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Abstraet: The Configurable, Highly Parallel {CHiP) Computer
Family is introduced. These architectures are built around
4 lattice of programmable switches and data paths that
permit processing elements to be conpmected in arbitrary
patterns. The approach preserves locality. The parameters
that determine various family members are discussed including
switch configuration storage capacity, switch and processor
element degrees and corridor width., An efficient embedding
of a complete binary tree is presented to illustrate inter-
connection pattern programming. An algorithm for solving a
system of lincar equations is given to illustrate the
versatility of configurability.
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Introduction

polymorphism, n.{l): capability
of assuming different forms; cap-
ability of wide variation.

-Webster's Third International Dictionary-

When von Neumann computers were still new and exciting,
scientists noted in popular accounts that unlike mechanical machines,
computers are polymorphic - their function can be radically changed
simply by changing programs. Polymorphism Zs fundamental, but
it quickly became familiar to the point of being obvious and has been
mentioned little since, even though it has continued to underlie
important advances such as time-sharing and programmable microcode.
Now, as we are confronted with the potential for highly parallel com-
puters made possible by very large scale integrated (VLSI) circuit

technology, we may ask:
What is the role of pelymorphism in parallel computation?

To answer this question, we must review the characteristics of parallel

processing and the bencfits and limitations of VLSI technology.
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Algorithmically Speeialized Processors
Perhaps the most important property of VLSI circuit technology is
that the manufacturing processes use photolithographic means to create
copies of a circuit. Fabrication by photolithography (or the newer X-ray
Iithography techniques) requires a fixed number of steps to produce a
circult, independent of the circuit's complexity. It costs no more to
make copies of a chip containing a NAND gate than to make copies of a
chip containing a microprocessor, although vields will likely be higher
for the former and wire bonding costs higher for the latter. Preparing
and debugging the lithographic masks is expensive, so the technology
“favors parallel processing techniques that employ many copies of the
same, possibly complex circuit.
Recognition of uniformity as the source of leverage in VLSI caused
a flurry of rescarch during the past half decade. This research resulted
in a number of device propesals which we may call aigorithmically
specialized processors. By focusing on computationally intensive
problems and carcfully dissecting algorithms for them, reseavchers have
developed algorithmically specialized processors having scveral important
characteristics:
construction is bascd on a4 few easily tessellated processing
elements,
. locality is exploited, that is, data movement is often limited
to adjacent processing elements,
pipeiining is used to achieve high processor utilization.
Examples of algorithmically specialized processors include desipgns for LU
decomposition [2,3] (the main step in solving systems of linear eyuntions),

the solution of linear recurrences [2], tree processors [4,5,6] [used in



searching, sorting and expression evaluation), dynamic programming [7]
Lﬁ generil problem solving technique with numerous applications), Juoin
processing [8] (for data base querying), and many others.

Algorithmically specialized processing components must be
joined together to solve a larpe, computationally intensive problem.
This composition step is crucial since whole problems tend to be
multiphased and these components tend to be specialized to an algorithm
used in only one phase. For example, to solve a system of linear
equations (Ax=b} one might use a processor component to form the LU
dccomposition of the matrix A (A=LU} and then use a linear recurrence
solver component to perform the substitution phases (Ly=b and Uz=y).

As another example, queries in data basc query languages are formed
by composing operations such as '"'search" and "join".

If the component processors are implemented on chips, one way to
compose them is to wire them together. This solution is inflexible since
the components are dedicated to a particular problem and cannot be uscd
for another problem., Another compositional scheme is to join the
processors to 4 bus as "pheripherals.” This is more flexible since a

processor can be used in different phases, but the bus becomes a

bottlencck and time is wasted in interphase data movement.

A more flexible approach is to replace the dedicated processing
elements with more general microprocessors and simply to program the
algorithmically specialized processing function. This solution is much more
flexible since different components can use the same devices by changing :
programs (provided the interconnection pattern is the same)}. The bus

bottleneck is eliminated, There is a loss in performance with this




pelymorphism, since circuit implementation of the primitive actions is
replaced by the slower process of instruction execution.

But the main problem with this approach is that algorithmically special-

ized processors often use different interconnection structures {see Figurc 1).

There 1s no guarantee that the consecutive phases of the computation can

be done efficiently in place. For example, if we have an n x n  mesh
connected microprocessor structure and want to find the maximum of nz
elements stored one per processor, 2r-I steps are necess=sary and sufficient
to solve the problem. But a faster algorithmically specialized processor

For this problem uses a trec interconnection pattern to find the solution

in 2 log n steps.  For large » this is a benefit worth sceking, Again,

a hus can be intreduced to Iink several differently comnected multiprocessors
including mesh and tree connected multiprocessors., Data could be transferred
when a change in the processor structure would be beneficial. But the

bottleneck is quite serious - in the example, data has to be transferred at a

vate proportional to nz/lag n words per step to make the transfer worthwhile,

Whiat we need is a multiprocessor with more polymorphism that does net
compromise  the henet'its of VLST technology.

The Configurable, Highly Parallel (CHiP) computer is a multiprocessor
architecture that provides a programmable interconnection structure in-
tegratcd with the processing elements. Its objective is to provide the
flexibility needed to compose general problem solutions while retaining
the benefits of uniformity and locality that the algorithmically

specialized processors exploit,

The CHiP Architecture Overview

The CHiP computer is a family of architectures each constructed from
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Interconnection patterns for algorithmically specialized
processors: (a) mesh, used for dynamic programming [7};

(b} hexagonally connected mesh used for LD decomposition [2];
(¢) torus used for transitive closure (7]; (d) binary tree
used for sorting [4]; (e) double tree used for searching [5].
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three components: (a} a collection of homogeneous microproccssors,
(b) a switch lattice and {c) a controller. The switch lattice 1s the
most important component and the main source of differcnces among family

members.

The swikeh Lattiee is a regular structure formed trom programmablce
switches connected by data paths. The microprocessors (hereafter called
processing elements or PLs) arc not directly connected to each other, but
rather are connected at regular intervals to the switch lattice. Figure 2
shows three examples of switch latrices. Generally, the layout will be
square sitthough other geometries are possible. The perimecter switches are
connected to externil storage devices. A production CHiP computer might
have from 28 to 21® PEs. (With current tcchnology only a few PEs and
switches can be placed on a single chip. As improvements in fabrication
technology permit higher device densities per unit area, a single chip can
host a larger region of the switch lattice. Moreover, as discussed beleow,

the CIGP architecture 18 guite suitable for "wafer level” Fabrication.}

Each switch in the tattice contains local memory capable of storing
several configuration settings, A configuration setting cnables the
switch to establish a direct, static connection among twe or more of its
incident data paths. (Notice, this is circuit switching rather than
packet switching.) For example, we achicve a mesh interconnection
patcern of the PEs for the lactice in Figure 2{a) by assigning North-Scuth
configuration settings to alternate switches in odd numbered rows and
Cast-West scrtings to switches in the odd numbered columns. Figure 5
illustrates the configuration; Figure 4 gives the configuration

settings of a binary tree.
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Figure 2. Three switch luttice structures. Circles represent switches;
squares represent PE's.




Figure 3. The switch luttice of Figure 2({a) configured
into a mesh pattern.
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Figure 4. The switch lattice of Figure 2(a) configured
inte a binary tree.




The controller is responsible for loading the switch memory. (This
task is performed viz a separatc interconnection 'skeleton' that is
transparent to this diﬁcussion.) The switch memory is loaded pre-
paratory to processing and is performed in parallel with the PE program
memory loading., Typically, program and switch settings for several
phases can be loaded together, The chief requirement is that the local
configuration settings for each phase's interconnection pattern be
assigned to the same memory location in all switches. For example, in
cach switch, location ! might be used to store the local configuration
to implement a mesh pattern, location 2 might storc the local
configuration for the tree interconnection pattern, etc.

CHiP processing begins with the controller broadcasting a command
to all switches to invoke a particular configuration setting. Tor
example, suppose it is the setting stored at location 1 that implements
a mesl pattern., With the entire structure interconnected into a mesh,
the individual PEs synchronously execute the instructions stored in
their local memory. PEs need not know to whom they are comnected; they
simply execute instructions such as READ EAST, WRITE NORTIWEST, etc.
The configuration remains static. When a new phase of processing is to
begin, the controller broadcasts a command to all switches to invoke a

new configuration setting, say the one storcd at location 2 implementing

a tree. With the latticc restructured into a tree interconnection pattern,

the PEs resume processing, having spent only a single logical step in
interphase structure reconfiguration,
The overview of the CHiP computer family has been superficial, but

it has provided a context in which to present a more thorough treatment.
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The next three sections are:

A closer look, giving details about switches, lattices and
the controller

Embedding an interconnection structure, an example of how to
configure the lattice into a complete binary tree, and

Solving a system of linear equations, illustrating how a
multiphased problem might be solved.

We conclude with a Discussion section in which we mention some of the

conscquences of the CHiP architecture approach,

A4 Closer Look
We consider some of the characteristics that distinguish members of the
family of CHiP computers.
Switches., It 1s convenient to think of switches as being defined by
several parameters.

m - the number of wires entering a switch on one data path, or data
path width,

d - the degree, or number of lncident data paths,

¢ - the number of configuration scttings that can be stored in a
switeh.

The value of m reflects the balance struck between parallel and serial
dacta transmission. This balance will Be influenced by several considerations,
onc of which is the limited number of pins on the package containing the
chips of the CHiP lattice. Specifically, if a chip hosts a square region
of the lattice containing » PEs, then the number of pins required is
proportional to mvr,

The value of d will usually be 4, as in Figure 2(a), er §, as
in Figure 2(¢). TFigure 2(b) shows a mixed strategy which exploits
the Fact that switches tend to be used in two different roles. Switches

at the intersection of the wvertical and horizontal switch corridors tend
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to perform most of the routing while those interposed between two
adjacent PEs act more like extended PE ports for selecting data paths
From the “corridor buses'. Speciatizing the degree of the switeh Lo
these activities reduces the number of bits required to specify a

configuration setting and thus saves area.

The value of ¢ is influenced by the number of configurations that are
likely to be needed for a multiphase computation and the number of bits

requited per setting. This latter number depends on the degree and the

crossover capabijity of the switch.

"Crossover capability' is a property of switches referring to the
number of distinct data path groups that a switch can simultaneously
connect. Wec speak of data path "groups" rather than data path pairs
since fanout is permitted at a switch, i.e, a switch can connect more
than a pair of data paths. Crossover capability is specified by an
integer g in the range I te d/2. Thus I indicates no crossover and
d/2 is the maximum number of distinct paths intersecting at a degree d
switch, Like the three parameters mentioned above, the crossover
capability g is fixed at fabrication time.

The number of bits of storage needed for a switch is modest, dge.
This provides i bit For cach direction for each crossover group lor each i
configuration sctting. A technique to reduce this value is to provide é
for the loading of switch scttings while the CHiP processor is executing.

This quality, called "asyncronous loading', permits a smaller value of ¢ ;
by taking advantage of two facts: algorithms often use configurations that
differ in only a few places, and configurations often remain in effect
long enough to provide time to prepare for future settings.

Latiice. Trom Figurc 2 it is clear that latrtices can differ in

several characteristics.  The PE degree, like the switch Jegree, is the
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number of incident data paths. Most algorithms of interest use PEs of
degree ecight or less. Larger degrees are probably not necessary since
they can be achicved either by multiplexing data paths or, with some
loss in PE utilization, by logically coupling processing clements, e.g.
two degrec four PEs could be coupled to form a degree six PE where one
serves only as a buffer,

Call the number of data paths that separate two adjacent PEs the
corridor width, w. (See Figure 2(c) for a w = 2 lattice.) This is
perhaps the most significant parameter of a lattice since it influences
the efficiency of PE utilization, the convenience of interconnection
pattern embeddings, and the overhead required for the polymorphism.

To see the impact of corrider width, let us embrace graph embedding
parlance and say that a switch lattice hosts a PC interconnection pattern.
In theory, even the simplest lattice (like the one in Figure 2{a})} can
host an arbitrary interconnection pattern. But to do so may require the
PEs to be underutilized for two reasons. TFirst PEs may be coupled to
achieve high PE degrec as mentioned at the beginning of this section.
Sccond, and more importantly, adjacent PEs in the (logical) guest inter-
connection pattern may have to be assigned to widely spaced PEs in the
hosting lattice (i.c. separated by unused PEs) in order to provide
sufficiently many data paths for the edges. (Figure 5 shows the cmbedding

of the complete bipartite graph, K in the lattice of Figure 2(c)

4,4
where the center column of PEs is unused.) [Increasing corridor width
improves processor utilization when complex interconnection patterns
must be embedded since it provides more data paths per unit area.

How wide should corridors be? Tt all depends on which interconnection

patterns are likely to be hosted and how economically necessiry it is to

maximize PE utilization. For most of the algorithmically specialized
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(a)

Figure 5. Graph Kq 4 shown in (a) is embedded into the lattice of
Figure 2(c} using a switch with c¢rossover valuc g = 2.
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processors developed for VLSI implementation, a corridor width of two
suffices to achieve optimal or ncar optimal PE utilization. liowever,
to be sure of hosting all planar interconnection patterns of n nodes with
Teasonably complete processor utilization, a width proportional to log »
suffices and may be necessary [9}. To host patterns such as the shuffle-
exchange graph with high efficiency will require still wider corridors,
on the average w must be at least proportional to n/leg n [10].

Selecting a corridor width is a difficult decision, especially if
it is a nonconstant width. The benefit is higher PE utilization in somc
cases; the cost is a loss of some locality in all cases, introduction of
more area overhead, and increased problems with pin'" limitations.
Preliminary evidence indicates that w £ 4 provides a reasonable
cost/benefit tradeoff, but further cxperimentation and analysis are

required, (See reference [12] for an elaboration of this discussion,)

Bmbedding @ Interconncection Pattern

In addition to the conventional polymorphism derived from PE pro-
gramming, we have provided for a secend kind of polymorphism - the
programmable switches. This requires us to provide for interconnection
pattern programming, i.e. the specification of a global intcrconnection
pattern. When viewed in a programming language context, the "source
program" is a global interconnection pattern that a compiler translates
into an "object code" of individual switch secttings suitable for loading
inte the switches by the CHiLP controller. The general programming language
and compiler issues nced net concern us hcre, however, for we will explore
only vne particular interconnection pattern: the complete binavy tree.

This cxampie will enable us to illustrate the differences between




~15-

embedding into the plane and embedding inte the CHiP lattice.

The complete binary tree has Zp—l PE's, one at each node. One
possible layout of this structure in the CHiP lattice is a direct
translation of the "hyper-H" strategy [1] illustrated in Figure 1(d).
Figure 6 illustrates this embedding into the lattice of Figure 2(a) and
it is clear that a significant number (approaching one half) of the PEs
arc unused in this naive approach. The problem is that although the
hyper-il is an excellent embedding on plain silicon where the Pplacement
of PEs and data paths is arbitrary, CHiP lattice embeddings must conform
to the prespecified PE and data path sites. As we shall sce, this
constraint is not onerous,

To illustrate an optimal embedding (in terms of maximizing the
use of PEs}, assume that we have an n x n CHil lattice where n = 2
for some integer k. This gives 22k PEs, so a binary tree of depth 2k

2K_1 nodes. Call this

fits with only one unused PE, since it has 2
unused PE a "spare."

We proceed inductively by pairing two embedded subtrees to form
a new tree cne level higher. For the basis of the induction it is
convenient to use a three node binary tree embedded with ore spare in
a 2 x 2 portion of the lattice. Pairing square subtree embeddings
produces rectangles with sides in ratio 2:1. Pairing these rectangles

yields squares again. In general we pair two subtrees each with 22k-1

Zk+1 . .
nodes and a spare to produce a new 2 -1 node treec in which one of the
subtree  sparcs becomes the root of the new tree and the other spare

becomes the spare of the new tree. The interesting problem is to place

the spares at the proper sites for the next step in the induction.
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Figure 6. The hyper-H iree (Figure 1(d)) directly cmbedded into
the switch lattice of Figure 2(a); the switches are
not shown.

If we adopt the strategy of the hyper-il embedding and locate the
root at the center of the tree, then it makes sense to place a spare at
the middle of one side so that when this tree is paired te form the next
larger tree, there is a sparc at the interface teady to become the new
root. This will be in the center of the new tree as we intend. (af
course, since the sides always have an even number of PEs, "middle"
here means adjacent to the midpoint of one side.) But we cannot
pair two trees with thelr spares in the middle of one side since this
will leave us with cither a buried spare that is difficult to use when
forming the next lavger tree or it will leave us with a spare on the
perimeter at a site inappropriate for the embedding of the next larger
trce.  (Sce Figure 7.)

The solution is to pair one subtree with a spare located at the
middle of one side with a subtree whose spare is at the corner. The

spurc in the middle becomes the root of the new tree and the corner spare
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Fipure 7. Pairing subtrecs using spares located at the
midpoint of one side.

can be located (using reflection) to become either a middlc spare or a
corner spare of the new tree depending on which is nceded for the next
inductive step. Thus, at each step in the induction we must use {(and
we can create) two types of embeddings: middles and corners. (See
Figﬁrc 8.) Notice that the basis tree, embedded in a 2 x 2 portion of
the lattice, actually serves as both types,

Trees, of course, are planar; that is, they can be embedded in the
plane without crossovers. But if the reader endeavors to follow the
preceding algorithm with the lattice in Figure 2(a), it will appcar as
though crossovers are required, at least during the carly stages of the

embedding. [t is possible, using basis clements of fifteen node trees
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Figure 8. The formation of "middles" and "corners" embeddings
using a middle and corner pair.

cimbedded in 4 x 4 syuare regions of the lattice, to achleve a complctely
planar embedding. A solution is shown in Figurc 9 and is completely described

in reference [15].

Solving a System of Linear Equations

In order to illustrate how the CHiP processor can be used tr compose
alyorithms, we pose the problem of solving a system of lincar cquations,
i.c. to solve Az = b for an n x n cocfficient matrix 4 of bandwidth p

and n vector b, We shall usc two algorithmically specialized processors
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due to II.T. Kung and C.E. Leiserson as described in Mead and Conway [l].
The first is an LU-decomposition systolic array processor that factors 4

into upper and lower traingular matrices U and L.

4y 3y 3 3y 0 1 q Ul Y12 Y13 Yia
a a a a a [ 1 u L._ u i
71 ®22 %2z "24 P25 21 22 Y23 Y20 ™2
431 %32 U533 Tza U35 B f31 T3z 1 U3 Y34 Y3
41 42 243 - Py Fy2 Pz ! i
152 sy *s2 fs3

0 0 0

. —_— 1 _

The sccond systolic processor selves a lower triangular linear system
Ly = b where L is the output from the decomposition step. (We call this
the LTS solver,) The final result vector z can be found by solving

Ur = y where U is the upper triangular matrix from the first step and y
is the vector output of the second step. By rewriting ¢ as a lower
triangular system we can use another instance of the LTS solver. Our

approach will be to ¢ompose these pieces inte a harmonious process

to solve the entire problem.

The first problem we must solve is the cumbedding of the Kung-Leiserson
systolic processors. These algerithmically specialized processors are
defined for » ¥ n arrays of bandwldth p, (Figure 10 shows the LU-
decomposition processor for a p = 7 system. Figure 11 shows a suitable
lower triangular system solver processor.) Since the LU-decomposition
processor is hexagonally connected, it will be convenient to embed the

processors into the lattice shown in Figure 2(b). The obvious strategy
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i5 to connect the processors in such a way that the lower triangular
output L of the decomposition step connects directly to the input of

the lower triangular system solver, It is also obvious that these
cmbeddings should be placed at the perimeter of the CHiP lattice so that
matrix A4 and vector b can be received from external storapge. Tigure }2
shows such an embedding* where thc PE labellings cortespond to those

given in Figures 10 and 11.

I'igure 1€. The Kung-Leiserson systolic array for LU-decompasition.
Labellings indicate data paths. For timings, see
reference f1].

* Although the data paths are bidirectional, we have used arrows to emphasize
the direction of data movement,
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Figurc 11. The Kung-lLeiserson systolic LTS solver for w={. Labellings
indicate data paths for elements of L and b. For timings,
see recference [1].

Fipire 12, The cuboedding of the Li-decomposition processor and
e

the 11S solver in the lattice of Figure 2(h). 'k
labellinus verrvespond to Figure 10 and )1,
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Several simple transformations have been employed to accomplish
the embedding. The most noticable is that the hexagonal structure has
been slightly deformed to accomodate the rectangular CHiP lattice and
the LU-decomposition processor has been rotated clockwise 120°. The
constant inputs (0's and -1) that appear on the perimeter of the systolic
array have heen suppressed since they can be generated internally to the
PEs. The output wires carrying the L matrix result have been assipgned
to onc of the available ports and roﬁted to the inputs of the LTS solver.
Finally, to embed the double channel between PEs of the LTS solver we
have routed data diagonally out of the North-East port into the South-East
port. Notice that since the diagonal elements of L are all 1, they are not
cxplicitly produced,

The next problem to solve is the rewriting of ¥ as a lower
triangular system suitable for input inteo another embedded LTS solver,
We must wait until U has been entirely produced before performing this
operation. So, rather than writing the elements of U to cxternzl storage
as they are produced, we thread them through the lattice {(assuming therc
is sufficient space to store them all)., We also thread the y vector
output from the LTS process alonpg with ¥. Then in the second phase of
our algorithm, we can proccss the elements through another embedded LTS
solver,

Perhaps the most elegant way to thread U and y through the lattice
is to use a graph embedding due to Aleliunas and Rosenberg [L3]. The
scheme has the advantage of not requiring a large '"bundle'" of wires along

the perimeter of the lattice when the threads double back. (Figure 13

illustrates the embedding required for doubling back.} As the § and y

values are produced, they are passed from PE te PE. (They could be
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"concentrated" by storing several per PE.) When ¢ and ¥ are completely

produced, the first phase is completed.
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Fipure 13. The Aleljiunas- -Ruscnberg embedding of the threads
doubling back. The arrows indicate the direction
of flow of the U and y values.
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Between the first and secomd phases we make a minor rveconliguration,
(This reconfiguration would not have becn necessary had the phase 1
vonfiguration been somewhat more clever; but as an example, it would also
Ihave been somewhat more confusing.) The second configuration embeds the

LTS selver into the fourth row of processors as illustrated in Figure 14,

T

ngnln

SN
LT

TR O

<

Rk D0

Tk

<~
<~ =

e I

—
L]

|

T e T TR P e

Figure l4. The simple phase 2 embeddinp
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The inputs to this group of processors come from reversing the direction
of flow of the threaded values from phase L. Notice that this reversal
of flow has the effect of renumbetring the matrix U to be in lower
eriangular form appropriate for the LTS seolver. The appropriate valuces
of the y vector are also available at the proper locations. The outputs
from the second phase cmitnate from the western port of processor (4,1).
These are the values solving Ax = b.

To summarize, the system of linear equations 4r = & is solved in two
Phases on the CHiP processor, In phase 1 an embedded LU-decomposition
processor takes A as input and produces matrices § and ¥ as output. The
L output 1is immediately input to an LTS solver that also takes b as input
and solves Ly = b. The vector y and the matrix U are threaded through the
lattice, Phase 1 comﬁlétes when 4 has been decomposed. In phase 2
another embedded LTS solver takes the threaded output from phase 1 (by
reversing its flow) and solves Ux = y.

Phase 2 makes scant usc¢ of parallelism - it runs in the same time as
phase 1 and the data arc already in the CHiP processor. And as noted, the
interphase reconfiguration was not essential. But, there are algorithms
to solve the phasc 2 problem that de make essential use of configurability
to make effective usce of parvalielism [14). A complete development of the
approach is net pessible here, but the essential idea due to Chen, Kuck
and Samch [11]} is straightforward: A transformation on U enables us to

decompose the matrix into blocks By ,...,B, whose product yields the result.

1
Because the product operation is associative, the whole product can be
fFormed by taking pairwise products in parallel, then pairwise products

of the results, etc., By reconfiguring the thrcaded portion of the lattice

using one of sevcral rather complicated interconnection patterns that
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either implicitly or explicitly embed a tree, we can perform these pairwise
products in parallel. The result is a faster parallel algorithm made

possible by configurability.

Discussion

Several characteristics of the CHiP approach should be mentioned.

First, the algorithmically specialized processors translate mutatis
mutandis to programs for the CHiP computer. Thus, we have a ready
supply of algorithms that can effectively use the parallel processor.

Of course, all of these algorithms use one interconnection structure,
and it is possible that improved algorithms might be found thatr exploit
the availability of multiplc interconnection structures.

Second, configurability provides both interphase and intraphase
flexibility. This distinction, though not very clear-cut, tends to
correlate with whether or not pipelining is being used. If a problem is
solved by a sequence of phases that each complete before the next one
begins, we tend to use regular configurations that change at the completion
of a phase (intcrphase). The whole lattice is in a mesh or trec pattern,
For a series cof pipelined algorithms that can be coupled together, as in
the last section , we tend to form regions of the lattice dedicated to ecach
algﬁrithm with data paths interconnecting the regions. We refer to this as
intraphase configurability because within one phase we interconnect
several regular structures. Clearly, we necd not change confipurations
to exploit the advantage of configurability,

Both kinds of configurability arc useful in adapting to changes in
problem size. For example, two different small problems might operate
concurrently on different regions of the CHiP processor using entirely

different interconnection schemes. One pattern could change while the



other remained fixed by loading switches of the fixed region with two
copics of the same configuration serting. Pipelined processors, whose
size is usually a function of the input width, can be tailtored to the
right size at loading time.

Another consequeﬁcu of configurability is that it is quite Ffault
tolerant. Supposing that an error is detccted in a processor, data path
or switch, we can simply route around the offending device. For convenicnce,
we might choose to lcave other processors unused to 'square up" the
lattice when matching dimensions are important.

Perhaps the most intriguing consequence of configurability's fault
tolerance is the possibility of 'wafer level" fabrication. That is,
instead of dicing a wafer and discarding the faulty processor chips, we
can leave a VLSI wafer whole and simply route around the unusable
processers.  (We could use the dicing corridors-for data paths, and
switches.) For example if a wafer contains 100 processor chips and
yield characteristics indicate that roughly one third are faulty, then
a wafer is acceptable if we can find &n 8 x 8 sublattice that is Functional,
The mapping of the switches to host the 8 x8 in the 100 could be done
on the wafer by special circuitry designed for that purpose. Although the
number of pins required for the wafer would be large, their number is only
proportional to the pevimeter racher than the ares. This actually reduces

the total]l number ol wires bonded.

Summary
By tntegrating programmable switches with the processing elements,
the CHit computer achieves a polymorphism of interconnection structure

that also preserves locality. This cnables us to compose algorithms that
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cexploit different interconnection patterns. 1n addition to responding
to different problem sizes and characteristics, the flexibility of
integrated switches provides substantial fault tolerance and permits

wafer level Pabrication.
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