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Abstract. The Evidential Reasoning (ER) approach has been devel-
oped to support multiple criteria decision making (MCDM ) under uncer-
tainty. It is built upon Dempster’s rule for evidence combination and uses
belief functions for dealing with probabilistic uncertainty and ignorance.
In this introductory paper, following a brief introduction to Dempster’s
rule and the ER approach, we report the discovery of a new generic ER
rule for evidence combination [16]. We first introduce the concepts and
equations of a new extended belief function and then examine the de-
tailed combination equations of the new ER rule. A numerical example
is provided to illustrate the new ER rule.
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1 Basic Concepts of Evidence Theory

The evidence theory was first investigated in 1960’s [2] and formalised in 1970’s
[7]. It has since been further developed and found widespread applications in
many areas such as artificial intelligence, expert systems, pattern recognition,
information fusion, database and knowledge discovery, multiple criteria decision
making (MCDM ), audit risk assessment, etc. [1, 3, 5, 9–15]. In this section,
the basic concepts of belief function and Dempster’s combination rule of the
evidence theory are briefly introduced as a basis for introduction of the Evidential
Reasoning (ER) approach in the next section.

Suppose H = {H1, . . . , HN} is a set of mutually exclusive and collectively
exhaustive propositions, referred to as the frame of discernment. A basic prob-
ability assignment (bpa) is a belief function m : Θ → [0, 1], satisfying:

m(∅) = 0, and
∑
C∈Θ

m(c) = 1 (1)

with ∅ being an empty set, C any subset of H , and Θ the power set of H ,
consisting of all the 2N subsets of H , or

Θ = {∅, {H1}, . . . , {HN}, {H1, H2}, . . . , {H1, HN}, . . . , {H1, . . . , HN−1}, H}
(2)
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A basic probability mass m(C) measures the degree of belief exactly assigned
to a proposition C and represents how strongly the proposition is supported by
evidence. Probabilities assigned to all the subsets of H are summed to unity and
there is no belief left to the empty set. A probability assigned to H , or m(H),
is referred to as the degree of global ignorance. A probability assigned to any
subset of H , except for any individual proposition Hn(n = 1, . . . , N) and H ,
is referred to as the degree of local ignorance. If there is no local or global
ignorance, a belief function reduces to a conventional probability function.

Associated with each bpa to C are a belief measure, Bel(C), and a plausibility
measure, Pl(C), defined by the following equations:

Bel(C) =
∑
B⊆C

m(B) and Pl(C) =
∑

B∩C �=∅
m(B) (3)

Bel(C) represents the exact support to C and its subsets, and Pl(C) represents
all possible support to C and its subsets. The interval [Bel(C), P l(C)] can be
seen as the lower and upper bounds of support to C. The two functions can be
connected by the following equation

Pl(C) = 1 − Bel(C) (4)

where C denotes the complement of C. The difference between the belief and
plausibility measures of C describes the degree of ignorance in assessment to C
[7].

The core of the evidence theory is Dempster’s rule for evidence combination
by which evidence from different sources is combined. The rule assumes that
information sources are independent and uses the so-called orthogonal sum to
combine multiple belief functions:

m = m1 ⊕ m2 ⊕ . . . ⊕ mL (5)

where ⊕ is the orthogonal sum operator. With two pieces of evidence m1 and
m2, Dempster’s rule for evidence combination is given as follows:

[m1 ⊕ m2](θ) =

⎧⎨
⎩

0, θ = ∅∑
B∩C=θ

m1(B)m2(C)

1− ∑
B∩C=∅

m1(B)m2(C) , θ �= ∅ (6)

Note that Dempster’s rule provides a non-compensatory process for aggregation
of two pieces of evidence and can lead to irrational conclusions in the aggregation
of multiple pieces of evidence in conflict [4, 6, 8], in particular in cases where
multiple pieces of evidence are mutually compensatory in nature. By a compen-
satory process of evidence combination, it is meant that any piece of evidence is
not dominating but plays a relative role, which is related to its relative impor-
tance. On the other hand, the ER approach [9, 11–15] introduced in the next
section provides a compensatory evidence aggregation process, which is different
from Dempster’s rule in that it treats basic probability assignments as weighted
belief degrees, embraces the concept of the degree of indecisiveness caused due to
evidence weights, and adopts a normalisation process for combined probability
masses without leaving any belief to the empty set.
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2 The Main Steps of the ER Approach for MCDM

In the ER approach, a MCDM problem is modelled using a belief decision
matrix. Suppose M alternatives (Al, l = 1, . . . , M) are assessed on L criteria
ei(i = 1, . . . , L) each on the basis of N common evaluation grades (proposi-
tion) Hn(n = 1, . . . , N), which are required to be mutually exclusive and collec-
tively exhaustive. If an alternative Al is assessed to a grade Hn on a criterion
ei with a belief degree of βn,i(Al), this assessment can be denoted by a be-
lief function with global ignorance Si(Al) = S(ei(Al)) = {(Hn, βn,i(Al)), n =
1, . . . , N, (H, βH,i(Al))}, with βH,i(Al) used to measure the degree of global
ignorance,

∑N
i=1 βn,i(Al) + βH,i(Al) = 1, βn,i(Al) ≥ 0 (n = 1, . . . , N) and

βH,i(Al) ≥ 0. The individual assessments of all alternatives each on every crite-
rion can be represented by a belief decision matrix, defined as follows:

D = (Si(Al))L×M (7)

Suppose ωi is the relative weight of the ith criterion, normalised by

0 ≤ ωi ≤ 1 and
∑

i

ωi = 1 (8)

The ER approach has both the commutative and associative properties and as
such can be used to combine belief functions in any order. The ER aggregation
process can be implemented recursively [11–13], summarised as the following
main steps.

Step 1: Assignment of basic probability masses

Suppose the basic probability masses for an assessment S1(Al) are given by:

mn,1 = ω1βn,1(Al) for n = 1, . . . , N,

mH,1 = ω1βH,1(Al), and

mΘ,1 = 1 − ω1

(∑N
n=1 βn,1(Al) + βH,1(Al)

)
= 1 − ω1 (9)

In the evidence theory, mn,1 may be interpreted as discounted belief. In MCDM,
it should be interpreted as weighted belief or individual support to the assessment
of Al to Hn, as it means that in assessing an alternative Al the 1st criterion
only plays a limited role that is proportional to its weight. mH,1 represents the
weighted global ignorance of the assessment. mΘ,1 is referred as to the degree of
indecisiveness left by S1(Al), representing the amount of belief that is not yet
assigned to any individual or any subset of grades by S1(Al) alone but needs to
be jointly assigned in accordance with all other assessments in question.

Similarly, the basic probability masses for another assessment S2(Al) are given
by

mn,2 = ω2βn,2(Al) for n = 1, . . . , N,

mH,2 = ω2βH,2(Al), and

mΘ,2 = 1 − ω2

(∑N
n=1 βn,2(Al) + βH,2(Al)

)
= 1 − ω2 (10)
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Step 2: Combination of basic probability masses

The basic probability masses for S1(Al) and S2(Al) can be combined using the
following ER algorithm:

{Hn} : mn,12 = k(mn,1mn,2 + mn,1(mH,2 + mΘ,2) + (mH,1 + mΘ,1)mn,2) (11)

for n = 1, . . . , N

{H} : mH,12 = k(mH,1mH,2 + mH,1mΘ,2 + mH,2mΘ,1) (12)

{Θ} : mΘ,12 = k(mΘ,1mΘ,2) (13)

k =

⎛
⎝1 −

N∑
n=1

N∑
t=1;t�=n

mn,1mt,2

⎞
⎠

−1

(14)

In the above ER algorithm, mn,12 and mH,12 measure the relative magnitudes
of the total beliefs in the individual grade Hn and the frame of discernment H ,
respectively, generated by combining the two belief functions S1(Al) and S2(Al).
mΘ,12 is the degree of indecisiveness left by both S1(Al) and S2(Al), representing
the amount of belief that needs to be re-assigned back to all subsets of grades
proportionally after the combination process is completed, so that no belief is
assigned to the empty set. k measures the degree of conflict between S1(Al) and
S2(Al).

Step 3: Generation of total belief degrees

If there are more than two assessments, Step 2 can be repeated to combine an un-
combined assessment with the previously-combined assessment given by mn,12

(n = 1, . . . , N), mH,12 and mΘ,12. After all assessments are combined recursively,
the finally combined probability masses need be normalised to generate the total
belief degrees βn,12 and βH,12 (for L=2) by proportionally re-assigning mΘ,12

back to all subsets of grades as follows:

{Hn} : βn,12 =
mn,12

1 − mΘ,12
, n = 1, . . . , N (15)

{H} : βH,12 =
mH,12

1 − mΘ,12
(16)

The combined assessment for Al is then given by the following belief function:

S(Al) = {(H1, β1,12), (H2, β2,12), . . . , (HN , βN,12), (H, βH,12)} (17)

The above belief function provides a panoramic view about the combined assess-
ment of the alternative Al with the degrees of strength and weakness explicitly
measured by the belief degrees.
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3 Introduction to the ER Rule for Evidence Combination

In Section 2, a belief function with global ignorance was represented by Si(Al) =
S(ei(Al)) = {(Hn, βn,i(Al)), n = 1, . . . , N, (H, βH,i(Al))}, with (Hn, βn,i(Al))
referred to as a focal element of S(ei(Al)) if βn,i(Al) > 0. mn,1 = ω1βn,1(Al)
given in Equation (9) represents the individual support of the evidence S(e1(Al))
to the hypothesis that Al is assessed to Hn. Similarly, mn,2 = ω2βn,2(Al) given
in Equation (10) represents the individual support of the evidence S(e2(Al)) to
the same hypothesis. As such, mn,1mn,2 represents the joint support of both
S(e1(Al)) and S(e2(Al)) to the same hypothesis.

Generally, suppose a piece of evidence S(ei) with the weight ωi is represented
by the following conventional belief function with

∑
θ∈Θ βθ,i = 1

S(ei) = {(θ, βθ,i), ∀θ ∈ Θ} (18)

We can now show the extension of the above conventional belief function to
include a special element (Θ, (1 − ωi)) for constructing a new extended belief
function for S(ei) as follows [16]:

mi = {(θ, mθ,i), ∀θ ∈ Θ, (Θ, mΘ,i)} (19)

with
mθ,i = ωiβθ,i, ∀θ ∈ Θ, and mΘ,i = 1 − ωi (20)

Note that the following relationships between a conventional belief function and
its extended belief function are always true [16]:

βθ,i =
mθ,i

1 − mΘ,i
, ∀θ ∈ Θ (21)

We are now in a position to introduce the new ER rule [16] as follows. Let two
pieces of independent evidence S(e1) and S(e2) with the relative weights ω1

and ω2 be represented by the conventional belief functions defined by Equation
(18) with ω1 + ω2 = 1, mθ,1 = ω1βθ,1 and mθ,2 = ω2βθ,2 for all θ ⊆ H . Then,
S(e1) and S(e2) can be combined by the following ER rule which can be used
recursively for aggregating multiple pieces of evidence [16]:

mθ,12 =
m̃θ,12∑

θ⊆H

m̃θ,12 + m̃Θ,12
, ∀θ ⊆ H, and mΘ,12 =

m̃Θ,12∑
θ⊆H

m̃θ,12 + m̃Θ,12
(22)

βθ,12 =
m̃θ,12∑

θ⊆H

m̃θ,12
, ∀θ ⊆ H, (23)

m̃θ,12 = [(1 − ω2)mθ,1 + (1 − ω1)mθ,2] +
∑

B,C⊆H;B∩C=θ

mB,1mC,2 (24)

m̃Θ,12 = mΘ,1mΘ,2 (25)
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The combined extended and conventional belief functions can then be repre-
sented as follows:

m1 ⊕ m2 = {(θ, mθ,12), ∀θ ∈ Θ, (Θ, mΘ,12)} (26)

S(e1) ⊗ S(e2) = {(θ, βθ,12), ∀θ ∈ Θ} (27)

where ⊕ is the orthogonal sum operator composed of Equations (22), (24) and
(25) for generating combined extended belief functions, which can be applied
recursively, and ⊗ is the ER operator consisting of Equations (23) and (24)
for generating combined conventional belief functions, which can be used after
extended belief functions are combined.

The new ER rule results from the innovation of implementing Dempster’s
rule on the new extended belief functions. It can be shown that the current ER
approach as summarized in section 2 is a special case of the new ER rule. The new
ER rule provides a generic process for generating total beliefs from combination
of multiple pieces of independent evidence under the normal condition that each
piece of evidence plays a role equal to its relative weight. The ER rule can be
applied in areas where the above normal condition is satisfied, for example in
multiple criteria decision making.

It is important to note that the combined belief generated by using the ER
rule to aggregate two pieces of evidence is composed of two parts: the bounded
average of the individual support, which is the first bracketed term in Equation
(24), and the orthogonal sum of the joint support, which is the last term in
Equation (24). This is in contract to the partial belief generated by using Demp-
ster’s rule on conventional belief functions, including only the orthogonal sum
to count for joint support, with individual support either abandoned or assigned
to the empty set, either of which is irrational.

4 Illustration of the ER Rule

We now examine a simple example to illustrate how the ER rule can be imple-
mented and explain whether the results it generates are rational. Suppose three
pieces of evidence of equal importance are given as the following three belief
functions each with only its focal elements listed:

S(e1) = {(A, 0.99), (B, 0.01)} (28)
S(e2) = {(B, 0.01), (C, 0.99)} (29)
S(e3) = {(B, 0.01), ({A, C}, 0.99)} (30)

with ω1 = ω2 = ω3 = 0.3333. Suppose they each play a role equal to their
relative weights. Note that

H = {A, B, C} and Θ = {∅, A, B, C, {A, B}, {A, C}, {B, C}, {A, B, C}}
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in this example. The extended belief functions corresponding to Equations (28)-
(30) are given using Equations (19) and (20) as follows

m1 = {(A, 0.33), (B, 0.0033), (Θ, 0.6667)} (31)
m2 = {(B, 0.0033), (C, 0.33), (Θ, 0.6667)} (32)
m3 = {(B, 0.0033), ({A, C}, 0.33), (Θ, 0.6667)} (33)

The calculations of the ER rule for the above example are shown in Table 1. The
ER rule is applied recursively (Equations (22), (24) and (25)) to Equations (31)-
(33). The results of the last row, generated using Equation (23) after the second
iteration, show the final combined conventional belief function, complementary
to the extended belief function, shown in the last but one row, which is generated
by aggregating all the three extended belief functions shown in rows 5-7.

In the final results, βA,123 = βC,123 = 0.3718 are the highest total belief, which
makes sense as the first evidence supports the proposition A and the second ev-
idence supports the proposition C with the same magnitude, while the third ev-
idence supports the proposition {A, C} with no discrimination between the two
individual propositions A and C. β{A,C},123 = 0.2487 is generated rightly as the
second highest total belief as the third evidence supports {A, C}, so the signifi-
cant local ignorance in {A, C} should remain in the final results. The proposition
B is assessed to be unlikely by all the three pieces of evidence, so it makes sense
that the total belief in this proposition should also be rather small. The total
belief in each of the other propositions (∅, {A, B}, {B, C} and {A, B, C}) is zero
as it should be.

Table 1. Illustration of the ER Rule

Belief A B C {A, B} {A, C} {B, C} {A, B, C} Θ

βθ,1 0.99 0.01 0 0 0 0 0

βθ,2 0 0.01 0.99 0 0 0 0

βθ,3 0 0.01 0 0 0.99 0 0

mθ,1 0.3300 0.0033 0.0000 0.0000 0.0000 0.0000 0.0000 0.6667

mθ,2 0.0000 0.0033 0.3300 0.0000 0.0000 0.0000 0.0000 0.6667

mθ,3 0.0000 0.0033 0.0000 0.0000 0.3300 0.0000 0.0000 0.6667

m̃θ,12 0.2200 0.0045 0.2200 0.0000 0.0000 0.0000 0.0000 0.4444

mθ,12 0.2475 0.0050 0.2475 0.0000 0.0000 0.0000 0.0000 0.5000

βθ,12 0.495 0.01 0.495 0.0000 0.0000 0.0000 0.0000

m̃θ,123 0.2467 0.0050 0.2467 0.0000 0.1650 0.0000 0.0000 0.3333

mθ,123 0.2475 0.0050 0.2475 0.0000 0.1655 0.0000 0.0000 0.3344

βθ,123 0.3718 0.0076 0.3718 0.0000 0.2478 0.0000 0.0000
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5 Conclusion

In this paper, following the discussion of Dempster’s rule and the ER approach,
we reported the discovery of the new ER rule that provides a general process
for combining multiple pieces of independent evidence in form of belief functions
under the normal condition that every piece of evidence plays a limited role
equivalent to its relative weight. The ER rule generates the total beliefs from
combination of every two pieces of evidence as the addition of the bounded
average of the individual support from each of the two pieces of evidence and the
orthogonal sum of the joint support from the two pieces of evidence, which reveals
that the orthogonal sum of the joint support from two pieces of evidence is only
part of their total combined belief. A numerical example was examined in some
detail to illustrate this general yet rational and rigorous ER rule for evidence
combination. The new ER rule can be applied for combination of independent
evidence in any cases where the normal condition is satisfied.
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