Introduction to the Finite Element Method Niels Saabye Ottosen and Hans Petersson University of Lund, Sweden Prentice Hall New York London Toronto Tokyo Sydney Singapore # Contents | Pr | eface | | хi | |-----|----------------|--|------| | Su | ıggestio | ns to the instructor | xiii | | A | cknowle | edgements | xv | | 1 | Introd | uction | 1 | | 877 | 1.1 | Basic description | 1 | | | 1.2 | Some specific applications | 7 | | 2 | Matrix algebra | | | | | | Definitions | 11 | | | 2.2 | Addition and subtraction | 13 | | | 2.3 | Multiplication | 13 | | | 2.4 | Determinant | 16 | | | 2.5 | Inverse matrix | 18 | | | 2.6 | Linear equations: number of equations is equal to number | | | | | of unknowns | 19 | | | 2.7 | Linear equations: number of equations is different from | | | | | number of unknowns | 23 | | | 2.8 | Quadratic forms and positive definiteness | 23 | | | 2.9 | Partitioning | 24 | | | 2.10 | Differentiation and integration | 25 | | 3 | Direct | approach – truss analysis | 27 | | | 3.1 | Simple structure consisting of springs | 27 | | | 3.2 | Truss analysis - local and global coordinates | 37 | | 4 | Strong | and weak formulations – one-dimensional heat flow | 48 | | | 4.1 | One-dimensional heat equation – strong form | 48 | | | 4.2 | Axially loaded elastic bar | 52 | | | 4.3 | Flexible string | 54 | ## vi Contents | | 4.4 | Weak form of one-dimensional heat flow | 56 | | | | |---|--------|---|-----|--|--|--| | | | 4.4.1 Advantages of the weak formulation compared with the | | | | | | | | strong form | 59 | | | | | | *** | 4.4.2 Alternative derivation of heat equation | 62 | | | | | | 4.5 | Concluding remarks | 64 | | | | | 5 | Gradi | ent, Gauss' divergence theorem and the Green-Gauss | | | | | | | theore | em | 65 | | | | | | 5.1 | Gradient | 65 | | | | | | 5.2 | Gauss' divergence theorem and the Green-Gauss theorem | 70 | | | | | 6 | Strong | and weak forms – two- and three-dimensional heat flow | 76 | | | | | | 6.1 | Heat flux vector - constitutive relation | 76 | | | | | | 6.2 | Heat equation for two and three dimensions – strong form | 81 | | | | | | 6.3 | Weak form of heat flow in two and three dimensions | 85 | | | | | | 6.4 | Other analogous physical problems | 87 | | | | | 7 | Choic | e of approximating functions for the FE method – | | | | | | | scalar | problems | 90 | | | | | | 7.1 | General requirements | 91 | | | | | | | 7.1.1 Convergence criteria | 91 | | | | | | | 7.1.2 Rate of convergence – Pascal's triangle | 94 | | | | | | 7.2 | One-dimensional elements | 98 | | | | | | | 7.2.1 Simplest possible one-dimensional element | 98 | | | | | | | 7.2.2 Quadratic one-dimensional element | 106 | | | | | | | 7.2.3 Cubic and quartic one-dimensional elements – Lagrange interpolation | 115 | | | | | | 7.3 | Two-dimensional elements | 118 | | | | | | 1.3 | 7.3.1 Simple triangular element | 118 | | | | | | | 7.3.2 Four-node rectangular element – the Lagrange element | 126 | | | | | | | 7.3.3 More complicated rectangular and triangular elements – | 120 | | | | | | | serendipity elements | 131 | | | | | | 7.4 | Three-dimensional elements | 136 | | | | | | 7.5 | Summary | 138 | | | | | 8 | Choic | e of weight function – weighted residual methods | 142 | | | | | | 8.1 | Point collocation method | 147 | | | | | | 8.2 | | | | | | | | 8.3 | | | | | | | | | The Galerkin method | 152 | | | | | | 8.5 | | | | | | | | 8.6 | Concluding remarks | 156 | | | | | | | | | 0 | |---|---|---|---|---| | • | • | , | • | ٠ | | Я | u | | 1 | Ц | | 9 | | mulation of one-dimensional heat flow | 157 | |-----|--------|---|-----| | | 9.1 | Global FE formulation | 157 | | | | 9.1.1 Example 1 | 164 | | | | 9.1.2 Further properties of the stiffness matrix | 170 | | | | 9.1.3 Systematic consideration of boundary conditions | 171 | | | | 9.1.4 Example 2 | 174 | | | | 9.1.5 Evaluation of the force vector – fulfilment of the global | | | | | balance principle | 175 | | | | 9.1.6 Evaluation of the load vector – point sources | 177 | | | 9.2 | Expanded FE formulation of one element – assembly process | 179 | | | 0.2 | 9.2.1 Example 3 | 183 | | | 9.3 | FE formulation of one element | 184 | | | | 9.3.1 Example 4 | 188 | | | 0.4 | 9.3.2 Use of local coordinate systems | 191 | | | 9.4 | | 193 | | | 0.5 | 9.4.1 Example 5 | 195 | | | 9.5 | Basic features of an FE computer program Heat flow with convection | 197 | | | | | 198 | | | | Co-continuity | 202 | | | 9.8 | Concluding remarks | 203 | | 10 | FE for | mulation of two- and three-dimensional heat flow | 206 | | | 10.1 | Two-dimensional heat flow | 206 | | | | 10.1.1 Example | 214 | | | | 10.1.2 Two-dimensional heat flow with convection | 219 | | | 10.2 | Three-dimensional heat flow | 220 | | 11 | Guid | elines for element meshes and global nodal numbering | 223 | | | 11.1 | 에게 얼마 있었다면 보이트 이번에 얼마 없는데 보다면 하면 하면 보다는데 하는데 하는데 이렇게 되었다. 그 그래마 하는데 이를 보고 있는데 하는데 하는데 하는데 하는데 하는데 하는데 하는데 하는데 하는데 하 | 223 | | | 11.2 | Methods of solution | 225 | | | | 11.2.1 Bandwidth | 225 | | | | 11.2.2 Systematic Gauss elimination | 226 | | | | 11.2.3 Global nodal point numbering | 230 | | | 11.3 | Estimation of bandwidth | 231 | | 12 | Stres | ses and strains | 235 | | 5.5 | 12.1 | | 235 | | | | 12.1.1 Plane stress | 241 | | | 12.2 | | 243 | | | | 12.2.1 Plane strain | 247 | | 13 | Linea | ar elasticity | 248 | | | 13.1 | 1.50 (a) (b) (b) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c | 251 | | | 13.2 | | 253 | ### viii Contents | | 13.3 | Plane stress | 254 | |----|----------|---|-----| | | 13.4 | Plane strain | 255 | | | 13.5 | Summary of equations for solid mechanics | 256 | | | | 13.5.1 Comparison of the equations of heat flow and solid | | | | | mechanics | 259 | | 14 | FE for | mulation of torsion of non-circular shafts | 261 | | | 14.1 | Saint-Venant torsion theory | 261 | | | | 14.1.1 Differential equation for Saint-Venant torsion theory | 261 | | | | 14.1.2 Boundary conditions | 265 | | | | 14.1.3 Determination of torque | 267 | | | | 14.1.4 Soap film analogy | 269 | | | | 14.1.5 Discussion of Saint-Venant torsion theory | 270 | | | 14.2 | FE formulation | 271 | | | | 14.2.1 Example | 276 | | 15 | Appro | oximating functions for the FE method – vector | | | | probl | | 282 | | | | Convergence criteria | 282 | | | 15.2 | | 284 | | | | 15.2.1 Three-node element – constant strain element | 288 | | | | 15.2.2 Four-node rectangle – Melosh element | 289 | | 16 | FE for | rmulation of three- and two-dimensional elasticity | 292 | | | 16.1 | 마음을 잃었다면 하는 것이 되었다면 하는 사람들이 되었다면 하는 것이다면 하는 사람들이 되었다면 하는 것이다면 것이다 | 292 | | | 16.2 | | 295 | | | 16.3 | Weak form of equilibrium equations - two-dimensional case | 299 | | | 16.4 | FE formulation of two-dimensional elasticity | 302 | | | | 16.4.1 Example 1 | 306 | | | | 16.4.2 Example 2 | 308 | | 17 | FE for | rmulation of beams | 311 | | | 17.1 | Beam theory | 312 | | | 5300,700 | 17.1.1 Equilibrium conditions | 312 | | | | 17.1.2 Kinematic relations | 313 | | | | 17.1.3 Constitutive relation | 315 | | | | 17.1.4 Choice of position of x-axis | 315 | | | | 17.1.5 Differential equations for Bernoulli's beam theory | 317 | | | 17.2 | | 318 | | | 17.3 | FE formulation | 319 | | | | 17.3.1 Completeness and compatibility requirements | 323 | | | | 17.3.2 Simplest possible beam element | 324 | | | | 17.3.3 Evaluation of element stiffness matrix | 328 | | | | 17.3.4 Evaluation of element boundary vector | 329 | | | | Co | ntents | ix | |----|--------|---|--------|----| | | | 17.3.5 Beam element with no distributed loading | 330 | | | | | 17.3.6 Evaluation of element load vector – uniform load | 331 | | | | | 17.3.7 Evaluation of element load vector – concentracted | | | | | | force and moment | 332 | | | | | | | | | 18 | FE for | mulation of plates | 335 | | | | 18.1 | Plate theory | 335 | | | | | 18.1.1 Equilibrium conditions | 335 | | | | | 18.1.2 Kinematic relations | 339 | | | | | 18.1.3 Constitutive relation | 340 | | | | | 18.1.4 Further derivations | 341 | | | | | 18.1.5 Differential equations for plate theory | 342 | | | | | 18.1.6 Moments and shear forces acting on an arbitrary plane | 344 | | | | | 18.1.7 Discussion of proper boundary conditions | 347 | | | | 18.2 | Weak form of equilibrium equation - proper static boundary | | | | | | conditions | 349 | | | | 18.3 | Concentrated shear forces at corners | 352 | | | | 18.4 | FE formulation | 356 | | | | | 18.4.1 Completeness and compatibility requirements | 360 | | | | | 18.4.2 Two simple non-conforming plate elements | 361 | | | | | | | | | 19 | | rametric finite elements | 364 | | | | 19.1 | Restrictions on the mapping | 364 | | | | 19.2 | Four-node isoparametric quadrilateral element | 366 | | | | 19.3 | Eight-node isoparametric quadrilateral element | 370 | | | | 19.4 | Three-dimensional isoparametric elements | 373 | | | | 19.5 | General isoparametric formulation – convergence requirements | 374 | | | | 19.6 | Integral transformations | 376 | | | | | 19.6.1 Transformation of integrals over one-, two- and three- | | | | | | dimensional regions | 376 | | | | | 19.6.2 Transformation of boundary integrals | 380 | | | | 19.7 | Evaluation of FE equations using isoparametric elements | 382 | | | | | 19.7.1 Example | 385 | | | | 19.8 | Need for numerical integrations | 386 | | | 00 | | 1.11 | 007 | | | 20 | | rical integration | 387 | | | | 20.1 | Newton-Cotes quadrature | 389 | | | | | 20.1.1 Example 1 | 390 | | | | 20.2 | 20.1.2 Example 2 | 391 | | | | 20.2 | Gauss integration | 391 | | | | | 20.2.1 Example 3 | 392 | | | | | 20.2.2 Example 4 | 394 | | ### x Contents | 20.3 | | ametric elements | 394 | |------------|--|---|-----| | 20.4 | Reduced integration and spurious zero-energy modes | | | | | 20.4.1 | Suggested order of Gauss integration of isoparametric | | | | | elements | 402 | | References | | 403 | | | Index | | | 407 |