Introduction to the Optical Transfer Function

CHARLES S. WILLIAMS and ORVILLE A. BECKLUND Dallas, Texas

A Wiley-Interscience Publication

John Wiley & Sons

New York / Chichester / Brisbane / Toronto / Singapore

Contents

1.	OTF Historical Background	1
	Introduction	1
	The Early History of Optical Design and Image Evaluation	2
	Laying the Foundation for OTF-1850 to 1940	6
	The Appearance of Some Important Mathematics	8
	Growing Awareness of OTF—The 1940s	9
	Inventive OTF Instrumentation—The 1950s	10
	Adjustment to Practice—The 1960s	13
	Acceptance—The 1970s	15
	The 1980s	16
	Perspective	18
	References	19
2.	Concepts	23
	Introduction	23
	Spatial Frequency	23
	Flux Density and Distributions	26
	Frequency Spectrum	28
	Three-Bar Pattern Spectrum	30
	Even and Odd Harmonics and Functions	32
	A Stepladder Bar Pattern	33
	Spectrum for a General Distribution	35
	Extension to Two Dimensions	37
	Contrast and Contrast Transfer	38
	Distributions of Physical Quantities	40
	Point Sources	41
	Stops and Pupils	42
	Point Spread Functions	43
	Spread Functions for Small Aberrations	50
	Line Spread Functions	55
	The Edge Trace	57
	Isoplanatism	60
	Linear Superposition	60

viii	CONTENTS
V111	CONTENTS

	Coherence	61
	References	62
_	N. d. 10 N.	
3.	Notation and Coordinates	64
	Introduction	64
	Sign and Nomenclature Conventions	66
	Cardinal Points	66
	Paraxial Notation	67
	Need for Special Coordinates	69
	Wave-Front Aberration	70
	Nonparaxial Notation	73
	Transfer Equations	78
	Pupil Variables	80
	Reduced Coordinates	81
	Shifting the Image Plane	84
	Magnification with Distortion	89
	References	91
4.	Diffraction Integral and Wave-Front Aberration Function	92
	Introduction	92
	Wave-Front Expressions and the Diffraction Integral	93
	The Strehl Ratio	100
	Anamorphotic Stretching	101
	The Pupil Function	102
	The Wave Aberration Function	103
	Power Series Expansion of the Wave Aberration Function	104
	Spherical Aberration	108
	Coma	115
	Astigmatism	119
	Curvature of Field	124
	Distortion	124
	Expansion of the Wave Aberration Function in Zernike	
	Polynomials	126
	References	131
5.	Mathematical Theory of OTF	134
	Introduction	134
	Definitions, Nomenclature, and Conventions	135
	Linearity and Isoplanatism	142
	Image of a General Distribution	144
	One-Dimensional Analysis	146
		- 10

CONTENTS ix

	Optical Transfer Function	149
	The Perfect OTF	152
	Perfect OTF from Spread Function	158
	Effects of Certain Aberrations on the Optical Transfer Function	162
	Apodization	170
	The Geometrical Optics OTF Approximation	177
	The Polychromatic OTF	178
	References	179
6.	Optical Design and Image Criteria	181
	The Nature of Optical Design	181
	Automatic Lens Design	188
	Selected Features of Design Programs	192
	Manufacturing Tolerances	195
	Assessment of Image Quality	196
	Resolving Power versus Acutance	199
	The Phase Transfer Function	204
	References	208
7.	Merit Functions and Aberration Balancing	211
	Introduction	211
	Single MTF Values and Certain Graphical Areas as Criteria of	
	Performance	213
	A Merit Function Based on the Low-Frequency End of the MTF	216
	Other OTF-Related Merit Functions	217
	Merit Evaluations Based on the Aberration Function	218
	Mean Square Value of the Aberration Function as a Merit	
	Function	218
	Variance of the Aberration Function as a Merit Function	219
	Variance of the Aberration Difference Function as a Merit	
	Function	221
	Aberration Balancing Based on the Power Series Expansion of	
	the Wave Aberration Function	224
	Aberration Balancing with Zernike Polynomials	234
	Comparisons of Optimizing and Balancing Procedures	237
	The Effect of Optical Parameter Variations on the Optical	
	Transfer Function	240
	References	244
8.	Measurement	246
	Introduction	246
	Components of a Measuring System	249

x	CONTENTS
x	CONTENT

	Requirements of the Components	249
	Direct Methods	255
	Effect of Finite Grating Length	258
	Changing Spatial Frequency	261
	The Area Grating	263
	Effect of Slit Width	268
	Square Wave Gratings	270
	Indirect Methods	272
	Interferometric Methods	274
	The Interferometer	275
	An Interferometric Measuring Equipment	282
	Other Interferometric Equipment	285
	References	288
9.	Calculation of the OTF: Analytical Methods	291
	Introduction	291
	The OTF Calculated for Defocusing	293
	The OTF Calculated for Astigmatism	300
	References	316
10.	Calculation of the OTF: Numerical Methods	317
	Introduction	317
	Optical Path Difference Data by Interferometry	320
	Calculation of the Aberration Polynomial	323
	Extension to More Than One Independent Variable	325
	Choice of Orthogonal Polynomial	326
	Gauss Quadrature	329
	References	335
App	endix A. Calculated Optical Transfer Functions	337
	Introduction	337
	Defocusing	337
	Primary Spherical Aberration	338
	Primary with Secondary Spherical Aberration	341
	Primary and Secondary Coma with Defocusing	345
	Spherical Aberration with Color	348
	Optimum Balanced Fifth-Order Spherical Aberration	349
	Primary Coma at Different Azimuths	354
	Nonrotationally Symmetric Systems	357
	References	360

CONTENTS xi

Appendix B: Some Mathematics	362
The Fourier Transform	362
The Delta Function	365
The Convolution Integral	367
Convolution Identities	369
Convolution Integral When One Function Is Sinusoidal	370
Significance of the Convolution Integral	372
Convolution and Spread Functions	378
Other Convolution Integrals	379
The Correlation Function	380
Examples	381
References	386
Appendix C: Diffraction Integral Fundamentals	387
Introduction	387
The Traveling Wave Equation	387
Spherical Wave-Fronts	391
Application of the Huygens-Fresnel Principle to a Spherical	
Wave-Front	395
Application of the Huygens-Fresnel Principle to Chapter 4	398
References	400
INDEX	401