means 1/λ and 1/μ, respectively.
Assume a two-repairmen capability if required (both units
down), then

State 1: Fully up (both units operating)

State 2: One unit down and under repair (other unit up)

State 3: Both units down and under repair

It should be noted that, as in the case of failure events, two
or more repairs cannot be made in the dt interval.

[Pij (dt)] =
⎛
⎝
1 − 2λ dt 2λ dt 0

μ dt 1 − (λ + μ) dt λdt
0 2μ dt 1 − 2μ dt

⎞
⎠ .

Case I: Point Availability – Ergodic Process. For an er-
godic process, as t → ∞ the availability settles down to
a constant level. Point availability allows us to study the
process before this “settling down,” and it reflects the initial
conditions in the process. We can obtain a solution for the
point availability in a similar way to that for absorbing

processes, except that the last row and column of the tran-
sition matrix must be retained and entered into the system of
equations. For example, the system of differential equations
becomes

⎛
⎝
P1

′(t)
P2

′(t)
P3

′(t)

⎞
⎠ =

⎛
⎝

−2λ μ 0
2λ − (λ + μ) 2μ
0 λ −2μ

⎞
⎠
⎛
⎝
P1(t)
P2(t)
P3(t)

⎞
⎠ .

Similar to the absorbing case, the Laplace transform can be
used to solve for P1(t), P2(t) and P3(t); the point availability
A(t) is given by

A(t) = P1(t) + P2(t).

Case II: Interval Availability – Ergodic Process. This is
the same as the absorbing case, with integration over the time
period T of interest. The interval availability, A(T), is

A(T) = 1

T

∫ T

0
A(t)dt. (8.17)

Case III: Steady State Availability – Ergodic Process.
Here, the process is examined as t → ∞, with complete
“washout” of the initial conditions. By letting t → ∞, the
system of differential equations can be transformed into
linear algebraic equations. Thus,

lim
t→∞

⎛
⎝
P′
1(t)
P′
2(t)
P′
3(t)

⎞
⎠

= lim
t→∞

⎛
⎝

−2λ μ 0
2λ − (λ + μ) 2μ
0 λ −2μ

⎞
⎠
⎛
⎝
P1(t)
P2(t)
P3(t)

⎞
⎠ .

As t → ∞, Pi(t) → constant and P1
′
(t) → 0. This leads to an

unsolvable system, namely,

⎛
⎝

0
0
0

⎞
⎠ =

⎛
⎝

−2λ μ 0
2λ −(λ + μ) 2μ
0 λ −2μ

⎞
⎠
⎛
⎝
P1(t)
P2(t)
P3(t)

⎞
⎠ .

To avoid the above difficulty, an additional equation is intro-
duced:

3∑
i=1

Pi(t) = 1.

With the introduction of the new equation, one of the original
equations is deleted and a new system is formed:

⎛
⎝

1
0
0

⎞
⎠ =

⎛
⎝

1 1 1
− 2λ μ 0
2λ − (λ + μ) 2μ

⎞
⎠
⎛
⎝
P1(t)
P2(t)
P3(t)

⎞
⎠
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or, equivalently,

⎛
⎝
P1(t)
P2(t)
P3(t)

⎞
⎠ =

⎛
⎝

1 1 1
− 2λ μ 0
2λ − (λ + μ) 2μ

⎞
⎠

−1⎛
⎝

1
0
0

⎞
⎠ .

We now obtain the following results:

P1(t) = μ2

(μ + λ)2
,

P2(t) = 2λμ

(μ + λ)2
,

and

P3(t) = 1 − P1(t) − P2(t)

= λ2

(μ + λ)2
.

Therefore, the steady state availability A(∞) is given by

A3 (∞) = P1(t) + P2(t)

= μ (μ + 2λ)

(μ + λ)2
.

(8.18)

Note that Markov methods can also be employed when
failure or repair times are not exponential but can be repre-
sented as the sum of exponential times with identical means
(an Erlang distribution or gamma distribution with integer-
valued shape parameters). Basically, the method involves
introducing “dummy” states which, although being of no
particular interest in themselves, change the hazard function
from constant to increasing.

Example 8.3 A system is composed of eight identical active
power supplies, at least seven of the eight are required for the
system to function. In other words, when two of the eight
power supplies fail, the system fails. When all eight power
supplies are operating, each has a constant failure rate λa per
hour. If one power supply fails, each remaining power supply
has a failure rate λb per hour where λa ≤ λb We assume that a
failed power supply can be repaired with a constant rateμ per
hour. The system reliability function, R(t), is defined as the
probability that the system continues to function throughout
the interval (0, t). Here wewish to determine the systemmean
time to failure (MTTF).

Define

State 0: All 8 units are working
State 1: 7 units are working
State 2: More than one unit failed and system does not

work
The initial condition: P0(0) = 1, P1(0) = P2(0) = 0

0

8la 7lb

m

1 2

Fig. 8.6 Markov transition rate diagram for a 7-out-8 dependent sys-
tem

The Markov modeling of differential equations (see Fig. 8.6)
can be written as follows:

P′
0(t) = −8λaP0(t) + μP1(t)
P′
1(t) = 8λaP0(t) − (7λb + μ)P1(t)
P′
2(t) = 7λbP1(t)

Using the Laplace transform, we obtain

⎧⎨
⎩
sF0(s) − P0(0) = −8λaF0(s) + μF1(s)
sF1(s) − P1(0) = 8λaF0(s) − (7λb + μ)F1(s)
sF2(s) − P2(0) = 7λbF1(s)

(8.19)

When s = 0:

Fi(0) =
∫ ∞

0
Pi(t)dt.

Thus, the system reliability function and system MTTF,
respectively, are

R(t) = P0(t) + P1(t). (8.20)

and

MTTF =
∫ ∞

0
R(t)dt =

∫ ∞

0
[P0(t) + P1(t)] dt =

2∑
i=1

Fi(0).

(8.21)

From Eq. (8.19), when s = 0, we have

{ −1 = −8λaF0(0) + μF1(0)
0 = 8λaF0(0) − (7λb + μ)F1(0).

(8.22)

From Eq. (8.22), after some arrangements, we can obtain

7λbF1(0) = 1 ⇒ F1(0) = 1

7λb

and
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F0(0) = 7λb + μ

8λa
F1(0)

= 7λb + μ

8λa

1

7λb
= 7λb + μ

56λaλb

From Eq. (8.21), the system MTTF can be obtained

MTTF =
∫ ∞

0
R(t)dt =

∫ ∞

0
[P0(t) + P1(t)] dt

= F0(0) + F1(0)

= 7λb + μ

56λaλb
+ 1

7λb
= μ + 8λa + 7λb

56λaλb
.

Given λa = 3 × 10−3 = 0.003, λb = 5 × 10−2 = 0.05, and
μ = 0.8, then the system mean time to failure is given by:

MTTF = μ + 8λa + 7λb

56λaλb

= 0.8 + 8(0.003) + 7(0.05)

56(0.003)(0.05)
= 1.174

0.0084
= 139.762 hours.

8.3 Counting Processes

Among various discrete stochastic processes, counting pro-
cesses are widely used in engineering statistics to describe
the appearance of events in time, such as failures, the number
of perfect repairs, etc. The simplest counting process is a
Poisson process. The Poisson process plays a special role in
many applications related to reliability [1]. A classic example
of such an application is the decay of uranium. Here, radioac-
tive particles from nuclear material strike a certain target in
accordance with a Poisson process of some fixed intensity.
One well-known counting process is the so-called renewal
process. This process is described as a sequence of events
where the intervals between the events are independent and
identically distributed random variables. In reliability theory,
this type of mathematical model is used to describe the
number of occurrences of an event or the number of renewals
(i.e., replacements of objects) over a time interval. A light
bulb is shining in your living room and it blows ups suddenly.
You replace it by a new bulb. It lasts for a few months, then
burns out again. You then replace it again, and so on. One
would be interested to know about the total number of bulbs
is needed to be replaced in 2 years.

In this subsection, we discuss the concepts and properties
of the Poisson process, renewal process, quasi-renewal pro-
cess, and nonhomogeneous Poisson process.

A non-negative, integer-valued stochastic process N(t) is
called a counting process if N(t) represents the total number
of occurrences of an event in the time interval [0, t] and
satisfies these two properties:

1. If t1 < t2, then N(t1) ≤ N(t2)
2. If t1 < t2, then N(t2) − N(t1) is the number of occurrences

of the event in the interval [t1, t2].

For example, if N(t) equals the number of persons who
have entered a restaurant at or prior to time t, then N(t) is a
counting process in which an event occurs whenever a person
enters the restaurant.

8.3.1 Poisson Processes

One of the most important counting processes is the Poisson
process.

Definition 8.3 A counting process N(t) is said to be a
Poisson process with intensity λ if

1. The failure process N(t) has stationary independent incre-
ments

2. The number of failures in any time interval of length s has
a Poisson distribution with a mean of λs; in other words

P {N (t + s) − N(t) = n} = e−λs(λs)n

n!
n = 0, 1, 2, . . . ;

(8.23)

3. The initial condition is N(0) = 0

This model is also called a homogeneous Poisson process,
indicating that the failure rate λ does not depend on time t. In
other words, the number of failures that occur during the time
interval (t, t + s] does not depend on the current time t, only
the length of the time interval s. A counting process is said
to possess independent increments if the number of events in
disjoint time intervals are independent.

For a stochastic process with independent increments, the
autocovariance function is

Cov [X (t1) , X (t2)]

=
{
Var [N (t1 + s) − N (t2)] for 0 < t2 − t1 < s
0 otherwise

,

where

X(t) = N (t + s) − N(t).

If X(t) is Poisson-distributed, then the variance of the Poisson
distribution is

Cov [X (t1) , X (t2)]

=
{

λ [s− (t2 − t1)] for 0 < t2 − t1 < s
0 otherwise

.
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This result shows that the Poisson increment process is
covariance stationary. We now present several properties of
the Poisson process.

Property 8.1 The sum of independent Poisson processes
N1(t), N2(t), . . . , Nk(t) with mean values λ1t, λ2t, . . . , λkt,

respectively, is also a Poisson process with mean

(
k∑
i=1

λi

)
t.

In other words, the sum of the independent Poisson processes
is also a Poisson process with a mean that is equal to the sum
of the means of the individual Poisson processes.

Property 8.2 The difference between two independent Pois-
son processes,N1(t) andN2(t), with mean λ1t and λ2t, respec-
tively, is not a Poisson process. Instead, it has a probability
mass function of

P [N1(t) − N2(t) = k]

= e−(λ1+λ2)t

(
λ1

λ2

) k
2

Ik
(
2
√

λ1λ2t
)
,

where Ik(.) is a modified Bessel function of order k.

Property 8.3 If the Poisson process N(t) with mean λt is
filtered such that not every occurrence of the event is counted,
then the process has a constant probability p of being counted.
The result of this process is a Poisson process with mean λpt.

Property 8.4 Let N(t) be a Poisson process and Yi a family
of independent and identically distributed random variables
which are also independent of N(t). A stochastic process
X(t) is said to be a compound Poisson process if it can be
represented as

X(t) =
N(t)∑
i=1

Yi.

8.3.2 Renewal Processes

A renewal process is a more general case of the Poisson pro-
cess inwhich the inter-arrival times of the process or the times
between failures do not necessarily follow the exponential
distribution. For convenience, we will call the occurrence of
an event a renewal, the inter-arrival time the renewal period,
and the waiting time the renewal time.

Definition 8.3 A counting process N(t) that represents the
total number of occurrences of an event in the time interval
(0, t] is called a renewal process if the times between the
failures are independent and identically distributed random
variables.

The probability that exactly n failures occur by time t can
be written as

P [N(t) = n] = P [N(t) ≥ n] − P [N(t) > n] . (8.24)

Note that the times between the failures are T1, T2, . . . , Tn,
so the failures occurring at time Wk are

Wk =
k∑
i=1

Ti

and

Tk = Wk −Wk−1.

Thus,

P [N(t) = n] = P [N(t) ≥ n] − P [N(t) > n]

= P [Wn ≤ t] − P [Wn+1 ≤ t]

= Fn(t) − Fn+1(t),

(8.25)

where Fn(t) is the cumulative distribution function for the
time of the nth failure and n = 0, 1, 2, . . . .

Example 8.4 Consider a software testing model for which
the time at which an error is found during the testing phase
has an exponential distribution with a failure rate of X. It can
be shown that the time of the nth failure follows the gamma
distribution with parameters k and n. From Eq. (8.24), we
obtain

P [N(t) = n] = P [N(t) ≤ n] − P [N(t) ≤ n− 1]

=
n∑

k=0

(λt)k

k! e−λt −
n−1∑
k=0

(λt)k

k! e−λt

= (λt)n

n! e−λt for n = 0, 1, 2, . . . .

(8.26)

Several important properties of the renewal function are
given below.

Property 8.5 The mean value function of the renewal pro-
cess, denoted by m(t), is equal to the sum of the distribution
functions for all renewal times, that is,

m(t) = E [N(t)]

=
∞∑
n=1

Fn(t).
(8.27)

Property 8.6 The renewal functionm(t) satisfies the follow-
ing equation:

m(t) = Fa(t) +
∫ t

0
m (t − s) dFa(s), (8.28)
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where Fa(t) is the distribution function of the inter-arrival
time or the renewal period.

In general, let y(t) be an unknown function to be eval-
uated and x(t) be any non-negative and integrable function
associated with the renewal process. Assume that Fa(t) is
the distribution function of the renewal period. We can then
obtain the following result.

Property 8.7 Let the renewal equation be

y(t) = x(t) +
∫ t

0
y (t − s) dFa(s). (8.29)

Then its solution is given by

y(t) = x(t) +
∫ t

0
x (t − s) dm(s)

wherem(t) is the mean value function of the renewal process.
The proof of the above property can be easily derived

using the Laplace transform. Let x(t) = a. Thus, in Property
8.7, the solution y(t) is given by

y(t) = x(t) +
∫ t

0
x (t − s) dm(s).

= a+
∫ t

0
a dm(s)

= a
{
1 + E [N(t)]

}
.

8.3.3 Quasi-Renewal Processes

In this section we discuss a general renewal process: the
quasi-renewal process. Let {N(t), t > 0} be a counting process
and let Xn be the time between the (n− 1)th and the nth event
of this process, n ≥ 1.

Definition 8.4 [2] If the sequence of non-negative random
variables {X1, X2, . . . } is independent and

Xi = αXi−1 (8.30)

for i≥ 2 where α > 0 is a constant, then the counting process
{N(t), t ≥ 0} is said to be a quasi-renewal process with
parameter α and the first inter-arrival time X1.

When α = 1, this process becomes the ordinary renewal
process. This quasi-renewal process can be used to model
reliability growth processes in software testing phases and
hardware burn-in stages for α > 1, and in hardware mainte-
nance processes when α ≤ 1.

Assume that the probability density function (pdf), cu-
mulative distribution function (cdf), survival function, and
failure rate of random variable X1 are f1(x), F1(x), s1(x) and

r1(x), respectively. Then the pdf, cdf, survival function, and
failure rate of Xn for n = 1, 2, 3, . . . are, respectively, given
below [2]:

fn(x) = 1

αn−1
f1

(
1

αn−1
x

)
,

Fn(x) = F1

(
1

αn−1
x

)
,

sn(x) = s1

(
1

αn−1
x

)
,

fn(x) = 1

αn−1
r1

(
1

αn−1
x

)
.

(8.31)

Similarly, the mean and variance of Xn is given as

E (Xn) = αn−1E (X1) ,
Var (Xn) = α2n−2Var (X1) .

(8.32)

Because of the non-negativity of X1, and the fact that X1 is
not identically 0, we obtain

E (X1) = μ1 �= 0.

It is worth noting that the shape parameters for Xn are the
same for n = 1, 2, 3, . . . for a quasi-renewal process if X1

follows the gamma, Weibull, or log normal distribution.
This means that the shape parameters of the inter-arrival

time will not change after “renewal”. In software reliability,
the assumption that the software debugging process does not
change the error-free distribution seems reasonable. Thus, if a
quasi-renewal process model is used, the error-free times that
occur during software debugging will have the same shape
parameters. In this sense, a quasi-renewal process is suitable
for modeling the increase in software reliability. It is worth
noting that

lim
n→∞

E (X1 + X2 + · · · + Xn)

n
= lim

n→∞
μ1 (1 − αn)

(1 − α) n

=
{
0 if α < 1,
∞ if α > 1.

(8.33)

Therefore, if the inter-arrival time represents the error-
free time of a software system, then the average error-free
time approaches infinitywhen its debugging process has been
operating for a long debugging time.

Distribution of N(t)
Consider a quasi-renewal process with parameter α and a first
inter-arrival time X1. Clearly, the total number of renewals
N(t) that occur up to time t has the following relationship to
the arrival time of the nth renewal SSn:

N(t) ≥ n if and only if SSn ≤ t.
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In other words, N(t) is at least n if and only if the nth renewal
occurs prior to time t. It is easily seen that

SSn =
n∑
i=1

Xi =
n∑
i=1

αi−1X1 for n ≥ 1. (8.34)

Here, SS0 = 0. Thus, we have

P {N(t) = n} = P {N(t) ≥ n} − P {N(t) ≥ n+ 1}
= P {SSn ≤ t} − P {SSn+1 ≤ t}
= Gn(t) − Gn+1(t),

where Gn(t) is the convolution of the inter-arrival times F1,
F2, F3, . . . , Fn. In other words,

Gn(t) = P {F1 + F2 + · · · + Fn ≤ t} .

If the mean value of N(t) is defined as the renewal function
m(t), then

m(t) = E [N(t)]

=
∞∑
n=1

P {N(t) ≥ n}

=
∞∑
n=1

P {SSn ≤ t}

=
∞∑
n=1

Gn(t).

(8.35)

The derivative of m(t) is known as the renewal density

λ(t) = m′(t).

In renewal theory, random variables representing inter-
arrival distributions assume only non-negative values, and
the Laplace transform of its distribution F1(t) is defined by

L {F1(s)} =
∫ ∞

0
e−sxdF1(x).

Therefore,

LFn(s) =
∫ ∞

0
e−an−1stdF1(t) = LF1

(
αn−1s

)

and

Lmn(s) =
∞∑
n−1
LGn(s)

=
∞∑
n−1
LF1(s)LF1 (αs) · · ·LF1

(
αn−1s

)
.

(8.36)

Since there is a one-to-one correspondence between distri-
bution functions and its Laplace transform, it follows that
the first inter-arrival distribution of a quasi-renewal process
uniquely determines its renewal function.

If the inter-arrival time represents the error-free time
(time to first failure), a quasi-renewal process can be
used to model reliability growth in both software and
hardware.

Suppose that all software faults have the same chance of
being detected. If the inter-arrival time of a quasi-renewal
process represents the error-free time of a software system,
then the expected number of software faults in the time
interval [0, t] can be defined by the renewal function, m(t),
with parameter α > 1. Denoted by mr(t), the number of
remaining software faults at time t, it follows that

mr(t) = m (Tc) − m(t),

where m(Tc) is the number of faults that will eventually be
detected through a software lifecycle Tc.

8.3.4 Nonhomogeneous Poisson Processes

The nonhomogeneous Poisson process model (NHPP),
which represents the number of failures experienced up
to time t, is a nonhomogeneous Poisson process {N(t) with
t ≥ 0}. The main issue with the NHPP model is to determine
an appropriate mean value function to denote the expected
number of failures experienced up to a certain time.

Different assumptions mean that the model will end up
with different functional forms of the mean value function.
Note that the exponential assumption for the inter-arrival time
between failures is relaxed in a renewal process, and the
stationary assumption is relaxed in the NHPP.

The NHPP model is based on the following assump-
tions:

• The failure process has an independent increment; in other
words, the number of failures during the time interval (t,
t + s) depends on the current time t and the length of the
time interval s, and does not depend on the past history of
the process.

• The failure rate of the process is given by

P {exactly one failure in (t, t + �t)}
= P {N (t + �t) − N(t) = 1}
= λ(t)�t + o (�t) ,

where λ(t) is the intensity function.
• During a small interval �t, the probability of more than

one failure is negligible; that is,
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P {two or more failures in (t, t + �t)} = o (�t) ,

• The initial condition is N(0) = 0.

Based on these assumptions, the probability that exactly n
failures occur during the time interval (0, t) for the NHPP is
given by

Pr {N(t) = n} = [m(t)]n

n! e−m(t) n = 0, 1, 2, . . . , (8.37)

where m(t) = E [N(t)] = ∫ t
0 λ(s) ds and λ(t) is the intensity

function. It is easily shown that the mean value function m(t)
is nondecreasing.

The reliability R(t), defined as the probability that there
are no failures in the time interval (0, t), is given by

R(t) = P {N(t) = 0}
= e−m(t).

(8.38)

In general, the reliability R(x | t) – the probability that there
are no failures in the interval (t, t + x) – is given by

R (x | t) = P {N (t + x) − N(t) = 0}
= e−[m(t+x)−m(t)]

and its density is given by

f (x) = λ (t + x) e−[m(t+x)−m(t)],

where

λ(x) = ∂

∂x
[m(x)] .

The variance of the NHPP can be obtained as follows:

Var [N(t)] =
∫ t

0
λ(s)ds

and the autocorrelation function is given by

Cor [s] = E [N(t)]E [N (t + s) − N(t)] + E
[
N2(t)

]

=
∫ t

0
λ(s)ds

∫ t+s

0
λ(s)ds+

∫ t

0
λ(s)ds

=
∫ t

0
λ(s)ds

[
1 +

∫ t+s

0
λ(s)ds

]
.

(8.39)

Example 8.5 Assume that the intensity λ is a random vari-
able with pdf f (λ). Then the probability that exactly n failures
occur during the time interval (0, t) is given by

P {N(t) = n} =
∫ ∞

0
e−λt (λt)

n

n! f (λ) dλ. (8.40)

If the pdf f (λ) is given as the following gamma density
function with parameters k and m:

f (λ) = 1

�(m)
kmλm−1e−kλ for λ ≥ 0 (8.41)

then it can be shown that

P {N(t) = n} =
(
n+ m− 1

n

)
pmqn n = 0, 1, 2, . . .

(8.42)

(this is also called a negative binomial density function),
where

p = k

t + k
and q = t

t + k
= 1 − p. (8.43)

8.4 Further Reading

The reader interested in a deeper understanding of advanced
probability theory and stochastic processes should note the
following citations, which refer to highly recommended
books: Feller [3]; Pinksy and Karlin [4], Parzen [5], Melsa
and Sage [6].

Appendix A: Laplace Transformation
Functions

Let X be a nonnegative life time having probability density
function f. The Laplace transform of a function f (x), denote
f*, is defined as

� {f (x)} = f ∗(s) =
∫ ∞

0
e−sxf (x)dx for s ≥ 0. (8.44)

The function f* is called the Laplace transform of the func-
tion f. The symbol � in Eq. (8.44) is called the Laplace trans-
form operator. Note that f∗(0) = 1. By taking a differential
derivative of f*(s), we obtain

∂f ∗(s)
∂s

= −
∫ ∞

0
xe−sxf (x)dx.

Substitute s = 0 into the above equation, the first derivative
of f*, it yields the negative of the expected value of X or the
first moment of X:

∂f ∗(s)
∂s

∣∣∣∣
s=0

= −E(X).

Similarly, the second derivative yields the second moment of
X when s = 0, that is,



150 H. Pham

∂f ∗(s)
∂s

∣∣∣∣
s=0

=
∫ ∞

0
x2e−sxf (x)dx

∣∣∣∣
s=0

= E
(
X2
)
.

In general, it can be shown that

∂nf ∗(s)
∂ns

∣∣∣∣
s=0

=
∫ ∞

0
(−x)ne−sxf (x)dx

∣∣∣∣
s=0

= (−1)nE (Xn)

Note that

e−sx =
∞∑
n=0

(−sx)n
n!

then f*(s) can be rewritten as

f ∗(s) =
∞∑
n=0

(−s)n
n! μn,

where

μn = (−1)n
∂nf ∗(s)

∂ns

∣∣∣∣
s=0

=
∫ ∞

0
xne−sxf (x)dx

∣∣∣∣
s=0

= E (Xn) .

We can easily show that � is a linear operator, that is

� {c1f1(x) + c2f2(x)} = c1� {f1(x)} + c2� {f2(x)} .

If �{f (t)} = f∗(s), then we call f (t) the inverse Laplace trans-
form of f*(s) and write �−1{f∗ (s)} = f (t) A summary of some
common Laplace transform functions is listed in Table 8.1.

Example 8.6 Use the Laplace transforms to solve the fol-
lowing

∂f (t)

∂t
+ 3f (t) = e−t, (8.45)

with an initial condition: f (0) = 0. Obtain the solution f (t).
Here the Laplace transforms of ∂f (t)

∂t , f (t), and e−t are

sf ∗(s) − f (0), f ∗(s), and
1

s+ 1

respectively. Thus, the Laplace transform of Eq. (8.45) is
given by

sf ∗(s) − f (0) + 3f ∗(s) = 1

s+ 1
.

Since f (0) = 0 we have

(s+ 3) f ∗(s) = 1

s+ 1
or f ∗(s) = 1

(s+ 1) (s+ 3)
.

Table 8.1 List of common Laplace transforms

f (t) �{f (t)} = f∗ (s)

f (t) f ∗(s) = ∫∞
0 e−stf (t)dt

∂f (t)
∂t s f∗ (s) − f (0)

∂2

∂t2
[f (t)] s2f ∗(s) − s f (0) − ∂

∂t f (0)

∂n

∂tn [f (t)] sn f ∗(s) − sn−1 f (0) − · · · −
∂n−1

∂tn−1 f (0)

f (at) 1
a f

∗ ( s
a

)

1 1
s

t 1
s2

a a
s

e−at 1
s+a

teat 1
(s−a)2

(1 + at)eat s
(s−a)2

1
a e

− t
a 1

(1+sa)
tp for p > − 1 �(p+1)

sp+1 for s > 0

tn n = 1, 2, 3, . . . n!
sn+1 s > 0

1
a

(
1 − e−at) 1

s(s+a)
1
a

(
eat − 1

) 1
s(s−a)

1
a2
(
e−at + at − 1

) 1
s2(s+a)

1
b−a

(
e−at − e−bt) 1

(s+a) (s+b) a �= b
(
aeat−bebt)
a−b

s
(s−a) (s−b) a �= b

αktk−1e−αt

�(k)

(
α

α+s
)k

From Table 8.1, the inverse transform is

f (t) = 1

3 − 1

(
e−t − e−3t

) = 1

2

(
e−t − e−3t

)
. (8.46)

Example 8.7 Let X be an exponential random variable with
constant failure rate λ, that is, f (x) = λe−λx then we have

f ∗(s) =
∫ ∞

0
λe−sxe−λxdx = λ

s+ λ
. (8.47)

If X and Y are two independent random variables that repre-
sent life times with densities f1 and f2, respectively, then the
total life time’s Z of those two X and Y, says Z = X + Y, has
a pdf g that can be obtained as follows

g(z) =
∫ z

0
f1(x)f2 (z− x) dx.

The Laplace transform of g in terms of f1 and f2 can be written
as
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g∗(s) =
∫ ∞

0
e−szg(z)dz =

∫ ∞

0

∫ z

0
e−szf1(x)f2 (z− x) dxdz

=
∫ ∞

0
e−sxf1(x)dx

∫ ∞

x
e−s(z−x)f2 (z− x) dz

= f ∗1 (s)f ∗2 (s).
(8.48)

Example 8.8 If X and Y are both independent having the
following pdfs: f1(x) = λe−λx and f2(y) = λe−λy for x, y ≥ 0
and λ ≥ 0 then we have

g∗(s) = f ∗1 (s)f ∗2 (s) =
(

λ

s+ λ

)2

. (8.49)

From the Laplace transform Table 8.1, the inverse transform
to solve for g(z) is

g(z) = λ2t e−λt

�(2)

which is a special case of gamma pdf.
From Eq. (8.48), one can easily show the Laplace trans-

form of the density function gn of the total life time Sn of n
independent life time’s Xi with their pdf fi for i = 1,2,...,n,
that

g∗
n(s) = f ∗1 (s)f ∗2 (s) . . . f ∗n (s) =

n∏
i=1

f ∗1 (s) (8.50)

If the pdf of n life time X1, X2,...,Xn are independent and
identically distributed (i.i.d.) having a constant failure rate
λ, then

g∗
n(s) = (

f ∗(s)
)n =

(
λ

s+ λ

)n

.

From the Laplace transform table, we obtain the inverse
transform for the solution function g as follows

gn(z) = λntn−1e−λt

�(n)
. (8.51)

References

1. Pham, H.: Software Reliability. Springer, Berlin, Heidelberg (2000)
2. Wang, H., Pham, H.: A quasi renewal process and its applications

in imperfect maintenance. Int. J. Syst. Sci. 27(10), 1055–1062
(1996)

3. Feller, W.: An Introduction to Probability Theory and Its Applica-
tions, 3rd edn. Wiley, New York (1994)

4. Pinsky, M., Karlin, S.: Introduction to Stochastic Modeling, 4th edn.
Academic Press (2010)

5. Parzen, E.: Stochastic Processes. SIAM (1987)
6. Melsa, J.L., Sage, A.P.: An Introduction to Probability and Stochas-

tic Processes. Dover, Mineola; New York (2013)

Hoang Pham is a Distinguished Professor and former Chairman of the
Department of Industrial & Systems Engineering at Rutgers University.
He is the author or coauthor of 7 books and has published over 200 jour-
nal articles, 100 conference papers, and edited 20 books. His numerous
awards include the 2009 IEEE Reliability Society Engineer of the Year
Award. He is a Fellow of the IEEE and IISE.


	8 Introduction to Stochastic Processes
	8.1 Introduction
	8.2 Markov Processes
	8.2.1 System Mean Time Between Failures

	8.3 Counting Processes
	8.3.1 Poisson Processes
	8.3.2 Renewal Processes
	8.3.3 Quasi-Renewal Processes
	Distribution of N(t)

	8.3.4 Nonhomogeneous Poisson Processes

	8.4 Further Reading
	Appendix A: Laplace Transformation Functions
	References


