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Introduction 

Y. Kawamata, K. Matsuda and K; Matsuki 

Some applications and related problems 

Addition conjecture for the Kodaira dimensions of an 

algebraic fiber space 

Invariance of plurigenera 

Zariski decomposition in higher dimensions 

Our aim is to present a program for the construction of minimal 

models in any dimension. This theory has been recently developed by 

Ando, Benveniste, Kawamata, Kollar, Miyaoka, Mori, Nakayama, Reid, 

Shokurov, Tsunoda and others. We put special emphasis on its applica­

tion to the classification theory of higher dimensional algebraic varieties. 

In this paper the ground field k is assumed to be algebraically closed 

and of characteristic zero unless otherwise stated. 

We shall quickly review the theory of minimal models for surfaces, 

namely for complete algebraic varieties of dimension 2, using the flow 

chart in Figure 1. 

We start with a nonsingular projective surface S having the Picard 

number p= peS). Our first question is whether the canonical divisor Ks 

of Sis nef, i.e., whether the intersection number of Ks with any reduced 

irreducible curve on S is nonnegative, or not. If the answer is YES, we 

call S the minimal model (in our sense). In this case the Kodaira dimen­

sion K(S) of S is nonnegative and Ks is senii-ample, i.e., the linear system 

I mKs I is base point free some mEN. This implies that the canonical 

ring R(S): = EBm<:o HO(S, (!) s(mKs)) of S is a finitely generated algebra over 

k, and we have the natural morphism 

for some m~O. 

When K(S)=dim S=2, i.e., when S is of general type, + is a birational 

morphism which is the contraction of all the (- 2)-curves to rational 

double points (cf. [AI], [Mf], [Kod3], [Bol). When ,,(S)= 1, + gives an 

elliptic fibration onto a nonsingular projective curve whose singular fibers 

are thoroughly studied by Kodaira (cf. [Kod2l). When K(S)=O, we have 

mKs-O for some mEN (N denotes the set of positive integers in this 

paper); more precisely, S is either an abelian surface, a K3 surface, a 

hyperelliptic surface or an Enriques surface. 

If the answer to the first question is NO, our second question is 

whether there exists a (-I)-curve Eon S. If the answer is No, then K(S) = 

- 00; furthermore, S is isomorphic either to p2 or to a minimal ruled 

surface over a nonsingular projective curve. C. If the answer to the 
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S: a nonsingular projective surface 

with the Picard number p=p(S) 

NO 

YES' 

1": S ..... S' 

the contraction of E 

S': a nonsingular 

projective surface with 

p(S')=p(S)-l 

Set S=S' 

Figure 1 

YES 

S: the minimal model 

(i) K(S)~O 

(ii) Ks is semi-ample 

( END) 

K(S);=-OO. 

{
P2 

S ~ a minimal ruled 

surface 

285: 

second' question is YES, we have Enriques-Castelnuovo's contraction 

morphism of S onto a nonsingular projective surface S' with the Picard 

number p(S')=p(S)-l. In this case, we go back to the starting point 
with the Picard number decreased by one. This procedure must come to 
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an end after a finite number of repetitions. Thus starting with an arbi­
trary nonsingular projective surface, we end up either with a minimal 
model, p2 or with a minimal ruled surface which is birational to S. We 

note that the minimal model of S is uniquely determined by its birational 

class when .t(S):2::0. 

Our main purpose is to draw an analogous flow chart and prove 
the existence of the minimal models for higher dimensional varieties which 

are not uniruled. Our main results to carry out this program are the 
Base Point Free Theorem (or the Contraction Theorem) and the Cone The­

orem. Now we look at the flow chart for higher dimensional varieties in 

Figure 2. 
Even though we are concerned with a nonsingular projective variety 

X of dimension d, we allow X at the starting point of the flow chart to 

have at most Q-factorial terminal singularities in order for the inductive 

procedure to work. (For the precise definition of Q-factorial terminal 
singularities, see Section 0-2.) 

Our first questionis whether the canonical divisor Kx of X is nef or 
not. If the answer is YES, we call X a minimal model. In this case, we 

conjecture that .t(X):2::0 and that Kx is semi-ample (the Abundance Con­

jecture). If the Abundance Conjecture is true, the canonical ring R(X): = 
EBm;;;oHO(X, (!}x(mKx» is a finitely generated algebra over k, and we obtain 

the natural morphism ""':=([)lmKxl: X-+Proj R(X). When .t(X) = dim X, 

i.e., when X is of general type, "'" is the birational morphism onto its 
unique canonical model Xcan: = Proj R(X), which has only canonical singu­

larities. When o <.t(X) <dim X, "'" has a structure of an algebraic fiber 
space onto a normal projective variety with only rational singularities, 

whose generic fiber X~ is itself a minimal model with .t(X~)=O. When 

.t(X) =0, we have mKx-O for some meN. 

If the answer to the first question is NO, the Cone Theorem guar­

antees the existence of an extremal ray R with a supporting function H, 

and the Base Point Free Theorem implies that ~:=([)lmHl: X-+X' for 
m~O gives a morphism, the contraction of R, onto a normal projective 
variety X'. Then our second question is whether dim X' =d or not. If 

the answer is NO, then ~ is said to be of fiber type. In this case, we have 

.t(X) = - 00; more precisely, X is uniruled, i.e., there esists a generically 
finite and generically surjective rational map 'Iff: Y X pI ..... X for some 

algebraic variety Y, by a result of Miyaoka and Mori (cf. [MMD. If the 

answer to the second question is YES, we go on to the third question 
which asks whether the dimension of the exceptional locus E of ~ is equal 

to d -lor not, the answer to which is always YES in the case of surfaces. 

If the answer to this question is YES, ~: X-+X' is the contraction of 

some unique prime divisor and X' is a normal projective variety having 
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("':t) 
• 

X: a normal projective variety of dimension d 
with only Q-factorial terminal singularities 

NO 

Cone Theorem 
R: an extremal ray with 

a supporting function H 

Base Point Free Theorem: 
\O:=IPlmHJ: X-X' gives the 
contraction morphism of'R 

Flip Conjecture I: 

X X+ 

~ /P+ 
X' 

( i) X+: a normal projective 
variety having only 
Q-factorial terminal 
singularitie s 

(ii) \D+ is an isomorphism in 
codimension 1 

(iii) Kx+ is \D+-ample 

Set X=X+ 

YES 

Figure 2 

YES 

X; 'a minimal model 
Abundance Conjecture: 
(i) IC(X)~O 

(ii) Kx is semi-ample 

( ENn) 

IC(X)=-CO. 
X: uniruled 

( END) 

cp contracts a prime divisor 
X': a normal projective 

variety having Q-factorial 
terminal singularities 
with p(X')=p(X)-l 
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only Q-factorial terminal singularities with the Picard number p(X') = 
p(X) - 1. Then cp is called a divisorial contraction. In this situation, we 

go back to the starting point of the flow chart with the Picard number 

decreased by one. 

The major difficulty to carry out the program in· the higher dimen­

sional case arises when the answer to the third question is NO, i.e., when 

cp is an isomorphism in codimension one. There actually exist such cases. 

We call this cp a flipping contraction. Then we have the so-called Flip 

Conjecture which consists of two parts. The first part, the Flip Conjecture 

I, claims that there exists a commutative diagram 

tfp 

X··············~X+ 

~ ;.+ 
X' 

which satisfies the following properties: 

(i) X + is a normal projective variety with only Q-factorial terminal 

singularities, which is isomorphic to X in co dimension one via trp , and 

(ii) the canonical divisor K x + is cp + -ample. 

Note that the Flip Conjecture I is equivalent to saying that 

ffi cp*@AmKx) 
m<i;O 

is finitely generated as an @x,-algebra. This procedure to obtain cp+: X+ 

---+X' from cp: X ---+X' is simply called a flip (if it exists). Once we get 

cp+: X+---+X', we go back to the starting point of the flow chart with X+ 

in place of X. 

The second part, Flip Conjecture II, claims that a sequence of flips 

has to terminate after finitely many steps. Those two parts of the con­

jecture combined together imply that there exists a finite chain of flips 

X··········+ X+ ··········~X+ + •••••••••• + ... .......... +X( +n) = Z 

\/\/ \/ 
X' XI! X<'n) 

such that either 

1) K z is nef, 

2) Z has a contraction of fiber type, or 

3) Z has a contraction of divisorial type. 

We give the affirmative answer to the Flip Conjecture II in case dim X = 3 

or 4. If the Flip Conjecture holds, we can go on to the other loops of 
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the flow chart, and finally we obtain a minimal model of X unless X is 

uniruled. 

In the following chapters we discuss the program above in full details 

with rigorous proofs. Moreover, we extend our objectives in the follow­

ing two directions: 

(i) Not only working with varieties over k, but we also work with 

varieties over some fixed variety S. Then for example, we can apply our 

theory to the deformation of varieties over the parameter space S. 

(ii) We consider a pair (X, Ll) consisting of a variety X and a divisor 

Ll on it satisfying certain conditions. (See § 0-2.) As a consequence of 

this generalization, open varieties with their boundaries can be treated in 

our theory according to philosophy of Iitaka [14]. 

The first and second cases are called the relative and logarithmic 

cases (the latter being called the log case for short), respectively. Note 

that even when we work in the category of varieties over a fixed field k, 

it is often more natural (and necessary) to get into the relative and/or 

logarithmic categories. Our flow chart is applicable in both extended 

cases. 

The specific contents of this paper are as follows. 

In Chapter 0, we introduce some concepts necessary to state our 

results in this paper, while mentioning such basic facts as Kleiman's 

criterion for ampleness. Section 0-3 gives a characterization of canonical 

varieties due to Reid [Rl], followed by Section 0-4 which explains what 

our main goal, the Minimal Model Conjecture, is. 

Chapter 1 proves several vanishing theorems. The Covering Lemma 

in Section 1-1 leads to the Vanishing theorem of Kawamata and Viehweg 

which plays a tricky but essential role in our whole paper. The Ration­

ality of weak log-terminal singularities is an easy corollary to the Vanish­

ing Theorem of Elkik and Fujita in Section 1-3. 

Chapter 2 is devoted to the Non-Vanishing Theorem due to Sho­

kurov [SI]. 

In Chapter 3 we prove the Base Point Free Theorem, which is 

presented in another form as the Contraction Theorem in Section 3-2. 

The canonical ring of a general type variety is finitely generated as a 

k-algebra once it has a minimal model, as proved in Section 3-3 as a 

corollary to the Base Point Free Theorem. 

In Chapter 4, we present the Rationality Theorem, from which the 

Cone Theorem (with the discreteness of extremal rays) follows immedi­

ately. 

We discuss the Flip Conjecture in Chapter 5, classifying the types 

of contractions of extremal rays and studying their properties. We give a 

proof to the termination of flips in case dimension ::;::4 using the notion 
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of difficulty due to Shokurov [Sl]. Section 5-2 gives a good evidence for 
the Flip Conjecture, working with toric morphisms and giving some other 

examples. 

Chapter 6 is somewhat independent of the other chapters and dis­

cusses what the main results should be if nef and big divisors are replaced 

by nef and abundant divisors. Then with these results in hand, we 

formulate the Abundance Conjecture. 

Chapter 7 is devoted to some applications of our theory, related to 

the problem of the classification of higher dimensional varieties. 

This paper is a survey as a whole but contains some generalizations 

of the existing theorems; the Vanishing, Base Point Free and Cone Theo­

rems are stated in a relative category with weak log-terminal singularities, 

while the Vanishing Theorem of Elkik and Fujita is formulated in a local 

form. The termination of flips in dimension 4 is a new result. Many 

other improvements are made to simplify the proofs. 

This paper is an expanded version of a course of lectures given by 

the first author at the University of Tokyo from September 1984 to March 

1985. Section 1-3 and Chapter 7 were written up by the second author 

and all the rest by the third. 

Chapter O. Notation and Preliminaries 

§ 0-1. Kleiman's criterion for ampleness 

Let X be a normal variety over k of dimension d, where a variety 

means an integral seperated scheme which is of finite type over k, and let 

tr: X ~S be a proper morphism onto a variety S. We use the following 

notation: 

Zd_l(X):=the group of Weil divisors, i.e., the free abelian group 

generated by prime divisors on X. 

Div(X):=the group of Cartier divisors on X, which is naturally 

isomorphic to HO(X, Rat(XY/lPj), where Rat(XY is the sheaf of nonzero 

rational functions on X. 

Pic(X):=the group ofline bundles on X. 

Take a complete curve C on X which is mapped to a point by tr. For 

DE Pic(X), we define the intersection number (D.C):=degl/f*D where 

f: C~C is the normalization of C. Via this intersection pairing, we 
introduce a bilinear form 

( . ): Pic(X)XZ1(X/S)---+Z, 

where 
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ZI(X/ S): = the free abelian group generated by reduced irreducible 

curves which are mapped to points on S by n. 
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Now we have the notion of numerical equivalence both in ZI(X/S) and in 

Pic(X), which is denoted by ~, and we obtain a perfect pairing 

where 

Nl(X/S):={Pic(X)/~}0R and NtCX/S):={ZI(X/S)/~}0R, 

namely NI(X/S) and N 1(X/S) are dual to each other through this intersec­

tion pairing. It is well-known that dimR Nl(X/S) = dimR N 1(XjS) < 00. 

We define 

NE(X/S):=the closed convex cone in N 1(X/S) generated by 

reduced irreducible curves on X which are mapped 

to points on S by n, 

NED(XjS):={z E NE(X/S); (D, z»O} for DE Nl(XjS). 

When S=Spec k, we drop /Spec k from the notation, e.g., we simply 

write N 1(X) in stead of NtCX/Spec k). The notion of numerical equi­

valence depends on n: X---*S; NI(X) and N 1(X/S) are different even in 

case X itself is complete. 

Definition 0-1-1. An element DE Nl(X/S) is called n-nef (or rela­

tively neffor n), if D>O on NE(X/S). When S=Spec k, we simply say 

that D is nef(or numerically effective, or numerically semi-positive). 

Theorem 0-1-2 (Kleiman's criterion for ampleness, cf. [KI, Chapter 

IV. § 4. Theorem 1]). Let n: X---*S be a projective morphism between 

algebraic schemes. Then HE Pic(X) is n-ample if and only if the numerical 

class of H in Nl(X/S) gives a positive function on NE(XjS)-{O}. 

In this paper, we deal not only with the usual divisors but also with 

the divisors with rational coefficients, which turn out to be fruitful and 

natural (cf. [Ka2]). 

Definition 0-1-3. An element of Zd_l(X}0Q (resp. Div(X)0Q) is 

called a Q-divisor (resp. a Q-Cartier divisor). Two elements D, D' E 

Zd_,(X)0Q are said to be Q-linearly equivalent, denoted by D-QD', if 

there exists r E N (the set of positive integers) such that rD, rD' E Zd_l(X) 

and that rD and rD' are linearly equivalent in the ordinary sense, i.e., 
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rD-i'D'=div(rp) in Za_l(X) for some rp e Rat(X)x. (We define div(rp):= 

L: vr(rp)r, where Vr denotes the valuation of rp at the prime divisor r, 
and the r run through all the prime divisors on X.) De Div(x)®Q is . . 

said to be 1C-ample if there exists r e N such that rD e Div(X) and rD is 
1C-ample in the ordinary sense. 

Definition 0-1-4. De Div(X) is said to be 1C-generated if the natural 
homomorphism 1C*1C*(!}x(D)~(!}x(D) is surjective. De Div(X)®Q is said 

to be 1C-semi-ample if there exists r e N such that rD e Div(X) and that rD 

is 1C-generated. When S=Spec k, D is said-to be semi-ample. For D e 

Div(X) with 1C*(!}x(D) =1=0, we define the 1C-fixed locus of D to be the 
unique effective divisor Fe Za_l(X) such that 

where /\ denotes the double dual. 

Definition 0-1-5. Let f: Y ~ X be a morphism from a variety Y and 

De Div(X)®Q such thatf(Y)~supp D. Then we define the pull-back of 
D by f to be f*D: = (l/r)f*(rD) e Div(X)®Q, where r is some positive 

integer which makes rD e Div(X) and the pull-back on the right hand 
side is the one defined for usual Cartier divisors. We define the strict 

transform of a prime divisor Do on X by a birational map a: X···+Y as 

follows. Let Xo be the maximal open subset of X on which a is regular. 

Then the strict transform a*(Do) is defined to be the closure of a(Do n Xo). 

By linearity, we can also define the strict transform a*(D) of a Q-divisor 
DonX. 

Remark 0-1-6. (1) For any morphism f: Y ~X, we can always 

define the pull-back homomorphism f*: Pic(X)®Q~ Pic( Y)®Q. 

(2) We have the natural homomorphisms 

and the ones tensored with Q. The first homomorphism is injective since 

X is normal. We say that De Za_l(X)®Q is a Q-Cartier divisor if Dis 
in the image of the first homomorphism tensored with Q. 

Definition 0-1-7. If the natural homomorphism Div(X)®Q~ 

Zc!_lX)®Q is surjective,-a normal variety X is called Q-factorial. 

Definition 0-1-8. Let D= L: atD, e Za_l(X)®Q, where the at are 
rational numbers and the D t are mutually distinct prime divisors on.X. 
We define 
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[D]: = L: [ai]Di, the integral part of D, 

rDl:=L: rai1D;= -[-D], the round up of D, 

<D): = L: <ai)Di =D- [D], the fractional part of D, 

where for r E R, we define [r]:=max{t E Z; t:::::r}. 
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We conclude this section with pointing out the one to one corre­

spondence between the linear equivalence classes of Weil divisors on X 

and the isomorphism classes of reflexive sheaves of rank one. 

Definition 0-1-9. For a sheaf :F of @x-modules, :F* denotes the 

dual.Yt'oYr!.xC:F,@x) and :F/\:=:F**. :F is said to be rejiexiveif:F= 

:F ", i.e., if the natural homomorphism .% -+:F /\ is an isomorphism. 

Lemma 0-1-10 (cf. [Rl, Proposition 2]). For a coherent sheaf:F on 

X, the following conditions are equivalent: 

(1) :F is rejiexive of rank one, 

(2) if XOcX is a nonsingular open subvariety such that X -Xo has 

codimension >2, then :Flxo is invertible and:F =i*(:Flxo), where i denotes 

the inclusion i: X°-+x. 

Proof See [Ha2, Proposition 1.6]. 

Proposition 6-1-11 (cf. [RI, Theorem 3]). The correspondence 

Zd_l(X)1 -----+{rejiexive sheaves of rank I}I ~ 

given by D-+@x(D) is a bijection, wherefor any D= L: nrr E Zd_l(X) with 

nr E Z and the r being mutually distinct prime divisors, the sheaf @x(D) is 

defined by 

rcU, @x(D))={fE Rat(X); vr(f)+nr>Ofor all codimension 1 points 

r E U, where vr(f) is the valuation off at r}. 

Proof Immediate from Lemma 0-1-10. 

§ 0-2. Definitions of terminal, canonical, and (weak) log-terminal singu.:. 

larities 

Let X be a normal variety of dimension d. 

Definition 0-2-1. The canonical divisor Kx on X is an element of 

Zd_l(X) such that @xreg(Kx)=Q'!x.eg' where Xreg is the nonsingular locus of 

x. 
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Remark 0-2-2. (1) Since codim(X-Xreg) >2, the canonical divisor 

Kx is well-defined up to linear equivalence. We use the following nota­

tion: 

Then by Proposition 0-1-11, w~J is a reflexive sheaf of rank 1 for any r E Z, 

and hence w~J=i*((Qteg)®r) where i is the natural inclusion i: Xreg-+x. 

(2) For the dualizing complex w:r of X, we have WX=H-d(W:r). 

Definition 0-2-3. X is called a Q-Gorenstein variety if the canonical 

divisor Kx is a Q-Cartier divisor, i.e., if @xCrKx) becomes invertible for 

some r E N. 

Remark 0-2-4. (1) The condition for X to be a Cohen-Macaulay 

variety is equivalent to the condition that Ht(w:r) =0 for i=l=-d. 

(2) When X is a Q-Gorenstein variety and min {r E N: rKx E Div(X)} 

=e, we call X an e-Gorenstein variety and e the index of X. It is obvious 

that if X is a Gorenstein variety (i.e., Wx is invertible and X is Cohen­

Macaulay), then X is a I-Gorenstein variety, while the converse is not 

necessarily true. (cf. [Is]) 

Definition 0-2-5 (cf. [RID. Let X be a Q-Gorenstein normal affine 

variety of index r with a nowhere vanishing section w of @x(rKx). Then 

w defines a structure of an @x-algebra on R: = EBr:J @x( - iKx). Namely 

R is a quotient ring of the algebra R: = EBm~o @x( - mKx) divided by the 

ideal (w-id)R, where we denote the operation of multiplication by w 

with the same symbol w. We put V: = Spec R. The natural finite Galois 

cover r: V -+X of degree r is called the canonical cover of X. Since the 

@x(-iKx ) are reflexive sheaves and since r is etale in codimension 1, V 

is normal. By the choice of r, V is irreducible. If r': V'-+X is the 

canonical cover obtained from another choice of w, then V' X xX' ~ 

V X xX' for some etale cover X' of X. In particular, the canonical cover 

is locally unique up to complex analytic isomorphisms, if k=C. Since r 

is etale on the nonsingular locus of X, we have Kv=r*Kx. On the other 

hand by [Hal], 7:*wv~EBr~1@x(iKx)~R0@x(rKx). Hence Wv is invertible, 

i.e., Kv is a Cartier divisor. 

Definition 0-2-6 (cf. [RID. A normal variety X is said to have only 

canonical (resp. terminal) singularities if the following two conditions are 

satisfied: 

(i) X is a Q-Gorenstein variety, 

(ii) there exists a resolution of singularities f: Y -+ X such that K y = 
f*Kx + L: aiEi for ai E Q with ai~O (resp, ai>O) for all i, where the Ei 
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vary among all the prime divisors which are exceptional with respect to f 
Note that the equality above holds up to Q-linear equivalence, while the 

divisor L: aiEi is uniquely determined in Zd_/X)0Q (d=dim X). 

Remark 0-2-7. (1) In the formula l(y=f*Kx + L: aiEi in the 

definition above, a i is called the discrepancy at E i • Note that the discrep­

ancy does not depend on the choice of resolution but is determined only 

by the divisor E i , i.e, by the D.V.R. in Rat(X) associated to E i • 

(2) If a normal variety X has only canonical (resp. terminal) singu­

larities, then the condition (ii) is satisfied for an arbitrary resolution. 

(3) When dim X = 2, X has only canonical (resp. terminal) singu­

larities if and only if X has only rational double or nonsingular points 

(resp. nonsingular points). In particular, all the canonical singularities in 

dimension 2 have the index 1. 

(4) Reid [R2] showed that the canonical covers of terminal singu­

larities of 3-folds have at most isolated compound du Val singularities 

(i.e., they are the I-parameter deformation spaces of rational double 

points), or they are nonsingular. The former case is studied in more 

detail by Mori [M03], while the latter by Morrison and Stevens [MS] and 

by Danilov [D2]. 

(5) Canonical singularities of index 1 are the same as rational 

Gorenstein singularities (cf. [ED. 

Proposition 0-2-8. Let X be a normal variety. Then X has only 

canonical singularities if and only if 
(i/) there exists an integer r>O such that Q)~p is invertible, and 

(iiI) f: Y --+X being a desingularization of X, there exists a natural 

homomorphism Ps: f*Q)fJJ--+Q)~s for any SEN such that ps restricted to Y­

E is the identity, where E is the exceptional locus off 

Proof Straightforward and left to the reader (cf. [RID. 

As we shall see later, canonical (resp. terminal) singularities are the 

ones which appear on the canonical model of a variety of f.g. general 

type (resp. a minimal model of a variety). Thus it is quite natural for us 

to define the logarithmic version of canonical (resp. terminal) singularities 

as follows, when we want to consider the log-canonical Crespo log-minimal) 

model of an open variety with a boundary as explained in Introduction. 

Definition 0-2-9. Let X be a nonsingular variety of dim X = d. A 

reduced effective divisor D E Div(X) is said to have only simple normal 

crossings (resp. normal crossings) if for each closed point p of X, a local 

defining equationf of D at p can be written as f =Zj' . 'Zjp in @x,p (resp. 

@y,p), where {ZI' ... , Zjp} is a part of a regular system of parameters. 
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Definition 0-2-10. (1) Let X be a normal variety of dimension d, 
and .d e Zd_lX)®Q an effective Q-divisor on X. Then the pair (X,.d) is 

said to have log-terminal (resp. log-canonical) singularities if the following 

conditions are satisfied: 

(i) Kx+.d e Div(X)®Q. 

(ii) [.d]=0 (resp. (ii') r.dl is' a reduced divisor, i.e., a sum of mutu­

ally distinct prime divisors with all the coefficients being one). 

(iii) (resp. (iii'» There exists a resolution of singularities I: Y ~X 

such that the union of the exceptionallocus and I-I (supp .d) is a divisor 

with only normal crossings, and that 

with the condition that a,> -1 (resp. aj> -1) whenever F, is exceptional 

forf 
(2) Let Xbe a normal variety of dimension d, and let .d e Zd_I(X) 

®Q be an effective Q-divisor on X. Then the pair (X, .d) is said to have 

weak log-terminal singularities if the conditions (i), (ii'), (iii) with the 

following condition (iv) are satisfied: 

(iv) There is anf-ample divisor A e Div(Y) whose support coincides 

with that of the exceptional locus off 

Remark 0-2-11. (1) In the condition (iv) of the definition above, it 

follows that - A is effective. 

(2) We remark that from the view point of the classification of 

open varieties with boundaries the weak log-terminal singularities should 

have been called log-terminal. But the word "log-terminal" is commonly 

used in the current literature in the sense above and we simply wanted to 

avoid any confusion (cf. [Ka7]). 

(3) In the formula (*), a j is called the log-discrepancy at Fj' 

(4) The condition (iv) is necessary to guarantee the rationality of 

weak log-terminal singularities (cf. § 1.3). For example, let C be a non­

singular projective elliptic curve, let L be a negative line bundle on C, 

and let Y be the total space of the vector bundle L(JJL. We embed C in 

Y as a zero section, and let FI and F2 be two hypersurfaces of Y which 

are images of injections L~L(JJL given by x~(x, 0) and x~(O, x), 

respectively. Let X be a normal 3-fold obtained by contracting C from 

Y, and let .d be the strict transform of Fl + F2 on X. Then the pair (X, .d) 

and the resolution Y ~X satisfies conditions (i), (ii') and (iii), but not (iv). 

In fact, X is not a Cohen-Macauley variety. 

Lemma 0-2-12. If the pair (X,.d) has only log-terminal or log­

canonical singularities, then the lormula (*) in the condition (iii) or (iii') 
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above is satisfied with aj> -lor aJ> -1, respectively, for an arbitrary 

desingularitzation. 

Proof We need the following lemma. 

Lemma 0-2-13 (Logarithmic Ramification Formula [I3, Theorem 
11.5]). Let V and W be nonsingular varieties of dimension d, and let D and 

B be divisors on V and W, respectively, with B having only normal crossings. 

Let f: V ~ W be a generically surjective morphism such that f-l(B)CD. 

Then there is a natural injective homomorphism f* .Q~(1og B)~.Qfr (log D) 

for all p-:z.O. Irz particular, 

Kv+D=f*(Kw+B)+E 

for some effective divisor E. 

We go back to the proof of Lemma 0-2-12. Now suppose that 

f': Y'~X is another desingularization. Since we can take a third 
desingularization Z which dominates both Y and Y' as in the diagram 
(cf. [Hi2]), 

~Y~ 
Z X 
~y,~ 

it is sufficient to see that the same condition holds for fog: Z ~ X in 

order to see that the formula (*) in the condition (iii) with aj> -lor 
aj-:z. -1 holds for f': Y'~X. By Lemma 0-2-13, there exists some 

effective divisor E on Z such that 

which implies 

We calculate the log-discrepancIes by using the right hand side of the 

formula above. For any prime component G of g*(I:aJ<oFj), the coeffi­

cient of it in (g*(I:aJ<oFj»red is 1 by definition and >0 in g*(I:aJ<o(1+ 

aj)Fj ) since aJ> -1. This completes the proof in the case of log-canonical 
singularities. To see the lemma in the case of log-terminal singularities, 

take an exceptional divisor H for fog. If g(H)~suPP(I:aJ<oFj), the 
log-discrepancy at H is clearly nonnegative. If g(H)Csupp(I:al<oFj ), 
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since the assumption [.1] =0 implies that a j > -1 whenever aj<O, the 

log-discrepancy at H is greater than -1. q.e.d. 

Remark 0-2-14. The formula (*) in the condition (iii) does depend 

on the choice of resolution in the case of weak log-terminal singularities. 

For example, take a nodal curve C on a nonsingular surface Y. Then 

X = Y, .1 = C and J = identity actually satisfy the conditions (i), (ii'), (iii) 

and (iv) of Definition 0-2-10, while if we take J=the blow up of Yat the 

node of C, then the exceptional divisor has the log-discrepancy - 1. 

Lemma 0-2-15. When (X, .1) has log-terminal singularities, Jor an 

arbitrary effective Q-Cartier divisor .1' e Div(X)®Q, the pair (X, .1 +eL1') 
has also log-terminal singularities Jor any sufficiently small positive rational 

number e. 

Proof Trivial. 

Proposition 0-2-16. Let X be a Q-Gorenstein normal variety with a 

canonical cover !': V~X. Then (X,O) has only log-terminal singularities, 

if and only if V has rational Gorenstein singularities. 

Proof See [RI, Proposition 1.7] and [Ka7, Proposition 1.7]. 

Remark 0-2-17. (1) One of the direct consequences that follow 

from the proposition above is the fact that all quotient singularities are 

log-terminal singularities. Furthermore, we can construct all the log­

terminal singularities X with .1=0 by taking the quotients of rational 

Gorenstein singularities (cf. [Ka7]). 

(2) As a corollary to Proposition 0-2-16, we obtain the result that 

all the log-terminal singularities with .1 =0 are rational singularities. In 

Section 1-3, we shall show that weak log-terminal singularities are always 

rational singularities, while this is not necessarily the case with log-canon­

ical singularities (cf. [Kal], [TsI], [Is]). 

(3) When k=C, the followng conditions for a germ (X,p) of a 

normal complex analytic surface singularity are equivalent: 

(i) (X, p) is a quotient singularity, 

(ii) (X,p) is a log-terminal singularity with .1=0 (cf. [TsI], [Ka7]). 

§ 0-3. Canonical varieties 

Let X be a normal complete variety of dimension d. The complete 

linear system associated with D e Div(X) is defined by 

IDI:={D+div(cp); cp e Rat(XY with D+div(cp»O}. 
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BsIDI:=nD'EIDI suppeD'). 
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We have the rational map lP1D1:=X .. :-+pN which is a morphism on X­

BslDI that takes a closed point x E X-BsIDI to the point (CPo(x): CPt(x): 

•.. : cpJi(x» on pN, where CPo, CPl> ••• , CPN form a basis of HO(X, (!)xCD». 

The image lP1D1(X) is defined to be the closure of lPIDI(X-BsIDi) in PN. 

Definition 0-3-1 (cf. [11]). The Iitaka dimension K(X, D) of the pair 

(X, D) is defined as follows: 

K(X, D).- '. 
._{maXmEN{dimlPlmDI(X)} iflmDl=I=ifJ for some mEN 

- 00 otherwIse. 

We define the graded algebra associated to D to be 

R(X, D): = EBm;;:o HO(X, (!) x(mD». 

We remark that K(X, D) is characterized by the property that there 

exist a, {3>O and mo E N such that the inequalities 

am'<hO(X, (!)xCmmoD»<{3m' 

hold for any sufficiently large mEN (see [11], [13], [U]). We have also 

K(X, D)= . {
trans. degk R(X, D)-l if R(X, D)=I=k, 

- 00 otherWIse. 

Definition 0-3-2. DE Div(X) is called big if K(X, D)=dimX. Let 

'it: x~s be a proper morphism onto a variety S. Then DE Div(X) is 

called 'it-big if Dv is big on Xv' 1) being the generic point of S. 

The following lemma gives a characterization of big divisors. 

Lemma 0-3-3 (Kodaira's Lemma). Let X be a normal complete 

variety of dimension d, and DE Div(X) with K(X, D)=d. Then for an 

arbitrary divisor ME Div(X), we have InD-MI=I=ifJfor n}>O. 

Proof By Hironaka [Hi2], there is a birational morphism p: X'~X 

from a nonsingular projective variety X'. Considering the pull-backs 

p* D and p* M, we may assume that X is projective. Then it is sufficient 

to show that for a very ample divisor A E Div(X) there exists lEN such 

that IlD-AI=I=ifJ. Since we have the exact sequence 

O~(!)x(mmoD-A)~(!)x(mmoD)~(!)y(mmoD)~O, 
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where Y is a general member of IAI, and since there exist positive real 
numbers a, f3 and a positive integer mo (which we can actually take to be 
equal to 1 as a result of this lemma) such that hO(X, (I) x(mmoD» ?:.amtl and 
that hO(Y, (l}y(mmoD»<f3m'H for sufficiently large meN, we obtain the 

result hO(X, (l}x(lD-A»=I=cp for l=mmo where m is sufficiently large. q.e.d. 

Corollary 0-3-4. Let X be a normal variety with a proper morphism 

1': X ~s onto a variety S. If D e Div(X) is 1'-big, then for an arbitrary 

divisor M e Div(X), we have 1'*(I}x(nD-M)=I=Ofor n"O. 

From the lemma above, Kleiman's criterion for ampleness, and from 

Hironaka's resolution theorem, we can easily deduce the facts below. 

Corollary 0-3-5 (cf. [Ka4]). Let X be a nonsingular projective variety 

and let De Div(X)®Q be nef and big. Then there exists an effective Q­

divisor Do such that D-oDo is ample for all 0 e Q with 0<0<1. 

Corollary 0-3-6. Let 1': X ~S be a proper surj~ctive morphism of 

normal varieties, and let D be a 1'-nef and 1'-big Q-Cartier divisor on X. 

Then there exists a proper birational morphism p: Y ~X from a non­

singular variety Y projective over S and a family of divisors {Fj} on Y such 

that the union of the support of p* D and U F j is a divisor with only simple 

normal crossings and such that p* D - L:J 0 jFj is 1''' p-ample for some OJ e Q 

with O<Oj~ 1. 

Definition 0-3-7 (cf. [11]). Let X be a variety. Then we define the 

Kodaira dimension K(X) of X to be .t(X):=.t(X', Kx') where X, is a 

nonsingular complete variety birational to X, whose existence is guaranteed 
by the resolution theorem of Hironaka [Hi2]. The canonical ring of X is 

defined to be R(X):=R(X'):=EBm;;;oHO(X', (l}x,(mKx'». Then 

K(X) = . {
trans. degkR(X)-l if R(X)=I=k 

- 00 otherwIse. 

Remark 0-3-8. For any two nonsingular complete varieties X' and 

X" which are birational to each other, the canonical rings R(X') and 
R(X") are isomorphic, and therefore the Kodaira dimension of an arbi­

trary variety is well-defined and is a birational invariant. 

Definition 0-3-9. A variety X is said to be of general type if .t(X) = 

dim X, i.e., if the canonical divisor Kx' is big for some nonsingular com­
plete birational model X' of X. 

In the rest of this section, we shall give a characterization of a can­

onical variety, which justifies our naming of canonical singularities, by 
extending an argument in [Rl]. 
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Definition 0-3-10 (cf. [RID. A variety X (resp. a pair (X, ,1» with a 

projective morphism ,,: X -+S is called a canonical variety (resp. a log­

canonical variety) over S if X has only canonical singularities (resp. if 

(X, ,1) has only long-canonical singularities) and if Kx (resp. Kx + ,1) is 

,,-ample. 

Definition 0-3-11 (cf. [RID. Let X be a nonsingular variety with a 

proper morphism,,: X -+S onto a variety S, and let ,1 be an effective Q­
divisor on X whose support has only simple normal crossings and such 

that r,1l is a reduced divisor. X (resp. (X, ,1» is said to be of fg. general 

type (resp. of fg. log-general type) over S if Kx (resp. Kx +,1) is ,,-big, 

and if 

R(X/S):=EBm~o ,,*(!}xCmKx) 

(resp. R(X/S, Kx+,1):=EBm~o "*(!}x([m(Kx +,1»))) 

is finitely generated as an (!) s-algebra. In this case, we can define the 

canonical model Xcan of X (resp. the log-canonical model (X, ,1)can of (X, ,1» 

to be Proj R(X/ S) (resp. (Proj R(X/ S, Kx + ,1), ,1') where ,1' is the strict 

transform of ,1). 

Theorem 0-3-12 (cf. [RI, Proposition 1.2D. X (resp. (X, ,1» is a 

canonical variety (resp. a log-canonical variety) over S if and only if there 

exists a nonsingular complete variety X' of fg. general type (resp. a pair 

(X', ,1') of fg. log-general type) over S such that X =X~an (resp. (X, ,1) = 
(X', ,1')can)' 

Proof We shall give a proof of the theorem in the logarithmic 

case. First we prove the "if" part of the theorem. Let (X', ,1') with 

,,': X, -+S be a pair of f.g. log-general type with the relative log-canonical 

ring R(X' / S, Kx ' + ,1'» = EBm~o R m, which is a finitely generated (!) s-algebra 

by definition. Then there exists a positive integer r such that r(Kx' +,1') 

E Div(X') and that R(r): = EBm~o Rmr is generated by RiTl =Rr as an (!) s­

algebra, and thus X: =Proj R(X'/S, K x' +,1') =Proj R(r) is projectively 

normal. Resolving the singularities and eliminating the indeterminacy of 

the rational map associated to the natural homomorphism 

we obtain a proper birational morphismf: Y -+X' such that 

where K y =f*(Kx'+,1')+ L: ajFj , G is the ,,' oj-fixed part of r(f*(Kx'+ 
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LI')+ L:"J<:o ajFj) and D is re' of-generated. Note here that supp (L:",<;;o ajFj ) 

is exceptional for f Then the morphsim 

associated to the surjection (re' 0 f)*(re' 0 f)*tPy(D)~tPy(D) coincides 
with the natural morphism Y---+X and (!}y(D) = ,,*tPx(1). Since RCT) is 

generated by Rr)=re~tPx,(r(Kx,+LI'» and since (!}y(D) is the pull back of a 

re-very-ample sheaf (!) x(l), re: X ---+S being the structure morphism, it 

follows that codim supp ,,(G»2. Since" is a proper birational mor­

phism between normal varieties, there exists a closed sub scheme Xl of X 

with codim XI>2 such that ,,: Y_,,-I(XI)~X-XI' Setting Xo:= 

,,(G) U Xl> we obtain 

,,*tP xCI)!y -.r--1CXo) = tPy(D)!y -.r--1CXo) 

=tPy(r(Ky+ L: (-aj)Fj»!y-.r--1CXo)· 
",<0 

Hence tPx(I)=(tPx(r(Kx+LI»)'\ where LI="*(L:,,,<o(-aj)Fj), since 
codim Xo>2. Therefore (X, LI) has only log-canonical singularities and 

Kx+LI is re-ample, i.e., (X, LI) is a log-canonical variety over S. 

To see the "only if" part of the theorem, let f: Y ---+X be a de­

singularization of X as in the definition of log-canonical singularities. 

Then R( Y/ S, Ky + L:aJ<o ( - a j)Fj) ~ R(X/ S, Kx + LI), the latter being 
finitely generated as an (!}s-algebra since Kx+LI is re-ample. It is clear 
that 

X~Proj R(X/S, Kx+LI)~Proj R(Y/S, Ky+ L: (-aj)Fj) 
",<0 

q.e.d. 

§ 0-4. Minimal Model Conjecture 

Definition 0-4-1. Let X be a normal variety with only canonical 

singularities and let re: X---+S be a proper morphism onto a variety S. Then 

X is called a minimal variety over S if Kx is re-nef. Moreover, if X has 

only terminal (resp. Q-factorial terminal) singularities, then X is called a 

terminal minimal (strictly minimal) variety. A minimal variety, birational 

to a given variety re': X'---+S is called a minimal model of re. A terminal 

minimal model and a strictly minimal model are defined similarly. 

Remark 0-4-2. If X is a strictly minimal variety over S, then X is 

maximal in the category of minimal varieties over S in the following 

sense: if another minimal variety X, over S has a proper birational 

morphismf: X'---+X over S, thenfmust be an isomorphism. 
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Definition 0-4-3. Let X be a normal variety of dimension d with 

.4 E Za_lX)®Q such that the pair (X,.4) has only (weak) log-terminal 

singularities, and let n-: X ~S be a proper morphism onto a variety S. 

Then (X, .4) is said to be a (weak) log-minimal variety over S if Kx +.4 is 

n--nef. A (weak) log-minimal variety (X,.4) birational to a given pair 

(X', .4') (in the sense that X is birational to X' over S and that .4 is the 

strict transform of .4'), is called a (weak) log-minimal model of (X', .4') 

if no divisors on X corresponds to lower dimensional subvarieties of X'. 

Strictly (weak) log-minimal varieties and models are defined as in Definition 

0-4-1. 

Our main problem is to prove the following conjectures. 

Conjecture 0-4-4 (Minimal Model Conjecture). Let n-: X~S be a 

proper surjective morphism of algebraic varieties. Assume that the irreducible 

components of the geometric generic fibre X~ are not uniruled. (For the 

definition of uniruled varieties, see Chapter 5). Then there is a minimal 

modeln-': X'~S of n-. 

Conjecture 0-4-5. (Log-Minimal Model Conjecture). Let n-: X~S 

be a proper surjective morphism from a nonsingular variety X of dimension 

d onto a variety S. Let.4 E Za_I{X)®Q be an effective Q-divisor such that 

[.41 is a reduced divisor with only normal crossings. Assume that .t(X~, Kx~ 

+.4~»0 for the generic fiber X~. Then there exists a weak log-minimal 

model (X', .4') of the pair (X, .4) over S. 

Chapter 1. Vanishing Theorems 

§ 1-1. Covering Lemma 

Theorem 1-1-1 (Covering Lemma, cf. [Ka3, Theorem 17]). Let Xbe 

a nonsingular projective variety of dimension d and let DE Za_I{X)®Q be 

a Q-divisor such that the fractional part (D) has support with only simple 

normal crossings. Then there exists a finite Galois morphism n-: Y ~X 

from a nonsingular variety T with Galois group G=Ga1{Rat(Y)fRat(X) 

which satisfies the following conditions: 

(i) ,,*D E Za_I{Y)' i.e., ,,*D becomes integral, 

(ii) liixC[D]) ::={" *liiy("* D»G, liixCKx + rDl)::=(" *liiy{Ky+"* D»G, 

where G acts naturally on ,,*liiy{,,*D) and on ,,*liiy{Ky+1:*D). Via these 

isomorphisms liix([D]) (resp. liix{Kx+rDl» turns out to be a direct summand 

of,,*liiy{,,*D) (resp. T*liiy{Ky+T*D». 

Proof Take a positive integer m such that m(D) E Za_l{X) and let 

(D) = L:tEI atrt be the decomposition of (D) into mutually distinct 
prime components. Now take a very ample divisor M on X such that 
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mM-Tt becomes also very ample for all i e I. Then general members 

H1t) e \mM-Tt \ with ie 1 and 1 <k<dmake supp(D) Usupp(Z:;t,kH~t» 
a divisor with only simple normal crossings. Let X = UaEA Ua be an affine 
open cover of X with the transition functions {aaP; aap e HO(Ua n Up, <Pl)} 

of M and local sections {9'~~; 9'1c~ e HO(Ua, £Ox)} such that (Hlci)+T-t)\ua= 

div(9'Ic~) on Ua and that 9'1c~=ar::p·9'W. Then we have only to take the 
normalization of X in Rat(X)[(9'Ic~)I/"']t,k for some a e A as Y. (Note that 
Rat(X)[(9'Ic~)I/"'kk=Rat(X)[(9'W)llmkk for any a, fi e A.) Since Rat(Y)/ 
Rat(X) is a Kummer extension, 1:': Y -+X is a finite Galois morphism. 

We shall show that Y is nonsingular. Take any closed point x e Ua • 

Set I",:={i e I; x e T t }. Then for each i e 13: there exists kt with I ~k-t~d 
such that x ~ HIc? Now the set 

R",: = {9'1~~; i e I",} U {9'k~; i ~ I"" x e Hkil} U {9'I.~/9'I.?a; i e I"" x e Hlci)} 

forms a part of a regular system of parameters of <Px ,,,,. Set 

T",: ={9'k~/9'l.iia; i e I::;, x ~ Hkil} U {9'Ic~; i ~ I", x ~ HI.~}. 

Any element veT", is a unit in <P x,"'. Therefore it is sufficient to show 
the following lemma in order to see that Y is nonsingular, i.e., (9y,1/ is a 

regular local ring for any y with 1:'(y)=x, and to see that 1:*Ti= 

m«1:'*Tt)red) for all i e I. 

Lemma 1-1-2. Let R be a regular local k-algebra of dimension d with 

the maximal ideal M such that R/M=k. Let {ZI' zz, ... , za} be a regular 

system of parameters and Ul> uz, ... , u. be units of R. Let m be a positive 

integer. Fix e e N with lse<d. Then for any maximal ideal MI of 

RI : = R[~/"', ~/"', ... , Z'!/"', u~/m, ... , U!/"'], the localization of RI by MI> 

denoted by RI,Ml' is a regular local ring with a regular system of parameters 

{~/"', , ... , Z!/"', Ze+ b ••• , za}. 

Proof. Since MI is generated by Z~/"', Z~/"', ... , Z!/"', Ze+I' ... , Za, 
ui/'''-al> ... , u!lm_ a .. where at is an element of k such that at=u~/'" mod 
M ·t· ffi· t t h II'" ( II'" II'" )R I' I IS su clen 0 s ow Ut -at e Zl , ••• , Z. ,Ze+I'···' Za I,Ml. 
Noting that char k=O, we have ut-a;'=(uY"'-at)·Vt for a unit Vi of 
RI,Ml' which implies the required statement. q.e.d. 

Now (i) is obvious from the argument above. We go on to prove 
(ii). Noting that 1:'*T1.=m«1:'*Tt)roo), for any nonempty Zariski open 
subset U of X we have 

T(U, (1:'*(9y(1:'*D»G) = {9' e Rat(Y); (div(9')+1:'*D)\'-l(U)~O}G 

={v e Rat(X); (div(v)+[D])\u~O} 

=T(U, (9x([D])). 
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Thus @x([D])~(.*@y(.*D»G. Similarly, since 

Ky =.* Kx + (m-I)(L; (.* ri)red + L; (.* Hii)red), 

we have 

r(u, (.*@y(Ky+.*D))G)={SO E Rat(Y); (Ky+.*D+div(SO))lr- 1 (U)::2:0}G 

={+ E Rat(X); (Kx +rDl+div(SO»lu::2:0} 

=r(U, @x(Kx+rDl». 

Thus @x(Kx+rnl)~(.*@y(Ky+.*D))G. Since char k=O, we obtain the 
last statement. q.e.d. 

One of the easy but important applications of the Covering Lemma 

is a generalization of Kodaira's vanishing theorem which we shall discuss 

in the next section. 

§ 1-2. Vanishing theorem of Kawamata and Viehweg 

First we recall the famous vanishing theorem of Kodaira. 

Theorem 1-2-1 (cf. [Kodl]). Let X be a compact complex manifold 

with a positive line bundle !E. Then Hi(X, !E0wx)=Ofor i>O, where (Ox 

is the canonical bundle of X. 

By the Lefschetz principle, Kodaira's vanishing theorem holds for 

any nonsingular projective variety and an ample line bundle on it over an 

arbitrary field of characteristic zero. Once we have Theorem 1-2-1 in 

. hand, the following Corollary 1-2-2 easily follows from the Covering 

Lemma. 

Corollary 1-2-2 (cf. [Ka2]). Let X be a nonsingular projective variety 

and DE Div(X)0Q. Assume the following conditions: 

(i) D is ample, 

(ii) <D) has support with only simple normal crossings. 

Then Hi(X, @x(Kx+rDl»=Ofor i>O. 

Proof Take a finite Galois morphism .: Y -+ X as in the Covering 

Lemma. Since.* D is ample, the vanishing theorem of Kodaira gives 

Hi(Y, @y(Ky+.*D»=O for i>O. Therefore by Theorem 1-1-1 (ii) we 

obtain 

Hi(X, @xCKx+rDl»~Hi(X, (.*@y(Ky+.*D»G) 

~Hi(X, .*@y(Ky+.*D»G=O for i>O. q.e.d. 
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Now we state the main theorem of this section. 

Theorem 1-2-3 (Vanishing theorem of Kawamata and Viehweg, cf. 

[Ka4], [V]). Let X be a nonsingular variety and let ,,: X -+S be a proper 

morphism onto a variety S. Assume that a Q-divisor D E Div(X)®Q 

satisfies the following conditions: 

(i) D is ,,-nef and ,,-big. 

(ii) <D) has support with only normal crossings (not necessarily 

simple). 

Then Ri,,*(!Jx(Kx+fDl)=Ofor i>O. 

Proof First we prove the theorem under the conditions: 

(i') D is ,,-ample. 

(ii') <D) has support with only simple normal crossings. 

Since the statement is local, we may assume that S is affine. For some 

positive integer m with mD E Div(X), the morphism 1/r associated to the 

surjection "*,, *(!J x(mD) -+ (!J xCmD) gives a closed immersion 1/r: X-+ 

P(,,*(!Jx(mD)) such that mD=1/r*(!J(I). Then we can take suitable com­

pletions ,,': X' -+S' where X' and Sf are both projective (taking some 

desingularization in order to make X' nonsingular) with ,,'Ix=" and a 

,,-ample Q-divisor D' with D'lx=D. Thus we may further assume that 

both X and S are projective and that D is ample. 

Take an ample Cartier divisor H on S and a positive integer m. 
Consider the following spectral sequence 

E~,i=Hj(S, Rirr*(!Jx(Kx + fDl+mrr*H)) 

===}Hj+i(X, (!Jx(Kx + fDl + mrr*H)). 

Then by Serre's vanishing theorem E~,i=O for j>O and for any suffi­

ciently large integer m»O, which implies Eg,i=E~. Thus 

HO(S, Rirr*(!Jx(Kx+fDl+mrr*H)) 

=Hi(X, (!Jx(Kx + fDl +mrr*H)) = ° for i>O, 

by Corollary 1-2-2. Since H is ample on Sand m»O, 

Rirr*(!Jx(Kx + fDl+ mrr* H) ~Rirr*(!Jx(Kx+ fDl)®@s(mH) 

is generated by global sections. Therefore we finally obtain the result 

Rirr*(!Jx(Kx + fDl) =0 for i>O. 

Now we prove the theorem under the conditions (i) and (ii). By 

Corollary 0-3-6, there exists a proper birational morphism f: Y -+X from 

another nonsingular Y projective over S and some family of divisors {Fa} 

on Y such that the union of <f* D) and U Fa is a divisor with only simple 
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normal crossings and thatf*D- I: oaFa is n- of-ample for some oa e Q with 

0< 0 a ~ 1. Then by the first part of the proof applied to J, we have 

Since the Logarithmic Ramification Formula implies f*(J}y(Ky + rf* Dl) = 

(J}x(Kx+rDl), we have, by the first part of the proof again, 

We note that there are some works such as [Ral], [Ra2] , [Mil]~ 

[Ka2], etc. preceding to the above theorem. We note also that the 

following theorem is its easy corollary. 

Corollary 1-2-4 (cf. [OR]). Let f: Y --+X be a proper, generically finite 

and generically surjective morphism from a nonsingular variety Y to a 

variety X. Then Rif*wy=O for i>O, where Wy is the canonical bundle of 

Y. 

Theorem 1-2-5. Let X be a normal variety of dimension d with £1 e 

Zd_l(X)®Q such that the pair (X, £1) has only weak log-terminal singulari­

ties, let n-: X --+S be a proper morphism onto a variety S, and let De 

(Div(X)®Q) n Zd_l(X) be a Q-Cartier integral Wei! divisor. Assume that 

D-(Kx +£1) is n--ample. Then 

for i>O. 

Proof We take a resolution of singularities f: Y --+X satisfying the 

following properties: 
(0) there exists a family of divisors {Fj} such that the union of 

supp( U F j ) andf-l(£1) has support with only normal crossings, 

(I) f*(D-(Kx +£1»+of-l(£1)-I:ojFj is n-of-ample for some 

rational numbers 0, OJ e Q with 0<o~min6j*ooj~1 and supp(I: ojFj) is 
exceptional for J, and 

(2) K y+of-l(£1)=f*(Kx +£1)+E where E is a Q-divisor with 

rEl>O andf*rEl=O. 
Thenf*(J}y(rf*D+El)=(J}x(D), and we have 

Rif*(J}y(rf*D+El) 

=R1*(J}y(Ky+rf*(D-(Kx +£1»+of-l(£1)- I: OjFjl) =0 

for i>O by Theorem 1-2-3. Therefore Theorem 1-2-3 again gives 
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0= Rt(n: of)*(!}y(Ky+rf*(D-(Kx+..::I»+of-I(J)-1: ojF}) 

= Rt(n: of)*(!}y(rf*D+El) 

for i>O. q.e.d. 

Remark 1-2-6. The assertion of Theorem 1-2-5 holds in case D­

(Kx +..::1) is n:-nef and n:-big if the pair (X, ..::I) has only log-terminal singu­

larities. 

The following theorem is deduced from the vanishing theorem of 

Tankeev [Ta] and Kollar [Ko13] by the same argument as above, and 

it turns out to be quite useful, e.g., when we discuss the invariance of 

plurigenera under deformation. 

Theorem 1-2-7 (cf. [K013]) and [Ta]). Let X be a normal variety of 

dimension d with ..::I E Zd_I(X)@Q such that the pair (X,..::I) has only log­

terminal singularities. Let n:: X ~S be a proper morphism onto a variety S. 

If D E (Div(X)@Q) n Zd_I(X) is a Q-Cartier integral Weil divisor such 

that D-(Kx+..::I) is n:-semi-ample, then Rtn:*(!}x(D) is a torsion free (!}s­

module for any i >0. 

A simplified proof of the vanishing theorem in [Ko13] (in a gener­

alized form) can be found in [Ar], [EV]or [Mwl]. See also [Sal: 

§ 1-3. Vanishing theorem of Elkik and Fujita 

In this section we shall prove a vanishing theorem due to Elkik [E] 

and Fujita [Ft4] in a slightly generalized form, using the Grothendieck 

duality theorem (cf. [Hal]). The rationality of weak log-terminal singu­

larities follows immediately from this theorem. 

Theorem 1-3-1. Let f: Y ~X be a proper birational morphism from a 

nonsingular variety Yonto a variety X with L, L E Div(Y). Assume that 

there exist Q-divisors D, 15 E Div(Y)@Qandan effective divisor E E Div(Y) 

such that the following conditions are satisfied: 

( i ) supp (D) and supp (15) are divisors with only simple normal cros-

sings, and [D]=[15]=o, 

(ii) both -L-D and -L-15 aref-nef, 

(iii) Ky ~L+L+E, and 

(iv) E is exceptionalfor f, i.e., codimYf(suppE)~2. 

Then R:f*(!)y(L)=Ofor q>O. 

Proof Since the assertion is local, we may assume that X is affine. 

Moreover, by taking generic hyperplane sections of X, we may also assume 

that Rq:=Rqf*(!)y(L) and 'Rq:=Rqf*(!}y(L) are supported at a point x E X, 
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if they ever have a nonempty support at all. Noting that (Ky-L)­

(Ky + 15) is J-nef (and also J-big because f is birational), we have by 

Theorem 1-2-3 

(1) 0= Rqf*(!)y(Ky + fCKy-L)-(Ky + 15)') 

=Rqf*(!)y(Ky-L) by the condition [15]=0 

= Rqf*(!)y(L+E) for q>O. 

Lemma 1-3-2 (cf. [Ft4, Lemma 2.2]). Let f: Y --+ X be a proper bira­

tional morphism from a nonsingular variety Y onto a variety X, let L E 

Div(y), let DE Div(Y)0Q, and let E E Div(Y). Assume that the support 

of D is a divisor with only simple normal crossings, [D]=O, -L-D is 

f-nef, and that E is effective and exceptional for f Then 

(2) 

Proof For any reduced irreducible component E j of E, we have the 

exact sequence 

where E'=E-Ej. Thus, by induction on the number of irreducible 

components of E, we have only to prove that there exists a reduced 

irreducible component Eo of E such that f*(!)Eo(L+E)=O. We shall 

prove this by induction on d=dim X. 

First we deal with the case d=2. Write E-D=A-B, where A 

and B are effective Q-divisors without common components. Since [D] 

=0, we have A =1=0. Since supp (A)csupp (E), A is exceptional for f 
Hence by the Hodge index theorem, we have (A.Eo)<O for some com­

ponent Eo of A. Then since -L-D isJ-nef, we have 

which impliesf*(!)Eo(L+E) =0. 
Now suppose d>3. We shall derive a contradiction assuming that 

f*(!)Ej(L+E) =1=0 for any irreducible component E j of E. Take a nonzero 

element Sj of HO(Ej, (!)E/L+E)). In case dimf(Ej)=O, we take a generic 

hyperplane section Y' of Y such that Ejn Y'ttdiv(sJ In case dimf(E) 

>0, we take a generic hyperplane section X' of X, and set Y' = f-l(X'). 

Then in either case, we have f*(!)Ejn y,(L+E) =1=0, which is a contradiction 

by induction hypothesis. q.e.d. 

Applying (1) and (2) to the long exact sequence derived from the 

following exact sequence 
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we obtain the isomorphisms below: 

(3) 

(4) 

f*(!)y(L)~f*(!)y(L+E) 

Rqf*(!)E(L+E)~Rq+1f*(!)y(L) for q~O. 

Lemma 1-3-3. 

Ri==. {HOm(R d - H , J) for O<i5:.d-2 

- 0 for i=d-l, d, 

where J denotes an injective hull of k as an (!) x,:r;-module. 

Proof By the Grothendieck duality theorem ([Hal, Chap. VII, 

Theorem 3.3]), f!)x and f!)y being the dualizing functors, we have 

Rf*(!)y(L)~Rf*f!)y«(!)y(L+E))[ -d] 

~ f!) x(R!*(!)y(L + E))[ - d] 

~.@x(.#)[ -d] (by (1) with L replaced by L), 

where'# denotesf*(!)y(L+E). Thus, 

(5) 

On the other hand, since 

we have by (1) 

Rf*(!)y(L+E)~Rf*f!)y«(!)y(L))[ -d] 

~ f!) x(Rf*(!)y(L))[ - d], 

Hi(R Hom (Rf*(!)y(L), w:r))=O for i =1= -d. 

Next we consider the following spectral sequence 

Since R-qf*(!)y(L) is a skyscraper sheaf for q<O, we have Ef,q=O for 

q<O andp=l=O. It is clearly zero for q>O. Thus we obtain 

(6) 

By (5), (6) and by the local duality ([Hal, Chap. V, Theorem 6.2]), we 

have 



Minimal Model Problem 

Ri=Ext-cZ+£(ff, w~)=ExtO(RcZ-H, w~) 

= {oHom(RcZ - i - 1
, I) for O<i<d-2 

for i=d-l, d. 

This proves Lemma 1-3-3. 

Lemma 1-3-4. 

Proof. Since w~=(9E(KE)[d-l]=(9E((Ky+E)IE)[d-l], we have 

RHom(Rf*(9E(L+E), w~)=p}x(Rf*(9E(L+E» 

=Rf*P}E((9E(L+E»=Rf*(9E(L+E)[d-l]. 

By taking the (-i)-th cohomology of both hand sides, we obtain 

Hom(RW,I)=R-i+cZ-lf*(9E(L+E) 
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=RcZ-i (by (4) with L replaced by L). q.e.d. 

Now suppose that R£=O, Then O=Hom (Ri; I)=Rd-ul by Lemma 

1-3-4, and O=Hom(Rd- i+1,l)=RH by Lemma 1-3-3. Therefore we 
know that Ri=O implies R£-z=O. Since Rd=Rd-l=O, this leads us to 

the result required in Theorem 1-3-1. q.e.d. 

Remark 1-3-5. It follows easily that Theorem 1-3-1 holds under the 

following conditions (i') and (ii') (instead of (i) and (ii»: 
(i') suppeD) and suppeD) are divisors with only normal crossings, 

[D]=O, D is effective and rD1 is a reduced divisor, 

(ii') -L-D isJ-nef and -L-D isJ-ample. 

Theorem 1-3-6. All weak log-terminal singularities are rational. 

Proof. Let X be a normal variety of dimension d with J e Zd_l(X) 

®Q such that the pair (X, J) has only weak log-terminal singularities. 
Then we can take a resolution of singularities f: Y -+X satisfying the 

following conditions: 
( i ) there exists a divisor L: F j with only normal crossings whose 

support is the union of the exceptional locus for f and f -l(SUpp J), 

(ii) Ky=f*(Kx+J)+ L: ajFj for a j e Q, with the condition that 
aj > -1 whenever F j is exceptional for j, and 

(iii) there exists an J-ample divisor A = L: b jFj for b j e Q where 
bj=O if F j is not exceptional for f. 
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J': = U; F j is exceptional for f} and 

J":={j; F j is not exceptional for f}. 

15:= L: (-ajFj)+E-E' -oA 
jEJ" 

for some sufficiently small positive rational number 0, 

l:=Ky-E, 

L:=O and D:=O 

satisfy the conditions (i') and (ii') of Remark 1-3-5 and (iii) and (iv) of 

Theorem 1-3-1. Therefore we have 

q.e.d. 

Chapter 2. Non-Vanishing Theorem 

An important application of the Vanishing Theorem of Kawamata 

and Viehweg is the following Non-Vanishing Theorem, which Shokurov 

[Sl] originally proved extending the technique developed by the first 

author to prove the finiteness of generators of a canonical ring in [Ka5]. 

The Non-Vanishing Theorem, with the Vanishing Theorem itself, leads us 

to the Base Point Free Theorem in Chapter 3. 

§ 2-1. The proof of the Non-Vanishing Theorem 

Theorem 2-1-1 (Non-Vanishing Theorem, [Sl]). Let X be a non­

singular complete variety with D E Div(X) and A E Div(X)0Q satisfying 

the following conditions: 

(i) Dis nef, 

(ii) pD+A-Kx is nef and big for some pEN, 

(iii) rA'zO and <A) has support with only normal crossings. 

Then HO(X, (!7x(mD+rA'»*Ofor any sufficiently large mEN. 

Proof By the same argument as in the proof of Theorem 1-2-3, we 

may assume that Xis projective and thatpD+A-Kx is ample. We shall 

prove the theorem by induction on d=dimX. 

Case: D~O. In this case for any m E Z, 
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hO(X, @x(mD+fAl))=X(@x(mD+rAl)) by Theorem 1-2-3 

=X(@x(fAl))=hO(X, @x(fAl))*O by the condition (iii). 

Thus we are done. 

Case: D~O. Our proof of this case is divided into 3 steps. 
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Step 1. Take an integer a E N with aA E Div(X). Then for some 

fixed q E N, we have 

Indeed, since pD+A-Kx is ample and since D~O, there exists a suffi­

ciently large q E N such that (qD+A-Kx)d>(d+l)d, and we fix such q 

once and for all. Then for any sufficiently large kEN, 

hO(X, @x(ak(qD+A-Kx))) 

=X(@x(ak(qD+A-Kx)) by Serre's vanishing theorem 

=ad(qD+A-Kx)dkdjd!+(lower terms in k) 

>ad(d+ l)dkdJd!. 

Step 2. Fix a closed point x of X with x ~ supp A. Then there 

exists a member ME lak(qD+A-Kx)1 such that the multiplicity of M at 

x is greater than or equal to ak(d+ 1). Indeed, considering the power 

series expansion of the local defining equation for M at x, we have the 

following number of conditions for Mto have multiplicity >ak(d+ 1) at x: 

~ {monomials of degree <ak(d+ 1) in d variables} 

= (ak(d+ 1~-I+d) 

=ad(d+ l)dkdjd!+(lower terms in k), 

which is less than hO(X, @x(ak(qD+A-Kx))) by Step 1. This guarantees 

the existence of such a member ME jak(qD+A-Kx)l. 

Step 3. There exists a compositef =h oj.: Y -+X of the blowing-up 

at x denoted by h and a proper birational morphism J. from a nonsingular 

variety Y with a family of divisors {Fj } with only simple normal crossings, 

containing the strict transform of the exceptional divisor of h as F l , which 

satisfies the following conditions: 

(1) Ky=f*Kx + L; ajF, for some nonnegative integers a" 

(2) f*(qD+A-Kx)-(d+l) L; ojF, is ample for some OJ E Q with 

O<oj~l, 

(3) f* A + L; a ,Fj = L; b ,F, for b j E Q with b, > - 1, the inequality 

holding because of the condition f Al:?:: 0 and of the Logarithmic Ramifica-
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tion Formula, and 

(4) f*M=L. rjF}. 

Then by Step 2, we have rl:;;:::ak(d+l) andb1=a1=d-l, since x ~ supp A. 

Therefore, defining 

we have 

By changing o/s slightly if necessary, we may assume that the minimum c 
is attained only at a unique indexj=O, which we are allowed to do since 
ampleness is an open condition as is clear from Kleiman's criterion for 

ampleness. 

Set A':= L.#o( -crj+bj-oj)Fj and B:=Fo. Then 

N:=mf*D+A'-B-Ky 

-a (m-q)f*D+(I-cak)f*(qD+A-Kx)-L. ojFj 

is ample for m:;;:::q, since ° < cak <df(d+ 1) and since we have the condi­
tion (2). Thus by the·Vanishing Theorem of Kawamata and Viehweg 

which implies that the homomorphism 

is surjective. By induction hypothesis, 

Therefore 

Note that 

Therefore 

HO(X, (9x(mD+fAl»:::;HO(Y, (9y(mf*D+ f*CA1+ L. ajFj » 

::::>HO(y, (9y(mf*D+rA'l»*O. q.e.d. 
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Chapter 3. Base Point Free Theorem 

We can find in [Ka5] and [Be2] the prototype of the Base Point Free 

Theorem, which was later generalized in [Ka6], [R4], [An], [Sl] and [K7]. 

In the first four papers, the Base Point Free Theorem was proved only in 

dimension <3, in the case where the Non-Vanishing Theorem follows 

immediately from the Riemann-Roch Theorem. Ando [An] extended this 

to the case of dimension 4 also by using the Riemann-Roch formula. 

Then Shokurov [S1] obtained the Base Point Free Theorem by proving 

the Non-Vanishing Theorem in dimension> 3. The theorem formulated 

below is in the relative form and thus more general than those predecessors. 

The first author was most influenced by [Bo] and [AI] among preceding 

works. 

§ 3-1. The proof of the Base Point Free Theorem 

Theorem 3-1-1 (Base Point Free Theorem, cf. [Ka5], [Be2], [Ka6] , 

[R4], [An], [Sl], [Ka7]). Let X be a normal variety oj dimension d with 

LI e Za_,(X)@Q such that the pair (X, LI) has only weak log-terminal singu­

larities, and let :r: X ~S be a projective morphism onto a variety S. If 
He Div(X) is :r-neJ and aH-(Kx+ LI) is :r-ampleJor some a e N, then mH 

is :r-generatedJor m~O, i.e., there exists a positive integer mo e N such that 

Jor any mG;.mo the natural homomorphism :r*:r*@x(mH)~@x(mH) is sur­

jective. 

Proof Since (X, LI) has only weak log-terminal singularities, there 

exists a proper birational morphism g: X I ~ X from a nonsingular variety 

X' such that 

g*(aH-(Kx+LI))+cg-'(LI)- L: cjEj 

is :rog-ample for some c, Cj e Q with O<e~min'j*oej~:I, where {Ej } is a 

family of divisors with only normal crossings and supp (L: cjEj) is excep­

tional for g, and that 

Kx,+cg-'(LI)=g*(Kx+LI)+ L: cjEj for c j E Q with c j>-1. 

Let C:= L: (cj-cj)Ej. Then 1) being the generic point of S, it follows 

that X~, g* H~ and C~ satisfy the conditions (i) (ii) and (iii) of the Non­

Vanishing Theorem. Therefore 

O-=l=HO(X~, @x~(mg*H~+rC~l))=((7r 0 g)*@x,(mg*H+rCl))~ 

for m~O. In particular, 

O-=l=(7r 0 g)*@x,(mg* H+rCl)~7r*@xCmH), 
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since rCl is exceptional for g. 

Now fix a prime number p. We claim that pnH is 1t'-generated for 

n~O. Take a sufficiently large no e N so that ",*(f)x(pnoH) =1=0, as is 
guaranteed in the previous argument. If the natural homomorphism 
",*",*(f)x(pnoH)-,,"(f)x(pnoH) is surjective, we have nothing more to prove. 

Thus we assume the contrary. 
First, by the definition of weak log-terminal singularities, we can 

take a desingularization it: YI-,,"X with a family of divisors {G(} having 
only normal crossings which satisfies the following conditions: 

(11) f't(aH-(Kx+L1»+ofil(L1)-L.OuG( is 1t' oit-ample for some 

0, Ou e Q with 0<0 ~min61i' .. ool! ~ 1 and supp (L. OUG() is exceptional for 
it, and 

(21) K y1+ofil(L1)=ft(Kx +L1)+ L. biG( for bi e Q with b(>-1. 

Secondly, by taking a succession of blowing-ups with nonsingular 

centers, we can find a proper birational morphismh: Y-""YI with a family 
of divisors {Fj } with only simple normal crossings which satisfies the 
following conditions: 

(1) ft(ft(aH-(Kx + L1» + ofil(L1)- L. oUG()-O'A2 

=f*(aH-(Kx +L1»+oftfil(L1)- L. ojFj 

is ",oj-ample for ankexceptional divisor A2 e Div(Y)®Q with O<o'~o, 

where f: = it ° h, 
(2) K y+oftfil(L1)=f*(Kx +L1)+ L. ajFj for a j e Q with aj> -1, and 

(3) (1t'of)*(1t'of)*{!}y(f*pnoH)~{!}y(f*pnoH- L. rjFj)C{!}y(f*pnOH) 

for some nonnegative integers r j' where L. r jFj is the 1t' oj-fixed part of 
f*pnoH. 

Since 0<0' ~0~min61t'PooU~ 1, the Logarithmic Ramification For­
mula implies that a j + l-o j >O for allj. Set 

c:=minj(aj+ l-oj)/rj. 

By changing o/s slightly if necessary, we may assume that the minimum c 
is attained only at a unique indexj=O. Setting 

the Q-divisor 

N:= pn'f*H+A-B-Ky 

-(2 c(f*pnoH- L. rjFj ) + f*«pn' -cpn·)H-(Kx +L1» 

+oftfil(L1)- L. ojFj 
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is tr of-ample for n' e N with pn' ~ cpno + a. Since 

by Theorem 1-2-3, the homomorphism 

is surjective. By the Non-Vanishing Theorem again, 

(tro/)*mB(pn'/*H+rA'IB)=I=O for n'~O. 

Noting that (trof)*my(pn'/*H+rA')=tr*mx(pn'H), we come to the con­

clusion that 

Therefore 

supp Coker(tr*rr*m x(pn' H)~eJ x(pn' H» 

~supp Coker (rr*rr*mx(pnoH)~eJx(pnoH». 

By noetherian induction, 

which is the claim we wanted. 

q being another prime number, q'H is also rr-generated for I~O. 

Take positive integers II> n1 eN such that pn'H and qt'H are tr-generated. 

Then for any sufficiently large mEN, there exist nonnegative integers a 

and b such that m=apn'+bq", which implies that mHis rr-generated. 

q.e.d. 

Remark 3-1-2. (1) The above proof shows that the theorem holds 

also under the following assumptions: (X, L1) has only log-terminal singu­

larities, rr: X -+S is a proper surjective morphism, H is rr-nef, and aH­

(Kx +L1) is rr-nef and rr-big. _ Moreover in this case, X need not be an 

algebraic variety over S, but we have qnly to assume tr: X -+S to be a 

Moishezon morphism from a complex analytic variety onto an algebraic 

variety, i.e., tr is bimeromorphically equivalent to a projective morphism. 

(2) If [L1]=I=O, there exists a counterexample due to Zariski (cf. [Z] 
or [Mkl]) in which the assertion of the theorem above fails to hold even 

though rr: X-+S is projective and aH-(Kx +L1) is rr-nef and rr-big (but 

not tr-ample): Take a nonsingular elliptic curve C and a line L on P~. 

Then fixing a positive integer h, choose n= ((hL+ C). C) distinct points PI> 

P2' •• " Pn such that for any meN, 
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Let S' be a surface obtained by blowing up PI' P2' ... , Pn. Let C' and 

r' be the strict transforms of C and a general member r E IhLI, respec­

tively. Now set X:=S', LI:=C' and S=Spec C. Then obviously the 

pair (X, LI) has only weak log-terminal singularities. It is easy to see that 

H:=r' +C' is nef and that aH-(Kx+LI) is nef and big for a> 1. Since 

the linear system 

never becomes effective for any mEN by the choice of PI' P2' ... , Pn 

(where we identify C and C' in the linear equivalence above), C' is always 

contained in the fixed component oflmHI=lm(T'+C')I. 

In the following two sections we prove some of the direct conse­

quences of Theorem 3-1-1, which are easy but the most important in our 

theory. 

§ 3-2. Contractions of extremal faces 

The following theorem is just another form of Theorem 3-1-1. 

Theorem 3-2-1 (Contraction Theorem). Let X be a normal variety of 

dimension d with LI E Za_I(X)<8>Q such that the pair (X, LI) has only weak 

log-terminal singularities, and let rc: X -+S be a projective morphism onto a 

variety S. Let H E Div(X) be a rc-nef Cartier divisor such that F: = 

H.l. n NE(XjS)- {OJ is entirely contained in the set 

{z E NI(XjS); «Kx+LI).z)<O}, 

where H .1.: = {z E NI(Xj S); (H.z) = OJ. Then there exists a projective mor­

phism <p: X -+ Y onto a normal variety Y projective over S which makes the 

diagram below commutative, 

x':\. ) y 

tr'\ /-
S 

and is characterized by the following properties: 

(i) For any irreducible curve C on X with rc(C) being a point, <p(C) 

is a point if and only if (H. C) = 0, i.e., if and only ifcl(C) E F, 

(ii) Rat(X)jRat(Y) is an algebraically closed extension, which is 

equivalent to the condition that rp has only connected fibers, 
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(iii) H = cp* A for some a-ample Cartier divisor A E Div( Y). 

Proof (cf. [M02]). By Kleiman's criterion for ampleness, it is clear 

that there exists a E N such that aH - (Kx + LI) is rr-ample. Thus we can 

apply Theorem 3-1-1 to obtain the morphism rr:=IP[mH[ for m,»O which 

satisfies conditions (i) and (ii). By Zariski's Main Theorem, cp is charac­

terized by the properties (i) and (ii). In order to see the property (iii), 

observe that for m,»O, the morphisms 

lP[mH[: X---+YcPm:=P(rr*(!)x(mH)) and 

IP[Cm+l)H[: X ---+YcP m+l:=P(rr*(!)xC(m+ I)H)) 

turn out to give the same contraction morphism cpo Therefore, 

(!)x(mH) = (lP[mH[)*(!)Pm(1) and (!)x((m+ l)H)=(IP[Cm+l)H[)*(!)Pm+1(1)· 

Thus H=cp*A for some A E Div(y), and (!)y(mA)~(!)pJI)®(!)y is a-ample. 

q.e.d. 

Remark 3-2-2. It is obvious that the Contraction Theorem directly 

implies the Base Point Free Theorem. 

Definition 3-2-3 ([M02], [R4]). Since the morphism cp is characterized 

by the properties which depend only on the face F of NE(X(S) and do 

not depend on the choice of H E Div(X), we may call cp the contraction of 

F, while any rr-nef Cartier divisor HE Div(X) with H.L n NE(X/ S) - {O} 

= F is called a supporting function of F. F itself is called an extremal face 

of NE(X/S) for (X, LI) (or for Kx+LI). If dimB F= 1, an extremal face is 

called an extremal ray. 

Lemma 3-2-4. If N 1(X/ Y) is regarded as a subspace of N 1(X/ S) via 

the natural inclusion, then 

F=NE(X/Y)-{O} in N 1(X/S). 

Namely, F is spanned by curves on X which are mapped to points on Y. In 

particular, an extremal ray contains an effective curve in its class. 

Proof Let us suppose that F\i:NE(X/Y)-{O}. (It is clear that 

F::JNE(X/Y)-{O}.) Then there is a separating function J E Div(X) such 

that J>O on NE(X/Y)-{O} and (J.z)<O for some z E F. But since J is 

cp-ample by Kleiman's criterion for ampleness, aH +J is rr-ample for some 

a E N. Thus (J.z) = ((aH+J).z) >0, which is a contradiction. q.e.d. 
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We conclude this section by pointing out the following facts which 
are easily deduced from the Base Point Free Theorem. 

Lemma 3-2-5 (cf. [M02], [R4], [Ka7]). Let X be a normal variety of 

dimension d with 11 e Za_l(X)@Q such that the pair (X,11) has only weak 

log-terminal singularities, and let 1t": X ~S be a projective morphism onto a 

variety S. Let f: X~Z and t': Z~S be projective surjective morphisms 

with 1t"=t' of, where Z is a normal variety. Assume that -(Kx+J) is f­
ample and that f has only connected fibers (i.e., Rat (X)/Rat(Z) is an 

algebraically closed extension). Then 

(1) there exists an extremal face F of NE(X/S) for (X, 11) such that f 

is nothing but the contraction morphism of F, 

(2) the image of f*: Pic(Z) ~ Pic(X) coincides with {D e Pic(X); 

(D.z)=Ofor all z e F}, and 

(3) the following mutually dual sequences 

are exact. 

O~Nl(X/Z)~Nl(X/S)~Nl(Z/S)~O 

O~Nl(X/Z)~Nl(X/S)~Nl(Z/S)~O 

Proof (1) Take He Div(Z) which is t'-ample. Then we have 

only to put F=(f*H)L nNE(X/S)-{O}. 

(2) Let D be a line bundle on X such that (D.z)=O for all z e F. 

We have only to show that D ef* Pic(Z). (It is obvious that the former 

setin (2) is contained in the latter.) The Base Point Free Theorem tells 

us that (!) AmD) is f-generated for m ~ O. The contraction morphism asso­
ciated to the surjection f* f*(!}x(mD)~(!}x(mD) is nothing but the mor­

phismfitself. Thus mD and (m+l)D ef*Pic(Z), hence D ef*Pic(Z). 
(3) . The exactness of the second sequence is a direct consequence of 

(2). Since the first sequence is dual to the second, the first is also exact. 
q.e.d. 

Remark 3-2-6. Let f: X ~Z and t': Z~S be projective surjective 
morphisms between algebraic varieties. Then the sequence 

is not exact at the middle term in general as we shall see in the following 
example: Let X = E X E be the product of a nonsingular projective 

elliptic curve E with itself, let f: X ~Z = E be the projection onto the first 
component, and let t': Z~Speck=S. Now let 11 be the diagonal in 

E X E, let B: = EX {P2} for a point P2 of the second component, and let r 

be a fiber of f Suppose that the sequence is exact. Then O~11-B~ar 
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for some a E R with a*O, since f*(il-B) =0 and since N,(X/Z) = RT. 

But this gives O=degN4 / x =il2=(B+aT)2=2a*O, a contradiction. 

The properties of the contraction morphisms will be discussed in 

more detail in connection with the Flip Conjecture in Chapter 5. 

§ 3-3. Canonical rings of varieties of general type 

Theorem 3-3-1. Let X be a normal variety of dimension d with il E 

Za_,(X)0Q such that the pair (X, il) has only log-terminal singularities. 

Let 1t': X----'rS be a proper morphism onto a variety S. Assume that Kx+il 

is 1t'-nef and 1t'-big. Then Kx+LI is 1t'-semi-ample, and hence R(X/S, Kx+LI) 

: = EBm~o @x([m(Kx + LI)]) is finitely generated as an @s-algebra. 

Proof By applying Theorem 3-1-1 with Remark 3-1-2 to H: =Kx 

+LI, we deduce that Kx+il is 1t'-semi-ample. The rest of the theorem is 

quite clear, since @x(ma(Kx +il))2::t*@p(l), where t is the morphism 

t: X-+P:=P(1t'*@x(ma(Kx +il))) associated to the surjection 

q.e.d. 

Corollary 3-3-2. Let X be a normal complete variety with only canon­

ical singularities such that the canonical divisor Kx is nef and big, i.e., 

let X be a minimal variety of general type. Then the canonical ring R:= 

EBm~o HO(X, @x(mKx)) is a finitely generated algebra over k. Thus the 

canonical model Xcan: = Proj R of X exists. f[J I mKxl: X -+ Xcan for m ~ ° 
gives the canonical morphism onto X can , which in the case of dim X = 2 is 

nothing but the contraction of ( - 2)-curves on X. 

Corollary 3-3-2 in dimension ;;;;;3 was proved in [Ka5] and [Be2], and 

it was the very beginning of our whole theory. 

Chapter 4. Cone Theorem 

In this chapter, we prove a structure theorem on the closed cone of 

curves of an algebraic variety (cf. [KID. The theorem should be one of 

the key steps toward the theory of minimal models. It was first proved 

by Mori [M02] using the ingenious method of modulo p reduction in the 

case where the variety is nonsingular and S = Spec k. The concept of 

extremal rays on Kleiman's cone was also introduced in this paper. After 

that, this "cone theorem" was generalized to the "log" category in [TM]. 

The case where the varieties have singularities was studied in [Ka6], [R4], 

[S2], [Ka7] and [Ko12]. We note here that Mori's method using the 

deformation theory cannot be applied to this case. In fact, there exists a 
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singular 3-fold X which has an extremal ray of flipping type; an extremal 
ray which is generated by the class of an irreducible curve C such that 
(Kx'C)<O and such that C does not "move" in an algebraic family, in 

contrast with the nonsingular case in [Mo2]. After [Ka6], Reid [R4] 
pointed out that the Cone Theorem can be derived from the combination 

of the Contraction Theorem and the following Rationality Theorem. This 
idea was fully developed in [Ka7], in which the Rationality Theorem was 

proved by the same technique as the one we used to prove the Base Point 
Free Theorem. Then [Ko12] proved the discreteness of extremal rays 

refining the argument in [Ka7]. 

§ 4-1. Rationality Theorem 

Theorem 4-1-1 (Rationality Theorem, cf. [R4], [Ka7], [KoI2D. Let 

X be a normal variety of dimension d with L1 e Z<t-t(X)®Q such that the 

pair (X, L1) has only weak log-terminal singularities, and let tr: X ~s be a 

projective morphism onto a variety S. Let He Div(X) be a tr-ample Cartier 

divisor. If Kx+L1 is not tr-nef, then 

r:=max {t e R; H+t(Kx+L1) is tr-nef} 

is a rational number. Furthermore, expressing r/a=u/v with u, v E Nand 

(u, v)= 1, we have v<a(b+ 1), where 

a:=min {e e N; e(Kx +L1) e Div(X)} and 

b:=max.es {dimk(.)tr-t(s)}. 

Proof. We will derive a contradiction assuming that either one of 
the following two cases occurs, 

(1) r ~ Q, or 
(2) r E Q and v>a(b+ 1). 

Lemma 4-1-2. Let X be a nonsingular projective variety, let p and q 

be positive real numbers, and let Dt, Dz e Div(X) and A e Div(X)®Q. 
Assume the following conditions: 

(i) fAl~O and (A) has support with only normal crossings. 

(ii) xDt+yDz+A-Kx is ample and 

HO(X, iVx(xDt+yDz+fAl):;:;HO(X, iVx(xDt+yD2», 

for x, YEN with y-px<q. 

(iii) P(x, y):=X(X, iVx(xDt+yDz+fAl» is a polynomial in x and y 
of degree at most d (or identically zero). 

Assume further that either one of the following two cases occurs: 
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(I) p ~ Q, or 

(2) p E Q, and expressing p=u/v with u, v EN and (u, v)= 1, we have 

qv>d+1. 

Then there exists a positive integer Yl such that 

whenever px+q> Y~Yl. 

Proof Note that if y-px<q, we have 

by the condition (ii) and by Theorem 1-2-3. Take Po E Q with o <Po<p. 

Then on the line L which is defined by the equation Y= poX, P(x, y) is not 

identically zero. In fact, for xo, Yo E N with (xo, Yo) being on the line L, 

is nef, since to be nef is a closed condition, and XODl + YOD2 + A - Kx is 

ample. Thus the Non-Vanishing Theorem implies P(mxo, myo)*O for 

m~O. Set 

U:={(x, y) E N; O<y- px<q/(d+ I)}. 

Then in both cases (1) and (2), we have #U = 00. For any member 

(xo, Yo) E U, let L(xo, Yo) be the line defined by the equation Y=(Yo/xo)x. 

If P(jxo,jyo) = ° for j EN with l:S;::j:S;::d+l, then PIL(XO,yo)=O, since the 

degree of P(x, y) in x and Y is at most d. Since #{L(x, y); (x, y) E U} 

= 00, the fact P(x, y)=t:O implies that there exists (Xl> Yl) E N 2 such that 

O<Yl- pxl<q and that P(Xl' Yl)*O. 

Now assume that such Yl as stated in the lemma does not exist. 

Then there exist infinitely many (Xi' Yi) E N 2 such that Yi-PXi<q, xi-dxl 

>0, Yi-dYl>O and that P(Xi' Yi)=O. For such (Xi' y;)'s the polynomials 

P(xi - jXl> Yi- jYl) must be zero for j E N with O<j<d, since P(Xl' Yl)= 

hO(X, (1JxCxlDl+ y lD2»*0. But this implies P(x, Y)=O, a contradiction. 

q.e.d. 

Now we go back to the proof of the theorem. We may assume that 

His tr-generated. Indeed, take c, n e N so large with a<cr and (nc, v)= 1 

that both H':=n(cH+a(Kx +L1» and H' -(Kx +L1) are tr-very ample. 

Putting 

r':=max{t E R: H'+t(Kx +L1) is tr-nef}, 
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we have r'/a=ncr/a-n. Therefore, the condition r e Q is equivalent to 

r' eQ. In this case, expressing r'/a=u'/v' with u', v' eN and (u' , v') = 1, 
we have v = v' by the choice of taking c and n. It follows that v ~ a(b + 1) 

is equivalent to v' <a(b + 1). Thus we may replace Hby H'. 

Set 

M(x, y):=xH+ya(Kx+.J) and 

A(x, y): = supp (Coker ~*~*@ x(M(x, y»~@ x(M(x, y»). 

Then it is sufficient to show that there exists (x, y) e N 2 such that 0 < ya 

-xr< 1 and A(x, y)=rp to derive a contradiction. By taking some resolu­
tion of X~, r; being the generic point of S, we can show by Lemma 4-1-2 

with p=r/a, q= l/a-e for a very small positive rational number e, and 

Dl (resp. D2) being the pull-back of H (resp. a(Kx+A», that there exists 

(xo' Yo) e N 2 such that O<ayo-rxo<1 and that hO(X~, @xCM(xo,yo»lx~)*O, 

which implies that ~*@ x(M(xo, Yo» is not a zero sheaf. Take such (xo, Yo). 

If A(xo, yo)=rp, we are done. Thus we assume A(xo, yo)*rp. 

Then as in the proof of the Base Point Free Theorem, we take a 

proper birational morphismf=.h ofz: Y-+Xfrom a nonsingular variety Y 
and a family of divisors {Fj } with only simple normal crossings which 
satisfy the following conditions: 

(1) f*(xoH+(Yoa-l)(Kx+A»+oftfll(.J)-'L,ojFj is ~oJ-ample 

for some 0, OJ e Q, where supp ('L, ° jFj ) is exceptional for J, 
(2) Ky+oftfll(A)=f*(Kx+A)+'L,a,F, for aj e Q with aJ+l­

OJ>O, and 
(3) (~ 0 f)*(~ 0 f)*@y(f*M(xo, Yo» ---*@y(f*M(xo, Yo) - 'L, r jF,) c 

@y(f*M(xo,yo» for some nonnegative integers rj, where 'L, rjF, is the 

~ oJ-fixed part of M(xo' Yo). 

Set 

By changing o/s slightly if necessary, we may assume that the minimum c 
is attained only at a unique indexj=O. Set 

Then 

A:= 'L, (-cr,+aJ-oj)Fj and B:=Fo. 
}<FO 

N:=f*(x'H + y'a(Kx+A»+A-B-Ky 

-ac(f*M(xo,Yo)- 'L, rjF,) 

+ f*{(x' -(c+ l)xo)H +(y' -(c+ l)Yo)a(Kx+A)} 

+ f*{xoH +(yoa-l)(Kx+.J)}+oftfll(.J)- 'L, OtFt 
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is 1r 0 [ample for (x', y') E N 2 such that 

Then 

by Theorem 1-2-3, which implies that the homomorphism 

is surjective. Then the commutativity of the following diagram implies 

that the injection on the right hand side column actually becomes an iso­

morphism. 

In case (1), set 

where I is a sufficiently large integer such that 

In case (2), set 

x':=xo+lv and y':=yo+lu with I~O. 

Then in both cases, it is easy to see that 

O<ay'-rx' <min {I, (c+ 1)(ayo-rxo)} 

and that 

A(x', y')cA(xo, Yo) 

by the Base Point Free Theorem, since we did take H to be lr-generated. 

By Lemma 4-1-2, we have 

which implies A(x', y')~A(xo, Yo). By noetherian induction, we finally 

conclude that there exists (x,y) E N 2 such that O<ay-rx<l and that 

A(x, Y)=ifJ, a contradiction. q.e.d. 
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§ 4-2. The proof of the Cone Theorem 

The following theorem is a generalization of the one in [Ka7] and 

[K012]. The estimate for the denominator is better than that in [K012], 

though we do not need this fact to carry out the program for constructing 

minimal models. 

Theorem 4-2-1 (Cone Theorem, [M02], [TM], [Ka6], [R4], [S2], [Ka7], 

[K012]). Let X be a normal variety of dimension d with Ll E Za_t(X)<8>Q 

such that the pair (X, Ll) has only weak log-terminal singularities, and let 

IT: X -+S be a projective morphism onto a variety S. Then 

where R/s are extremal rays of NE(XjS) for (X, Ll). Furthermore, if Cj 

is a reduced irreducible curve with Rj=R+cl(Cj), then for any n:-ample 

divisor A E Div(X) we have an inequality 

about the denominator of the fraction 

a:=min {e EN; e(Kx+Ll) E Div(X)} and 

b: = maxsEs(dimkcs)IT-t(s)). 

In particular, the R j are discrete in the half space 

{z E Nt(XjS); «Kx+Ll).z)<O}. 

Proof First we note the following easy fact. 

Lemma 4-2-2. Let X be a normal variety of dimension d with Ll E 

Za_t(X)<8>Q such that the pair (X, Ll) has only weak log-terminal singular­

ities, and let IT: X -+S be a projective morphism onto a variety S. Let 

f: X -+Z and 'Z": Z -+S be projective surjective morphisms, where Z is a 

variety. Then any extremal face F of NE(XjZ) for (X, Ll) is at the same 

time an extremal face of NE(X(S) for (X, Ll), if we regard Nt(X(Z) as a 

subspace of Nt(X( S). 

Proof By the Contraction Theorem, we have the contraction mor­

phism of F denoted by eontF : X-+W. Then -(Kx+Ll) is contF-ample 
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and contF has connected fibers. Thus F=NE(XjW)-{O} (see Lemma 

3-2-4) is an extremal face of NE(XjS) for (X, .1) by Lemma 3-2-5. q.e.d. 

Now the Cone Theorem follows directly from the Rationality The­

orem as we shall see below. 

Step 1. If dimRN1(XjS)~2, then 

where the L vary among all supporting functions which are not zero on 

Nl(Xj S) and - denotes the closure with respect to the real topology. 

Proof Let B:=NEKx+iXjS)+CLJL*oFL)-. It is clear that NE(XjS) 

-::JB. Supposing NE(XjS)=I=B, we shall derive a contradiction. Then 

there is a seperating function M E Div(X) which is not a multiple of Kx 

+.1 in Nl(XjS) such that M>O on B-{O} and (M.zo) <0 for some Zo E 

NE(XjS). Let C be the dual cone of NEKx+iXjS), i.e., 

C:={D E Nl(XjS); (D.z)~O for z E NEKX+iXjS)}. 

Then C is generated by n-nef divisors and Kx+.1. Since M>O on 

NEKx+iXjS)- {O}, M is in the interior of C, and hence there exists a n­

ample Q-Cartier divisor A E Div(X)0Q such that M -A=L' + p(Kx+.1) 

where L' E Div(X)0Q is n-nef and p is a nonnegative rational number. 

Therefore, Mis expressed in the form M=H+p(Kx+.1) where H:=A+ 

L' E Div(X)0Q is n-ample. If Kx+.1 is n-nef, the claim is obvious. 

Thus we assume that Kx+.1 is not n-nef. Then the Rationality Theorem 

implies that there exists a positive rational number r such that L: = H + 
r(Kx+.1) E Div(X) is n-nef but not n-ample. Note that L=I=O in Nl(XjS), 

since M is not a multiple of K x + .1. Thus the extremal face FL associated 

to the supporting function L is contained in B, which implies M>O on 

FL' Therefore p<r. But this implies that Mis n-ample, a contradiction. 

This completes the proof of our first claim. 

Step 2. In the equality of Step 1, we may take such L's that has the 

extremal face FL of dimension one. 

Proof Let L be a supporting function with dim FL~2, and let 

""': X-+Wbe the contraction morphism associated to L. Since -(Kx+.1) 

is "",-ample, Step 1 applied to NE(XjW) gives FL=NE(XjW)-{O}= 

C~=M*oFM)- -{O}, where the M vary among all supporting functions of 

NE(XjW) which are not zero. By Lemma 4-2-2, the FM are also extremal 

faces of NE(XjS) for (X, .1). Since dim FM<dim FL, the inductive pro-
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cedure shows our claim. Therefore, we have the following formula 

where the R j are extremal rays. 

Step 3. The Contraction Theorem guarantees that for each extremal 

ray R j there exists a reduced irreducible curve Cj on X such that cI(Cj) 

E R j • Let,y j: X -'>- WJ be the contraction morphism of R j , and let A be 

a n-ample Cartier divisor. We set 

Then 

By the Rationality Theorem, expressing rj/a=uj/v j with u j , Vj EN and 

(u j , v j )= 1, we have the inequality 

where bj=maxwEwj(dimk(w),yjl(w». 

Step 4. Now take n-ample Cartier divisors HI> Hz, ... , Hp _ I E 

Div(X) such that Kx+L1 and the Hi form a basis of NI(X/S), where 

p=dimRNI(X/S). By Step 3, the intersection of the extremal rays R j 

with the hyperplane {z E NI(X/S); (a(Kx + LI).z) = -I} in NI(X/S) lie on 

the lattice 

This implies that the extremal rays are discrete in the half space 

{z E NlX/S); ((Kx+LI).z)<O}. Thus we can omit the closure sign - from 

the formula (*) and this completes the proof of the theorem. q .e.d. 

Example 4-2-3. In general, the number of the extremal rays on the 

closed cone of curves is infinite as in the following example (cf. [Nt]). 

Take two nonsingular elliptic curves £1' £z on p~ so that PI - P2 is 

not of finite order on the abelian group £\> where PI and pz are two of the 

nine intersection points of £1 and £2. Let GI and Gz be the defining 

equations of £1 and £2' respectively. The rational map which maps 

x E P~-(£I n £2) to (GI(x): G2(x» E P~ becomes a morphism from S which 

is obtained by blowing up P~ at the nine intersection points of £1 and £2. 

It is easy to see that inverse images of PI and P2 on S are sections of 

lr: S-'>-P~, and hence by the choice of PI and pz, there exist infinitely 

many sections of n, which are exceptional curves of the first kind. 
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In contrast with the example above, the number of extremal rays are 

finite for a variety of general type. 

Proposition 4-2-4. Let X be a normal variety of dimension d with ,1 E 

Za_l(X)@Q such that the pair (X, ,1) has only log-terminal singularities, 

and let IT: X ---+S be a projective morphism onto a variety S. Assume that 

Kx + ,1 is IT-big. Then the number of extremal rays of NE(X/ S) for (X, ,1) 

is finite. 

Proof By Kodaira's Lemma there exists an effective Q-Cartier 

divisor ,1' E Div(X)@Q such that (Kx + ,1)-,1' is IT-ample. For any suffi­

ciently small e>O, (X, ,1+eL1') has also log-terminal singularities, and 

the extremal rays of NE(X/S) for (X, ,1+eL1') are discrete in the half 

space {z E NlX/S); ((Kx +,1+eL1').z)<O}. Since the space {z E N1(X/S); 

((Kx + ,1).z)::;::O} is entirely contained in the former space, it is clear that 

the extremal rays for (X, ,1) are finite in number. q.e.d. 

Problem 4-2-5. Is the number of extremal rays finite whenever 

Note that the answer to the above problem is affirmative if dim X = 2. 

Remark 4-2-6. By the Cone Theorem NE(X/S) looks like a rational 

polyhedral cone in the half space {z E N 1(X/S); ((Kx +,1).z)<O}. But this 

is not the case as for the shape of the cone in the other half space {z E 

N 1(X/S); ((Kx+,1).z»O} (cf. [CD: 

Let A be an abelian surface. Then the set {z E N 1(A); Z2?O} consists 

of two cones which intersect each other only at the origin. NE(A) is 

nothing but one of these cones, the one containing ample classes. This 

follows from the Riemann-Roch Theorem on A and the fact that any 

effective divisor on an abelian surface is nef. Therefore NE(A) is a 

quadric cone in N 1(A), which is not polyhedral. 

Chapter 5. Flip Conjecture 

In this chapter, we discuss the Flip Conjecture which still remains to 

be proved in order for our flow chart to work. 

The concept of a flip, which appeared in preceding papers (e.g., [At]), 

was first used by Kulikov [Ku] as an essential technique to construct a 

minimal model for a semi-stable degeneration of surfaces with trivial 

canonical bundles. The proof was later improved by Persson and 
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Pinkham [PP]. The flip considered by them is one obtained by contracting 

pI X PIon a nonsingular 3-fold in two different directions, which we may 

call "a flip of symmetric type" for the moment. An idea similar to theirs 

can be seen in [R2]. Tsunoda [Ts2] has succeeded in constructing a 

minimal model for a semi-stable degeneration of surfaces with nonnegtive 

Kodaira dimension, a generalization of the result of Kulikov, where he 

obtains "a flip of asymmetric type" as a composite of divisorial contrac­

tions, their inverses and flips of symmetric type (cf. also [KaI2], [M05], 

[S3]). Mori [M02] first constructed the contraction morphism of extremal 

rays on nonsingular 3-folds. A naive reader of his paper might have 

expected to obtain a minimal model by a simple repetition of contractions. 

But this is not the case; see [F] for an explicit counterexample. Then 

Reid [R3] proposed a program for constructing minimal models by intro­

ducing the concept of flips to overcome such obstructions as those 

observed in Francia's example. He proved the minimal model conjecture 

for to ric morphisms as a practical and nice evidence for his program to 

work. In this paper, we step forward along the program of Reid, intro­

ducing the notion of log-flips to treat flips of symmetric and asymmetric 

types in a unified way. 

§ 5-1. Types of contractions of extremal rays 

Let X be a normal variety of dimension d with LI E Zd_I(X)@Q such 

that the pair (X, LI) has only weak log-terminal singularities, and let 

tr: X -+S be a projective morphism onto a variety S. Assume that X is 

Q-factorial. If Kx+LI is not tr-nef, then there exist an extremal ray R by 

the Cone Theorem and the contraction morphism lp: X -+X' of R by the 

Contraction Theorem. Let tr': X'-+S be the induced morphism. By 

Lemma 3-2-5 (3), we have p(X'jS)=p(XjS)-I, where p(XjS) denotes 

the Picard number of X relative to S. We set 

A: = {x E X; lp is not an isomorphism at x}. 

We shall classify the extremal rays into three types according to 0:= 
dim A, where "dim" denotes as usual the maximum of the dimensions of 

irreducible components. 

Remark 5-1-1. We note that Rilp*{!)x=O for i>O. Indeed, since 

(X, LI) has only weak log-terminal singularities and since -(Kx+LI) is 

lp-ample, this assertion follows immediately from Theorem 1-2-5. As a 

consequence, X' has only rational singularities when o=Fd, i.e., when lp is 

birational. It is also true when o=d by [Ko13, Corollary 7.4]. 
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(A) Type: o=d (Contraction of fiber type) 

This is the case where our answer to the question in Introduction 

"Is dimX'=d?" is NO. Since -(Kx+.1) is SO-ample, the generic fiber 

(X~, .1~) is a pair having only weak log-terminal singularities with the anti­

log-canonical divisor -(Kx~+.1~) being ample. In this case IC(X, Kx+.1) 

= - 00 by the Easy Addition Theorem of Iitaka [13]. When .1=0 and X 

has only terminal singularities, the generic fiber of SO is a Q-Fano variety, 

which we define to be a projective variety Z having only terminal singu­

larities with the ample anti-canonical divisor -Kz . 

Definition 5-1-2. A variety X is said to be uniruled if there exists a 

generically finite and generically surjective rational map ,y.: YXPj .. ·+X 

for some variety Y. 

Now we state a characterization of uniruled varieties due to Miyaoka 

and Mori [MM]. 

Theorem 5-1-3. Let X be a nonsingular projective variety over C. 

Then X is uniruled if and only if there exists a nonempty Zariski open set U 

of X such that for every closed point x E U there is an irreducible curve C 

containing x with (Kx'C) <0. 

Corollary 5-1-4. A variety X which has a contraction of jiber type is 

a uniruled variety. 

Proof Take a subfield ko of k, which is finitely generated over Q, 

and a variety Xo over ko such that X ~ Xo X Spec <0 Spec k. Then by 

Theorem 5-1-3, X:=XoXspecko Spec C is uniruled, where the morphism 

Spec C-+Spec ko is given by some embedding kocC, It follows that 

there exists an irreducible component Z of the Hilbert scheme of X and 

a closed subvariety Zj of Z such that any geometric fiber of the universal 

family Wj-+Zj consists of rational curves with W j irreducible and that 

the natural projection Wj-+X is generically surjective. Let Z' be the 

maximal closed algebraic subset of Z on which geometric fibers of the 

universal family all consist of rational curves. Then the irreducible com­

ponent Y of Z' which contains Zj is defined over some field kj which is 

finite algebraic over ko; Y ~ Y j X Spec k1 Spec C for some Y j • Then we have 

only to put Y = Yj X Spec k, Spec k in order to see that X is uniruled. q .e.d. 

Lemma 5-1-5. If the pair (X, .1) has a contraction of jiber type so: X 

-+X', then X' is again Q-factorial. 

Proof Let D' be a prime divisor on X'. Take a prime divisor Don 

X which is mapped surjectively onto D' by SO. Since X is Q-factorial, 

there is a positive integer a E N such that aD is a Cartier divisor. There 
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also exists a curve C on X such that SO(C) is a point and that SO(C) ~ D'. 

Then since cl(C) E R and since (D. C) = 0, Lemma 3-2-5 implies that 

aD=n*Do for a Cartier divisor Do on X'. Since supp Do= ep(D) =D', D' 

is clearly a Q-Cartier divisor. Thus X' is Q-factorial. q.e.d. 

(B) Type: o=d-l (Contraction of divisorial type) 

When o=d-l, which is always the case for surfaces unless SO is of 

fiber type, X' again satisfies the same conditions as X so that we have no 

trouble to proceed in the flow chart in Introduction. 

Proposition 5-1-6 (cf. [Ka7]). If ep is a contraction of divisorial type, 

then the exceptional locus A of SO consists of a unique prime divisor on X, 

the pair (X', SO*(Ll» has only weak log-terminal singularities, and X, is Q­

factorial. Moreover, if Ll=O and X has only terminal singularities, then 

X, also has terminal singularities. 

Proof First we note the following lemma, which is clear from the 

Hodge index theorem. 

Lemma 5-1-7. Let f: G--+H be a generically finite proper surjective 

morphism from a normal surface, and let E be a nonzero Q-Cartier divisor 

on G whose support is mapped to a point on H by f Then (P)<O. 

Let Al be a prime divisor on X contained in the support of A. Set 

bl =dim SO(A I ). Then bl~d-2. Take some affine open subset So of S 

with n(AI) n So*1>. Let L (resp. M) be a very ample divisor on n-I(So) 

(resp. on n'-l(So». Take general members Li E ILl for 1 s;:,is:.d-b l -2, 

and M j E IMI for 1 ~j s;:,bl. Mj being the strict transform of the M j by 

SO, we set G: = ( n iLi) n ( n jM j) and C: = Al n G. Since X is Q-factorial, 

Al is a Q-Cartier divisor, which implies that C is also a Q-Cartier divisor 

on a normal surface G. Since ep(C) is a point, Lemma 5-1-7 gives (AI'C) 

= (Ai·G) <0. Suppose there exists another irreducible component Az of 

A. Then we find a curve C' on A z such that cl(C') E R and that C' c,t.A I • 

Thus we have (AI.C'»O, which contradicts the fact (AI.C)<O. There­

fore A consists of a unique prime divisor. 

Take an arbitrary prime divisor D' on X', and let D be its strict 

transform by SO. Since (A.C)<O for any curve C with cl(C) E R, we can 

choose q E Q so that «D+qA).C)=O. Then by Lemma 3-2-5 (2), there 

exists a Cartier divisor Do E Div(X') such that r(D+qA)=SO* Do for some 

r E N, and hence rD'=Do. Thus D' is a Q-Cartier divisor and X' is 

therefore Q-factorial. Now we can write Kx+Ll=SO*(Kx'+SO*(Ll»+pA 

for some p E Q. The inequality «Kx+Ll).C)<O with the equality 

(SO*(Kx'+SO*(Ll».C)=O gives us p>O. Hence the pair (X', SO*(Ll» has 
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only weak log-terminal singularities. The rest of the proof is clear. 

q.e.d. 

Proposition 5-1-8. When (jJ is a contraction of divisorial type, the 

exceptional locus A is a uniruled variety. 

Proof We may assume that k=C as in the proof of Corollary 

5-1-4. Then the proposition follows immediately from Theorem 5-1-3, 

once we have the following Lemma 5-1-9. 

The phenomenon which we call the "subadjunction" was first 

observed by M. Reid. A simple example due to him is a generating line 

C on a quadric cone X in P3. In this case, (Kx+C)lc= -3/2.H but 

Kc = - 2H, where H is a hyperplane section. 

Lemma 5-1-9 (Subadjunction Lemma). Let X be a normal Cohen­

Macaulay variety with a prime divisor A, and let f1-: A--+A be the normali­

zation of A. Assume that m(Kx+A) e Div(X) for some positive integer 

m. Then there is a natural injective homomorphism 

Proof We shall construct the homomorphisms as in the following 

diagram: 

(i) a is obtained from the natural homomorphism f1-*f1-*W::f.--+W::f., 

which is surjective since f1- is finite. 

(ii) Pulling back the trace map f1-*W::f.--+WA by f1- and tensoring it m 

times, we have [3. 
(iii) Note the following diagram: 

(!)x(Kx +A)0@x( -A)~@x(Kx+A}~(!)x(Kx+A)0@A~O 

1 1 
(!)x(Kx) WA 

1/ II 
O~£om.xC(!)x, wx)~£om.xC(!)x( -A), wX)~ib"xil((!)A' wx)~O, 

where ib"xN(!)A' WX)=WA since X is Cohen-Macaulay. Thus we have a 

surjection f1-*((!)x(Kx+A)®m)~,u*(w~m). There is a homomorphism 



334 Y. Kawamata, K. Matsuda and K. Matsuki 

p*(l!lx(Kx+Ay81m)~p*l!lx(m(Kx+A», which is isomorphic at the generic 

point of A, since (l!lx(Kx+A)®mY=l!lx(m(Kx+A». Now taking the 
double dual of the homomorphisms above combined with the natural 

homomorphism 

we obtain r: p*({Jlfm)~p*l!lx(m(Kx+A». 
Note that a, [3 and r are all isomorphic at the generic point of A. 

Therefore by taking the double dual, we obtain the required injection 

{J)~m] = ({J)~m)i\~((p* p*{J)..i)®my 

~(p*l!lx(m(Kx+A»y=p*l!lx(m(Kx+A». q.e.d. 

We go back to the proof of the proposition. Set b l = dim SO(A). Let 

L (resp. M) be a very ample divisor on 7r- I(So) (resp. on tr'-I(SO»' So being 

an affine open subset of S. Take general members Li E ILl for I <i<d-bl 

-2 and M j E IMI for I <j<bl • L~ (resp. M~) being the pull-back of Li 

(resp. M j) by p (resp. soap), we set C'=(niLDn(njM~). Then since 

codim Sing 1'~2, any irreducible component C of C' lies entirely in the 

nonsingular locus of 1'. By the Subadjunction Lemma, there exists some 

effective divisor E on the nonsingular locus of A such that mK..ireg = 
p*(m(Kx + A»IAreg-E. We may further assume that C¢.E. Then 

(KAreg.C) = ((I/m){p*(m(Kx + A» - E}.C) 

=((Kx+.1- I: dPj+(I-da)A).p*C)-(I/m)(E.C) 
N"O 

where .1= I: djD j with Do=A. Note that do may be zero. Since 

SO(,u*(C» is a point, ((Kx +.1).p*(C»<O and ((1-do)A.p*C)<O, noting 

that l-do~O. We may further assume that p*(C)¢.suPP I:i*0 djDj, 

which implies that the value of the equation above is negative. Since 

such C's are dense in A, Theorem 5-1-3 implies that Ais uniruled and 

hence so is A. q.e.d. 

(C) Type: o<d-l (Contraction of flipping type) 

This is the case where the major difficulty arises in carrying out our 

program for constructing the minimal models for higher dimensional 

varieties. Note again that this case is peculiar to the varieties of dimen­

sion > 3. It is the existence of contractions of flipping type that enriches 

the geometry in dimension ~3. 

Now we propose the (Log-)Flip Conjecture, which consists of the 

following two parts (cf. [R2], [Ka7]). 
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Conjecture 5-1-10 «Log-)Flip Conjecture I: The existence of a (log-) 

flip). Let cp: X -'.> X' be a contraction of flipping type. Then there should 

exist the following diagram 

which satisfies the following conditions: 

( i) X+ is a normal variety projective over X', 

(ii) cp + is a birational morphism isomorphic in codimension 1, 

(iii) Kx+ + J+ is cp+ -ample, where J+ is the strict transform of J. 

If this diagram with the properties above exists, we call it simply a 

log-flip. We denote (cp+)-t 0 cp by tr(cp), which is a birational map isomor­

phic in codimension one. When J = 0 and X has only terminal singulari­

ties, the Log-Flip Conejcture is called the Flip Conjecture and a log-flip is 

called a flip. 

Proposition 5-1-11 (cf. [S 1], [Ka 7]). We have the following properties 

of a log-flip. 

(1) X+ is Q1'actorial. Moreover p(X +/X') = p(X/X') = 1, or more 

explicitly Div(X +)(8)Q= (cp+)*(Div(X')(8)Q)EBQ(Kx + + J+). 

(2) The conditions below are equivalent to each other. 

(a) There exists a log-flip for cpo 

(b) R(X/X', Kx+J): = EBm~oCP*(9x([m(Kx+J)]) is finitely generated 

as an (9 x ,-algebra. 

In particular, the log-flip for cp is unique if it exists, and X+ should be 

oftheform: 

X+=Proj R(X/X', Kx+J). 

(3) For any common desingularization W of X and X+, 

writing 
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we have at',;;:::.aj, where at>aj if and only if g(Fj)cA. Recall that A is 

defined to be the exceptional locus for f{J. In particular, the pair (X+, L1+) 

has only weak log-terminal singularities. 

Proof. (1) There is an isomorphism of Q-divisors 

tr(f{J)*: Zd_l(X)®Q~Zd_l(X+)®Q. 

On the other hand, by Lemma 3-2-5 (2), we have 

Div(X)®Q=f{J*(Div(X')®Q)EBQ(Kx +L1). 

Since tr(f{J)*(Kx +L1)=Kx++L1+, which is a Q-Cartier divisor by the con­
dition (iii) of a log-flip, tr(f{J)* induces a map 

tr(f{J)*: Div(X)®Q--).Div(X+)®Q. 

Then the surjectivity of the natural homomorphism Div(X)®Q--+Zd_l(X) 

®Q immediately implies the surjectivity of Div(X+)®Q--+Zd_l(X+)®Q. 

Therefore X+ is Q-factorial, and the equality stated in (1) is now obvious. 

(2) The implication (a)=?(b) is clear. In the following we shall 

prove that (b) implies (a). Set X+ :=Proj R(X/X', Kx +L1), and let f{J+ be 
the natural morphism f{J+: X+--+X'. Let r bea positive integer such that 

r(Kx +L1) e Div(X) and that EBm;;,of{J*(9x(mr(Kx +L1» is generated by 
f{J*(9x(r(Kx +L1), and let (9x+(I) be the corresponding f{J+-very ample line 

bundle on X+, i.e., f{J~(9x+(/);;:'f{J*(9x(lr(Kx+L1) for all leN. First we 
show that f{J + is isomorphic in codimension one. Suppose there exists an 

exceptional divisor E for f{J + . Consider the following exact sequence 

O--).f{J~(9 x+(I)--).f{J~( (9 x+(I)®(9 x+(E»--).f{J~(Coker)--). Rlf{J~(9 x+(/), 

where Coker is the cokernel of the natural injection (9x+(/)--+(9x+(I) 

®(9n(E). Take I so large that Rlf{J~(9x+(/)=O. Then since f{J~(9x+(I) is 
a reflexive sheaf and since codim supp f{J~(Coker)',;;:::.2, we have f{J~(9x+(/);;:. 

f{J~«(9x+(I)®(9x+(E», which contradicts f{J~(Coker)*O. By construction, 
Kx++L1+ is f{J+.ample. 

(3) Take a positive integer r such that r(Kx++L1+) e Div(X+) is 

f{J+-free. Then 

g*(r(Kx +L1»=h*(r(Kx++L1+»+ L:. riFt, 

where L:rjFt is the f{Jog-fixed part of g*(r(Kx+ L1». Notethatg(supp 

Ur,,.oFt)=A. Thus at=ai+(rt!r), which proves the assertion. Now we 
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take a desingularization h of X + which coincides, when restricted over 

X+-(SO+)-I(SO(A»~X -A, with a suitable desingularization of X in the 

definition of weak log-terminal singularities. Then since at> at over 

SO(A), (X+' .1+) has only weak log-terminal singularities (cf. Lemma 0-2-12). 

q.e.d. 

Remark 5-1-12. (1) The variety which satisfies the conditions (i) 

and (ii) of the log-flip (not necessarily satisfying the condition (iii» is 

either X+, X' or X itself. This is clear from Proposition 5-1-11 (1). 

(2) When .1=0 and X has only terminal singularities, a flip has all 

the properties in Proposition 5-1-11, with Kx+.1, Kx++.1+ and "weak 

log-terminal" replaced by Kx, Kx+ and by "terminal", respectively. 

Suppose SO is a contraction of flipping type. If we can have the log­

flip for cp, we go back to the flow chart with another variety X+ instead of 

the original X. The second part of the (Log-)Flip Conjecture asserts the 

following: 

Conjecture 5-1-13 «Log-)Flip Conjecture II: The termination of a 

sequence of (log-)flips). A sequence of (log-)flips terminates after finitely 

many steps. Namely there does not exist an infinite sequence of(log-)flips. 

We shall give a proof of the Flip Conjecture II when (.1=0 and) X 

has only terminal singularities and is of dimension 3 or 4. 

Definition 5-1-14 ([Sl]). Let X be a normal variety with only ter­

minal singularities, and let f: Y -+-X be a desingularization of X. Then 

writing Ky = f* Kll + L: a,F" where the Ft range over all the exceptional 

divisors for j, we define the difficulty d(X) of X by d(X): = #{i; at < I}. 

Note that d(X) does not depend on the choice of the desingularization, 

and hence well-defined. 

Theorem 5-1-15. The Flip Conjecture II holds when dim X =3 or 4. 

Proof(The case dim X =3 is due to Shokurov [SI]). First we note 

the following lemma. 

Lemma 5-1-16 ([SI]). Let SO+:X+-+-X' be the flip of a flipping 

contraction SO: X -+-X' of a variety X over S which has only terminal 

singularities. Then d(X)~d(X+). !fin addition codim A+ =2, where A+ 

is the exceptional locus of cp+, then d(X»d(X+). 

Proof. The first part follows immediately from Proposition 5-1-11 

(3). It follows also that X+ has only terminal singularities, and hence 

codim Sing X+>3. Then on some common resolution of X and X+, 
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some exceptional component Fi over r has at = 1, where r is a component 

of A+ with codim r=2, since the generic point of r lies in the non­

singular locus of X+. Then at>ai by Proposition 5-1-11 (3), which 

implies d(X»d(X+). q.e.d. 

When dim X = 3, codim A + is always equal to 2 and we are in the 

situation to apply Lemma 5-1-16. Then the assertion is quite clear, since 

the difficulty is a nonnegative integer. 

When dim X =4, we need the following lemma. 

Lemma 5-1-17. Let cp+: X+ -?-X' be the log-flip of a flipping contrac­

tion cp: X-?-X'. Then dimA+dimA+>d-l, where A and A+ are the 

exceptional loci of cp and cp +, respectively. 

Proof Consider the following diagram 

where PI and pz are the projections. Take a positive integer I such that 

I(Kx +L1) becomes a Cartier divisor and that cp*{!}x(l(Kx +L1)) generates 

EBm;;;oCP*{!}x(ml(Kx +L1)) as an {!}x,-algebra. Let I be the ideal of {!}x 

defined by 

Then we have the closed immersion 

Proj (EB Im)~proj (EB cp*{!}xCml(Kx +L1)))X x,x =X+ Xx,x. 
m;;;O m;;;O 

Since codim supp ({!}x/I»2 and since Proj (EBm<:oIm) is nothing but the 

blowing-up of the ideal I, it follows that the exceptional locus of PI> 

which is A X x,A +, contains a variety of dimension d - 1. Thus 

We go back to the proof of Theorem 5-1-15 in case dim X = 4. We 

may assume that k = C. Lemma 5-1-17 implies that the pair (dim A, 
dim A +) is either (1, 2), (2,2) or (2, 1). When it is (1,2) or (2, 2), Lemma 

5-1-16 gives d(X»d(X+). When it is (2, 1), we study the dimension of 
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H.(X,,; Q)alg, the group of homology classes generated by compact alge­

braic 2-cycles on the underlying analytic variety X". Since cp is a proper 

surjective morphism, we have the surjective homomorphism 

For any compact algebraic subvariety B on X of complex dimension 2, 

cl(B) is not equal to zero in H.(X,,; Q)alg, since X is projective. Thus the 

kernel of the surjection above is not zero in the case (2, 1). On the other 

hand, by the excision theorem, we have 

Therefore, since dim H4(X,,; Q)alg is finite, we finally have the result 

By lexicographic induction on the pair (d(X), dim H.(X,,; Q)alg), we know 

that the Flip Conjecture II holds also when dim X =4. q.e.d. 

§ 5-2. Flips of torie morphisms 

Reid [R3] showed that the Flip Conjecture holds for toric morphisms, 

which is a prototype and a source of our Flip Conjecture itself. In this 

section we present his results not only as a good evidence for the Flip 

Conjecture in general but also as good examples of flipping contractions 

and their flips. For the details of the toric geometry and its terminology, 

we refer the reader to [KKMS] or [01, [DI1. 

In the following, T denotes the torus embedded equivariantly in a 

toric variety X with N representing the group of I-parameter subgroups 

of T and M the group of characters of T. 

The structure of the cone of curves for a toric morphism is given by 

the following. 

Proposition 5-2-1 (cf. [R3, Corollary 1.7]). Let f: X ---+S be a toric 

morphism of complete toric varieties. Then 

where the Ii run through the I-dimensional strata of X in the fibers off 

Now we give a criterion for a toric variety Xto have only Q-factorial, 

terminal or canonical singularities in terms of the corresponding geometry 

of its cones. 
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Proposition 5-2-2 (cf. [R3]). Let X be the toric variety corresponding 

to afan Fin N R • Then 

(i) X is Q-factorial if and only if the fan F is simplicial, i.e., if 

and only ifF is made up of simplicial cones. In this case, X has at most 

quotient singularities. 

(ii) X has only terminal (resp. canonical) singularities if and only if 

for every a e F the following two conditions (a) and (b) (resp. (a) and (b') 

hold: 

(a) For the primitive vectors eh ••• , er of the l-faces of a, there 

exists an element mea) e MQ such that <mea), et)=lfor every i. 

(b) an{n e N; <mea), n)<I}={O, el , ••• , er }. 

(b/) an{neN; <m(a),n)<I}={O}. 

Proof We may assume that X is affine. Let a = < el , ••• , er ) be 

the corresponding cone in N R. 

(i) Let D t be the T-stable prime divisor on X corresponding to et • 

Then X is Q-factorial if and only if the Dt are Q-Cartier divisors for all i. 

This condition is equivalent to the existence of elements mt e MQ such 

that <mi, ej) =Oij, i.e., a is simplicial. 

(ii) Noting that Kx+ 2:[=1 Dt -0, we know that (!Jx(rKx) for r e Z 

is generated by those m e M with <m, et ) ?:.r. Therefore, for X to be an 

r-Gorenstein variety, it is necessary and sufficient that there exists mo e M 

such that <mo, ei)=r for all i. Thus the condition (a) holds if and only 

if X is a Q-Gorenstein variety. A prime divisor D on an equivariant 

desingularization of X corresponds to a primitive vector v of N in a. 
The discrepancy at D is given by <mo/r, v) -1. Thus we have the condi­

tions for X to have terminal or canonical singularities. q.e.d. 

In the following, we shall discuss the contraction of extremal rays for 

toric morphisms. Let f: X ~S be a toric morphism of complete toric 

varieties with d=dim X. Assume that X has only Q-factorial terminal 

singularities. If R is an extremal ray of NE(X/S), we have the contrac­

tion morphism ({J: X ~Z of the extremal ray R by the Contraction 

Theorem. We know that, for any curve C in a fiber of J, ({J( C) = a point if 

and only if d( C) e R. Since R is T-invariant, so is the exceptional locus 

of ({J. Therefore ({J is T-equivariant, which implies that Z and ({J are toric. 

Let Fx and Fz be the fans (which may be degenerated) corresponding to· 

X and Z, respectively. Then we obtain the set of walls F'1- 1) by taking 

away the walls corresponding to R from Ffj-I), i.e., 
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As a matter of fact, for toric morphisms of complete toric varieties, we 

have the Contraction Theorem for any extremal ray of NE(X/S) in terms 

of the geometry of the corresponding fans without any assumption on the 

singularities of X (cf. [R3], see also Theorem 7-3-7). 

By Proposition 5-2-1, we can put R=RJl] for some I-stratum l of 

X in a fiber off Since l is a complete I-dimensional normal toric variety, 

we get l ~Pl. Let w be a wall, i.e., a (d-I)-dimensional cone of Fx 

which corresponds to l. Then w separates two d-cones Lld and Lld +1• Let 

e1, "', ed_1 be the primitive vectors of the I-faces of wand let ed' ed +1 be 

the primitive vectors of the opposite I-faces of Lld' Lld+l> respectively. 

Since the el> "', ed form a basis of NR , we obtain a linear relation 

d+l 

L: atei=O 
i=l 

with ad+1 = 1. Since ed and ed+1 lie on opposite sides of w, we know that 

ad>O. By reordering the et , we may assume that 

for 1 <i-;;;;'a 

for a+ 1 <i::;;:.a 

for .a+ I <i::;;:d+ I 

where O-;;;;'a::;;:.a<d-1. Set 

Ll=Ll(w)=<e" "', ed+ 1). 

Then Reid observes that there exist the following two polyhedral decom­

positions of Ll( w) : 

where 

Llj=<e1,···, ej , ••• ,ed+1) (forj<a orj~.a+I). 

Let A be the exceptional locus of cpo Since A corresponds to the cone 

<e1, "', ea ), we have dimA=d-a, while cp(A) corresponds to the cone 

<e1, •• " ea , ep+1> .. " ed +1), hence dim cp(A)=.a-a. In particular, cp is 

of flipping type if and only if a:2:2. Note that we obtain Ft) from FCj) 

by replacing the Llj for j=.a+ 1, .. " d+ 1 by Ll(w) .. 

Now we shall prove the Flip Conjecture for toric morphisms. 

Assume that the contraction cp of the extremal ray R is of flipping type, 

i.e., a:2:2. The first thing to show is the existence of the flip for cp (the 

Flip Conjecture I). 
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Recall the two distinct simplicial subdivisions (**) of J(w). The first 

subdivision gives us a relation between Fljl and F<jl. Consider the 

second subdivision. Let Fl be the simplicial subdivision of Fz defined by 

or alternatively by 

where 

Let ~l: Xl =XF,-+Z be the toric morphism corresponding to the subdivi­

sion Fl of Fz . 

Theorem 5-2-3 (cf. [R3, (3.4), (4.5)]). ~l gives the flip for ~. 

For toric morphisms, the Flip Conjecture II can be proved by means 

of the notion of the shed: Let a be a cone in N R and let el , ••• , e. be 

the primitive vectors of I-faces of a. We define 

shed a:=the convex hull of the set {a, eh ••• , e.} in N R • 

For a fan F of N R , we define 

shed F: =UUEF(d) shed a. 

Then we have 

vol (shed FJ)<vol(shed Fx). 

Since d! vol (shed F) E Z, it is now obvious that any sequence of flips must 

terminate (cf. [R3, (4.4)]). In this manner, Reid proved the Minimal 

Model Conjecture for toric morphisms. 

Here are some examples of flipping contractions and their flips: 

Example 5-2-4 ([R3]). The examples of flips for toric morphisms are 

given by the formula (*) with a::::2. This first example is given by 

where e l , e2 , eg form a basis of N with rank N = 3. The flip in this case is 

represented by the following diagram in Figure 3. The exceptional loci I 

and II of ~ and ~l' respectively, are isomorphic to pl. By direct calcula­

tion we have 
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Figure 3 

(Kx.I) = -I/r and (Kx,·ll) = I/a(r-a). 

Example 5-2-5. The second example of flips for 3-dimensional toric 

varieties is given by the following formula 

The flip in this case is represented by the diagram in Figure 4. The 

exceptional loci I and II of <p and <PI' respectively, are again isomorphic to 
pI, and we have 

(Kx·l) = -(r-a)/r and (Kx,./t) = (r-a)/a. 

Figure 4 

The morphisms given in Examples 5-2-4 and 5-2-5 are the only 

contractions of flipping type from Q-factorial terminal toric varieties of 

dimension 3 by the theorem of White-Frumkin in [D2]. 

Example 5-2-6 (Hironaka [Hil]). Let Cl , Cz and Ca be three non­

singular curves on a nonsingular 3-fold X intersecting transversally at a 

point p eX. Let Xl be the blow up of X at p and let E =::;.p2 be the 

exceptional locus on Xl. In the following, we denote the strict transforms 

by'. We take such lines 11,12 and la on P2=::;.E that join two of cinE, 
c~ n E and C~ n E. Blow up XI with centers q, C~ and C~ to obtain X2 • 

Then the I~ are (-1, -I)-curves, i.e., N/{/x.=(9p,(-I)EB(9p,( -1). Blow 

up Xz with centers Ii, I~ and I~ to obtain Xa. Let Ei be the inverse image 
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of Ii, which turns out to be isomorphic to ptxpt. It is well-known that 

the Ei can be contracted in the other direction to give X4• Let Ci be the 

image of Ei on X 4 • Note that E'~p2 on X4 and NE'/X.~(J}P'( -2). 

Finally the contraction of E' on X4 to a point p' gives X'. Then we have 

the following: 

(1) (X', p') is a terminal singularity: in fact, it is a quotient singu­

larity of type (1/2) (1, 1, 1). 

(2) The Ci are extremal curves of NE(X'/X) with (Kx"Ci) = -1/2, 

and the contractions of the Ci are as given in Example 5-2-4 setting r=2 

and a=l. 

The following example due to Mori shows that there exists a con­

traction of flipping type for nonsingular 4-folds, while the classification by 

Mori [M02] tells us that there is no contraction of flipping type on non­

singular 3-folds. 

Example 5-2-7 (cf. [R3, (3.9)]). The formula (*) in this example IS 

given by 

el+e2=eg+e4+e5' 

where et, e2, eg and e4 form a basis of N with rank N=4. Then X and 

XI are both nonsingular. The exceptional locus A of cp is isomorphic to 

p2 with NA/X~(J}P'( -1)EB(J}p.( -1), while the exceptional locus At of CPI is 

isomorphic to pt with NAtlX~(J}P'( -1)EB(J}p,( -l)EB(J}p,( -1). The flip for 

cP can also be described in the following way: First, blow up X with the 

center A. Then the exceptional locus for this blowing-up is isomorphic 

to p2 X pi and it can be contracted in the other direction to give XI' 

We conclude this section with an example due to Mukai. 

Example 5-2-8 (cf. [Mu, Theorem 0.7]). Let X be a nonsingular 

projective variety with a symplectic structure, that is, there is a nowhere 

vanishing holomorphic 2-form w. Assume that there exists a nonsingular 

subvariety PeX of codimx P>2 which has a structure of a pn-bundle 

0': P~B for some n. Assume further that there is a Q-divisor D on X 

such that (X, D) is weak log-terminal, and that a line I on a fiber of 0' is 

an extremal ray of NE(X) for (X, D) whose contraction cP: X~X' is of 

flipping type with exceptional locus coinciding with P which, restricted to 

P, is nothing but 0'. Then we can construct the log-flip for cp as follows: 

Blow up X with the center P. Then the exceptional divisor for this 

blowing-up can be contracted in the other direction to give a nonsingular 

variety Xt and hence the morphism CPt: XI~X', (XI is again symplectic.) 

We claim that CPI gives the log-flip for cpo In fact 
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( i) CPI: XI~X' is isomorphic in codimension one by construction. 

(ii) Kx~O in N1(X/X') and KX1~O in NI(X1/X'). 

(iii) Since dimR NI(XI/X')~ 1, letting DI be the strict transform of 

D, we know that either 

(1) DI~O in NI(XI/X'), 

(2) - DI is CPI-ample, or 

(3) DI is CPI-ample. 

If (1) holds, then the Contraction Theorem tells us that DI = CPt D' for 

some D' e Div(X')®Q and hence D=cp*D', which contradicts the fact 

that -D is cp-ample. If (2) holds, then X1=Proj (E'Bm<:oCPI*(!7X.( -mD1» = 
Proj (E'Bm<:ocp*(!7x(-mD»=X over X', a contradiction. Therefore the 

case that actually occurs is (3), hence CPI is the log-flip for cpo 

In the above example, Kx is numerically trivial. The log-flip is 

geometrically symmetric, while it is asymmetric when one considers the 

pairs (X, D) and (XI> DI)' 

Chapter 6. Abundance Conjecture 

In this chapter, we give generalizations of the Non-Vanishing Theo­

rem and the Base Point Free Theorem, replacing the ample (or nef and 

big divisors) in the original statements by nef and abundant divisors, 

which we shall define in the following section. 

§ 6-1. Ner and abundant divisors 

Definition 6-1-1 (cf. [Ka8]). Let X be a complete normal variety of 

dimension d, and let De Div(X)®Q be a nef divisor on X. We define 

the numerical litaka dimension to be 

veX, D):=max {e; De~o}. 

Then it is easy to prove that .t(X, D) <v(X, D) (cf. [Ka8]). D is said to 

be abundant if the equality .t(X, D) = veX, D) holds. Let 7t': X ~S be a 

proper surjective morphism of normal varieties and let D be a Q-Cartier 

divisor on X. Then D is said to be 7t'-abundant if D Ix ~ is abundant, where 

X~ is the generic fiber of 7t'. 

Remark 6-1-2. It is easy to see that the following three conditions 

are equivalent (cf. [Ka4]): 

(a) veX, D)=d=dim X, 

(b) .t(X, D)=d, 

(c) (D<i»O. 

It follows immediately that D is abundant if .t(X, D)=d or d-I. 
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The following proposition shows that nef and abundant divisors are 

birationally the pull-back of nef and big divisors. 

Proposition 6-1-3 (cf. [Ka8, Proposition 2.1]). Let X be a normal 

variety with a proper morphism 7r:: X ---""S onto a variety S, and let D e 

Div(X)®Q be a 7r:-nef and 7r:-abundant Q-Cartier divisor. Then there exists 

a diagram 

which satisfies the following conditions: 

( i ) p, f and 'P are projective morphisms, 

(ii) Y and Z are nonsingular varieties, 

(iii) p is a birational morphism and f is a surjective morphism having 

connected fibers, and 

(iv) There exists a <p-nef and rp-big Q-Cartier divisor Do e Div(Z)®Q 

such that p* D = f* Do. 

Remark 6-1-4. In the situation of the proposition above, let D' e 

Div(X)®Q be another Q-Cartier divisor on X which is nef. Assume that 

v(X" (D+D') Ix,) =v(X, D) and that .t{X, (D+D'))~O. Then there exists 
a rp-nef divisor D~ on Z in the diagram of the proposition such that 

p* D' = f* D~ (cf. [Ka8]). 

In order to carry out the proofs of the generalized versions of 
theorems for nef and abundant divisors, we introduce the notion of a 
generalized normal crossing variety. 

Definition 6-1-5 (cf. [Ka8]). A reduced scheme X is called a gen­

eralized normal crossing variety if the complete local rings of X at the 
closed points x on X are isomorphic to . 

k[[x01' •• " xoro]]®(®f=l k[[Xil' .. " xir,]]/(Xi1 , •• " Xir,)) 

where integers t and ri depend on x. Let Xo be the normalization of X 

and let e,,: X,,=XoX x '" XxXo (n+1 factors)---,,"X be the projection onto 
X. A Cartier divisor D on X is called permissible if it induces Cartier 

divisors D" on each X" when pulled back by en' We denote by 
Divo(X) the group of permissible Cartier divisors. A generalized normal 
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crossing divisor D on X is a permissible Cartier divisor such that the 

unions D" U B" are reduced divisors with only normal crossings on each 

X" (note that each X" is nonsingular), where B" is the union of the images 

on X" of lower dimensional irreducible components of the X"" with n'>n 

(B" turns out to be a divisor with only normal crossings on X,,). Let D be 
an element of Divo(X)®Q whose support is a generalized normal crossing 

divisor. Then we can define the permissible Cartier divisor f D' by the 

system of divisors fD,,' on the X". 

Now we state some vanishing theorems for generalized normal cross­

ing varieties. For the proofs and details, we refer the reader to [Ka8]. 

Theorem 6-1-6. Let X be a complete generalized normal crossing 

variety, L e Divo(X)®Q and D e DivO<X). Assume that L is semi-ample 

and that the support of L is a generalized normal crossing divisor. Assume 

further that D is effective and that there exists an effective D' e Divo(X) 

such that D+D' e JmLJ for some positive integer m with mL e Divo(X). 

Then the homomorphisms 

9'b: Ht(X, (!Jx(fD+Kx»~Ht(X, (!Jx(fD+D+Kx» 

induced by the natural injection of sheaves (!J x-+(!J xeD) are injective for all i. 

Remark 6-1-7. A generalized normal crossing variety is locally com­

plete intersection, and hence has an invertible dualizing sheaf Wx. We 

denote by Kx here the corresponding line bundle. 

Theorem 6-1-8. Let X be a generalized normal crossing variety, let 

:r: X -+S be a proper morphism from X onto a variety S, and let L e 
Divo(x)®Q and De Divo(X). Assume that L is :r-semi-ample, and that 

the support of L is a generalized normal crossing divisor. Assume further 

that D is effective and that there exists an effective D' e DivO<X) such that 

(!Jx(D+D')~(!Jx(mL) for some positive integer m with mL e Divo(X). Let 

f: X-+Z be the morphism associated to the surjection :r*:r*(!Jx(nL)-+(!JxCnL) 

for some positive integer n such that nL e DiV'o(X) and that the natural 

homomorphism above becomes surjective. Assume that Z is irreducible 

the pull back by f induces a homomorphism Div(Z)-+Divo(X), i.e., if the 

morphisms f 0 En induce a surjective morphism from any irreducible component 

of each X" onto Z. Then R'f*(!JxC1D+Kx) are torsion free for all i. 

The Non-Vanishing Theorem for a generalized normal crossing 

variety with a nef and big divisor is of the following form. 

Theorem 6-1-9 (cf. [Ka8]). Letf: X-+Z be a morphism from a com­

plete generalized normal crossing variety X onto a complete variety Z, let 
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A e Divo(X)@Q, He DivoeX), and let q e N with qA e DivoeX), which 

satisfy the following conditions: 

e i) f induces a surjective morphism from any irreducible component 

of each Xn onto Z, 

(ii) The support of A is a generalized normal crossing divisor on X 

and r Al is effective, 

(iii) There is a nef Cartier divisor Ho on Z such that (!Jx(qH)= 

f*(!J z(Ho), and 

(iv) There is a nef and big Cartier divisor Lo on Z such that (!Jx(q(H+ 

A-Kx»=f*(!JzCLo)' 

Then there exists a positive integer p such that 

for any sufficiently large integer t. 

Remark 6-1-10. In contrast with the assertion of Theorem 2-1-1, 

we cannot say that HO(X, (!JxCtH+rAl»:;t=O for all sufficiently large integer 

t, and actually we have to take a suitable positive integer p as above. For 

example, let X be an Enriques surface with f: X ~Z = Spec k. . Then H = 
Kx satisfies the conditions of Theorem 6-1-9 with A=O and q=2, while 
HO(X, (!Jx(mKx»:;t=O if and only if m=O mod 2. 

Finally we are in a position to give the generalized version of the 
Base Point Free Theorem. 

Theorem 6-1-11 (cf. [Ka8], [Ny 1]). Let X be a normal variety of 

dimension d with £1 e Ztt_l(X)@Q such that the pair (X, £1) has only log­

terminal singularities, and let 10: X ~S be a proper morphism onto a variety 

S. Assume that He Div(X)@Q satisfies the following conditions: 

( i ) H is 1O-nej, 

(ii) (H-(Kx+£1» is 1O-nef and 1O-abundant, and 

(iii) v(X" (aH-(Kx + £1)v) = v(X, , (H-(Kx +£1),) and tc(X" (aH­

(Kx+£1),»Ofor some a e Q with a> 1, where r; is the generic point of S. 

Then His 1O-semi-ample. 

Remark 6-1-12. The proof of Theorem 6-1-11 is almost the same 

as that of [Ka8, Theorem 6.1]. We note here that the condition on the 

singularities of the pair (X, £1) cannot be replaced by the condition that 
(X, £1) has only weak log-terminal singularities, as we saw in Remark 
3-1-2 (2). 

Corollary 6-1-13. Let X be a normal variety of dimension d with £1 e 

Ztt_l(X)@Q such that the pair (X, £1) has only log-terminal singularities, 
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and let tr: X _S be a proper morphism onto a variety S. Assume that 

Kx+L1 is tr-nef and tr-abundant. Then Kx+L1 is tr-semi-ample, and hence 

is finitely generated as an (!) s-algebra. 

We conclude this chapter by stating the Abundance Conjecture. 

Conjecture 6-1-14 (Abundance Conjecture). If X is a minimal variety, 

then Kx is abundant. 

Remark 6-1-15. (1) If Kx is abundant, we call X a good minimal 

variety. In this terminology, the Abundance Conjecture is restated as 

follows: All minimal varieties are good. 

(2) When veX, Kx)=dim X, the conjecture is automatically true. 

When veX, Kx)=O, the conjecture also holds, i.e., there exists a positive 

integer m such that mKx -0 (cf. [Ka9, Theorem 8.2]). 

(3) We have only to show the following statement in order to prove 

the Abundance Conjecture (cf. [Ka8, Theorem 7.3]): 

X being minimal, Kx~O implies K(X»O. 

(4) There are some works related to the Abundance Conjecture; see 

[W3], [Mi2], [Mi3], [Mi4] and [Mk2]. 

Chapter 7. Some applications and related problems 

§ 7-1. Addition conjecture for the Kodaira dimension of an algebraic fiber 

space 

In this section, we present the result of [Ka9], which claims that the 

Iitaka conjecture on the Kodaira dimension of algebraic fiber spaces 

follows from the Minimal Model Conjecture and the Abundance Con­

jecture. 

Definition 7-1-1. An algebraic fiber space f: X _S is a proper sur­

jective morphism between algebraic varieties such that the rational func­

tion field Rat(S) is algebraically closed in Rat(X). Note that the generic 

fiber Xv of an algebraic fiber space is geometrically irreducible. The 

geometric generic fiber X, is defined by 

X~:=X,XRat(S) Rat(S) 

where - denotes the algebraic closure. 
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Definition 7-1-2. Letf: X ~S be an algebraic fiber space. A mini­

mal closed field of definition of f is a minimal element with respect to the 

inclusion relation in the set of all the algebraically closed fields K con­

tained in Rat(S) which satisfy (one of) the following equivalent conditions: 

(i) there is a finitely generated extension L of K such that 

Q(L®K Rat(S»~Q(Rat(X)®Rat(S) Rat(S» over Rat(S), 

where Q denotes the fraction field. 

(ii) there exist an algebraic fiber space f': X'~S' with Rat(S')= 
K, a variety S, a generically finite morphism 7T:: S ~S and a surjective 

morphism p: S ~S' such that the main components of X X sS and 

X' X SIS are birationally equivalent over S. 
The variation Var(f) of f is the minimum of the transendental 

degrees over k of all the minimal closed fields of definition off. 

Theorem 7-1-3 ([Ka8, Theorem 7.2]). Let f: X ~S be an algebraic 

fiber space. Assume that there exists a good minimal model X~,mln of the 

geometric generic fiber X, off defined over Rat(S). Then the minimal 

closedfield of definition KcRat(S) off is unique, and there exists a good 

minimal algebraic variety X~"mln defined over K such that there is an 

isomorphism over Rat(S) 

X~',m1nXKRat(S)~X"mln' 

Theorem 7-1-4 ([Ka8, Theorem 1.1]). Let f: X ~S be an algebraic 

fiber space with X and S being projective and nonsingular. Assume that 

there exists a good minimal model of the geometric generic fiber off defined 

over Rat(S). Then the following assertions hold: 

(i) There exists a positive integer n such that 

where det(f*w~hs) is the double dual of A r(f*oJ''Jc/s) with r=rankf*w'Jc,s' 

(ii) If L is a line bundle on S with IC(S, L)~O, then 

IC(X, w.:CIS®f* L)~IC(X,)+Max {IC(L), Var(f)}. 

In particular, we have the following corollary. 

Corollary 7-1-5. In the situation of Theorem 7-1-4, we have the 

following assertions; 

(i) IC(X, Wx/s)~IC(X,)+ Yare!). 
(ii) IfIC(S)~O, then IC(X»IC(X,)+Max{IC(S), Var(f)}. 
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(This is the so called Iitaka-Viehweg conjecture.) 

As an application of Theorem 7-1-4, we obtain the following theorem. 

Theorem 7-1-6 ([Ka8, Theorem 8.2]). Let X be a normal projective 

variety with only canonical singularities. Assume that the canonical divisor 

Kx is numerically equivalent to zero. Then the following assertions hold: 

(i) IC(X) =0, that is to say, there is a positive integer m such that 

mKx-O. 

(ii) Albanese map ax: X---+A=Alb(X) is an etale fiber bundle, i.e., 

there is an etale covering n-: B---+A such that XXAB~FxB for some 

projective variety F. 

§ 7-2. Invariance of piurigenera 

In this section, we explain the outline of Nakayama's work [Ny!], 

which asserts that the invariance of plurigenera of algebraic varieties 

under smooth projective deformation follows from the Minimal Model 

Conjecture and the Abundance Conjecture. The invariance of plurigenera 

was first proved by Iitaka [12] in case of surfaces. 

Theorem 7-2-1 ([12]). Plurigenera of compact complex surfaces are 

invariant under smooth holomorphic deformations. 

Theorem 7-2-2 ([Nyl, Theorem 8]). Let f: X ---+C be a proper surjective 

morphism from an algebraic variety X with only canonical singularities onto 

a smooth curve C such that Kx is J-semiample. Fix a point 0 e C. Let 

Xo = f- 1(0) = L:i airi be the irreducible decomposition of the fiber and put 

I={i; ai=l}. Then, 

for any m>l, 

where X~ is the generic fiber and Pm denotes the m-genus. 

The following is the main theorem of [Nyl]. 

Theorem 7-2-3 ([Nyl, Theorem 11]). Let f: X ---+C be a projective 

surjective morphism from a nonsingular algebraic variety X to a nonsingular 

curve C. Assume that f has semistable fibers and satisfies the following two 

conditions: 

(i) The Flip Conjecture holds for all morphisms over C which are 

birationally equivalent to f 
(ii) The generic fiber off has a good minimal model. 

Then we have L:ricxo P m(ri)~p m(X~). 
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We present a theorem concerning deformations of canonical singu­
larities. By using Theorem 7-2-3, Kollar obtained the following result: 
Letf: X -+C be a projective surjective morphism from an algebraic variety 

X onto a nonsingular curve C with a point to' Assume that the fiber 
Xo:=f-l(to) has only canonical singularities. Assume further the Mini­
mal Model Conjecture and the Abundance Conjecture. Then there exists 

a neighborhood Co of to in C such that the fibers X t :=f-1(t) have only 

canonical singularities for all t E Co. 
In the following, we generalize his result by taking a different 

approach. 

Theorem 7-2-4. Let X be an affine variety and let x be a closed point 

of X. Assume that there exists an effective Cartier divisor Xo of X such 

that x E Xo and (Xo' x) is a canonical singularity. Assume that the Mini­

mal Model Conjecture holds for a desingularization of X. Then (X, x) is 

a canonical singularity. 

Proof Let p: Y-+X be the relative canonical model of a desingu­

larization of X. Let X~ be the strict transform of Xo by p and let Yo be 

the pull-back p* Xo. Taking the normalization 0': z-+ X~, we have the 

trace map 

Let r be a common multiple of the indices of Y and Xo. Taking the 
double dual of the homomorphism (O'*O'*aJz)®r-+(O'*aJYoY8>r, we have the 

map 

(1) 

Let ).I be the composite of q and p. Since Xo is canonical, we have a 

natural map 

(2) 

By (1) and (2), we obtain a homomorphism ).I*aJl£;-+O'*aJ~J. Hence 

(3) O'*Ky=).I*Kxo+(some effective exceptional divisor). 

Since Ky is p-ample and 0' is finite, 0'* Ky is ).I-ample. 

Now we claim that ).I is an isomorphism and that Kylz=Kxlxo' 

Suppose that ).I is not an isomorphism. Then by taking the hyperplane 

sections, we can construct a curve which is in a fiber of ).I and has the 

nonpositive intersection number with q* Ky by the Hodge index theorem, 
which contradicts the fact that q* Ky is ).I-ample. 
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Next we claim that X is a Q-Gorenstein variety. Indeed, by a 

generalization of a result of Schlessinger [Sch], the canonical cover Xo-+Xo 

extends to a covering deformation X-+X(see [A2, §§ 9-10], [KoII]). Since 

X is a Gorenstein variety, X is a Q-Gorenstein variety; in fact, rKx E 

Div(X). Hence 

where ,1 denotes a Q-linear combination of exceptional divisors. 

Since Ky is ,u-ample, ,1 is ,u-ample. This implies that -,1 is effective 

and its support coincides with the exceptional locus of,u. Now we have 

rKxlxo=r,u*Kxlz (identifying Z with Xo) 

~r(,u*Kx+t1)lz=rKylz=rKxlxo' 

Hence ,1=0. Thus Ky=,u*Kx . This proves that X has only canonical 

singularities. q.e.d. 

§ 7-3. Zariski decomposition in higher dimensions 

In the following, we discuss the problem of the Zariski decomposi­

tion for higher dimensional varieties, a problem which should be closely 

related to the minimal model problem. 

Theorem 7-3-1 ([Z], [FtI]). Let S be a smooth projective surface over 

k and let D E Div(S)®R be a pseudo-effective divisor on S, i.e., the numer­

ical class of D is in the closure of the cone in NI(S) generated by the 

classes of effective divisors. Then we have a unique effective R-divisor 

N = L.,iEI aiEi E Div(S)®R, where the right hand side is the decomposition 

into irreducible components, satisfying the following conditions: 

(1) N =0 or the matrix [(Ei.Ej)]u,JlEIXI is negative definite. 

(2) P:=D-N is nef 

(3) (P.Ei ) =0 for every i E I. 

Furthermore, if D is a Q-divisor, then N is a Q-divisor. 

P and N are said to be the positive and the negative part of D, 

respectively. If the pair of a nonsingular surface S and a Q-divisor ,1 E 

Zd_l(S)®Q has only weak log-terminal singularities and when IC(S, Ks + ,1) 

>0, we have a morphism f: S-+S' from S onto its log-minimal model 

(S',/*(t1» (cf. [KaI], [TM], [Ft2]). Then the positive part of the Zariski 

decomposition of K s +t1 is the pull-backf*(Ks'+ f*(t1», and the support 

of the negative part coincides with the exceptional locus off 

There are some works (cf. [Bel], [Ft3], [C], [Mw2], [KalO]) which try 
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to obtain the concept of the Zariski decomposition for higher dimensional 

varieties. 

(A) In the situation of Theorem 7-3-1, N has the following charac­

terization: 
N=min {F; an effective R-divisor such that D-Fis nef}. 
Fujita's idea is to use this characterization to define the Zariski 

decomposition in higher dimension. 

Definition 7-3-2. Let D be a Q-Cartier divisor on a normal projective 

variety X over k. An effective Q-Cartier divisor F on X is said to be 
numerically fixed by D if the following condition is satisfied: For any 

birational morphism f: Y ~X from a normal projective variety Y to X 

and for any effective Q-Cartier divisor Eon Ywhich makesf*D-E nef, 

E - f* F is effective. 

A decomposition D=P+N in Div(X)®Q is called the Zariski 

decomposition of D in Fujita's sense if the following conditions are satis­

fied: 
(1) Pis nef. 
(2) N is effective and numerically fixed by D. 

P and N are said to be the positive and the negative part of D, 

respectively. The Zariski decomposition in Fujita's sense is unique if it 

exists. 

By using the notion of the Zariski decomposition in Fujita's sense, 

we can prove the following. 

Proposition 7-3-3. Let Xl and X 2 be minimal varieties birationally 

equivalent to each other. Then the following equalities hold: 

lJ(XI , KX1) =lJ(X2, Kx.) and index (Xl) = index (X2). 

Fujita proved the following theorem, which was generalized by 

Moriwaki [Mw2]. 

Theorem 7-3-4 (cf. [Ft3, Theorem 3.2]). Let 7t': X~S be an elliptic 

3-foldover C, i.e., X and S are nonsingular projective varieties of dimensions 

3 and 1, respectively, and the geometric generic fiber of 7t' is an elliptic curve. 

Assume that the canonical divisor Kx is pseudo-effective. Then there exists 

a proper birational morphism f: Y ~ X such that f* Kx (and hence Ky) admits 

the Zariski decomposition in Fujita's sense, and its positive part is semi­

ample. In particular, the canonical ring of X is finitely generated over C. 

(B) In the situation of Theorem 7-3-1, the natural homomorphism 
HO(S, IPsC[mP]»~HO(S, IPs([mD))) is bijective for any meN. Cutkosky, 
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Moriwaki and the first author use this property to define the Zariski 

decomposition for higher dimensional varieties: 

Definition 7-3-5. Let f: X --+S be a proper surjective morphism of 

normal varieties. An expression D=P+N of R-Cartier divisors D, P and 

N is called the Zariski decomposition of D relative to f in C-K-M's sense 

if the following conditions are satisfied: 

(1) PisJ-nef, 

(2) N is effective, and 

(3) the natural homomorphisms f*(9x([mP])--+f*(9x([mD]) are bi­

jective for all mEN. 

P and N are said to be the positive and the negative part of D, respectively. 

Note that the Zariski decomposition in Fujita's sense is the one in 

C-K-M's sense. Cutkosky pointed out the following important: 

Remark 7-3-6 (cf. [C, Example 1.6]). There exists an example of a 

big divisor D on a smooth projective 3-fold X such that f*(D) does not 

have a Zariski decomposition in C-K-M's sense for any birational mor­

phismf: Y--+Xfrom a smooth projective 3-fold Yto X, if we replace the 

field of coefficients R by Q. 

But this example has the Zariski decomposition in C-K-M's sense if 

the field of coefficients is R, which shows that it is necessary to consider 

real coefficients even in the case of decompositions of Q-divisors. 

The Zariski decomposition of an f-big R-Cartier divisor D in 

C-K-M's sense is unique if it exists (cf. [KalO, Proposition 4]). For any 

proper surjective toric morphism f: X --+S between toric varieties, an 

effective Cartier divisor D on X always has the Zariski decomposition in 

C-K-M's sense (cf. [KalO, Proposition 5]). 

By extending the techniques which are used in the previous chapters, 

one can also prove: 

Theorem 7-3-7 (cf. [Kal0, Theorem 1]). Let f: X --+S be a proper 

surjective morphism of normal algebraic varieties, and let LI be a Q-divisor 

on X such that the pair (X, LI) has only log-terminal singularities. Assume 

that Kx+LI is f-big and that the Zariski decomposition in C-K-M's sense 

exists in Div(X)0R: 

Then the positive part P is J-semi-ample, and hence the relative log-canonical 

ring 

is finitely generated as an (9 s-algebra. 
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Theorem 7-3-7 tells us in the situation above that the positive part of 
the decomposition is the pull-back of the log-canonical divisor of the 

log-minimal model, a result similar to that in dimension 2. 
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