
Purdue University Purdue University

Purdue e-Pubs Purdue e-Pubs

Department of Computer Science Technical
Reports Department of Computer Science

1980

Introduction to the Configurable, Highly Parallel (CHiP) Computer) Introduction to the Configurable, Highly Parallel (CHiP) Computer)

Lawrence Snyder

Report Number:
80-351

Snyder, Lawrence, "Introduction to the Configurable, Highly Parallel (CHiP) Computer)" (1980). Department
of Computer Science Technical Reports. Paper 282.
https://docs.lib.purdue.edu/cstech/282

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries.
Please contact epubs@purdue.edu for additional information.

https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/comp_sci

Introduction to the Configurable, Highly

Parallel Computer

La.wrence Snyder
Department of Computer Science s

Purdue University
West Lafayette, IN

47907

,11g;t1'acl .. The Configurable, Highly Parallel (CHiP) Computer
Family is introduced. These architectures are built around
a lattice of programmable switches and data paths that
permit processing elements to be connected in arbitrary
patterns. The approach preserves localit.y. The parameters
that det.crmine various family members are discussed including
switch configurat.ion storage capacity, swit.ch and processor
clement. degrees and corridor width. An efficient embedding
of a complete binary t.ree is presented to illustrat.e int.er­
connection pattern programming. An algorithm for solVing a
system of linear equat.ions is given t.o illustrate t.he
versat.ility of confif!:urability.

CSD-TR-351
November 1980

Revised ~lay 1981

The research described herein is part. of the Blue CHiP Project.
Funding is prOVided in part by the Office of Naval Research under Contract.
N00014-IW-K-OSIG and Cont.ract NOOOI4-81-K-0360, Special Research
Opport-unities Program Task SRO-IOO.

Inl-roduction

polymorphism, n.(l): capability
of assuming different forms; cap­
ability of wide variation.

-IVcbster's Third International Dictionary~

•

When VOIl Neumann computers \~ere still nc\~ <Lnd exciting,

scientists noted in popular accounts that unlike mechanical machinc$,

computers are polymorphic - their function can be radically changed

simply by changing programs. Polymorphism is fundamental, but

it quickly bccame familiar to thc point of bcing obviolls ilnd ha!' becn

mcntioned little since, even though it has continued to underlie

important advances such as time-sharing and programmable microcode.

NO\~, as we are confronted with the potcntial for highly parallcl com-

puteTs madc possible by very large scale intcgrated (VLSI) circui t

technology, \~e may ask:

IVhat is the role of polymorphism in parallel computation?

To answer this question, \~e must review the characteristics of parallel

processing and the benefits and limitations of VLSI technology.

- 2-

AlgOY'if'lnn:caZly Sreeia7.ized Pmce.<;:'wru

Perhaps the most important property of VLSI cireui t technology is

that the manufacturing processes use photolithographic means to create

copjc~ of a circuit. F,lbriciltion by photolithography (or the newer X-r<lY

lithography techniques) requires <l fixed number of steps to produce <l

circuit, independent of "the circuit's complexity. It costs no more to

make copies of a chip containing a NAND gate than t:o make copies of a

chip containing a microprocessor, although yields \~ill likely be higher

for the former and \\'ire bonding costs higher for the latter. Preparing

and debugging the lithographic masks is expensive, so the technology

favors parallel processing techniques that employ many copies of the

s<Jnle, possibly complex circuit.

Rccogni tion of uniformity as the source of leverage in VLSI caused

a flurry of research during the past half decade. This research resulted

in a number of device proposals \~hich we may call algor'ithmically

specialized processor's. 13y focusing on computationally in'tensive

problems and carefully dissecting algori'thms for them, researchers have

developed algorithmically specialized processors having sever<ll impoTt<lrlt

characteristics:

construction is based on a fe\~ easily I:essellated processing

elements,

locality is exploited, that is, da'ta movement is often limit.cd

to adjacent processing elcmen'ts,

pipellning is llsed to achieve high processor utilization.

EX<lmplcs \)f algorithmic1ll)' special ized processors include J(:~;i~lls fOT ttl

d<"l'olllpositil)ll 12,.~] (the lIIain step in solvilll: system..; of Ij1\c;1r equiltiolls).

the solution of linear recurrences [2], tree processors [<1,5,6J (used ill

- 3-

searching, sort.ing and expression evaluation). dynamic programming (7]

l a gl?Jl(' 1"a 1 p rob 1 ell1 sui v i ng t CdlJll<lll'" \\" i l h IllUU..' I"\)[IS 11 1'1' (i~' ill 11111 S l. .I 'l 1 II

processing [8] (for data base querying), and many others.

Algorithmically specialized processing components must be

joinccl 'together to sol-vc a large, computationally intensive problem.

This composition step is crucial since whole problems tend to be

multiphased and these components t.end to be specialized t.o an algorhhm

used in only one phase. For example, to solve a system of linear

equations (l1x=b) one might use a processor component to form 'the LU

decomposition of the matrix A (A=LU) and then usc a linear recurrence

solver component to perform the substitution phases (Ly=b and Ux=y).

A'3 anothcr cx.ample, querie'3 in data basc query languages arc formed

by composing operations such as "scarch" and "join".

If the component processors are implemented on chips, one way to

compose them is to wire them together. This solution is inflexible since

the components are dedicated to a particular problem and cannot be used

for another problem. Another compositional scheme is to join thc

processors to a bus as "pheripherals." This is more flexible since a

processor can be used in different phases, but the bus becomes a

bottleneck and time is \~asted in interphase data movement..

A more flexible approach is t.o replace the dedicated processi.ng

elements with more general microprocessors and simply to program the

algorithmically specialized processing function. This ::;olution 15 much more

flexible since different components can use the same devices by changing

rrograms (provided t.he interconnection pattern is the same). The bus

bottleneck is eliminated. There is a loss in performance with this

-, -

polymorphism, since circuit implementation of the primitive actions is

replaced by the slower process of .instruction execution.

But tIn: main prohlem \~ith this approach is that ;11!~orithmically !']1C'ci,J1­

ized processors often usc different illtercOnnel:tlOll structures (see Figure 1)_

There is no guarantee that the consecutive phases of the computation can

be done efficiently in place. For example, if we have an n x n mesh

connectcd microprocessor structure and want to find t.he maximum of n2

elelllC'llts stored one pel' pl"Occssor, 2n-l steps <lTC necessary and sufficient

to solve the problem. But il faster algorithmically speci.alized processor

for this problem lISCS il tree interconnection pat.tern to find the solution

in 2 Zag n step~" ror large n this is a benefit \~orth seeking. Again,

.:l hus can he introduced t.o link scveral diffcrently connccted multiprocessors

including mesh and tree connected mUlt.iprocessors. Data could be transferred

I.'hen a change in the processor structurc Imuld be beneficial. But the

bottleneck is quite serious - in the example, data has to be transferred LIt a

l.";lte proJlortional t.o n 2/log n words pcr stcp to make the transfer worthwhi Ie.

Wholt I'T need is a multiprocessor I>'ith more [)olymorphi sm that does not

l"OI1l11\'ollli~l' the 11l'1lCfits or VLSI technOlogy.

The ~onfigllrablc, Highly ~arallcl (CHiP) computer is a multiprocessor

architecture that provides a programmable interconnection structure in­

tegrated with the processing elements. Its objective is to provide the

flexibility needed to compose general problem solutions while retaining

the benefits of uniformit}, and locality that the algorithmically

specialized processors exploit.

The CIHp AY'chitecttlre OveY'v'iew

The CHiP computer is a family of architectures each constructed from

(e)

-5-

(b) (c)

[0) (e)

Figure 1. Interconnection patterns for algorithmically specialized
processors: (a) mesh, used for dynamic programming [7J;
(b) hexagonally connected mesh used for LD decomposition [2];
(e) torus used for transitive closure [7]; Cd) binary tree
used for sorting [4]; (e) double tree used for searching [5].

-6-

three components: (a) a collection of homogeneous microprocessors,

(b) a switch lattice antI (c) a controller. The swhch lattice is the

most important component and the main source of differences among family

mcmhers.

The switch lattice is a regular structure formed froln programmable

switches connected by data p<lths. The microprocessors (hereafter called

processing elements or PEs) arc not directly connected to each other, but

ratheT are connected at regular intervals "to the switch lattice. Figure 2

sh(H~S three examples of sNitch latt.lces. Generally, the layout. will be

square ;llthough other gcometril's arc possible. The perimeter switches are

conneet"d to eX1'cl"nal ::-:toragc devices. A production CfliP computer mi.ght

have from 2 8 to 2 15 PEs, (I'lith current technology only <I fel>' PEs nnd

sl~itches cnn be placed on a single chip. As improvements in fabrication

technology permit higher device densities per unit area, a single chip call

ho~t a larger region of the SI,,;tch lattice, Moreover. as discussed belm~,

the CJI;I' <ll'l"hitectlll'l' -j~ ql1ire- ~Ilit(lhle fol' "l,'<lfer level" f:lhrir:ltion.)

Each s\~itch in the l:tttit:t:: contains tocal memory capable of storing

several configurati.on ~ettings, fI configuration setting enables the

switch to establish a direct, static connection among two or more of its

incident data paths. (Notice, tilis is circuit sl~itchillg rather than

packet s\~itching.) For e:\:ample, I,e achieve a mesh interconnection

pattern of the PEs for the latti<':8 in Figure 2(3) by assigning North-South

configuration settings LO alternate sliitches in odd numbered rows and

East-I'lest settings to s\,'itches in the odd llumbered colunms. Figure::'i

i llustrntes the confIguration; FIgure <\ gives the confl~urat.ion

sett.ings of a binary tree.

~ JH (

Yr'

}--()

>-{ }-((-{I- >--{T~f
(

~
J}--<

T 1" u

(a)

-7-

(Il)

(c)

Figure 2. Three ~\~itch lattlc{' stnlcturc~. Cirdcs represent switches;
squares represent PE's.

-8 -

o

Figure 3. The s\~itch latbce of f-igure 2(n) configured
into a mesh pattcTn.

o 0 0 0 0 0 0 0 0

~ ~ ~ J-o-D: t ~
root 0 l~ 0 f--V--U-~i' 0

~~~t~~j~
I) LJ 0 [}-(:."-{J-(r-{] 0

o 0 0 0 000 0 0

Figure <I. The 5\6tch lattice of Figure 2ea) configured
into a. binary tree.



-9-

The controller is responsible for loading the switch memory. (This

task is performed via a separate interconnection "skeleton" that is

transparent to this discussion.) The switch memory is loaded pre­

paratory to processing and is performed in parallel with the PE program

memory loading. Typically, program and switch settings for several

phases can be loaded together. The chief requirement is that the local

configuration settings for each phase's interconnection pattern be

assigned to the same memory location in all switches. For example, ~n

each switch, location 1 might be used to store the local configuration

to implement a mesh pattern, location 2 might store the local

configuration for the tree interconnection pattern, etc.

CHiP processing begins with the controller broadcasting a command

to all switches to invoke a particular configuration setting. For

example, suppose it is the setting stored at location 1 that: implements

a mesh pattern. With the entire structure interconnected into a mesh.

the individual PEs synchronously execute the instructions stored in

tbei r local memory. PEs necd not know to I"hom they arc cOllnected; they

simply execllte instructions such as READ EAST, WRITE NOnTIlWEST, etc.

The configuration remains static. Whcn a new phase of processing is to

begin, the controller broadcasts a command to all switches to invoke a

ncw configuration setting, say the one stored at location 2 implementing

a tree. IHth the lattice restructured into a tree interconnection pattern,

the PEs resume processing, having spent only a single logical step in

interphase structure reconfiguration.

The overview of the CHiP computer family has been superficial, but

it has provided a context in which to present a more thorough treatment.



- 1Ll-

The next threc sections nre:

A a7.oser look~ glVl.ng details about sl.,'jt.ches, lattices and
t.he controller

Embedding an interconnection stI'Ucture~ an example of how t.o
configure the latt.ice into a complete binary tree, lind

SoZving a system of Zinear equ.ations~ illustrating how a
multiphased problem might be solved.

I\'e conclude wit.h a D'ismtBsion scction in which "'e lJlcntioll some of t.he

conscqucnces of the CHiP architect.ure approach.

A Clo:;ero Look

\'Ie consider some of t.llc characteristic!> that distinguish mcmbers of thc

family of CHiP computers.

Switches. It is convenient. to t.hink of sHit.ches as being defined by

severnl parameters.

m _ t.he number of wires entering a swit.ch on one data path, or data
path width,

d t.he degree, or Ilumner of Incident data paths,

c _ the number of configuration settings that can be stored in a
swi t.ch.

The value of m reflect.s the balance st.ruck betNeen par<lllel and serial

Jata tr<lnsmission. This balance will be influenced by several considerations,

one of I"hich is the limited number of pins on the package containing the

chips of the CfliP lnttice. Specifically, if a chip hosts a square region

of the lattice containing n PEs, then the number of pins required is

proport.ional to min.

The value of d ,·.. ilt usually be 4, as in Figure 2(a), or S, as

in Figure 2(c). Figure 2(b) sllOl"s a mixed strategy which exploits

the fact that switches tcnd to he llsed in two di fl"CI"Cllt roles. Switches

at t.he intersection of the vertical and horizontal switch corridors tend



-11-

to perform most of the routing while those interposed bet\~een two

adjacellt PEs :JL't marc I ikc extendcd PE port:> for $clcct-illg J:lt<l path~

frolll the •...:uTriJol" L)lISc::;", Spccializlll,!; tilt: dt~gt'~l: t,f till: ."'I>Ltt"lL LL>

these activities reduces the number of bits required to specify a

configuration setting and thus saves area.

The value of c is influenced by the number of configurations that are

likely to be needed for a multiphase computation and the number of blts

requireu per 5ettin~" This latter number depends on the degree and the

crossover cal-'ab i l i ty of the s\~i tclt.

"Crossover capability" is a property of switches referring to the

number of distinct data path groups that a switch can simultaneously

connect. l'le speak of data path "groups" rather than data path pairs

since fanout is permitted at :J switch, i.e. <I switch can connect more

than a pair of data paths. Crossover capability is specified by an

integer g in the range 1 to d/2. Thus 1 indicates no crossover and

d/2 is the maximum number of distinct paths intersecting at a degree d

s\~itch, Like the three parameters mentioned above, t.he crossover

capability g is fixed at. fabrication time.

The number of bits of storage needed for a switch is modest, dgc,

This pl-ovi.de~ a bit for each directiol\ for eal'h t.:Tossover group rOT e,lch

configuration setting. A technique to reduce this value is to provide

for the loading of switch settings while the CHiP processor is executing,

This quality, called "asyncronous loading". permits a smaller value of c

by taking advantage of two facts: algorithms often use configurations that

differ in only a few places, and configurations often remain in effect

long enough to provide time to prepare for future settings.

lAt/;icc. From Figure 2 it is clear that lattices call eli fEel' 111

several t·h;lra\~te,.istics. The 1'1; tll'HI"\'!'. I ike Ihl' switl'll dq:rl'e, i~ the



-12

nl1mber of incident. data paths. Most algorithms of interest use PEs of

dCllTCC eight or less. Larger degrees arc probably not. necessary since

the)' can be achieved either by multiplexing data paths or, \~ith some

loss in PE utili<:atioll, by logically coupling proccssillg elements, e.g.

two degree four PEs could be coupled to form a degree six PE where one

serves only as a buffer.

Call the number of data paths that separate 'tIW adjacent PEs the

cOl'l'idor width~ tJ. (Sec Figure 2(c) for a w .= 2 lattice.) This is

perhaps the most significant parameter of a lattice since i.t influences

the efficiency of PI::: utilization, the convenience of interconnection

pattern embcddings, and t.he overhC'ad required for the polymorphism.

To see the impac't of corridor l~idth, let us embrace gr<lph embedding

parlance and say that a switch lattice hosts a PE interconnection pattern.

In theory. even the simplest lattice (like the one in Figure 2(a)) can

host an 3rbitrary interconnection pattern. But to do so may require the

PF.s to be unoerutili<:ed for two n~a:ions. First PEs may be coupled to

achieve high PE degree as mentioned at the beginning of this section.

Second, and marc.: importantly, adjacent PEs In the (logical) guest illter-

connection pattern may have to be assigned to \~idely spaced PEs in the

hosting lattice (i.e. separated hy unused PEs) in order to prOVide

sufficiently many dat::!. paths for the edges. (Figure 5 shows the embedding

of the complete bipClrtitc graph, K
4

4' in the lanice of f":igure 2(c),
\.'here t.he center col umn of PEs j S ullused.) [ncreasing corridor \~idth

imJli·oVC5 processor lltil izatioll Nhcn complex interconnection patterns

must. be embedded since it provides more data paths per unit area.

How wide should corridors be? It. all depends on which interconnection

Jlllttcrns arc likely to be hosted and how ecolHlmically nccessary it is to

maximize PE utilizat.ioll. For most of the algorithmically specialized



-13-

(0)

Figure 5.

(b)

Graph K4 4 shOlm in (a) is embedded into the lattice of
Figure 2tc) using a switch with crossover value g = :?



-l'1-

processors developed for VLSI implementation, a corridor width of two

suffices to achieve optimal ur ncar optimal PE utilization. 110l~ever,

to he sure of hosting all planar interconnection patt.erns of rz nodes with

reasonably complete processor utilizat.ion, a width proportional to log"

suffices and may be necessary [9J. To host patterns such as the shuffle­

exchange graph with high efficiency will require still wider corridors,

on the average w must be at least proportional to n/log n [10].

Selecting a corridor ",,-idth is a difficult decision, especially if

it: is a lIonr.::onstant Iddth. The benefit is higher PE utilization in some

r.::;ISCS; t:hc eost is a loss of some locality in all cases, introduction of

more area overhead, ancl increased problems with "pin" limitations.

Preliminary evidence indicates that w ~ -1 provides a reasonable

cost/benefit tradeoff, but further experimentation and analysis are

required. (See reference [12] for ail elaboration of this discussion.)

Embedding an Intm'connection Pattern

In addit.ion to the convention;ll pol}"TIIorphism derived from PE pro­

gnmming, \~C h<lve provided for a second kind of polymorphism _ the

prugrammable switches. This requires us to provide for interconnection

pattern programming, i.e. the speci.fication of a global interconnection

pattern. When \'ie\~ed in n programming langu<lge context, the "source

program" IS a global interconnection pattern that. a compiler translates

into an "object code" of individual switch settings suitable for loading

illto the Sl'itclws by"the CILi!' controller. The general prtl!:rnn~nJ'lg langll;lge

and compiler issues need Ilot concern u:'> here, hOl'ever, for h"C Idll explore

only unc particular interconllection ]KJttern: the complete hinary tree.

This example l'ill enable us to illustrate the differences between



-15-

embedding imo the plane and embedding into the CHiP lattice.

The complete binary tree has 2P-l PE'$, one at each node. One

possible layout of this structure in the CHiP lattice is a direct

translation of the "hyper-H" strategy [IJ illustrated in Figure I (d).

Figure 6 illustrates this embedding into the lattice of Figure 2(a) and

it is clear that a significant number (approaching one half) of the PEs

arc unused in this naive approach. The problem is then: although the

hyper-I! is an excellent embedding on plain silicon where the placement

of PEs and data paths is arbitrary, CHiP lattice embeddings must conform

to the prespecified PE and dat.a path sit.es. As we shall see, this

constraint is not onerous.

To illustrate an optimal embedding (in terms of maximizing the

use of PEs). assume that. we have an n x n CHiP lattice \~here n = 2k

for some integer k. This gives 22k PEs, so a binary tree of depth 2k

fits with only one unused PE, since it has 22k_l nodes. Call this

unused PE a lI$pare."

We proceed inductively by pairing two embedded subtrees to form

a new tree one level higher. For the basis of the induction it is

convenient to usc a three node binary tree embedded with one spare in

a 2 x 2 portion of the lattice. Pairing square subtree embeddings

produces rectangles \~ith sides in ratio 2:1. Pairing these rectangles

yield~ squares again. In general we pair two subtrees each with 22k_l

nodes and a spare to produce a new 2
2k+1_l node tree in which one of the

subtree spares becomes the root of the new tree and the other spare

bccomc~ tlw spare of the new tree. The interesting problem is to place

the spare$ at the proper sites for the next step in the induction.



-16-

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0

0 0 0 0 0 0
0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 6. The hyper-H tree (Figure I (d)) directly embedded into
the s\\'itch la t tice of Figure 2 (al ; the sNitches are
not shown.

If we adopt the strategy of the hyper-II embedding and locate the

Toot at the center of the tree, then it. makes sense to place a spare at

the- middle of one side '0 tlwt when this tree i' paired to form the next.

l;lrgcr t.ree, there is a spare at the interface ready to become the new

root. This Idll be in the center of the ne\~ tree "' we intend. (Of

course, since the side:; always have an even nllmber of PEs, "middle"

here means <ldjaccilt to the midpoint of one side.) But \\'C callnot

]1;1 i r tl,o trees \\'i eh their spares in the middle of one siue since this

\·d 11 le<lve u, wi th e.itlwr a buried spare that " di fficul t to lI.sc when

fanning 'the next Lll'ger tree or it will le;lve us \\'i. t.1I a spare on the

Jlerimeter at a site inappropriate for the embedding of the next larger

tree. (See Figure 7.)

The solution is t.o pair one subtree h'ith a spare located at the

middle of one side \~ith a subtree whose spare is at the corner. The

:;pure in t.he middle becomes the root of the ne\\' tree and the corner spare



-17-

lieN spare

0---0- ---, [J ,-0
.... __ -J G----D

nel>' root old root

G---D
Figure? Pairing subtrees using spares located at the

midpoint of one side.

can be located (using reflection) to become either a middle spare or a

corner spare of the new tree depending on which is needed for the next

inductive step. Thus, at each step in the induction I~e must usc (and

\\'C can create) tl...O types of emlJeddings: middles and corners. (See

Figurc 8.) Notice that the basis tree, embedded in a 2 x 2 portion of

the lattice, actually serves as both tn1es.

Trees, of course, are planar; that is, they can be embedded in the

plane without crossovcrs. But if the reader endeavors to Eollol~ the

preceding algorithm with the lattice in Figure 2(a), it \.,.ill appear as

though crnSS{lVer~ Hrc l"cquircd, at least Jlll"in~ the c;lr1y stal:cS uf tilt'

embedding. It is possible, using basis clements of fifteen node tl'ees



-18-

old root

0-'"0- --

a

- •• - .Q

new spare

a

G----EJ
a

0---0- ---0
0--0- -------[J

Figun~ S. The formation of "middles" and "corners" embeddings
using ::J middle and corner pair.

cmbeddl'd in 4. x -1 square re,gions of the lattice, to achieve a completely

planar l'mbcJdillg. A solution is shOl·;n in Figure 9 and is completely described

in reference [Isl.

Solving a System of Linear gquations

III order to illustrate ho',' the ClliP processor can he used t,· .... omposc

algorithms, \~e pose the problem of solving a system of linear equ<ltiolls,

i .c. to solve Ax = b for an n x n coefficicnt matrix A of bandwidth p

:Jill! 11 vector b. We shall usc two algorithmically speci:Jlized processors



0

a
a
a
a
a
a
a
0

a
a
0

0

a
0

a ,
~

~
0 ,
a
0

a
a
0

0

0

a
a
a
a
0

a
a
a
a

~ a 0 o ~ a ~ a a a (
a a a a 0 a a a a a a 0 a a a a a a 0 a a 0 a

}--< 0 I-" a J-< a I-"a a a a a a a
[ I-" )-j )-j a r j-< J-- a H H )-j a r }- ra a a a 0 0 0 o a 0 0 a 0 a a
[J-- ~ a a a

n-;
\--oaD-

~
a 0

on-; \--0a 0

r ~l
a a a a a

~ r-~ ~
a a

0 a a a a
0 a a a a a a

~ r r a H )-j
a a 0 0 )- a

?-[J--
a a a a

I I- 0 .r- (J a \-0 r a a :>-- a }-a 0 o 0- 0 o a .r- a o a '-1 a o a I- a 0 a
D- a b-o r au aD a [)--<D- a \--0a a 0 a 0 a 0 a a a a o a a

a n

nJ 0 m l 1 D-o--C-o--{] D- a rooooo'Coa 0 0 o a a 0 a a
;J- . a a (-!:l:J 0- a )-

0 a 0 0 a ;>-- a a a
:>-- 0- )-j )--< }-

a a a < a a a

a l~~
a

[]--< [] a N° L6 '-<J 0 a ] a []
a a a a

~ao a a a a a a- a a a ro D- o ~ roa a a a a a a a a a a a a
}- ;J- ~ a ;J- r }- fl 0-{ :>-- H a ,r- }- }-

a I- a 0 a a a.
0 \--0 a 6--[ }- (] a ] 0-~

a o a aJ: 0 o a a o a a a a a 0 a 0 a a 0 a a• an a -na a au a~ c
o a a o 0 0 0 0 o 0 0 o a 0 0 0 o 000 o 0 o a 0 o 0 o 0 0

000 0 0 0 000 0 a 0 0 0 0 0 0 0 0 0 0 0 a 0 0 0 0 0 0 000
a
a
a..

.~ a
c a0.

~ a
a

c ~ ac -0. ; a0. -_. - a0

" 0. ac §.

" 0. a
~

c" ~_.
0-0

" T- oc

" C_.
~ ac.

0. 0 a
0 ,-
~. ~ 0
~.. a_.
0

~ :<. ac 0.
0. an
'- 0
~

, a- "~ -0. a
c
0. a
~- a
- 0c
"

0

a
0

a
a
a
a



-20-

clue to II. T. Kung ;lnd C. E. Leiscrson as Jescribed in /'-lead and Conway [l].

The first. is an LU-decomposition systolic array processor that factors A

into upper and lowcr traingular matrices U and L.

all a" an a
14

0 1 0 "11 u
l2 "13 "14

{J

a
2l

11
22

a
23

a
24 a'5 '21 1 u 22

u
23 ""

11
25

:1
31

:'1
32

D.
33

;1
34 <l35 £31 '32 1 u

33
u

34 "-c."

"41 "4' a
43 £41 .1'.<12 '43 1

11
52 "53 £52 '53

{J 0 0

The second syst.olic processor solves -'1 lower triangular linear system

J~!J = b where L is thc output from the decomposition step. (We call this

the LTS solver.) The final result vector x cap.. be found by solving

Ux = y where U is the upper triangular mat.rix from the first. step and y

is the vector output of the second step. By rewriting U 3S a 10\\'c1'

trian)jlllar systcm \,'C cnn lise anothcr instancc of t.he LT$ solvcr. Our

app1"o<lcll will be to I.:omposc thcsc pieces into a harmonious process

to solve t.he entire problem.

The first problem He must solve is the embedding of the Kung-Leisersol1

s)"stolir.: processors. These algorithmic:.ltly specinl i;;ed processors a1"l~

defined for n :..- n arrays of h'l!l(hddth p. (foigure 10 shows the LU-

decomposition processor for a p = 7 system. foigure 11 shaHS a suitable

Im\'cr tLi.angular system solver processor.) Since the LU-decomposi tion

processor is hcxagonally connected, it \~ill be convenient to embed the

processors into the lattice shown in Figurc 2(b). The obvious strategy



-21-

is to COllllect the processors in such a way that the lower triangular

output L of the decomposi tion stcp connects directly to the input of

thc lower triangular system solvcr. It is also obvious that these

cmbcddings should be placed at the perimetcr of the Cl-liP lattice so that

matrix A and vector b can be ret:eivcd from external storage. Figure] 2

shows such an embedding* where the PE label lings correspond to those

given in Figures 10 and 11.

R. j +2 ,j

a ..,.,

u
k.k+l

o

a. 2 .
:1- >~

<\-3, i

Figurc 10. Thc Kung-Lciserson systolic arrily for I.U-decompositjon.
Li.lbellings indicate datil paths. Por timings, see
reference [1].

* Although the data paths are bidirectional, \.e have used arrOl.S to emphasize
the dircction of data movemcnt.



-27.-

.2.. 3 .. -, ,. .,

-
A B C 0

b.
)

Figure 11. The Knng-Leisersoll systolic J.TS $olvcl' for w--4. Labcllillg~

indicate data paths for elements of [, and b. For timings,
~ee reference ll].

,-

o 0

a .. 1 a .. 2 a .. 3

~
~'- '~- '~~'\-0
--- - - - - - - - - - - - - - - - - - - - ~ ... " " .... - - - ~,

,\O~;X __ :~_ )~. ~ll.I-:-i1(+-.) -41 '

- '] -" .1) -\'1) 'c_ ():
. "'I 1o ; 15 ---{)--l!,2--{) LB ---0-" 4 \-L-4-

~. 1
o : ~ "'-.r-l

~iD}-o- 6 H:r--1 J] 011; 0

o '9--~-- 0 ~--~--~- 0

a. 1 .
J.- ,J.

a. J .
1- 11

a. 2 .
l- ,1

Fil:lll'l: 12. The Clllbl!Jdilll'. of till.: 1.!I_Jccompositioll 1II'Ill~l'S:;"j" :,Ihl

the L'l'S solver in the lattice of FigllTl~ 2(hJ. ;'1:
1ahell i 111;-" l"Orr('sponJ to r-i gurc 10 and 11.



-23-

Several simple transformations have been employed to accomplish

tile embedJing. The most not.icable is that t.he hexagonal structure has

been $lightly deformed to accomoclate the rectangular CHiP lattice and

the LU-decomposition processor has been rotated clockwise 120". The

l"Onst,111t injluts (O's and -I) that appear 011 the periml'ter of the systolic

alTay !lavL' ht'CIl SllpprC$Sctl SLJH:C they call be generated intcl"Ilally to thc

PEs. The output wires carrying the L mat.rix resul t have been assigned

to one of the available ports and routed to the inputs of the LTS solver.

FinidlYJ to embed the double channel bet""een PEs of the LTS solver wc

have routed data diagonally out of the North-East port into the South-East

port. Notice that since the diagonal elements of L are all 1 J they are not

explicitly produced.

The next problem to solve is the rewritin~ of U as a 10l~er

triangulLlT syst.em suitable for input into another embedded LIS solver.

We must wilit until U has been entirely produced before performing this

operation. So, rather t.han writ.ing the elements of U to external storage

as they arc produced, we 'thread them through the lattice (assuming therc

is sufficient space to store them all). We also thread the y vector

output from the LTS process along with U. Then in the second phase of

our algori'thm, \~e can process 'the elements through another embedded LTS

solver.

Perhaps the most elegant h'ay to thread U and y through the lat.tice

is to use a graph embedding due to Aleliunas and Rosenberg [13]. The

scheme has the advantage of not requiring a large "bundle" of wires along

the perimeter of the lattice when the threads double back. (Figure 13

illustrates the embedding required for doubling back.) As the U and y

values are produced, they are passed from PE to PE. (They could be



-24-

"concentrated" by storing several per PE.) I~hell U and yare completely

produced, the first phase is completed,

,'-6- -0-'(j-- 6' o
• • •

, :
~,, ,, ,· ,, ,
,~, ,
, '· '· ', ,
~,: : 9
![5 9

• • •

':-----,,----"'----,,---..-.'--,
I " .
•
•

--:
•

Figllre L'i. The AJcllllnas-Rus~l1berg l~1l1bedd ing of the threads
duubling lJ:lck. The arrows indicate the direction
of flO\~ of the U and y values.



-25-

lktween the first allJ s0conJ phasc.:s we lIlak0 a lllillur l'cCunl.'lgul";.ll iUll.

(This reconfiguration \~ould not have bl!cn necessary had the plw.sc 1

configuration been somewhat more clever; but as an example, it would also

have been somewhat more confusing.) The second configuration embeds the

LTS solver into the fourth row of processors as illustrated in Figure 14.

o

u
6
6

r
• . .

Figure 14. The simple phase 2 embedding



- 26-

TI1C inputs to this group of processors come from reversing the direction

of flow of the threaded values from phase 1. Notice that this rcvc1"Sal

of flow has thc effect of renumbering the matrix U to be in IOl,'er

triangular form appropriate for the LTS solver. Thc appropriate values

of the y vector are also available at the proper locations. The outputs

from the second phase cmanate from the western port of processor (4,1).

These are the values solving Ax = b.

To summarize, the system of linear equations Ax = b is solved in tlW

phases all the CHiP processor, In phase 1 an embedded LU-decomposition

processor takes A as input and produces matrices Land U as output. The

L output is immediately input to an LTS solver that also takes b as inJlut

ilnd solves Ly = b. The vector y and the matrix U are threaded through the

lattice, Phase 1 completes when A has been decomposed. In phase 2

another embedded LIS solver takes the threaded output from phase l (by

reversing its flow) and solves Ux = y.

Phase 2 makes scant use of parallelism it runs 1n the same time as

phase 1 and the data arc already in the CHiP processor. And as noted, the

interphase reconfiguration I~as not essential. But, there are algorithms

to solvc the phase 2 problem that do make essential usc of configurabilit)'

to make el'f('ctive ll:;e of parallelism [14). A complete Jevelopment of thc

:Ippl'oach is I\ot p()~sible here, but the cssenti.al idea due to Chell, Kuck

and Samch [11) 1s straightforl,-ard: A trilJlsformation Oll U enahles LIS to

decompose the matrix into blocks Bl, ...• Bk whose product yields the result.

Because the product operation is associative, the whole produr:.t f.:i'.n be

formed by taking pain~ise products in parallel, then paindse products

of the results, etc. By reconfiguring the threaded portion of the lattice

Llsing one of several rather complicated interconnection patterns that



-27-

either implicitly or explicitly embed a tree, we can perform these paiTl~ise

products in parallel. The result is a faster parallel algorithm made

possible by configurability.

Discussion

Several characteristics of the CHiP approach should be mentioned.

First, the algorithmically specialized processors translate Imltatis

mutandis to programs for the CHiP computer. Thus, we have a ready

supply of algorithms that can effectively use the parallel processor.

Of course, all of these algorithms use one interconnection structure,

ilUd it is possible that improved algorithms might be found that exploit

the availability of multiple interconnection structures.

Second, configurability provides both interphase ami intraphase

flexibility. This distinction, though not very Clear-cut, tends to

correlate with whether or not pipelining is being used. If a problem is

solved by a sequence of phases that each complete before the next one

begins, we tt;:nd to use regular configurations that change at the completion

of a phase (interphase). The whole lattice is in a mesh ur tree ]J<lttcrn.

For a series of pipelined algorithms that can be coupled together, as in

the last section. we tend to form regions of the lattice dedicated to each

algorithm with data paths interconnecting the regions. We refer to this as

intraphase configurability because within one phase we interconnect

several l'egular structures. Clearly, I.e need not change configurations

to exploit the advantage of configurability.

Both kinds of configurability arc useful in adapting to changes in

problem size. For example, two different small problems might operate

com:urrently on different regions of the CHiP processor using entirely

different interconnection schemes. One pattern could change while the



-28-

other remained fj xeu by loading sId tches of the fixed region wi.th t\~O

caples of the same configuration setting. Pipe lined proce~sors, \~hose

sizc is usually a function of the input width, can be tailored to the

right size at loading time.

Another consequence of configurability is that it is quite fault

to1~rilf1t. Supposing that an errol" is detccted in a processor, dnta path

or switch, \~e can simply route around the offending device. For convenience,

we might choose to leavc other processors unused to "square up" the

lattice \~hen matching dimensions are important.

Perhaps the most intriguing consequence of configurability's fault

tolerance is the possibility of "liafer level" fabrication. That is,

instead of dicing a wafer and discarding the faulty processor chips, we

can leave a VLSI wafer whole and simply route around the unusable

proce~sors. (We o.:ould lise the dicing corridors for data paths, and

sh'itches.) For example if a wafer contains 100 processor chips and

yield characteristics indicate that roughly one third are faulty, then

a \~nfer is accept<lblc if \~e can finel :::n 8 x B sublattice tha1: is functional.

The mapping of the switches to host the 8 x 8 in the 100 could be done

on the wafer by special circuitry designed for that purpose. Although the

lllllribel' of pins required for the I~afcr Iwuld be large, their number i.s only

jll'Ollortional tu the j1l'l"ilTl<.'ter rather than the arc-a. This acrll:llly 1·C'dLlCCS

the l,)lal numher of \~in:s hontlcd.

SlimmaI'Y

By inte~ratillg programm<lble switches with the proces$ing elements,

the Cllil' computer achieves a polymorphism of interconnection structure

that also preserves locality. This enables us to compose algorithms that



-29-

cxpLoit differcnt intcn;onnectiull pattcnls. 1n additlOll to responding

to different problem sizes and characteristics, the flexibility of

integrated switches provides substantial fault tolerance and permits

wafer Ie"'!,;! i'abric;ltion.

AcknowZedgements

It is a great pleasure to thnnk Dennis Gannon fOl- his encouragement
and his assistance \~ith the linear systems solvi.ng example. ,Janice Cuny's
critical reading has lead to a simplification of the swi'Lch - the insight
is mL:ch appreciated. Thanks arc due Paul ~lcNabb who developed programs
to produce the embedding of Figure 9. Finally, Robert Grafton, Leonard
Haynes and Richard Lau have provided encouragement and support that is
greatly appreciated.



-30-

Re[e:renccn

[I J Carver /'-lead and Lynn Conway
Int]'oduction to VLSI systems
Addison Wesley, 1980

[2] H. T. Kung and C.E ..Leiserson
Systolic arrays (for VLSI)
Tech. Report. CS-79-103, Carnegie-Mellon University, April 1979
(Also ill [1])

[3J D.Il. Gannon
On pilJelining a mesh connected multiprocessor for finite element

problems by nested dissection
Proc. Intll Conf. on Parallel Processing, pp. 197-204, 1980

['IJ Sally Browning
The tree machine: a highly concurrent programming environment
Ph.D. Thesis, California Institute of Technology, Jan. 1980

[SJ .Jon L. Bentley and H.T. Kung
A tree machine for searching problems
In Proc. of the Intll Conf. on Parallel Processing, pp. 257-266

IEEE, 1979

[01 L. Snyder
Trce-organized processor structure
Technical Report, Yale University, M<lrch 1980

[71 1...1. Guibas, Il.L Kung and C.D. Thompson
lJirect VLSI implementation of combinatorial algorithms
In Cal. Tech. ConL onVLSI, California Institute of Technology
.Jallllary 1979

[Il] S.W. Song
A highly concurrent tree machine for data base applications
Proc. Intll Conf. on Parallel Processing pp. 259-268, 1980

[9J L.G. Valiant
University considerations in VLSI circuits
11:EE TrailS. COlnjllltl:rS, 19111

[10] C.D. Thompson
A complexity theory for VLSI
Ph.D. Thesis, Carnegie-Mellon University, 1980

[11] S.C. Chen, D.J. Kuck and H.Il. Sameh
Practical Parallel Based Triangular System Solvers
AOI TOMS (Sept. 78) pp. 270-277.

[l2J L. Snyder
Overview of the CHiP Computcr
In VJ.SI 81, John Grey, ed., Academic Press, PI'. 240-249, 1981



-31-

[131 Romas Aleliunas and A.L. Rosenberg
On embedding r.ect.angular grids into square grids
IBM Tech. Report. RC 8404 1980

[111] D.B. Gannon anJ L. Snyder
Linear Recurrence Algorithms for VLSI: The
Configurahle, Highly Parallel Approach
(in preparation)

[15] Lawrence Snyder
Programming Processor Interconnection St.ructures
Purdue Universities Department of Computer Sciences, TR-381, 1981


	Introduction to the Configurable, Highly Parallel (CHiP) Computer)
	Report Number:
	

	tmp.1307986960.pdf.EJTyt

