Introduction to the *h*-Principle

Y. Eliashberg N. Mishachev

Graduate Studies in Mathematics

Volume 48

American Mathematical Society Providence, Rhode Island

Contents

Preface		XV
Intrigue		1
Part 1.	Holonomic Approximation	
Chapter	1. Jets and Holonomy	7
$\S{1.1.}$	Maps and sections	7
$\S{1.2.}$	Coordinate definition of jets	7
$\S{1.3.}$	Invariant definition of jets	9
$\S{1.4.}$	The space $X^{(1)}$	10
$\S{1.5.}$	Holonomic sections of the jet space $X^{(r)}$	11
§1.6.	Geometric representation of sections of $X^{(r)}$	12
§1.7.	Holonomic splitting	12
Chapter	2. Thom Transversality Theorem	15
$\S{2.1.}$	Generic properties and transversality	15
$\S{2.2.}$	Stratified sets and polyhedra	16
$\S{2.3.}$	Thom Transversality Theorem	17
Chapter	3. Holonomic Approximation	21
$\S{3.1.}$	Main theorem	21
$\S{3.2.}$	Holonomic approximation over a cube	23
§3.3.	Fiberwise holonomic sections	24
$\S{3.4.}$	Inductive Lemma	25

.

•

§3.5.	Proof of the Inductive Lemma	28
§3.6.	Holonomic approximation over a cube	33
§3.7.	Parametric case	34
Chapter	4. Applications	37
§4.1.	Functions without critical points	37
$\S{4.2.}$	Smale's sphere eversion	38
§4.3.	Open manifolds	40
0	Approximate integration of tangential homotopies	41
$\S4.5.$	Directed embeddings of open manifolds	44
$\S4.6.$	Directed embeddings of closed manifolds	45
$\S4.7.$	Approximation of differential forms by closed forms	47
Part 2.	Differential Relations and Gromov's h-Principle	
Chapter	5. Differential Relations	53
$\S{5.1.}$	What is a differential relation?	53
$\S{5.2.}$	Open and closed differential relations	55
§5.3.	Formal and genuine solutions of a differential relation	56
$\S{5.4.}$	Extension problem	56
§5.5.	Approximate solutions to systems of differential equations	57
Chapter	6. Homotopy Principle	59
$\S6.1.$	Philosophy of the <i>h</i> -principle	59
$\S6.2.$	Different flavors of the h -principle	62
Chapter	7. Open Diff V-Invariant Differential Relations	65
§7.1.	Diff V -invariant differential relations	65
§7.2.	Local h -principle for open Diff V -invariant relations	66
Chapter	8. Applications to Closed Manifolds	69
$\S{8.1.}$	Microextension trick	69
§8.2.	Smale-Hirsch h -principle	69
§8.3.	Sections transversal to distribution	71
Part 3.	The Homotopy Principle in Symplectic Geometry	
Chapter	9. Symplectic and Contact Basics	75
$\S{9.1.}$	Linear symplectic and complex geometries	75

§9.2. Symplectic and complex manifolds 80

9.3. Symplectic stability	85
§9.4. Contact manifolds	88
§9.5. Contact stability	94
§9.6. Lagrangian and Legendrian submanifolds	95
§9.7. Hamiltonian and contact vector fields	97
Chapter 10. Symplectic and Contact Structures on Open Manifolds	99
§10.1. Classification problem for symplectic and contact structures	99
§10.2. Symplectic structures on open manifolds	100
§10.3. Contact structures on open manifolds	102
§10.4. Two-forms of maximal rank on odd-dimensional manifolds	103
Chapter 11. Symplectic and Contact Structures on Closed Manifolds	105
§11.1. Symplectic structures on closed manifolds	105
§11.2. Contact structures on closed manifolds	107
Chapter 12. Embeddings into Symplectic and Contact Manifolds	111
§12.1. Isosymplectic embeddings	111
§12.2. Equidimensional isosymplectic immersions	118
12.3. Isocontact embeddings	121
§12.4. Subcritical isotropic embeddings	128
Chapter 13. Microflexibility and Holonomic \mathcal{R} -Approximation	129
§13.1. Local integrability	129
§13.2. Homotopy extension property for formal solutions	131
§13.3. Microflexibility	131
§13.4. Theorem on holonomic \mathcal{R} -approximation	133
§13.5. Local <i>h</i> -principle for microflexible Diff <i>V</i> -invariant relations	133
Chapter 14. First Applications of Microflexibility	135
§14.1. Subcritical isotropic immersions	135
§14.2. Maps transversal to a contact structure	136
Chapter 15. Microflexible A-Invariant Differential Relations	139
§15.1. \mathfrak{A} -invariant differential relations	139
§15.2. Local <i>h</i> -principle for microflexible \mathfrak{A} -invariant relations	140
Chapter 16. Further Applications to Symplectic Geometry	143
16.1. Legendrian and isocontact immersions	143
§16.2. Generalized isocontact immersions	144

•

٠

§16.3.	Lagrangian immersions	146
§16.4.	Isosymplectic immersions	147
$\S16.5.$	Generalized isosymplectic immersions	149
5-0-0-		
Part 4.	Convex Integration	
Chapter	17. One-Dimensional Convex Integration	153
$\S{17.1.}$	Example	153
§17.2.	Convex hulls and ampleness	154
§17.3.	Main lemma	155
§17.4.	Proof of the main lemma	156
$\S{17.5.}$	Parametric version of the main lemma	161
§17.6.	Proof of the parametric version of the main lemma	162
Chapter	18. Homotopy Principle for Ample Differential Relations	167
§18.1.	Ampleness in coordinate directions	167
§18.2.	Iterated convex integration	168
§18.3.	Principal subspaces and ample differential relations in $X^{(1)}$	170
§18.4.		171
Chapter	19. Directed Immersions and Embeddings	173
§19.1.	Criterion of ampleness for directed immersions	173
§19.2.	Directed immersions into almost symplectic manifolds	174
§19.3.	Directed immersions into almost complex manifolds	175
§19.4.	Directed embeddings	176
Chapter	20. First Order Linear Differential Operators	179
$\S{20.1.}$	Formal inverse of a linear differential operator	179
$\S{20.2.}$	Homotopy principle for \mathcal{D} -sections	180
$\S{20.3.}$	Non-vanishing \mathcal{D} -sections	181
$\S{20.4.}$	Systems of linearly independent \mathcal{D} -sections	182
$\S{20.5}.$	Two-forms of maximal rank on odd-dimensional manifolds	184
$\S{20.6}.$	One-forms of maximal rank on even-dimensional manifolds	186
Chapter	21. Nash-Kuiper Theorem	189
$\S{21.1.}$	Isometric immersions and short immersions	189
$\S{21.2.}$	Nash-Kuiper theorem	190
$\S{21.3.}$	Decomposition of a metric into a sum of primitive metrics	191
$\S{21.4.}$	Approximation Theorem	191

$\S{21.5.}$	One-dimensional Approximation Theorem	193
$\S{21.6.}$	Adding a primitive metric	194
$\S{21.7.}$	End of the proof of the approximation theorem	196
$\S{21.8.}$	Proof of the Nash-Kuiper theorem	196
Bibliography		199
Index		203

.