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This tutorial is devoted to the Maxwell Garnett approximation and related theories. Topics covered in this
first, introductory part of the tutorial include the Lorentz local field correction, the Clausius-Mossotti rela-
tion and its role in the modern numerical technique known as the Discrete Dipole Approximation (DDA),
the Maxwell Garnett mixing formula for isotropic and anisotropic media, multi-component mixtures and
the Bruggeman equation, the concept of smooth field, and Wiener and Bergman-Milton bounds. © 2016

Optical Society of America

OCIS codes: (000.1600) Classical and quantum physics; (160.0160) Materials.
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1. INTRODUCTION

In 1904, Maxwell Garnett [1] has developed a simple but im-
mensely successful homogenization theory. As any such theory, it
aims to approximate a complex electromagnetic medium such
as a colloidal solution of gold micro-particles in water with a
homogeneous effective medium. The Maxwell Garnett mixing for-
mula gives the permittivity of this effective medium (or, sim-
ply, the effective permittivity) in terms of the permittivities and
volume fractions of the individual constituents of the complex
medium.

A closely related development is the Lorentz molecular the-
ory of polarization. This theory considers a seemingly different
physical system: a collection of point-like polarizable atoms or
molecules in vacuum. The goal is, however, the same: compute
the macroscopic dielectric permittivity of the medium made up
by this collection of molecules. A key theoretical ingredient of
the Lorentz theory is the so-called local field correction, and this
ingredient is also used in the Maxwell Garnett theory.

The two theories mentioned above seem to start from very
different first principles. The Maxwell Garnett theory starts
from the macroscopic Maxwell’s equations, which are assumed
to be valid on a fine scale inside the composite. The Lorentz the-
ory does not assume that the macroscopic Maxwell’s equations
are valid locally. The molecules can not be characterized by
macroscopic quantities such as permittivity, contrary to small
inclusions in a composite. However, the Lorentz theory is still
macroscopic in nature. It simply replaces the description of
inclusions in terms of the internal field and polarization by a
cumulative characteristic called the polarizability. Within the
approximations used by both theories, the two approaches are

∗On leave from the Department of Radiology, University of Pennsylvania,
Philadelphia, Pennsylvania 19104, USA; vmarkel@mail.med.upenn.edu

mathematically equivalent.

An important point is that we should not confuse the the-
ories of homogenization that operate with purely classical and
macroscopic quantities with the theories that derive the macro-
scopic Maxwell’s equations (and the relevant constitutive pa-
rameters) from microscopic first principles, which are in this
case the microscopic Maxwell’s equations and the quantum-
mechanical laws of motion. Both the Maxwell Garnett and the
Lorentz theories are of the first kind. An example of the sec-
ond kind is the modern theory of polarization [2, 3], which com-
putes the induced microscopic currents in a condensed medium
(this quantity turns out to be fundamental) by using the density-
functional theory (DFT).

This tutorial will consist of two parts. In the first, introduc-
tory part, we will discuss the Maxwell Garnett and Lorentz
theories and the closely related Clausius-Mossotti relation from
the same simple theoretical viewpoint. We will not attempt to
give an accurate historical overview or to compile an exhaus-
tive list of references. It would also be rather pointless to write
down the widely known formulas and make several plots for
model systems. Rather, we will discuss the fundamental un-
derpinnings of these theories. In the second part, we will dis-
cuss several advanced topics that are rarely covered in the text-
books. We will then sketch a method for obtaining more general
homogenization theories in which the Maxwell Garnett mixing
formula serves as the zeroth-order approximation.

Over the past hundred years or so, the Maxwell Garnett ap-
proximation and its generalizations have been derived by many
authors using different methods. It is unrealistic to cover all
these approaches and theories in this tutorial. Therefore, we
will make an unfortunate compromise and not discuss some
important topics. One notable omission is that we will not dis-

http://dx.doi.org/10.1364/JOSAA.XX.XXXXXX
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cuss random media [4–6] in any detail, although the first part
of the tutorial will apply equally to both random and determin-
istic (periodic) media. Another interesting development that
we will not discuss is the so-called extended Maxwell Garnett
theories [7–9] in which the inclusions are allowed to have both
electric and magnetic dipole moments.

Gaussian system of units will be used throughout the tuto-
rial.

2. LORENTZ LOCAL FIELD CORRECTION, CLAUSIUS-

MOSSOTTI RELATION AND MAXWELL GARNETT

MIXING FORMULA

The Maxwell Garnett mixing formula can be derived by differ-
ent methods, some being more formal than the others. We will
start by introducing the Lorentz local field correction and deriv-
ing the Clausius-Mossotti relation. The Maxwell Garnett mix-
ing formula will follow from these results quite naturally. We
emphasize, however, that this is not how the theory has pro-
gressed historically.

A. Average field of a dipole

The key mathematical observation that we will need is this: the
integral over any finite sphere of the electric field created by a
static point dipole d located at the sphere’s center is not zero
but equal to −(4π/3)d.

The above statement may appear counterintuitive to anyone
who has seen the formula for the electric field of a dipole,

Ed(r) =
3r̂(r̂ · d)− d

r3
, (1)

where r̂ = r/r is the unit vector pointing in the direction of
the radius-vector r. Indeed, the angular average of the above
expression is zero [10]. Nevertheless, the statement made above
is correct. The reason is that the expression (1) is incomplete.
We should have written

Ed(r) =
3r̂(r̂ · d)− d

r3
− 4π

3
δ(r)d , (2)

where δ(r) is the three-dimensional Dirac delta-function.
The additional delta-term in (2) can be understood from

many different points of view. Three explanations of varying
degree of mathematical rigor are given below.

(i) A qualitative physical explanation can be obtained if we
consider two point charges q/β and −q/β separated by the dis-
tance βh where β is a dimensionless parameter. This set-up is
illustrated in Fig. 1. Now let β tend to zero. The dipole moment
of the system is independent of β and has the magnitude d = qh.
The field created by these two charges at distances r ≫ βh is
indeed given by (1) where the direction of the dipole is along
the axis connecting the two charges. But this expression does
not describe the field in the gap. It is easy to see that this field
scales as −q/(β3h2) while the volume of the region where this
very strong field is supported scales as β3h3. The spatial inte-
gral of the electric field is proportional to the product of these
two factors, −qh = −d. Then 4π/3 is just a numerical factor. �

(ii) A more rigorous albeit not a very general proof can be
obtained by considering a dielectric sphere of radius a and per-
mittivity ǫ in a constant external electric field Eext. It is known
that the sphere will acquire a dipole moment d = αEext where
the static polarizability α is given by the formula

α = a3 ǫ− 1

ǫ + 2
. (3)
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Fig. 1. (color online) Illustration of the set-up used in the
derivation (i) of the equation (2). The dipole moment of the
system of two charges in the Z-direction is dz = qh. The elec-
tric field in the mid-point P is Ez(P) = −8q/β3h2. The oval
shows the region of space were the strong field is supported;
its volume scales as β3h3. Note that rigorous integration of the
electric field of a truly point charge is not possible due to a di-
vergence. In this figure, the charges are shown to be of finite
size. In this case, a small spherical region around each charge
gives a zero contribution to the integral.

This result can be obtained by solving the Laplace equation
with the appropriate boundary conditions at the sphere surface
and at infinity. From this solution, we can find that the electric
field outside of the sphere is given by (1) (plus the external field,
of course) while the field inside is constant and given by

Eint =
3

ǫ + 2
Eext . (4)

The depolarizing field Edep is by definition the difference be-
tween the internal field (the total field existing inside the
sphere) and the external (applied) field. By the superposition
principle, Eint = Eext + Edep. Thus, Edep is the field created by
the charge induced on the sphere surface. By using (4), we find
that

−Edep =
ǫ− 1

ǫ + 2
Eext =

1

a3
d . (5)

Integrating over the volume of the sphere, we obtain

∫

r<a
Edepd3r = − 4π

3
d . (6)

We can write more generally for any R ≥ a,

∫

r<R
(E− Eext)d

3r =
∫

r<R
Edd3r = − 4π

3
d . (7)

The expression in the right-hand side of (7) is the pre-factor in
front of the delta-function in (2). �

(iii) The most general derivation of the singular term in (2)
can be obtained by computing the static Green’s tensor for the
electric field [11],

G(r, r′) = −∇r ⊗∇r′
1

|r− r′| . (8)

Here the symbol ⊗ denotes tensor product. For example,
(a⊗ b)c = a(b · c), (a⊗ b)αβ = aαbβ, etc. The singularity origi-
nates from the double differentiation of the non-analytical term
|r− r′|. This can be easily understood if we recall that, in one di-

mension,
∂2|x−x′|

∂x∂x′ = δ(x− x′). Evaluation of the right-hand side
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Fig. 2. (color online) A collection of dipoles in an external field.
The particles are distributed inside a spherical volume either
randomly (as shown) or periodically. It is assumed, however,
that the macroscopic density of particles is constant inside the
sphere and equal to v−1 = N/V. Here v is the specific volume
per one particle.

of (8) is straightforward but lengthy, and we leave it for an ex-
ercise. If we perform the differentiation accurately and then set
r′ = 0, we will find that G(r, 0)d is identical to the right-hand
side of (2). �

Now, the key approximation of the Lorentz molecular theory
of polarization, as well as that of the Maxwell Garnett theory of
composites, is that the regular part in the right-hand side of (2)
averages to zero and, therefore, it can be ignored, whereas the
singular part does not average to zero and should be retained.
We will now proceed with applying this idea to a physical prob-
lem.

B. Lorentz local field correction

Consider some spatial region V of volume V containing N ≫ 1
small particles of polarizability α each. We can refer to the par-
ticles as to “molecules”. The only important physical property
of a molecule is that it has a linear polarizability. The specific
volume per one molecule is v = V/N. We will further assume
that V is connected and sufficiently “simple”. For example, we
can consider a plane-parallel layer or a sphere. In these two
cases, the macroscopic electric field inside the medium is con-
stant, which is important for the arguments presented below.
The system under consideration is schematically illustrated in
Fig. 2.

Let us now place the whole system in a constant external
electric field Eext. We will neglect the electromagnetic interac-
tion of all the dipoles since we have decided to neglect the regu-
lar part of the dipole field in (2). Again, the assumption that we
use is that this field is unimportant because it averages to zero
when summed over all dipoles. In this case, each dipole “feels”
the external field Eext and therefore it acquires the dipole mo-
ment d = αEext. The total dipole moment of the object is

dtot = Nd = NαEext . (9)

On the other hand, if we assign the sample some macroscopic
permittivity ǫ and polarization P = [(ǫ− 1)/4π]E, then the to-
tal dipole moment is given by

dtot = VP = V
ǫ− 1

4π
E . (10)

In the above expression, E is the macroscopic electric field in-
side the medium, which is, of course, different from the applied

field Eext. To find the relation between the two fields, we can
use the superposition principle and write

E = Eext +

〈

∑
n

En(r)

〉

, r ∈ V . (11)

Here En(r) is the field produced by the n-th dipole and 〈. . .〉
denotes averaging over the volume of the sample. Of course,
the individual fields En(r) will fluctuate and so will the sum
of all these contributions, ∑n En(r). The averaging in the right-
hand side of (11) has been introduced since we believe that the
macroscopic electric field is a suitably defined average of the
fast-fluctuating “microscopic” field.

We now compute the averages in (11) as follows:

〈En(r)〉 =
1

V

∫

V

Ed(r− rn)d
3r ≈ − 4π

3

d

V
, (12)

where rn is the location of the n-th dipole and Ed(r) is given
by (2). In performing the integration, we have disregarded the
regular part of the dipole field and, therefore, the second equal-
ity above is approximate. We now substitute (12) into (11) and
obtain the following result:

E = Eext + ∑
n
〈En〉 = Eext − N

4π

3

d

V

=

(

1− 4π

3

α

v

)

Eext . (13)

In the above chain of equalities, we have used d = αEext and
V/N = v.

All that is left to do now is substitute (13) into (10) and use
the condition that (9) and (10) must yield the same total dipole
moment of the sample. Equating the right-hand sides of these
two equations and dividing by the total volume V results in the
equation

α

v
=

ǫ− 1

4π

(

1− 4π

3

α

v

)

. (14)

We now solve this equation for ǫ and obtain

ǫ = 1 +
4π(α/v)

1− (4π/3)(α/v)
=

1 + (8π/3)(α/v)

1− (4π/3)(α/v)
. (15)

This is the Lorentz formula for the permittivity of a non-polar
molecular gas. The denominator in (15) accounts for the famous
local field correction. The external field Eext is frequently called
the local field and denoted by EL. Eq. (13) is the linear relation
between the local field and the average macroscopic field.

If we did not know about the local field correction, we could
have written naively ǫ = 1 + 4π(α/v). Of course, in dilute
gases, the denominator in (15) is not much different from unity.
To first order in α/v, the above (incorrect) formula and (15) are
identical. The differences show up only to second order in α/v.
The significance of higher-order terms in the expansion of ǫ in
powers of α/v and the applicability range of the Lorentz for-
mula can be evaluated only by constructing a more rigorous the-
ory from which (15) is obtained as a limit. Here we can mention
that, in the case of dilute gases, the local field correction plays
a more important role in nonlinear optics, where field fluctua-
tions can be enhanced by the nonlinearities. Also, in some appli-
cations of the theory involving linear optics of condensed mat-
ter (with ǫ substantially different from unity), the exact form of
the denominator in (15) turns out to be important. An example
will be given in Sec. C below.
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It is interesting to note that we have derived the local
field correction without the usual trick of defining the Lorentz
sphere and assuming that the medium outside of this sphere
is truly continuous, etc. The approaches are, however, mathe-
matically equivalent if we get to the bottom of what is going
on in the Lorentz molecular theory of polarization. The deriva-
tion shown above illustrates one important but frequently over-
looked fact, namely, that the mathematical nature of the ap-
proximation made by the Lorentz theory is very simple: it is
to disregard the regular part of the expression (2). One can
state the approximation mathematically by writing Ed(r) =
−(4π/3)δ(r)d instead of (2). No other approximation or as-
sumption is needed.

C. Clausius-Mossotti relation

Instead of expressing ǫ in terms of α/v, we can express α/v
in terms of ǫ. Physically, the question that one might ask is
this. Let us assume that we know ǫ of some medium (say, it
was measured) and know that it is describable by the Lorentz
formula. Then what is the value of α/v for the molecules that
make up this medium? The answer can be easily found from
(14), and it reads

α

v
=

3

4π

ǫ− 1

ǫ + 2
. (16)

This equation is known as the Clausius-Mossotti relation.
It may seem that (16) does not contain any new information

compared to (15). Mathematically this is indeed so because one
equation follows from the other. However, in 1973, Purcell and
Pennypacker have proposed a numerical method for solving
boundary-value electromagnetic problems for macroscopic par-
ticles of arbitrary shape [12] that is based on a somewhat non-
trivial application of the Clausius-Mossotti relation.

The main idea of this method is as follows. We know that
(16) is an approximation. However, we expect (16) to become
accurate in the limit a/h → 0, where h = v1/3 is the character-
istic inter-particle distance and a is the characteristic size of the
particles. Physically, this limit is not interesting because it leads
to the trivial results α/v → 0 and ǫ→ 1. But this is true for phys-
ical particles. What if we consider hypothetical point-like parti-
cles and assign to them the polarizability that follows from (16)
with some experimental value of ǫ? It turns out that an array
of such hypothetical point dipoles arranged on a cubic lattice
and constrained to the overall shape of the sample mimics the
electromagnetic response of the latter with arbitrarily good pre-
cision as long as the macroscopic field in the sample does not
vary significantly on the scale of h (so h should be sufficiently
small). We, therefore, can replace the actual sample by an ar-
ray of N point dipoles. The electromagnetic problem is then
reduced to solving N linear coupled-dipole equations and the cor-
responding method is known as the discrete dipole approxima-
tion (DDA) [13].

One important feature of DDA is that, for the purpose of
solving the coupled-dipole equations, one should not disregard
the regular part of the expression (2). This is in spite of the fact
that we have used this assumption to arrive at (16) in the first
place! This might seem confusing, but there is really no contra-
diction because DDA can be derived from more general consid-
erations than what was used above. Originally, it was derived
by discretizing the macroscopic Maxwell’s equations written in
the integral form [12]. The reason why the regular part of (2)
must be retained in the coupled-dipole equations is because we
are interested in samples of arbitrary shape and the regular part

of (2) does not really average out to zero in this case. Moreover,
we can apply DDA beyond the static limit, where no such can-
cellation takes place in principle. Of course, the expression for
the dipole field (2) and the Clausius-Mossotti relation (16) must
be modified beyond the static limit to take into account the ef-
fects of retardation, the radiative correction to the polarizability,
and other corrections associated with the finite frequency [14] –
otherwise, the method will violate energy conservation and can
produce other abnormalities.

We note, however, that, if we attempt to apply DDA to the
static problem of a dielectric sphere in a constant external field,
we will obtain the correct result from DDA either with or with-
out account for the point-dipole interaction. In other words, if
we represent a dielectric sphere of radius R and permittivity ǫ
by a large number N of equivalent point dipoles uniformly dis-
tributed inside the sphere and characterized by the polarizabil-
ity (16), subject all these dipoles to an external field and solve
the arising coupled-dipole equations, we will recover the cor-
rect result for the total dipole moment of the large sphere. We
can obtain this result without accounting for the interaction of
the point dipoles. This can be shown by observing that the po-
larizability of the large sphere, αtot, is equal to Nα, where α is
given by (16). Alternatively, we can solve the coupled-dipole
equations with the full account of dipole-dipole interaction on
a supercomputer and – quite amazingly – we will obtain the
same result. This is so because the regular parts of the dipole
fields, indeed, cancel out in this particular geometry (as long as
N → ∞, of course). This simple observation underscores the
very deep theoretical insight of the Lorentz and Maxwell Gar-
nett theories.

We also note that, in the context of DDA, the Lorentz lo-
cal field correction is really important. Previously, we have
remarked that this correction is not very important for di-
lute gases. But if we started from the “naive” formula ǫ =
1 + 4π(α/v), we would have gotten the incorrect “Clausius-
Mossotti” relation of the form α/v = (ǫ− 1)/4π and, with this
definition of α/v, DDA would definitely not work even in the
simplest geometries.

To conclude the discussion of DDA, we would like to em-
phasize one important but frequently overlooked fact. Namely,
the point dipoles used in DDA do not correspond to any phys-
ical particles. Their normalized polarizabilities α/v are com-
puted from the actual ǫ of material, which can be significantly
different from unity. Yet the size of these dipoles is assumed
to be vanishingly small. In this respect, DDA is very different
from the Foldy-Lax approximation [15, 16], which is known in
the physics literature as, simply, the dipole approximation (DA),
and which describes the electromagnetic interaction of suffi-
ciently small physical particles via the dipole radiation fields.
The coupled-dipole equations are, however, formally the same
in both DA and DDA.

The Clausius-Mossotti relation and the associated coupled-
dipole equation (this time, applied to physical molecules) have
also been used to study the fascinating phenomenon of ferro-
electricity (spontaneous polarization) of nanocrystals [17], the
surface effects in organic molecular films [18], and many other
phenomena wherein the dipole interaction of molecules or par-
ticles captures the essential physics.

D. Maxwell Garnett mixing formula

We are now ready to derive the Maxwell Garnett mixing for-
mula. We will start with the simple case of small spherical par-
ticles in vacuum. This case is conceptually very close to the
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Lorentz molecular theory of polarization. Of course, the lat-
ter operates with “molecules”, but the only important physical
characteristic of a molecule is its polarizability, α. A small inclu-
sions in a composite can also be characterized by its polarizabil-
ity. Therefore, the two models are almost identical.

Consider spherical particles of radius a and permittivity ǫ,
which are distributed in vacuum either on a lattice or randomly
but uniformly on average. The specific volume per one particle
is v and the volume fraction of inclusions is f = (4π/3)(a3/v).
The effective permittivity of such medium can be computed by
applying (15) directly. The only thing that we will do is substi-
tute the appropriate expression for α, which in the case consid-
ered is given by (3). We then have

ǫMG =
1 + 2 f

ǫ− 1

ǫ + 2

1− f
ǫ− 1

ǫ + 2

=
1 +

1 + 2 f

3
(ǫ− 1)

1 +
1− f

3
(ǫ− 1)

. (17)

This is the Maxwell Garnett mixing formula (hence the sub-
script MG) for small inclusions in vacuum. We emphasize that,
unlike in the Lorentz theory of polarization, ǫMG is the effec-
tive permittivity of a composite, not the usual permittivity of a
natural material.

Next, we remove the assumption that the background
medium is vacuum, which is not realistic for composites. Let
the host medium have the permittivity ǫh and the inclusions
have the permittivity ǫi. The volume fraction of inclusions is
still equal to f . We can obtain the required generalization by
making the substitutions ǫMG → ǫMG/ǫh and ǫ→ ǫi/ǫh, which
yields

ǫMG = ǫh

1 + 2 f
ǫi − ǫh

ǫi + 2ǫh

1− f
ǫi − ǫh

ǫi + 2ǫh

= ǫh

ǫh +
1 + 2 f

3
(ǫi − ǫh)

ǫh +
1− f

3
(ǫi − ǫh)

. (18)

We will now justify this result mathematically by tracing the
steps that were made to derive (17) and making appropriate
modifications.

We first note that the expression (2) for a dipole embedded
in an infinite host medium [19] should be modified as

Ed(r) =
1

ǫh

[

3r̂(r̂ · d)− d

r3
− 4π

3
δ(r)d

]

, (19)

This can be shown by using the equation ∇ ·D = ǫh∇ · E =
4πρ, where ρ is the density of the electric charge making up the
dipole. However, this argument may not be very convincing be-
cause it is not clear what is the exact nature of the charge ρ and
how it follows from the constitutive relations in the medium.
Therefore, we will now consider the argument (ii) given in
Sec. A and adjust it to the case of a spherical inclusion of permit-
tivity ǫi in a host medium of permittivity ǫh. The polarization
field in this medium can be decomposed into two contributions,
P = Ph + Pi, where

Ph(r) =
ǫh − 1

4π
E(r) , Pi(r) =

ǫ(r)− ǫh

4π
E(r) . (20)

Obviously, Pi(r) is identically zero in the host medium while
Ph(r) can be nonzero anywhere. The polarization Pi(r) is the
secondary source of the scattered field. To see that this is the case,
we can start from the equation ∇ · ǫ(r)E(r) = 0 and write

∇ · ǫhE(r) = −∇ · [ǫ(r)− ǫh]E(r) = 4πρi(r) ,

where ρi = −∇ · Pi (note that the total induced charge is
ρ = ρi + ρh, ρh = −∇ · Ph). Therefore, the relevant dipole mo-
ment of a spherical inclusion of radius a is d =

∫

r<a Pid
3r. The

corresponding polarizability α and the depolarizing field inside
the inclusion Edep can be found by solving the Laplace equation
for a sphere embedded in an infinite host, and are given by

α = a3ǫh
ǫi − ǫh

ǫi + 2ǫh
[compare to (3)] , (21a)

−Edep =
ǫi − ǫh

ǫi + 2ǫh
Eext =

d

ǫha3
[compare to (5)]. (21b)

We thus find that the generalization of (7) to a medium with a
non-vacuum host is

∫

r<R
(E− Eext)d

3r =
∫

r<R
Edd3r = − 4π

3ǫh
d . (22)

Correspondingly, the formula relating the external and the av-
erage fields (Lorentz local field correction) now reads

E =

(

1− 4π

3ǫh

α

v

)

Eext , (23)

where α is given by (21a). We now consider a spatial region V

that contains many inclusions and compute its total dipole mo-
ment by two formulas: dtot = NαEext and dtot = V[(ǫMG −
ǫh)/4π]E. Equating the right-hand sides of these two expres-
sions and substituting E in terms of Eext from (23), we obtain
the result

ǫMG = ǫh +
4π(α/v)

1− (4π/3ǫh)(α/v)
. (24)

Substituting α from (21a) and using 4πa3/3v = f , we obtain
(18). As expected, one power of ǫh cancels in the denominator
of the second term in the right-hand side of (24), but not in its
numerator. �

Finally, we make one conceptually important step, which
will allow us to apply the Maxwell Garnett mixing formula to
a much wider class of composites. Equation (18) was derived
under the assumption that the inclusions are spherical. But (18)
does not contain any information about the inclusions shape.
It only contains the permittivities of the host and the inclusions
and the volume fraction of the latter. We therefore make the con-
jecture that (18) is a valid approximation for inclusions of any
shape as long as the medium is spatially-uniform and isotropic
on average. Making this conjecture now requires some leap of
faith, but a more solid justification will be given in the second
part of this tutorial.

3. MULTI-COMPONENT MIXTURES AND THE BRUGGE-

MAN MIXING FORMULA

Equation (18) can be rewritten in the following form:

ǫMG − ǫh

ǫMG + 2ǫh
= f

ǫi − ǫh

ǫi + 2ǫh
. (25)

Let us now assume that the medium contains inclusions made
of different materials with permittivities ǫn (n = 1, 2, . . . , N).
Then (25) is generalized as

ǫMG − ǫh

ǫMG + 2ǫh
=

N

∑
n=1

fn
ǫn − ǫh

ǫn + 2ǫh
, (26)
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where fn is the volume fraction of the n-th component. This
result can be obtained by applying the arguments of Sec. 2 to
each component separately.

We now notice that the parameters of the inclusions (ǫn and
fn) enter the equation (26) symmetrically, but the parameters of
the host, ǫh and fh = 1−∑n fn, do not. That is, (26) is invariant
under the permutation

ǫn ←→ ǫm and fn ←→ fm , 1 ≤ n, m ≤ N . (27)

However, (26) is not invariant under the permutation

ǫn ←→ ǫh and fn ←→ fh , 1 ≤ n ≤ N . (28)

In other words, the parameters of the host enter (26) not in
the same way as the parameters of the inclusions. It is usually
stated that the Maxwell Garnett mixing formula is not symmet-
ric.

But there is no reason to apply different rules to different
medium components unless we know something about their
shape, or if the volume fraction of the “host” is much larger
than that of the “inclusions”. At this point, we do not assume
anything about the geometry of inclusions (see the last para-
graph of Sec. 2D). Moreover, even if we knew the exact ge-
ometry of the composite, we would not know how to use it
– the Maxwell Garnett mixing formula does not provide any
adjustable parameters to account for changes in geometry that
keep the volume fractions fixed. Therefore, the only reason why
we can distinguish the “host” and the “inclusions” is because
the volume fraction of the former is much larger than that of
the latter. As a result, the Maxwell Garnett theory is obviously
inapplicable when the volume fractions of all components are
comparable.

In contrast, the Bruggeman mixing formula [20], which we
will now derive, is symmetric with respect to all medium com-
ponents and does not treat any one of them differently. There-
fore, it can be applied, at least formally, to composites with arbi-
trary volume fractions without causing obvious contradictions.
This does not mean that the Bruggeman mixing formula is al-
ways “correct”. However, one can hope that it can yield mean-
ingful corrections to (26) under the conditions when the volume
fraction of inclusions is not very small. We will now sketch
the main logical steps leading to the derivation of the Brugge-
man mixing formula, although these arguments involve a lot of
hand-waving.

First, let us formally apply the mixing formula (26) to the fol-
lowing physical situation. Let the medium be composed of N
kinds of inclusions with the permittivities ǫn and volume frac-
tions fn such that ∑n fn = 1. In this case, the volume fraction
of the host is zero. One can say that the host is not physically
present. However, its permittivity still enters (26).

We know already that (26) is inapplicable to this physical sit-
uation, but we can look at the problem at hand from a slightly
different angle. Assume that we have a composite consisting
of N components occupying a large spatial region V such as
the sphere shown in Fig. 2 and, on top of that, let V be embed-
ded in an infinite host medium [19] of permittivity ǫh. Then we
can formally apply the Maxwell Garnett mixing formula to the
composite inside V even though we have doubts regarding the
validity of the respective formulas. Still, the effective permit-
tivity of the composite inside V can not possibly depend on ǫh

since this composite simply does not contain any host material.
How can these statements be reconciled?

Bruggeman’s solution to this dilemma is the following. Let
us formally apply (26) to the physical situation described above

and find the value of ǫh for which ǫMG would be equal to ǫh.
The particular value of ǫh determined in this manner is the
Bruggeman effective permittivity, which we denote by ǫBG. It
is easy to see that ǫBG satisfies the equation

N

∑
n=1

fn
ǫn − ǫBG

ǫn + 2ǫBG
= 0 where

N

∑
n=1

fn = 1 . (29)

We can see that (29) possesses some nice mathematical proper-
ties. In particular, if fn = 1, then ǫBG = ǫn. If fn = 0, then ǫBG

does not depend on ǫn.
Physically, the Bruggeman equation can be understood as

follows. We take the spatial region V filled with the composite
consisting of all N components and place it in a homogeneous
infinite medium with the permittivity ǫh. The Bruggeman ef-
fective permittivity ǫBG is the special value of ǫh for which the
dipole moment of V is zero. We note that the dipole moment
of V is computed approximately, using the assumption of non-
interacting “elementary dipoles” inside V. Also, the dipole mo-
ment is defined with respect to the homogeneous background,
i.e., dtot =

∫

V
[(ǫ(r)− ǫh)/4π]E(r)d3r [see the discussion after

equation (20)]. Thus, (29) can be understood as the condition
that V blends with the background and does not cause a macro-
scopic perturbation of a constant applied field.

We now discuss briefly the mathematical properties of the
Bruggeman equation. Multiplying (29) by ΠN

n=1(ǫn + 2ǫBG),
we obtain a polynomial equation of order N with respect to
ǫBG. The polynomial has N (possibly, degenerate) roots. But
for each set of parameters, only one of these roots is the phys-
ical solution; the rest are spurious. If the roots are known an-
alytically, one can find the physical solution by applying the
condition ǫBG| fn=1 = ǫn and also by requiring that ǫBG be a

continuous and smooth function of f1, . . . , fN [21]. However,
if N is sufficiently large, the roots are not known analytically.
In this case, the problem of sorting the solutions can be solved
numerically by considering the so-called Wiener bounds [22]
(defined in Sec. 6 below).

Consider the exactly-solvable case of a two-component mix-
ture. The two solutions are in this case

ǫBG =
b±

√

8ǫ1ǫ2 + b2

4
, b = (2 f1− f2)ǫ1 + (2 f2− f1)ǫ2 , (30)

and the square root branch is defined by the condition 0 ≤
arg(
√

z) < π. It can be verified that the solution (30) with the
plus sign satisfies ǫBG| fn=1 = ǫn and also yields Im(ǫBG) ≥ 0,

whereas the one with the minus sign does not. Therefore, the
latter should be discarded. The solution (30) with the “+” is a
continuous and smooth function of the volume fractions as long
as we use the square root branch defined above and f1 + f2 = 1.

If we take ǫ1 = ǫh, ǫ2 = ǫi, f2 = f , then the Bruggeman
and the Maxwell Garnett mixing formulas coincide to first or-
der in f , but the second-order terms are different. The expan-
sions near f = 0 are of the form

ǫMG

ǫh
= 1 + 3

ǫi − ǫh

ǫi + 2ǫh
f + 3

(ǫi − ǫh)
2

(ǫi + 2ǫh)2
f 2 + . . . (31a)

ǫBG

ǫh
= 1 + 3

ǫi − ǫh

ǫi + 2ǫh
f + 9ǫi

(ǫi − ǫh)
2

(ǫi + 2ǫh)
3

f 2 + . . . (31b)

Of course, we would also get a similar coincidence of expan-
sions to first order in f if we take ǫ2 = ǫh, ǫ2 = ǫi and f1 = f .

We finally note that one of the presumed advantages of the
Bruggeman mixing formula is that it is symmetric. However,
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there is no physical requirement that the exact effective permit-
tivity of a composite has this property. Imagine a composite
consisting of spherical inclusions of permittivity ǫ1 in a homo-
geneous host of permittivity ǫ2. Let the spheres be arranged on
a cubic lattice and have the radius adjusted so that the volume
fraction of the inclusions is exactly 1/2. The spheres would be
almost but not quite touching. It is clear that, if we interchange
the permittivities of the components but keep the geometry un-
changed, the effective permittivity of the composite will change.
For examples, if spheres are conducting and the host dielectric,
then the composite is not conducting as a whole. If we now
make the host conducting and the spheres dielectric, then the
composite would become conducting. However, the Brugge-
man mixing formula predicts the same effective permittivity
in both cases. This example shows that the symmetry require-
ment is not fundamental since it disregards the geometry of the
composite. Due to this reason, the Bruggeman mixing formula
should be applied with care and, in fact, it can fail quite dramat-
ically.

4. ANISOTROPIC COMPOSITES

So far, we have considered only isotropic composites. By
isotropy we mean here that all directions in space are equiva-
lent. But what if this is not so? The Maxwell Garnett mixing
formula (18) can not account for anisotropy. To derive a gener-
alization of (18) that can, we will consider inclusions in the form
of uniformly-distributed and similarly-oriented ellipsoids.

Consider first an assembly of N ≫ 1 small noninteracting
spherical inclusions of the permittivity ǫi that fill uniformly a
large spherical region of radius R. Everything is embedded in
a host medium of permittivity ǫh. The polarizability α of each
inclusion is given by (21a). The total polarizability of these par-
ticles is αtot = Nα (since the particles are assumed to be not
interacting). We now assign the effective permittivity ǫMG to
the large sphere and require that the latter has the same polariz-
ability αtot as the collection of small inclusions. This condition
results in equation (25), which is mathematically equivalent to
(18). So the procedure just described is one of the many ways
(and, perhaps, the simplest) to derive the isotropic Maxwell
Garnett mixing formula.

Now let all inclusions be identical and similarly-oriented el-
lipsoids with the semiaxes ax , ay, az that are parallel to the X,
Y and Z axes of a Cartesian frame. It can be found by solving
the Laplace equation [23] that the static polarizability of an el-
lipsoidal inclusion is a tensor α̂ whose principal values αp are
given by

αp =
axayaz

3

ǫh(ǫi − ǫh)

ǫh + νp(ǫi − ǫh)
, p = x, y, z . (32)

Here the numbers νp (0 < νp < 1, νx + νy + νz = 1) are the
ellipsoid depolarization factors. Analytical formulas for νp are
given in [23]. For spheres (ap = a), we have νp = 1/3 for all
p, so that (32) is reduced to (21a). For prolate spheroids resem-
bling long thin needles (ax = ay ≪ az), we have νx = νy → 1/2
and νz → 0. For oblate spheroids resembling thin pancakes
(ax = ay ≫ az), νx = νy → 0 and νz → 1.

Let the ellipsoidal inclusions fill uniformly a large ellipsoid
of a similar shape, that is, with the semiaxes Rx , Ry, Rz such
that ap/ap′ = Rp/Rp′ and Rp ≫ ap. As was done above, we
assign the large ellipsoid an effective permittivity ǫ̂MG and re-
quire that its polarizability α̂tot be equal to Nα̂, where α̂ is given

by (32). Of course, different directions in space in the compos-
ite are no longer equivalent and we expect ǫ̂MG to be tensorial;
this is why we have used the overhead hat symbol in this no-
tation. The mathematical consideration is, however, rather sim-
ple because, as follows from the symmetry, ǫ̂MG is diagonal in
the reference frame considered. We denote the principal values
(diagonal elements) of ǫ̂MG by (ǫMG)p. In the geometry consid-
ered, all tensors α̂, α̂tot, ǫ̂MG and ν̂ (the depolarization tensor)
are diagonal in the same axes and, therefore, commute.

The principal values of α̂tot are given by an expression that
is very similar to (32), except that ap must be substituted by Rp

and ǫi must be substituted by (ǫ̂MG)p. We then write α̂tot = Nα̂
and, accounting for the fact that Naxayaz = f RxRyRz, obtain
the following equation:

(ǫMG)p − ǫh

ǫh + νp [(ǫMG)p − ǫh]
= f

ǫi − ǫh

ǫh + νp(ǫi − ǫh)
. (33)

This is a generalization of (25) to the case of ellipsoids. We now
solve (33) for (ǫMG)p and obtain the conventional anisotropic
Maxwell Garnett mixing formula, viz,

(ǫMG)p = ǫh

1 + (1− νp) f
ǫi − ǫh

ǫh + νp(ǫi − ǫh)

1− νp f
ǫi − ǫh

ǫh + νp(ǫi − ǫh)

= ǫh
ǫh + [νp(1− f ) + f ](ǫi − ǫh)

ǫh + νp(1− f )(ǫi − ǫh)
. (34)

It can be seen that (34) reduces to (18) if νp = 1/3. In addition,
(34) has the following nice properties. If νp = 0, (34) yields
(ǫMG)p = f ǫi + (1 − f )ǫh = 〈ǫ(r)〉. If νp = 1, (34) yields

(ǫMG)
−1
p = f ǫ−1

i + (1− f )ǫ−1
h = 〈ǫ−1(r)〉. We will see in Sec. 5

below that these results are exact.
It should be noted that equation (34) implies that the Lorentz

local field correction is not the same as given by (23). Indeed,
we can use equation (34) to compute the macroscopic electric
field E inside the large “homogenized” ellipsoid subjected to
an external field Eext. We will then find that

E =

(

1− ν̂
4π

ǫh

α̂

v

)

Eext . (35)

Here ν̂ = diag(νx , νy, νz) is the depolarization tensor. The dif-
ference between (35) and (23) is not just that in the former ex-
pression α̂ is tensorial and in the latter it is scalar (this would
have been easy to anticipate); the substantial difference is that
the expression (35) has the factor of ν̂ instead of 1/3.

The above modification of the Lorentz local field correction
can be easily understood if we recall that the property (22) of
the electric field produced by a dipole only holds if the integra-
tion is extended over a sphere. However, we have derived (34)
from the assumption that an assembly of many small ellipsoids
mimic the electromagnetic response of a large “homogenized”
ellipsoid of a similar shape. In this case, in order to compute
the relation between the external and the macroscopic field in
the effective medium, we must compute the respective integral
over an elliptical region E rather than over a sphere. If we place
the dipole d in the center of E, we will obtain

∫

E

(E− Eext)d
3r =

∫

E

Edd3r = −ν̂
4π

ǫh
d . (36)

In fact, equation (36) can be viewed as a definition of the depo-
larization tensor ν̂.
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Thus, the specific form (34) of the anisotropic Maxwell Gar-
nett mixing formula was obtained because of the requirement
that the collection of small ellipsoidal inclusions mimic the elec-
tromagnetic response of the large homogeneous ellipsoid of the
same shape. But what if the large object is not an ellipsoid or an
ellipsoid of a different shape? It turns out that the shape of the
“homogenized” object influences the resulting Maxwell Garnett
mixing formula, but the differences are second order in f .

Indeed, we can pose the problem as follows: let N ≫ 1
small, noninteracting ellipsoidal inclusions with the depolariza-
tion factors νp and polarizability α̂ (32) fill uniformly a large
sphere of radius R ≫ ax, ay, az; find the effective permittivity of
the sphere ǫ̂′MG for which its polarizability α̂tot is equal to Nα̂.
The problem can be easily solved with the result

(ǫ′MG)p = ǫh

1 +
2 f

3

ǫi − ǫh

ǫh + νp(ǫi − ǫh)

1− f

3

ǫi − ǫh

ǫh + νp(ǫi − ǫh)

= ǫh
ǫh + (νp + 2 f /3)(ǫi − ǫh)

ǫh + (νp − f /3)(ǫi − ǫh)
. (37)

We have used the prime in ǫ̂′MG to indicate that (37) is not the
same expression as (34); note also that the effective permittivity
ǫ̂′MG is tensorial even though the overall shape of the sample
is a sphere. As one could have expected, the expression (37)
corresponds to the Lorentz local field correction (23), which is
applicable to spherical regions.

As mentioned above, ǫ̂MG (34) and ǫ̂′MG (37) coincide to first
order in f . We can write

ǫ̂MG , ǫ̂′MG = ǫh

(

1 + f
ǫi − ǫh

ǫh + νp(ǫi − ǫh)

)

+ O( f 2) . (38)

As a matter of fact, expression (37) is just one of the family of
approximations in which the factors 2 f /3 and f /3 in the nu-
merator and denominator of the first expression in (37) are re-
placed by (1− np) f and np f , where np are the depolarization
factors for the large ellipsoid. The conventional expression (34)
is obtained if we take np = νp ; expression (37) is obtained if we
take np = 1/3. All these approximations are equivalent to first
order in f .

Can we tell which of the two mixing formulas (34) and (37)
is more accurate? The answer to this question is not straight-
forward. The effects that are quadratic in f also arise due to
the electromagnetic interaction of particles, and this interaction
is not taken into account in the Maxwell Garnett approxima-
tion. Besides, the composite geometry can be more general than
isolated ellipsoidal inclusions, in which case the depolarization
factors νp are not strictly defined and must be understood in a
generalized sense as some numerical measures of anisotropy. If
inclusions are similar isolated particles, we can use (36) to de-
fine the depolarization coefficients for any shape; however, this
definition is rather formal because the solution to the Laplace
equation is expressed in terms of just three coefficients νp only
in the case of ellipsoids (an infinite sequence of similar coeffi-
cient can be introduced for more general particles).

Still, the traditional formula (34) has nice mathematical prop-
erties and one can hope that, in many cases, it will be more
accurate than (37). We have already seen that it yields exact
results in the two limiting cases of ellipsoids with νp = 0 and
νp = 1. This is the consequence of using similar shapes for the
large sample and the inclusions. Indeed, in the limit when, say,

νx = νy → 1/2 and νz → 0, the inclusions become infinite cir-
cular cylinders. The large sample also becomes an infinite cylin-
der containing many cylindrical inclusions of much smaller ra-
dius (the axes of all cylinders are parallel). Of course, it is not
possible to pack infinite cylinders into any finite sphere.

We can say that the limit when νx = νy = 0 and νz = 1
corresponds to the one-dimensional geometry (a layered plane-
parallel medium) and the limit νx + νy = 1 and νz = 0 corre-
sponds to the two-dimensional geometry (infinitely long paral-
lel fibers of elliptical cross section). In these two cases, the over-
all shape of the sample should be selected accordingly: a plane-
parallel layer or an infinite elliptical fiber. Spherical overall
shape of the sample is not compatible with the one-dimensional
or two-dimensional geometries. Therefore, (34) captures these
cases better than (37).

Additional nice features of (34) include the following. First,
we will show in Sec. 5 that (34) can be derived by applying the
simple concept of the smooth field. Second, because (34) has the
correct limits when νp → 0 and νp → 1, the numerical val-
ues of (ǫMG)p produced by (34) always stay inside and sample
completely the so-called Wiener bounds, which are discussed
in more detail in Sec. 6 below.

We finally note that the Bruggeman equation can also be gen-
eralized to the case of anisotropic inclusions by writing [24]

N

∑
n=1

fn
ǫn − (ǫBG)p

(ǫBG)p + νnp[ǫn − (ǫBG)p]
= 0 . (39)

Here νnp is the depolarization coefficient for the n-th inclusion
and p-th principal axis. The notable difference between the
equation (39) and the equation given in [24] is that the depolar-
ization coefficients in (39) depend on n. In [24] and elsewhere
in the literature, it is usually assumed that these coefficients are
the same for all medium components. While this assumption
can be appropriate in some special cases, it is difficult to justify
in general. Moreover, it is not obvious that the tensor ǫ̂BG is
diagonalizable in the same axes as the tensors ν̂n . Due to this
uncertainty, we will not consider the anisotropic extensions of
the Bruggeman’s theory in detail.

5. MAXWELL GARNETT MIXING FORMULA AND THE

SMOOTH FIELD

Let us assume that a certain field S(r) changes very slowly on
the scale of the medium heterogeneities. Then, for any rapidly-
varying function F(r), we can write

〈S(r)F(r)〉 = 〈S(r)〉〈F(r)〉 , (40)

where 〈. . .〉 denotes averaging taken over a sufficiently small
volume that still contains many heterogeneities. We will call
the fields possessing the above property smooth.

To see how this concept can be useful, consider the well-
known example of a one-dimensional, periodic (say, in the Z
direction) medium of period h. The medium can be homoge-
nized, that is, described by an effective permittivity tensor ǫ̂eff

whose principal values, (ǫeff)x = (ǫeff)y and (ǫeff)z, correspond
to the polarizations parallel (along X or Y axes) and perpendic-
ular to the layers (along Z), and are given by

(ǫeff)x,y = 〈ǫ(z)〉 =
N

∑
n=1

fnǫn , (41a)

(ǫeff)z =
〈

ǫ−1(z)
〉−1

=

[

N

∑
n=1

fn

ǫn

]−1

. (41b)
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Here the subscript in (ǫeff)x,y indicates that the result applies to
either X or Y polarization and we have assumed that each ele-
mentary cell of the structure consists of N layers of the widths
fnh and permittivities ǫn, where ∑n fn = 1. The result (41) has
been known for a long time in statics. At finite frequencies, it
has been established in [25] by taking the limit h → 0 while
keeping all other parameters, including the frequency, fixed (in
this work, Rytov has considered a more general problem of lay-
ered media with nontrivial electric and magnetic properties).

Direct derivation of (41) at finite frequencies along the lines
of Ref. [25] requires some fairly lengthy calculations. However,
this result can be established without any complicated math-
ematics, albeit not as rigorously, by applying the concept of
smooth field. To this end, we recall that, at sharp interfaces,
the tangential component of the electric field E and the normal
component of the displacement D are continuous.

In the case of X or Y polarizations, the electric field E is tan-
gential at all surfaces of discontinuity. Therefore, Ex,y(z) is in
this case smooth [26] while Ez = 0. Consequently, we can write

〈Dx,y(z)〉 = 〈ǫ(z)Ex,y(z)〉 = 〈ǫ(z)〉〈Ex,y(z)〉 . (42)

On the other hand, we expect that 〈Dx,y〉 = (ǫ̂eff)x,y〈Ex,y〉. Com-
paring this to (42), we arrive at (41a).

For the perpendicular polarization, both the electric field
and the displacement are perpendicular to the layers. The elec-
tric field jumps at the surfaces of discontinuity and, therefore,
it is not smooth. But the displacement is smooth. Correspond-
ingly, we can write

〈Ez(z)〉 = 〈ǫ−1(z)Dz(z)〉 = 〈ǫ−1(z)〉〈Dz(z)〉 . (43)

Combining 〈Dz〉 = (ǫ̂eff)z〈Ez〉 and (43), we immediately arrive
at (41b).

Alternatively, the two expressions in (41) can be obtained as
the limits νp → 0 and νp → 1 of the anisotropic Maxwell Gar-
nett mixing formula (34). Since (41) is an exact result, (34) is also
exact in these two limiting cases.

So, in the one-dimensional case considered above, either
the electric field or the displacement are smooth, depending
on the polarization. In the more general 3D case, we do not
have such a nice property. However, let us conjecture that,
for the external field applied along the axis p (= x, y, z) and
to some approximation, the linear combination of the form
Sp(r) = βpEp(r) + (1− βp)Dp(r) = [βp + (1− βp)ǫ(r)]Ep(r)
is smooth. Here βp is a mixing parameter. Application of (40)
results in the following equalities:

〈Ep(r)〉 = 〈Sp(r)〉
〈

[

βp + (1− βp)ǫ(r)
]−1

〉

, (44a)

〈Dp(r)〉 = 〈Sp(r)〉
〈

ǫ(r)
[

βp + (1− βp)ǫ(r)
]−1

〉

. (44b)

Comparing these two expressions, we find that the effective per-
mittivity is given by

(ǫeff)p =

〈

ǫ(r)[ǫ(r) + βp/(1− βp)]−1
〉

〈

[

ǫ(r) + βp/(1− βp)
]−1

〉 . (45)

The above equation is, in fact, the anisotropic Maxwell Garnett
mixing formula (34), if we only adjust the parameter βp cor-
rectly. To see that this is the case, let us rewrite (34) in the fol-
lowing rarely-used form:

(ǫMG)p =

〈

ǫ(r)
[

ǫ(r) + (1/νp − 1)ǫh

]−1
〉

〈

[

ǫ(r) + (1/νp − 1)ǫh

]−1
〉 . (46)

Here ǫ(r) is equal to ǫi with the probability f and to ǫh with the
probability 1 − f and the averages are computed accordingly.
Expressions (45) and (46) coincide if we take

βp =
(1− νp)ǫh

νp + (1− νp)ǫh
. (47)

The mixing parameter βp depends explicitly on ǫh because the
Maxwell Garnett mixing formula is not symmetric.

Thus, the anisotropic Maxwell Garnett approximation (34)
is equivalent to assuming that, for p-th polarization, the field
[(1− νp)ǫh + νpǫ(r)]Ep(r) is smooth. Therefore, (34) can be de-
rived quite generally by applying the concept of the smooth
field. The depolarization factors νp are obtained in this case as
adjustable parameters characterizing the composite anisotropy
and not necessarily related to ellipsoids.

The alternative mixing formula (37) can not be transformed
to a weighted average 〈ǫ(r)Fp(r)〉/〈Fp(r)〉, of which (45) and
(46) are special cases. Therefore, it is not possible to derive (37)
by introducing a smooth field of the general form Fp[ǫ(r)]Ep(r),
at least not without explicitly solving the Laplace equation in
the actual composite. Finding the smooth field for the Brugge-
man equation is also problematic.

6. WIENER AND BERGMAN-MILTON BOUNDS

The discussion of the smooth field in the previous section is
closely related to the so-called Wiener bounds on the “correct”
effective permittivity ǫ̂eff of a composite medium. Of course,
introduction of bounds is possible only if ǫ̂eff can be rigorously
and uniquely defined. We will see in the second part of this
tutorial that this is, indeed, the case, at least for periodic com-
posites in the limit h → 0, h being the period of the lattice.
Maxwell Garnett and Bruggeman mixing formulas give some
relatively simple approximations to ǫeff, but precise computa-
tion of the latter quantity can be complicated. Wiener bounds
and their various generalizations can be useful for localization
of ǫeff or determining whether a given approximation is rea-
sonable. For example, the Wiener bounds have been used to
identify the physical root of the Bruggeman equation (29) for a
multi-component mixture [22].

In 1912, Wiener has introduced the following inequality for
the principal values (ǫeff)p of the effective permittivity tensor
of a multi-component mixture of substances whose individual
permittivities ǫn are purely real and positive [27]:

〈ǫ−1〉−1 ≤ (ǫeff)p ≤ 〈ǫ〉 , if ǫn > 0 . (48)

It can be seen that the Wiener bounds depend on the set of
{ǫn, fn} but not on the exact geometry of the mixture. The lower
and upper bounds in (48) are given by the expressions (41).

The Wiener inequality is not the only result of this kind. We
can also write minn(ǫn) ≤ (ǫeff)p ≤ maxn(ǫn); sharper es-
timates can be obtained if additional information is available
about the composite [28]. However, all these inequalities are in-
applicable to complex permittivities that are commonly encoun-
tered at optical frequencies. This fact generates uncertainty, es-
pecially when metal-dielectric composites are considered. A
powerful result that generalizes the Wiener inequality to com-
plex permittivities was obtained in 1980 by Bergman [29] and
Milton [30]. We will state this result for the case of a two com-
ponent mixture with the constituent permittivities ǫ1 and ǫ2.

Consider the complex ǫ-plane and mark the two points ǫ1

and ǫ2. Then draw two lines connecting these points: one a
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Fig. 3. (color online) Illustration of the Wiener and Bergman-Milton bounds for a two-component mixture with ǫ1 = 1.5 + 1.0i and
ǫ2 = −4.0 + 2.5i. Curves MG1, MG2 and BG are parametric plots of the complex functions (ǫMG)p [formula (34)] and ǫBG [formula
(30)] as functions of f for 0 ≤ f ≤ 1 and three different values of νp, as labeled. Arcs ACB and ADB are parametric plots of (ǫMG)p

as a function of νp for fixed f and different choice of the host medium (hence two different arcs). Notations: LWB - linear Wiener
bound; CWB - circular Wiener bound; MG1 - Maxwell Garnett mixing formula in which ǫh = ǫ1, ǫi = ǫ2 and f = f2; MG2 - same
but for ǫh = ǫ2, ǫi = ǫ1 and f = f1, BG - symmetric Bruggeman mixing formula; A, B, C, D, E mark the points on CWB, LWB,
MG1, MG2, BG curves for which f1 = 0.7 and f2 = 0.3. Point E and curve BG are shown in Panel (a) only. Only the curves MG1
and MG2 depend on νp. The region Ω (delineated by LWB and CWB) is the locus of all points (ǫeff)p that are attainable for the two-
component mixture regardless of f1 and f2; Ω′ (between the two arcs ACB and ADB) is the locus of all points that are attainable for
this mixture and f1 = 0.7, f2 = 0.3.

straight line and another a circle that crosses ǫ1, ǫ2 and the ori-
gin (three points define a circle). We only need a part of this
circle - the arc that does not contain the origin. The two lines
can be obtained by plotting parametrically the complex func-
tions η( f ) = f ǫ1 + (1− f )ǫ2 and ζ( f ) = [ f /ǫ1 + (1− f )/ǫ2]

−1

for 0 ≤ f ≤ 1 and are marked in Fig. 3 as LWB (linear Wiener
bound) and CWB (circular Wiener bound).

The closed area Ω (we follow the notations of Milton [30]) be-
tween the lines LWB and CWB is the locus of all complex points
(ǫeff)p that can be obtained in the two-component mixture. We
can say that Ω is accessible. This means that, for any point ξ ∈ Ω,
there exists a composite with (ǫeff)p = ξ. The boundary of Ω is
also accessible, as was demonstrated with the example of one-
dimensional medium in Sec. 5. However, all points outside Ω

are not accessible - they do not correspond to (ǫeff)p of any two-
component mixture with the fixed constituent permittivities ǫ1

and ǫ2.

We do not give a mathematical proof of these properties of
Ω but we can make them plausible. Let us start with a one-
dimensional, periodic in the Z direction, two-component lay-
ered medium with some volume fractions f1 and f2. The princi-
pal value (ǫeff)z for this geometry will correspond to a point A
on the line CWB and the principal values (ǫeff)x = (ǫeff)y will
correspond to a point B on LWB. The points A and B are shown
in Fig. 3 for f1 = 0.7 and f2 = 0.3. We will then continuously
deform the composite while keeping the volume fractions fixed
until we end up with a medium that is identical to the original
one except that it is rotated by 90◦ in the XZ plane. In the end
state, (ǫeff)x will correspond to the point A and (ǫeff)y = (ǫeff)z

will correspond to the Point B. The intermediate states of this
transformation will generate two continuous trajectories [the
loci of the points (ǫeff)x and (ǫeff)z] that connect A and B and
one closed loop staring and terminating at B [the loci of the
points (ǫeff)y]. Two such curves that connect A and B (the arcs
ACB and ADB) are also shown in Fig. 3.

Now, let us scan f1 and f2 from f1 = 1, f2 = 0 to f1 = 0, f2 =

1. The points A and B will slide on the lines CWB and LWB from
ǫ1 to ǫ2, and the continuous curves that connect them will fill
the region Ω completely while none of these curves will cross
the boundary of Ω. On the other hand, while deforming the
composite between the states A and B, we can arrive at a com-
posite of an arbitrary three-dimensional geometry modulo the
given volume fractions. Thus, for a two component medium
with arbitrary volume fractions, we can state that (i) (ǫeff)p ∈ Ω

and (ii) if ζ ∈ Ω, then there exists a composite with (ǫeff)p = ζ.

We now discuss the various curves shown in Fig. 3 in more
detail.

The curves marked as MG1, MG2 display the results com-
puted by the Maxwell Garnett mixing formula (34) with vari-
ous values of νp , as labeled. MG1 is obtained by assuming that
ǫh = ǫ1, ǫi = ǫ2, f = f2. We then take the expression (34) and
plot (ǫMG)p parametrically as a function of f for 0 ≤ f ≤ 1 for
three different values of νp . MG2 is obtained in a similar fashion
but using ǫh = ǫ2, ǫi = ǫ1, f = f1.

Notice that, at each of the three values of νp used, the curves
MG1 and MG2 do not coincide because (34) is not “symmetric”
in the sense of (28). For this reason, MG1 and MG2 can not be
accurate simultaneously anywhere except in the close vicinities
of ǫ1 and ǫ2. Since there is no reason to prefer MG1 over MG2
or vice versa (unless f1 or f2 are small), MG1 and MG2 can not
be accurate in general, that is for any composite that is somehow
compatible with the parameters of the mixing formula. This
point should be clear already from the fact that composites that
are not made of ellipsoids are not characterizable mathemati-
cally by just three depolarization factors νp.

However, in the limits νp → 0 and νp → 1, MG1 and MG2
coincide with each other and with either LWB or CWB. In these
limits MG1 and MG2 are exact.

In Panel (a), we also plot the curve BG computed according
to (30) with the “+” sign. This BG curve follows closely MG1 in
the vicinity of ǫ1 and MG2 in the vicinity of ǫ2. This result is ex-
pected since the Maxwell Garnett and Bruggeman approxima-
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tions coincide to first order in f : see (31) and recall that f = f2

for MG1 and f = f1 for MG2.
The two arcs ACB and ADB that connect the points A and B

are defined by the following conditions: if continued to full cir-
cles, ACB will cross ǫ1 and ADB will cross ǫ2. The arcs can also
be obtained by plotting (ǫMG)p as given by (34) parametrically
as a function of νp for fixed f1 and f2. To plot the arc ACB, we
set ǫh = ǫ1, ǫi = ǫ2 and f = f2 in (34), just as was done in order
to compute the curve MG1. However, instead of fixing νp and
varying f , we now fix f = 0.3 and vary νp from 0 to 1. Similarly,
the arc ADB is obtained by setting ǫh = ǫ2, ǫi = ǫ1, f = f1 and
varying νp in the same interval.

The region delineated by the arcs ACB and ADB is denoted
by Ω′. It is important for the following reason. Above, we have
defined the region Ω, which is the locus of all points (ǫeff)p for
the two-component mixture regardless of the volume fractions.
If we fix the latter to f1 and f2, the region of allowed (ǫeff)p can
be further narrowed. It is shown in Refs. [29, 30] that this region
is precisely Ω′. Note that the Maxwell Garnett approximation
(34) with the same f1 and f2 yields the results on the boundary
of Ω′. Conversely, any point on the boundary of Ω′ corresponds
to (34) with some νp. The isotropic Bruggeman’s solution is
safely inside Ω′ - see point E in Panel (a).

Just like Ω, the region Ω′ is also accessible. This means that
each point inside Ω′ corresponds to a certain composite with
given ǫ1, ǫ2, f1 and f2. However, it is not obvious how the
boundaries of Ω′ can be accessed. Above, we have seen that
the boundaries of Ω are accessed by the solutions to the homog-
enization problem in a very simple one-dimensional geometry
wherein the smooth field S can be easily (and precisely) defined.
The same is true for Ω′. It can be shown [29] that the geome-
try for which the boundary of Ω′ is accessed is an assembly of
coated ellipsoids that are closely packed to fill the entire space.
This is possible if we take an infinite sequence of such ellipsoids
of ever decreasing size. Note that all major axes of the ellip-
soids should be parallel, the core and the shell of each ellipsoid
should be confocal, and the volume fractions of the ǫ1 and ǫ2

substances comprising each ellipsoid should be fixed to f1 and
f2. The arrangement in which ǫ1 is the core and ǫ2 is the shell
will give one circular boundary of Ω′ and the arrangement in
which ǫ2 is in the core and ǫ1 is in the shell will give another
boundary.

Of course, the above arrangement is a purely mathematical
construct, it is not realizable in practice. However, it is interest-
ing to note that the Maxwell Garnett mixing formula (34) turns
out to be exact in this strange geometry. In the special case
when the ellipsoids are spheres, the isotropic Maxwell Garnett
formula (18) is exact. This isotropic, arbitrarily dense packaging
of coated spheres of progressively reduced radiuses was consid-
ered by Hashing and Shtrikman [28] in 1962.

We can now see why the anisotropic Maxwell Garnett mix-
ing formula (34) is special. First, it samples the region Ω com-
pletely. In other words, any two-component mixture with ǫ1

and ǫ2-type constituents has the effective permittivity principal
values (ǫeff)p that are equal to a value (ǫMG)p produced by (34)
with the same ǫ1 and ǫ2 (but perhaps with different volume frac-
tions). Second, (34) is restricted to Ω. In other words, any value
(ǫMG)p produced by (34) is equal to (ǫeff)p of some compos-
ite with the same ǫ1 and ǫ2 (but perhaps with different volume
fractions).

To conclude the discussion of bounds, we note that Refs. [29,
30] contain an even stronger result. If, in addition to ǫ1, ǫ2, f1, f2,
it is also known that the composite is isotropic on average, then

the allowed region for ǫeff (now a scalar) is further reduced to
Ω′′ ⊂ Ω′ ⊂ Ω. Here Ω′′ is delineated by yet another pair of
circular arcs that connect the points C and D and, if continued to
circles, also cross the points A and B. These arcs are not shown
in Fig. 3.

7. SCALING LAWS

Maxwell Garnett and Bruggeman theories give some approxi-
mations to the effective permittivity of a composite ǫ̂eff. Wiener
and Bergman-Milton bounds discussed in the previous sec-
tion do not provide approximations or define ǫ̂eff precisely but
rather restrict it to a certain region in the complex plane. How-
ever, the very possibility to derive approximations or to place
bounds on ǫ̂eff relies on the availability of an unambiguous def-
inition of this quantity. We will sketch an approach to defining
and computing ǫ̂eff in the second part of this tutorial. Now we
note that this definition is expected to satisfy the following two
scaling laws [9].

The first law is invariance under coordinate rescaling r→ βr,
where β > 0 is an arbitrary real constant. In other words, the
result should not depend on the physical size of the hetero-
geneities. Of course, one can not expect a given theory to be
valid when the heterogeneity size is larger than the wavelength.
Therefore, the above statement is not about the physical appli-
cability of a given theory. Rather, it is about the mathematical
properties of the theory itself. We can say that any standard the-
ory is obtained in the limit h → 0, where h is the characteristic
size of the heterogeneity, say, the lattice period. The result of
taking this limit is, obviously, independent of h.

The second law is the law of unaltered ratios: if every ǫn of
a composite medium is scaled as ǫn → βǫn, then the effective
permittivity (as computed by this theory) should scale similarly,
viz, ǫ̂eff → βǫ̂eff.

Theories (either exact or approximate) that satisfy the above
two laws can be referred to as standard. It is easy to see that the
Maxwell Garnet and the Bruggeman theories are standard. On
the other hand, the so-called extended homogenization theories
that consider magnetic and higher-order multipole moments of
the inclusions do not generally satisfy the scaling laws.

8. SUMMARY AND OUTLOOK

The sections 2,3,4, we have covered the material that one en-
counters in standard textbooks. Sections 5,6,7 contain some-
what less standard but, still, mathematically simple material.
The tutorial could end here. However, we can not help noticing
that the arguments we have presented are not complete and not
always mathematically rigorous. There are several topics that
we need to discuss if we want to gain a deeper understanding
of the homogenization theories in general and of the Maxwell
Garnett mixing formula in particular.

First, the standard expositions of the Maxwell Garnett mix-
ing formula and of the Lorentz molecular theory of polarization
rely heavily on the assumption that polarization field P(r) =
[(ǫ(r)− 1)/4π]E(r) is the dipole moment per unit volume. But
this interpretation is neither necessary for defining the consti-
tutive parameters of the macroscopic Maxwell’s equations nor,
generally, correct. The physical picture based on the polariza-
tion being the density of dipole moment is in many cases ade-
quate, but in some other cases it can fail. We’ve been careful to
operate only with total dipole moments of macroscopic objects.
Still, this point requires some additional discussion.
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Second, the Lorentz local field correction relies on integrat-
ing the electric field of a dipole over spheres or ellipsoids of fi-
nite radius. It can be assumed naively that, since the integral is
convergent for some finite integration regions, it also converges
over the whole space. But this assumption is mathematically in-
correct. The integral of the electric field of a static dipole taken
over the whole space does not converge to any result. There-
fore, if we arbitrarily deform the surface that bounds the inte-
gration domain, we would obtain an arbitrary integration re-
sult. In fact, we have already seen that this result depends on
whether the surface is spherical or ellipsoidal. This dependence,
in turn, affects the Lorentz local field correction. Consequently,
developing a more rigorous mathematical formalism that does
not depend on evaluation of divergent integrals is desirable.

Third, we have worked mostly within statics. We did discuss
finite frequencies in the sections devoted to smooth field and
Wiener and Bergman-Milton bounds, but not in any substan-
tial detail. However, the theory of homogenization is almost
always applied at high frequencies. In this case, equation (2) is
not applicable; a more general formula must be used. Inciden-
tally, the integral of the field of an oscillating dipole diverges
even stronger than that of a static dipole. It is also not correct to
use the purely static expression for the polarizabilities at finite
frequencies.

The above topics will be addresses in the second part of this
tutorial.
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