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Abstract. Fragmentation of α lamellae and subsequent spheroidization of α laths in α/β titanium alloys occurring 

during and after deformation are well known phenomena.  We will illustrate the development of a new finite 

element methodology to model them. This new methodology is based on a level set framework to model the 

deformation and the ad hoc simultaneous and/or subsequent interfaces kinetics. We will focus, at yet, on the 

modeling of the surface diffusion at the α/β phase interfaces and the motion by mean curvature at the α/α grain 

interfaces.  

1 Introduction 

Two-phase α/β titanium alloys are materials with 

numerous applications in different industrial domains, 

mostly due to their attractive mechanical properties. 

They exhibit different microstructures depending on 

the applied thermomechanical path. Starting from an 

initial stable microstructure of α lamellae inside β 

grains, the phenomenon of spheroidization can be 

observed during and after the microstructure 

deformation. More precisely, during the deformation, 
the fragmentation of α lamellae and the subsequent 

spheroidization of α laths occurs.  

Spheroidization has received considerable attention 

due to its importance in microstructural control. The 

new spheroidized microstructure shows enhanced 

strength and ductility, so evidently, this phenomenon 

raises high interest for the industrial applications [1]. 

 In this paper, we will illustrate a new finite 

element (FE) methodology in order to model these 

microstructural evolutions. The interest is focused on 

the first mechanisms occurring during spheroidization 

at the lamellae interfaces without considering the 

microstructure deformation modeling. The α/α grain 

interfaces are introduced arbitrarily leading to surface 

diffusion at the α/β phase interfaces and the motion 
by mean curvature at the α/α grain interfaces. In order 

to model efficiently this interfacial kinetics, a level set 

framework was introduced. 

Some basic cases of surface diffusion will be 

detailed in order to illustrate the first steps and the 

numerical choices of the methodology.  

2 Describing the physical problem  

According to Semiatin [2], the first basic mechanisms 

occurring during hot deformation, in order to get the 

spheroidized microstructures, are the surface 

diffusion at the α/β interfaces and the motion by the 

mean curvature at the α/α  grain interfaces. The 
motivation for the formation of grooves in α lamellae 

and the consequent splitting of them, is the tendency 

of the different interfaces to evolve in order to 

minimize the total interfacial energy. Grooving is 

usually initiated by atomic scale processes near the 

region of α/α grain boundary and α/β interface 
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intersection. Next section illustrates the governing 

equations of this phenomenon. 

2.1 Motion by surface diffusion 

According to Mullins [3], in order to describe the 

atoms flow at the α/β interface we can consider a 

surface flux  �⃗:
                               �⃗ = ��⃗,                               (1)

where � denotes the number of drifting atoms per unit 

area and �⃗ denotes the average velocity of these 

drifting atoms.   Assuming local equilibrium we can 

express �⃗ with the Nerst-Einstein formula as 

following:

                                υ���⃑ = 	
��
 � ∇� μ,                            (2)

where ��� denotes the surface diffusivity of the α/β

interface, μ the chemical potential, �
 the Boltzmann 

constant and T the absolute temperature. The ∇�
operator corresponds to the surface gradient operator 
defined as the tangential component of the gradient:

                 ∇�μ =  ∇μ − (∇μ ∙  n)n = P∇μ,         (3)

with � the outward-pointing unit vector normal to the 

surface and � = � − �⨂�.
By considering Eq.(1) and Eq.(2), the following 

equation is obtained: 

                                ȷ⃑ = �	
��
 � ∇� μ.                           (4) 

Assuming that there is mass conservation, the 

surface motion can then be described by: 

                           v� = −Ω
 (∇� ȷ⃑),                        (5)    

where �! denotes the normal velocity of the surface 

and "
 the atomic volume. By combining Eq. (4) and 

Eq. (5), we obtain:

                            v� = − �#
 	
��
 � ∆ �μ,                    (6) 

with ∆ � = ∇� ∙  ∇� the surface Laplacian operator

(or Laplace-Beltrami operator).
From Eq. (6), it is notable that the normal velocity 

is associated with the chemical potential of the atoms. 

Considering κ as the mean curvature (sum of the 

principal curvatures in 3D) and %�� the α/β interface 

energy and by ignoring the possible effects of 

anisotropy, the following relationship is obtained:

                             μ = −γ'*Ω
 κ.                            (7)

Thanks to Eq.(6) and Eq.(7), we obtain: 

                   v� = -
��#
 /	
��
 � ∆ �κ = B∆ �κ,             (8)       
with 0 = 123�"
 2�56�
 7 , the kinetic coefficient. Eq. (8) 

describes the relation between the motion by surface 

diffusion and the surface Laplacian of the mean 

curvature [4] [5] [6] [7].

2.2 Motion by mean curvature  

In order to describe precisely the surface evolution 

of an α lamella, the influence of the mean curvature

should be also considered [5] [7]. The %��  grain 

boundary energy is indeed very important for the 

lamellae splitting.

The grain boundary energy is given by the well-

known Gibbs-Thompson relationship where the 

normal velocity �! of the grain boundary is described 
proportionally to the mean curvature κ:

                       v� = −κ -
9:�;#
�
 �  e<>?@
 A = −Aκ,             (9)               
with E = 12FGHIJ
K
 L  M<NOQ
 R, where %�S denotes the grain 

boundary energy, b is the burgers vector norm 

associated with the hoping event, �̌ is the Debye 

frequency and ΔΕ is the difference in free energy 

between the two grains. 

2.3 Motion of the interfaces

Surface diffusion and mean curvature motions are 

taking part simultaneously during the phenomenon of 
spheroidization. A global velocity combining both of 

these motions can then be summarized as: 

                         v� = B(Δ�κ) − Ακ,                    (10) 
where B is defined in α/β phase interfaces and A is 

defined in α/α grain interfaces.

3 Level set formulation 

A level-set model was formulated in order to deal 

with the topological changes at the α/β interface. The 

level set method was chosen due to its capability to 

immerse/describe/capture easily in a FE context the 

interfaces [8] [9] [10] [11] and also due to the fact 

that geometrical quantities as the mean curvature κ

and the outside normal n can be obtained as:
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                                   n = ∇Y‖∇Y‖ ,                             (11) 
and 

                      [ = \]�(�) = ^ ∇_‖∇_‖,               (12)

with `(a, b) = ±\(a, Γ(b)).                 (13) 

` is then defined over the domain Ω as the signed 

distance function to the interface Γ of the subdomain

of interest that we will denote Π.

The sign convention of Eq. (11) corresponds to a 

distance function negative inside Π and positive

outside. 

Thus the interface velocity can be rewritten in a 
level set form as:

         v�⃑ = v� ∇Y‖∇Y‖ = v�n = (B(Δ�κ) − Ακ)n,     (14)  

with: 

B =
⎩⎨
⎧ γ'*vΩi
 D'*k
 T   , at the α/β interface                

                                                                            (15) 0         , otherwise                                  

E =
⎩⎨
⎧   %�S}�̌"
�
 7  M<~�K
 L   ,    �b bℎM 5/5 ]�bM����M                

                                                                                       (16)             0             , �bℎM��]�M                                  
It can also be proved that in the considered level-

set formulation [4] [12], �! can be re-written as:

v� = B(∆�κ) − Ακ
                       = �‖∇Y‖  ∇ ∙ (‖∇φ‖P∇κ) − Ακ        (17) 

The velocity is then defined in the entire domain 

and corresponds in the vicinity of the zero level-set 

function of φ, i.e. Γ, to the interface velocity [4] [5].

4 Generation of the microstructure 

As already mentioned, the α lamellae and their shape 

evolution are going to be represented with the use of a 

level set function. A new Representative Volume 

Element class was built in our fully parallel multi-

component C++ Library called CIMLib [13] and used 

for these numerical developments in order to describe 

α colonies in β grains by using the level set approach.

The basic steps of this method are: 

a) consideration of a given domain as a β grain.

b) division of the domain in colonies (by Voronoï 

tessellation for example [14]).

c) In each colony, Voronoï seeds belonging to a 

prescribed common axis are introduced.  

d) Partition of each colony into regions, which are 

based to the minimum distance of the points of 

the domain from the Voronoï seeds of the 

corresponding colony. Each region consists of all 

the integration points closer to the corresponding 

seed that any other, called as Voronoï cells [14].

e) A variable ε is introduced for shifting the 

Voronoï cells in order to manage the description 

of the two different phases. This variable can be 

defined from a distribution or from the desired 

volume fraction of the α phase.

f) All these operations can be described in a exact 

analytical way in the considered LS framework. 

Figure 1. Representation of an initial microstructure of a β

grain with three different α colonies thanks to a LS 
approach.

Figure 1 illustrates a 2D case in a 1mm x 1mm 

domain. The red regions describe the α lamellae and 

the blue regions the β media.  Furthermore, in order to 

emphasize the efficiency of the developed method to 
describe statistically the microstructure of interest, a 

corresponding illustrative back-scattered electrons 

(BSE) image obtained thanks to a scanning electron 

microscope (SEM) from an initial microstructure of 

TA-6V alloy is displayed in Figure 2.
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Figure 2. An initial microstructure of TA6V, with 3 
different colonies.

5 A surface diffusion methodology 

For the modelling of the induced flow from the 

surface diffusion mechanism at the α/β interface, a

finite element solver that follows a level set method is 

used. At any time t, the transport velocity ���⃑ is defined 

by:

            ����⃑ = B(∆�[)� = 0‖∇`‖  ∇ ∙ (‖∇`‖�∇[)�,      (18)

with B = %56�"2
 �56�
 7 . The B coefficient is defined as a 

constant and it is chosen to neglect any anisotropy 

concerning the interface energy and the diffusivity.

Additionally, isothermal conditions are assumed. The 

time evolution of Γ(b) is then obtained by solving the 

following convective system:
                                  

� �_�� +  � ���⃗ ∙ ∇`�����⃗ = 0`(a, 0) = −\�a, Γ(0)��� + \�a, Γ(0)����     (19)   

The interface can then be obtained at each time 

step as the 0-isovalue of the distance function and the 

velocity is updated by following Eq.(18) before the 

following time step. At the following subsections, 

more extensive details are given for the resolution 

algorithm. 

5.1. Surface diffusion velocity identification 
and transport resolution 

The methodology used to obtain the surface diffusion 
velocity is based on the finite element based strategy 

introduced by Bruchon et al. in [4] [15].

Indeed, as P1 description of the LS is considered 

in the proposed methodology, one of the basic issues

in the problem of surface diffusion is that the velocity 

is defined by the Laplacian of the curvature, which 

means that the velocity is a function of the fourth 

order spatial derivative of φ. The numerical strategy 

proposed by Bruchon et al. consists to solve this 

problem by considering a “regularized” formulation.

More precisely Eq.(18) is solved in a weak form by 
using a FE formulation. Further informations can be 

found in [4] [15].

5.2. Convection-Reinitialization methodology 

By assuming the appropriate calculation of the 

surface velocity, the traditional strategy of convection 

and subsequent reinitialization steps is used. The 

main idea is to solve the advection equation and to 

rebuild the metric properties of the level-set function 

in order to keep a distance function (‖∇`(a, b)‖ = 1)
at least near the interface Γ(b). Classical approaches 

consist in solving, separately, the convective part and 

the reinitialization part thanks to the resolution of a 
classical Hamilton-Jacobi system [11] or to adopt an 

unified advection and renormalization methodology 

by solving one single equation based on a smooth 

description of the level-set [15]. Here, a new 

approach is proposed.

This new approach is based on a separate 

resolution of the transport and of the reinitialization 

part. Convective equation is firstly solved thanks to a

stabilized P1 solver (SUPG or RFB method). Then, a

parallel and direct reinitialization algorithm detailed 

in [16], which has been proven to be extremely fast 

and accurate is used. In this algorithm, the Γ(b)
interface is firstly discretized into a collection of 

segments (respectively triangles in 3D) and the nodal 

values of the level-set function are then updated by 

finding the nearest element of the collection and 

calculating the distance between the considered node 

and this nearest element. This method takes 

advantage of a space-partitioning strategy using k-d

tree and an efficient bounding box strategy enabling 

to maximize the numerical efficiency for parallel 

computations. 

Moreover, this methodology presents two other 
interest: 

 -it enables to avoid the validation/calibration of 

unphysical parameters necessary to reinitialize [11]

[15],

 -it enables to obtain directly an exact P1 

description of � [17] before to solve Eq. (18) rather 

than following the classical less precise methodology 

where the normal is computed by performing a P1 

interpolation of the first derivative of the level-set 

function.
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6 First academic case 

In this section we examine an ellipsoid shape under 

surface diffusion. We want to test the efficiency of 

the proposed formulation for a simple case with an 

analytical solution. Considered computational domain 

is a 1mm x 1mm square centered in (0,0). An initial 

ellipse (a=0.3mm and b=0.2mm) of 

equation ai �i⁄ + �i }i = 1⁄  is considered. Of 
course, this shape is going to evolve towards a circle 

shape while conserving its area. Thus limit radius, i.e. 

limit value of a and b is given by the value √��} ≈0.43416 ��.  

Initially, in order to test the efficiency of the 
approach without dealing with the effect of the 

meshing and remeshing in the results, a fixed mesh is 

considered during simulations. An initial isotropic 

mesh adaptation is considered in a ring centered in 

(0,0) and defined as 0.19�� ≤ � ≤ 0.31mm in order 

to keep a very fine mesh, defined as h in Table 1, in 

all the zone crossed by the zero isovalue of the level-

set function during the simulation.  

The figure 3 shows the FE mesh used (a), the 

initial distance function field (b), a zoom on the FE 

mesh (c), the curvature field near the interface (d) and 
the normal velocity field near the interface obtained 

initially thanks to the FE resolution of Eq. (18) (e). 

Red or white line corresponds to the initial ellipse 

interface (0 isovalue of the level-set function). 

In all simulations 0 is assumed to be 

homogeneous and equal to 1 �� /�. Exact velocity 

of the point (a(t),0) is known [15] and given by: 

         �S����⃗ (b) = 0 ¡ �G/<S/�SG¢ £⃗ = �S(b)£⃗.          (20)                                                       

Hence a(t+dt) can be easily evaluated thanks to a 

forward Euler method:

     a(t + dt) = a(t) + dt v¥(t),            (21)                            

and b(t+dt) can be easily obtained by verifying the 
area conservation at anytime:

b(t + dt) = a(0)b(0) a(t + dt).⁄         (22)

This method is then used with a time step of 1ms

to evaluate the “exact” evolution of a and b values 

during the shape evolution. Concerning FE 

simulations, at each time step, the positions of (a(t),0)

and (0,b(t)) are determined on the zero-isovalue of the 

distance function and then compare to the “exact” 

solution. Final time of all simulations is fixed to 1s.

(a) (b)

(c) (d)

(e)
Figure 3. First academic case: the FE mesh used (a), the 
initial distance function field (b), zoom on the FE mesh at 
the interface between coarse and fine mesh (c), § near the 

interface (d) and �� near the interface (e). Red or white line 

corresponds to the initial ellipse interface (zero-isovalue of 
the level-set function).

Table 1 summarizes all the parameters (time step, 

mesh size in the fine mesh zone, number of elements 

of the used mesh, method used), the CPU time of the 

simulations and the corresponding precision of the 

results obtained concerning the positions of (a(t),0)

for b ∈ [0,1�] by using the unified convective-

renormalized approach described in [15] and the new 

one proposed here with different time step and h
values. These cases are representatives of an 

important number of other performed simulations. 

Errors are defined as: 

M« = ‖S¬­®(�)<S¯°F²³(�)‖´¶‖S¯°F²³(�)‖´¶ = ∑ ¸S¬­®­<S¯°F²³­¸­ ∑ ¸S¯°F²³­¸­  and,      (23) 

Mi = ‖S¬­®(�)<S¯°F²³(�)‖´/‖S¯°F²³(�)‖´/ = ¹∑ ºS¬­®­<S¯°F²³­»/­
¹∑ S¯°F²³­/­

 ,       (24) 

where i denotes the discretization in time. 
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From different simulations (Cases 1 to 4 of  Table 

1 are representatives), we can summarize the 

following comments: 
-Considering the precision of a(t) predictions  (see M« and Mi errors on Table 1), both approaches are 

relevant to model surface diffusion. Figure 4 

illustrates at t=1s, the difference of the exact interface 

and the results obtained with the Case1. 

-The time step of the Case4 (\b = 0.1 ��) is the 

maximal value usable for ℎ = 1¼� and the unified 

formulation to avoid numerical instabilities. Such 

instabilities were not identified for the new proposed 

approach even for important time step and mesh size 
(Case 3 for example).

-As illustrated in Table 1, calculation time of the 

new proposed approach is then clearly very attractive 

comparatively to the unified approach. 

-Even for the new proposed approach, decreasing 

the \b and ℎ values below, respectively, 10 �� and 2 ¼� seems not improve the results quality (Mi ≈3%). It can be explained by the fact that the residual 

error is due to the FE resolution of Eq. (18). 

Figure 4. Comparison at t=0s and t=1s of the exact 
solution (red lines) and the Case 1 0-isovalue (white lines).

7 Second academic case: volume 
loss and mesh adaptation 

Next, we consider a more realistic shape of a long 

ellipse with a=0.5mm and b=0.1mm and mesh 

adaptation. Indeed, in order to propose acceptable 

calculation time to model surface diffusion of 

complex microstructure such as one of the Figure 1, 
fixed meshing strategy of the previous section is not 

an option.  Thus a meshing and remeshing strategy 

must be used.  

To begin, two based-metric meshing strategies 

associated with the MTC topological mesher were 

tested. MTC is a P1 automatic remesher based on 

elements topology improvement that was developed 

for Lagrangian simulations under large strains. This 

tool was extended to anisotropic mesh adaptation, for 

which it was extensively used in context of FE 

microstructure description [11] [10] [14] [15] [4]

[17].
The first metric considered is the metric describes

in [14], this metric enables to impose isotropic or 

anisotropic (in the normal direction of the interface) 

fine mesh in the vicinity of the interface without 

considering its curvature. Here, isotropic adaptation 

was considered (Method 1 in Table 2). 

The second used metric field is based on an a 

priori error estimator linking the interpolation error on 

the LS function to its gradient vector and hessian 

matrix. As already described, these variables 

represent respectively the normal vector to the 
interface and its main curvatures. Using this data, a 

metric field can be built in order to have a very fine 

mesh size in the normal direction to the interface, and 

to control the mesh size in the other directions 

depending on local curvature [18] (Method 2 in Table 

2).

Simulation and data results are reported in Table 2 

for both meshing/remeshing methods. The “Conv + 

exact Reinit” strategy was used. Final time of both

simulations is fixed to 1s. As the mesh size near the 

interface is of the same order than the mesh size used 

in Case1 and Case2, same precision could be 
expected. However, remeshing is also synonymous of 

diffusion concerning the FE fields carrying the 

interface at each remeshing operation necessary to 

follow interface motion. Then, volume conservation 

was tracked for these cases.

Table 1. Summarized data and results of some tested configurations 

Data Case1 Case2 Case3 Case4

h in fine zone in ¼m 1 1 2 1

#Elt 2,74e5 2,74e5 7,1e4 2,74e5

Time step  in ms 1 5 10 0.1

Conv + exact Reinit X X X

Unified approach X

Calculation time on 12CPU 1h 17mins 1min 6h28mins

e1 in % 2.5 2.6 2.1 2.2

e2 in % 3 3.1 2.9 2.8
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Table 2. Summarized data and results with mesh 
adaptation. 

Data Case5 Case6

h_min in the fine zone in ¼m 1 1

#Elt <10000 <10000

Time step  in ms 1 1

Conv + exact Reinit X X

Remeshing period 5dt 5dt

Remeshing method Method 1 Method 2

Calc. Time on 12CPU 7 mins 4 mins

Volume loss in % 7.5 1

Results described in Table 2 illustrate that the 

mesh adaptation technique come with good precision 

and faster calculation time. Meshing adaptation based 

on the curvature enables to obtain a very good 

conservation of the volume. This aspect will be of 

course very important for real configurations where 
the initial thin shape of the α lamellae implies very 

high ratio between the minimal and the maximal

values of the interface curvature. So, this meshing 

strategy in terms of metric seems particularly 

indicated.

8 Discussions 

If the results described previously in terms of 

calculation time and precision could be sufficient to 

study the surface diffusion of one thin ellipse, it 

seems clear that to further improve our numerical 

framework, it is important to deal with real 2D or 3D 

configurations. 
In order to face this problem, we adopt a new 

topological mesher, Fitz, developed by Shakoor et al. 

[18].  With Fitz, a body fitted meshing and remeshing 

is possible while using complex metric as previously 

described. It was then proved in [19] that this new 

mesher associated with a volume conservation 

constraint which is compatible both with implicit and 

body-fitted interfaces, the modification of the 

interface due to remeshing can be delayed enough so 

that a Lagrangian Level-Set method becomes more 

than interesting compared to an Eulerian Level-Set 
method, even when large deformations or 

displacements occur.

 First tests are very promising, allowing in the 

Case6 configuration to obtain a precision of 2% 

concerning the volume conservation with a 

calculation time of 30s on 12 CPU. Figure 5 

illustrates a result obtained with this numerical 

framework for a “a=0.5mm and b=0.05mm” 

configuration.

Moreover we anticipate with this mixed 

implicit/explicit description of the interfaces an easier 

coupling between surface diffusion at the α/β

interfaces and motion by mean curvature at the α/α

grain interfaces.

Figure 5. A “a=0.5mm and b=0.05mm” configuration with 
a mixed implicit/explicit description of the interfaces: (top) 
initial distance function field and the obtained interfaces 
(white lines) at t=0s, 0.2 s and 1s. (Bottom) Zoom on the 

conforming mesh at t=0.2s, the interface is defined by the 
red line. 

9 Conclusions 

The first steps of a new FE numerical framework 

dedicated to the modelling of the mechanisms of 

spheroidization in α/β titanium alloys have been 
detailed. This numerical framework has been 

illustrated on the surface diffusion of α laths. Several 

cases were studied in order to check the efficiency of 

the proposed approach. Optimal algorithm of 

resolution and meshing strategies were proposed in 

terms of precision and calculation time. A new way 

was also opened by considering a mixed 

implicit/explicit description of the interfaces. All this 

numerical tools will now be exploited to deal with 

coupling between surface diffusion at the α/β

interfaces and motion by mean curvature at the α/α

grain interfaces. An existing crystal plasticity finite 
element approach developed in a level-set context 

[20] [17] will also be used to model the deformation 

of the α lamellae.

t=0s

t=0.2s

t=1s
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