INTRODUCTION TO THE EXPLICIT FINITE ELEMENT METHOD FOR NONLINEAR TRANSIENT DYNAMICS

SHEN R. WU and LEI GU

A JOHN WILEY & SONS, INC., PUBLICATION

CONTENTS

PREF	PREFACE		
PART	I FUNDAMENTALS	° 1	
1 INT	FRODUCTION	3	
1.1	Era of Simulation and Computer Aided Engineering	3	
- 5. v	1.1.1 A World of Simulation	3	
	1.1.2 Evolution of Explicit Finite Element Method	4	
,	1.1.3 Computer Aided Engineering (CAE)—Opportunities		
:	and Challenges	5	
1.2	Preliminaries	6	
	1.2.1 Notations	6	
	1.2.2 Constitutive Relations of Elasticity	8	
2 FR	AMEWORK OF EXPLICIT FINITE ELEMENT METHOD		
FO	R NONLINEAR TRANSIENT DYNAMICS	11	
2.1	Transient Structural Dynamics	11	
2.2	Variational Principles for Transient Dynamics	13	
	2.2.1 Hamilton's Principle	13	
ۂ+	2.2.2 Galerkin Method	15	

viii CONTENTS

	2.3	Finite	Element Equations and the Explicit Procedures	15
		2.3.1	Discretization in Space by Finite Element	16
		2.3.2	System of Semidiscretization	19
		2.3.3	Discretization in Time by Finite Difference	19
		2.3.4	Procedure of the Explicit Finite Element Method	- 20
	2.4	Main	Features of the Explicit Finite Element Method	21
		2.4.1	Stability Condition and Time Step Size	22
		2.4.2	Diagonal Mass Matrix	23
		2.4.3	Corotational Stress	24
	2.5	Asses	sment of Explicit Finite Element Method	24
		2.5.1	About the Solution of the Elastodynamics	24
		2.5.2	A Priori Error Estimate of Explicit Finite Element	
			Method for Elastodynamics	25
*		2.5.3	About the Diagonal Mass Matrix	30
PA	RT	II E	LEMENT TECHNOLOGY	37
3			DE SHELL ELEMENT (REISSNER-MINDLIN	
	PLA	ATE TH	IEORY)	39
	3.1	Funda	amentals of Plates and Shells	40
		3.1.1	Characteristics of Thin-walled Structures	40
		3.1.2	Resultant Equations	42
		3.1.3	Applications to Linear Elasticity	44
¥		3.1.4	Kirchhoff-Love Theory	46
1.		3.1.5	Reissner-Mindlin Plate Theory	47
ž.	3.2	Linea	r Theory of R-M Plate	47
.}		3.2.1	Helmholtz Decomposition for R-M Plate	48
		3.2.2	Load Scaling for Static Problem of R-M Plate	48
1.		3.2.3	Load Scaling and Mass Scaling for Dynamic Problem of R-M Plate	49
		3.2.4	Relation between R-M Theory and K-L Theory	50
	3.3		polation for Four-node R-M Plate Element	52
		3.3.1	Variational Equations for R-M Plate	52
		3.3.2	Bilinear Interpolations	52
<i>f</i> ·	,	3.3.3	Shear Locking Issues of R-M Plate Element	55
	3.4		ced Integration and Selective Reduced Integration	56
V. 5	٠. ١	3.4.1	Reduced Integration	56
		~		

		CONTENTS	ix
•	3.4.2	Selective Reduced Integration	57
} -	3.4.3	Nonlinear Application of Selective Reduced	
		Integration—Hughes-Liu Element	58
3.5	Pertur	bation Hourglass Control—Belytschko-Tsay Element	60
	3.5.1	Concept of Hourglass Control	61
) ·	3.5.2	Four-node Belytschko-Tsay Shell Element—Perturbation Hourglass Control	63
	3.5.3	Improvement of Belytschko-Tsay Shell Element	68
•	3.5.4	About Convergence of Element using Reduced Integration	70
3.6	-	cal Hourglass Control—Belytschko–Leviathan) Element	71
	3.6.1	Constant and Nonconstant Contributions	71
	3.6.2	· · · · · · · · · · · · · · · · · · ·	72
	3.6.3	Physical Hourglass Control by One-point Integration	73
	3.6.4	Drill Projection	73 74
	3.6.5	Improvement of B-L (QPH) Element	7 4 76
3.7		Projection Method—Bathe–Dvorkin Element	76
5.1	3.7.1	Projection of Transverse Shear Strain	76
	3.7.2	Convergence of B-D Element	78
3.8		sment of Four-node R-M Plate Element	80
5.0	3.8.1	Evaluations with Warped Mesh and Reduced Thickness	80
	3.8.2	About the Locking-free Low Order Four-node R-M	00
	3.0.2	Plate Element	85
THE	REE-NO	ODE SHELL ELEMENT (REISSNER-MINDLIN	
PL/	TE TH	EORY)	88
4.1	Funda	mentals of a Three-node C^0 Element	89
	4.1.1	Transformation and Jacobian	89
	4.1.2	Numerical Quadrature for In-plane Integration	91
	4.1.3	Shear Locking with C^0 Triangular Element	91
4.2		nposition Method for C^0 Triangular Element One-point Integration	92
	4.2.1	A C^0 Element with Decomposition of Deflection	92
	4.2.2	A C^0 Element with Decomposition of Rotations	96
4.3		ete Kirchhoff Triangular Element	97
4.4		sment of Three-node R-M Plate Element	102
	4.4.1	Evaluations with Warped Mesh and Reduced Thickness	102
	4.4.2	About the Locking-free Low Order Three-node R-M	105
		Plate Element	103

5	EIG	HT-NO	DE SOLID ELEMENT	107
	5.1	Triline	ear Interpolation for the Eight-node Hexahedron Element	107
1	5.2		ng Issues of the Eight-node Solid Element	111
	5.3	One-p	oint Reduced Integration and the Perturbed	
•		Hourg	lass Control	113
	5.4	Assun	ned Strain Method and Selective/Reduced Integration	115
	5.5	Assun	ned Deviatoric Strain	118
• '	5.6	An En	hanced Assumed Strain Method	118
	5.7	Taylo	Expansion of Assumed Strain about the Element Center	120
	5.8	Evalua	ation of Eight-node Solid Element	123
6	TW	O-NOD	E ELEMENT	128
	6.1	Truss	and Rod Element	128
).·.	6.2	Timos	shenko Beam Element	129
ij,	6.3	Spring	g Element	131
٠,		6.3.1	One Degree of Freedom Spring Element	131
r), s		6.3.2	Six Degrees of Freedom Spring Element	132
Ţŗ		6.3.3	Three-node Spring Element	133
	6.4	Spot V	Weld Element	134
1.		6.4.1	Description of Spot Weld Separation	134
		6.4.2	Failure Criterion	135
		6.4.3	Finite Element Representation of Spot Weld	137
P/	ART	ill N	MATERIAL MODELS	139
7	MA	TERIA	L MODEL OF PLASTICITY	141
ξ.	7.1	Funda	amentals of Plasticity	142
1 2		7.1.1	Tensile Test	142
		7.1.2	Hardening	144
ં. ૡ	•	7.1.3	Yield Surface	145
		7.1.4	Normality Condition	150
		7.1.5	Strain Rate Effect/Viscoplasticity	152
	7.2	Const	itutive Equations	153
		7.2.1	Relations between Stress Increments and	
			Strain Increments	153
į		7.2.2	Constitutive Equations for Mises Criterion	157
		7.2.3	Application to Kinematic Hardening	158

			CONTENTS	хi
	7.3	Softw	are Implementation	159
: '		7.3.1	Explicit Finite Element Procedure with Plasticity	160
		7.3.2		160
		7.3.3	A Generalized Plane Stress Model	163
- , 1		7.3.4	Stress Resultant Approach	164
	7.4	Evalu	ation of Shell Elements with Plastic Deformation	169
8	COI	UNITA	UM MECHANICS MODEL OF DUCTILE DAMAGE	175
٠	8.1	Conce	ept of Damage Mechanics	175
ا <u>س</u> ؤ	8.2	Gurso	on's Model	177
		8.2.1	Damage Variables and Yield Function	178
		8.2.2	Constitutive Equation and Damage Growth	179
	8.3	Chow	's Isotropic Model of Continuum Damage Mechanics	180
4.7		8.3.1	Damage Effect Tensor	181
		8.3.2	Yield Function and Constitutive Equation	183
		8.3.3	Damage Growth	185
		8.3.4	Application to Plates and Shells	187
		8.3.5	Determination of Parameters	188
t	8.4	Chow	's Anisotropic Model of Continuum Damage Mechanics	189
9	МО	DELS	OF NONLINEAR MATERIALS	192
•	9.1	Visco	elasticity	192
ri.		9.1.1	Spring-Damper Model	192
		9.1.2	A General Three-dimensional Viscoelasticity Model	196
	9.2	Polyn	ner and Engineering Plastics	197
		9.2.1	Fundamental Mechanical Properties of Polymer Materials	197
		9.2.2	A Temperature, Strain Rate, and Pressure Dependent	100
		000	Constitutive Relation	198
	0.2	9.2.3	A Nonlinear Viscoelastic Model of Polymer Materials	199
	9.3	Rubbe		200
, .		9.3.1	Mooney–Rivlin Model of Rubber Material	200
•		9.3.2	Blatz-Ko Model	202
	0.4	9.3.3	Ogden Model	203
	9.4	Foam	· ·	203
		9.4.1	A Cap Model Combining Volumetric Plasticity and Pressure Dependent Deviatoric Plasticity	205
٠.		9.4.2	A Model Consisting of Polymer Skeleton and Air	205
4.		9.4.2	A Phenomenological Uniaxial Model	203

		9.4.4	Hysteresis Behavior	208
		9.4.5	Dynamic Behavior	209
	9.5	Honey	comb	209
i,.,,		9.5.1	Structure of Hexagonal Honeycomb	210
. : :		9.5.2	Critical Buckling Load	210
ejî. Î		9.5.3	A Phenomenological Material Model of Honeycomb	211
		9.5.4	Behavior of Honeycomb under Complex Loading Conditions	213
	9.6	Lamina	ated Glazing	214
		9.6.1	Application of J-integral	214
		9.6.2	Application of Anisotropic Damage Model	215
1.		9.6.3	A Simplified Model with Shell Element for the Laminated Glass	216
PA	RT IV	/ CO	NTACT AND CONSTRAINT CONDITIONS	219
10	THR	EE-DIM	ENSIONAL SURFACE CONTACT	221
	10.1	Examp	les of Contact Problems	221
		10.1.1	Uniformly Loaded String with a Flat Rigid Obstacle	222
		10.1.2	Hertz Contact Problem	225
		10.1.3	Elastic Impact of Two Balls	226
		10.1.4	Impact of an Elastic Rod on the Flat Rigid Obstacle	228
		10.1.5	Impact of a Vibrating String to the Flat Rigid Obstacle	231
	10.2	Descri	ption of Contact Conditions	233
		10.2.1	Contact with a Smooth Rigid Obstacle—Signorini's Problem	233
		10.2.2	Contact between Two Smooth Deformable Bodies	237
			Coulomb's Law of Friction	240
		10.2.4		242
•		10.2.5	Domain Contact	242
	10.3		onal Principle for the Dynamic Contact Problem	243
		10.3.1	Variational Formulation for Frictionless Dynamic Contact Problem	243
	,	10.3.2	Variational Formulation for Frictional Dynamic Contact Problem	247
		10.3.3	Variational Formulation for Domain Contact	250

			CONTENTS	XIII
4. 2.	10.4	Penalty	Method and the Regularization of Variational Inequality	252
; :: ·		10.4.1	Concept of Penalty Method	252
		10.4.2	Penalty Method for Nonlinear Dynamic Contact Problem	256
		10.4.3	Explicit Finite Element Procedure with Penalty	
			Method for Dynamic Contact	258
11			PROCEDURES FOR THREE-DIMENSIONAL	261
				201
	11.1		act Algorithm with Slave Node Searching Segment	262
			Global Search	263
			Bucket Sorting Method	264
			Local Search	266
			Penalty Contact Force	268
	11.2		act Algorithm with Master Segment Searching	200
		Slave N		272
		11.2.1	Global Search with Bucket Sorting Based	
			on Segment's Capture Box	272
		11.2.2	Local Search with the Projection of Slave Point	273
	11.3	Method	of Contact Territory and Defense Node	273
		11.3.1	Global Search with Bucket Sorting Based on Segment's Territory	274
		11.3.2	Local Search in the Territory	274
		11.3.3	Defense Node and Contact Force	275
	11.4	Pinball	Contact Algorithm	277
		11.4.1	The Pinball Hierarchy	277
		11.4.2	Penalty Contact Force	278
	11.5	Edge (I	Line Segment) Contact	279
		11.5.1	Search for Line Contact	279
		11.5.2	Penalty Contact Force of Edge-to-Edge Contact	281
	11.6	Evaluat	tion of Contact Algorithm with Penalty Method	282
12	KINE	MATIC	CONSTRAINT CONDITIONS	289
	12.1	Rigid V	Vall	289
		12.1.1	A Stationary Flat Rigid Wall	290
•		12.1.2	A Moving Flat Rigid Wall	291
		12.1.3	Rigid Wall with a Curved Surface	293

-		
xiv.	CONTENTS	

15

1

. 757. - 245. - 247.

> > 4.

INDEX				
REFERENCES				
12.4	Application Examples with Constraint Conditions	300		
3.1 12.3	Explicit Finite Element Procedure with Constraint Conditions	298		
12.2	Rigid Body	296		