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Abstract This review describes the development of the

physics of hadronic cross sections up to recent LHC results

and cosmic ray experiments. We present here a comprehen-

sive review – written with a historical perspective – about

total cross sections from medium to the highest energies

explored experimentally and studied through a variety of

methods and theoretical models for over 60 years. We begin

by recalling the analytic properties of the elastic amplitude

and the theorems about the asymptotic behavior of the total

cross section. A discussion of how proton–proton cross sec-

tions are extracted from cosmic rays at higher than accel-

erator energies and help the study of these asymptotic lim-

its, is presented. This is followed by a description of the

advent of particle colliders, through which high energies and

unmatched experimental precisions have been attained. Thus

the measured hadronic elastic and total cross sections have

become crucial instruments to probe the so called soft part

of QCD physics, where quarks and gluons are confined, and

have led to test and refine Regge behavior and a number of

diffractive models. As the c.m. energy increases, the total

cross section also probes the transition into hard scattering

describable with perturbative QCD, the so-called mini-jet

region. Further tests are provided by cross section measure-

ments of γ p, γ ∗ p and γ ∗γ ∗ for models based on vector

meson dominance, scaling limits of virtual photons at high

Q2 and the BFKL formalism. Models interpolating from vir-

tual to real photons are also tested.

It seems to us to be a necessary task to explore bit-by-bit

the rigorous consequences of analyticity, unitarity and cross-

ing. Who knows if someday one will not be able to reassemble

the pieces of the puzzle. – A. Martin and F. Cheung, based on

1967 A.M. Lectures at Brandeis Summer School and Lec-

tures at SUNY and Stony Brook (Martin and Cheung in Ana-

a e-mail: pancheri@lnf.infn.it

lyticity properties and bounds of the scattering amplitudes.

Gordon and Breach Science, New York, 1970).
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1 Introduction

This review aims at illustrating the development of studies

of total hadronic cross sections in a historical perspective,

primarily for hadrons and photons at high energies.

The optical theorem relates a total cross section lin-

early to the absorptive part of a forward elastic ampli-

tude. Moreover, at very high energies, as the imaginary

part of the forward amplitude dominates the real part,

the elastic differential cross section in the forward direc-

tion becomes proportional to the square of the total cross

section. Thus, discussions of total cross sections become

entwined with that of elastic cross sections. Hence, in this

review considerable attention is also paid both to exper-

imental and theoretical aspects of the elastic cross sec-

tions.

As this rather lengthy review discusses many subjects, we

provide below a quick overview to help the reader choose

sections of the review that may be of particular interest. Serv-

ing mostly as a guide through the large amount of material

we shall deal with, no references are included in this general

introduction, but they are of course available in the individual

sections, at the beginning of which we provide a description

of contents and a brief guide to the subsections.

In Sect. 2, kinematics and partial wave expansions are

obtained for the elastic amplitude and general principles,

such as unitarity, are employed to derive the optical the-

orem. An introduction to the asymptotic behavior is pro-

vided via the Regge formalism, the Pomeranchuk theorem

and finite energy sum rules. Through analyticity, Martin–

Froissart rigorous upper bounds are established for the total

cross sections. For charged particles, the EM (Coulomb)

amplitude is mostly real (and large near the forward direc-

tion) and hence measurements of the needed real part of

the “strong” forward amplitude (and measurement of the

ratio of the real to the imaginary part of the forward

scattering amplitude, the so-called ρ(s) parameter) often

involve Coulomb interference and soft radiation. We dis-

cuss it in some detail and supplement it with a proposal

to employ soft radiation as a tool to measure total cross

sections.

In Sect. 3, we discuss how cosmic radiation is employed

as a non-accelerator method to measure total cross sec-

tions and provide valuable information at energies substan-

tially larger than those of earth bound accelerators such as

the Large Hadron Collider (LHC). Along with some his-

tory of the subject beginning with Heisenberg, a descrip-

tion of the Glauber formalism for nuclei is presented for the

extraction of pp cross sections from data and correspond-

ing uncertainties in the models are discussed. We follow the

historical path which led to the advances in experimental

techniques and theoretical methods that continue to provide

a unique window towards fundamental physics and astro-

physics, at energies otherwise unreachable through accelera-

tors in the foreseeable future. Recent theoretical results about

the power-law spectra in the cosmic ray energy distribution

both for fermions (electrons/positrons) and bosons (helium

and other nuclei) are briefly discussed and shown to agree
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with high precision data from AMS, Auger and other Col-

laborations.

Section 4 deals with pre-LHC measurements of σtotal, the

total pp and p̄ p cross section, such as those made at the

CERN Intersecting Storage Rings (ISR), the CERN S p̄ pS

and the FermiLab Tevatron. These pioneering experiments

verified the rise with energy of σtotal – suspected from exper-

iments with cosmic rays – and of the slope parameter B(s),

which defines the behaviour of the elastic differential cross

section in the forward region, as well as discovered consider-

able variations in the ρ parameter. The black-disk limit and

how close we may be to it are also discussed herein.

In Sect. 5, we provide theoretical scenarios and phe-

nomenology of the elastic amplitude and hadronic cross sec-

tions, that span over 80 years, beginning with the original

Molière theory of multiple scattering, followed by Heisen-

berg’s considerations about the energy behavior of σtotal,

and culminating in various QCD-inspired models. Eikonal

and Regge models are discussed along with hadronic mat-

ter distribution. We recall the development in QED of the

need for soft-photon re-summation to avoid the infra-red

(IR) catastrophe, and the semi-classical, but Lorentz covari-

ant, methods for soft radiation subsequently developed. As

a corollary, a Regge trajectory for the photon is obtained.

These methods are extended to discuss soft QCD radiation

and the divergent nature of strong coupling constant for

small transverse momenta αs(kt ). Asymptotic behavior of

scattering amplitudes in QCD, the Balitsky, Fadin, Kuraev

and Lipatov (BFKL) equation and spontaneously broken

gauge theories are discussed along with the Reggeisation

of the gauge particles therein. Next, eikonal mini-jet models

for σtotal and their phenomenology are developed. A brief

description of the AdS/CFT correspondence for σtotal is pre-

sented. Also, some details of the phenomenology of σtotal

by the COMPETE and COMPASS Collaborations are pro-

vided.

Details of the energy and momentum-transfer depen-

dence, the slope, the dip, the real and the imaginary parts

of the elastic (and diffractive) amplitude are discussed in

Sect. 6. Early models and their updates such as Durham, Tel

Aviv, mini-jet and multi-pomeron models, are presented as

required by more refined data. A concise summary of the

model results is also provided

Photon processes are discussed in Sect. 7 beginning

with kinematics of interest for real versus virtual photons

and the relevant parton model variables. Sakurai’s vector

meson dominance, Gribov’s model and photo-production

at HERA are taken up next, along with γ γ and γ γ ∗

processes at LEP and factorisation. The transition from

real to virtual photon processes is discussed and mod-

els such as Haidt’s are presented. The results of the

Tel Aviv and mini-jet models with soft-gluon resumma-

tion are discussed. The Balitsky–Kovchegov (BK) equa-

tion and its various applications such as geometrical scaling

are considered and directions beyond into Pomeron loops,

explored.

Section 8 discusses the layout of the LHC experimental

areas as had been planned before its start. Expectations were

to produce total cross section data with 5% accuracy after a

3 year run. It is gratifying to note that forward physics data

with 3% accuracy have already been achieved. The high-

est energy physics results are shown for the total, elastic

and inelastic pp cross sections at presently reached LHC

energies,
√

s = 7, 8 and 13 TeV, obtained by the TOTEM,

ATLAS and CMS groups. Predictions at
√

s = 14 TeV are

indicated.

2 The theoretical framework from unitarity and

analyticity

This chapter is devoted to a review of the basic formalism

pertaining to elastic scattering and to the well-established

theorems on total, elastic and inelastic cross sections. Here

analyticity and unitarity play a crucial role for the scattering

of hadrons, protons and mesons, such as pions and kaons,

while scattering of their QCD constituents and their con-

tribution to total cross section dynamics will be introduced

when dealing with QCD models.

For this material, there exist both books and reviews,

nonetheless we reproduce most of the relevant material to

introduce, in a modern language, the necessary notation and

put together all the theorems which are important for our

present understanding of hadronic physics or for optimal fit-

ting of the existing data. One case at hand is whether the

limitations imposed by the Froissart bound are satisfied and

another case is the application to very high energy data fitting

by Finite Energy Sum Rules (FESR), derived from analytic-

ity and crossing.

We shall discuss the early formalism of the partial wave

expansion of the elastic scattering amplitude, needed to

understand the Martin–Froissart theorem, and relate it to

the Regge pole expansion which played a major role in

phenomenological description of inclusive and total cross

sections in the 1960s and 1970s. To accommodate such

a description and the rise of σtotal, the Pomeron trajec-

tory corresponding to the exchange of a state with the

quantum numbers of the vacuum was introduced. Thus, a

picture of σtotal, with a Regge and a Pomeron exchange,

unrelated to the underlying parton dynamics of scattering,

was one of the first and still very successful descriptions.

Finally, from the partial wave expansion for the amplitude,

and through the optical theorem, we shall introduce the

eikonal representation of the total cross section. This rep-

resentation is at present the major formalism, into which
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QCD models for the energy behaviour of σtotal are embed-

ded.

This section is divided into subsection headings as indi-

cated in the following:

– General principles behind relativistic scattering ampli-

tudes in Sect. 2.1

– Kinematics and analyticity of elastic amplitudes in

Sect. 2.2

– Probability conservation and unitarity in Sect. 2.3

– The optical theorem and total cross section in Sect. 2.4

– Partial wave expansion of elastic amplitudes in Sect. 2.5

– Regge expansion and asymptotic behaviour of ampli-

tudes in Sect. 2.6

– Finite energy sum rules and duality for the elastic ampli-

tudes in Sect. 2.7

– Various derivations of the Martin–Froissart bound in

Sect. 2.8

– The Pomeranchuk theorem in Sect. 2.9

– Determination of ρ through Coulomb interference in

Sect. 2.10 with considerations about Coulomb interfer-

ence and soft radiation in Sects. 2.10.1 and 2.10.2.

2.1 General principles

Strong interactions are presently understood in terms of inter-

actions between quarks and gluons. Quantum chromody-

namics (QCD) can give remarkably accurate results within

perturbation theory, when dealing with very high energy

collisions and their final products in the large momentum-

transfer processes. However, the bulk of collisions among

high energy particles involves low-momentum partons which

escape the perturbative treatment. For this purpose, we have

to resort to some general principles – valid beyond per-

turbation theory – to establish the necessary formalism

and derive some general theorems. Later we shall develop

some tools to include QCD phenomena in this general pic-

ture.

These general principles were established in the late 1950s

and consist of unitarity, analyticity and crossing symmetry.

Each of them is related to basic axioms:

– unitarity to the conservation of probability in scattering

processes;

– analyticity to causality and

– crossing symmetry to the relativistic nature of the inter-

action.

These basic principles are also at the foundations of relativis-

tic Quantum Field Theory (QFT) [2].

We shall describe in detail how one obtains the so-called

Froissart bound, which imposes limits to the asymptotic

behavior of the total cross section in two particle scattering.

This limit was obtained first by Froissart [3] and successively

reformulated by Martin [4] and Lukaszuk [5]. The impor-

tance of this limit cannot be underestimated, as most efforts

to describe theoretically the total cross section behaviour or

most fits to present data must contemplate the asymptotic

satisfaction of the Froissart bound. For this reason we shall

describe how this limit is obtained in several different deriva-

tions, pointing out in all cases the common hypothesis, which

is always the presence of a finite mass in final state scatter-

ing.

The basic quantity to study in particle physics is the prob-

ability that a certain set of particles in a given initial state |i〉
undergo a collision and scatter into a final state | f 〉.

To this effect, the process is described by the quantity

S f i = 〈 f |S|i〉 (2.1)

where S is called the S-matrix (S for scattering) and S f i are

the matrix elements. Since the scattering must also include

the possibility that nothing occurs, the S-matrix is written in

terms of the T -matrix, namely

S f i = δ f i + i(2π)4δ4(P f − Pi )T f i (2.2)

where the four-dimensional δ-function imposes energy–

momentum conservation on all particle momenta p j , and,

with obvious notation, Pi, f =
∑

all pi, f . The relevant

matrix elements define the scattering and are functions of the

momenta of the scattering particles, in particular of the var-

ious invariants which can be constructed with the momenta.

Let us then turn to the kinematics before going further into

the dynamics.

2.2 Kinematics of elastic scattering

Let us consider the two body process

a(p1) + b(p2) → c(p3) + d(p4). (2.3)

Usually, two different set-ups are most frequently encoun-

tered: center of mass collisions, as in most if not all present

day accelerator experiments at high energies and fixed target

collisions, as is the case for cosmic ray proton-air collisions or

low-energy photo-production experiments. It is usual to call

Laboratory frame where fixed target collisions take place.

However, there is another frequently encountered possibility,

namely the kinematic configuration of two collinear particles

of different momentum. This situation is found in electron–

and photon–proton collisions at HERA and generally speak-

ing is typical of parton–parton collisions. We shall present

in the following the kinematics of all these three different

possibilities.

In the c.m. frame of particles a and b, we write

p
μ
1 = (Ea, 0, 0, p), (2.4)

p
μ
2 = (Eb, 0, 0,−p), (2.5)
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p
μ
3 = (Ec, q sin θ, 0, q cos θ), (2.6)

p
μ
4 = (Ed ,−q sin θ, 0,−q cos θ), (2.7)

which can be described by two independent variables, to be

chosen among three relativistic invariants, the so called Man-

delstam variables, i.e.

s = (p1 + p2)
2 = (p3 + p4)

2, (2.8)

t = (p1 − p3)
2 = (p2 − p4)

2, (2.9)

u = (p1 − p4)
2 = (p2 − p3)

2. (2.10)

For general processes, we have

s + t + u = m2
a + m2

b + m2
c + m2

d = h (2.11)

and thus for elastic scattering, namely

a + b → a + b (2.12)

we have p ≡ q with

p2 =
s2 + (m2

a − m2
b)

2 − 2s(m2
a + m2

b)

4s
, (2.13)

= [s − (ma + mb)
2][s − (ma − mb)

2]
4s

, (2.14)

and

s = m2
a + m2

b + 2p2 + 2

√

m2
b + p2

√

m2
b + p2, (2.15)

t = −2p2[1 − cos θ ] (2.16)

where θ is the scattering angle in the c.m. frame.

For collisions not taking place in the center of mass, the

kinematics reads differently. While pp and p̄ p scattering in

present day accelerators take place through center of mass

collisions, this was not true for early experiments, where typ-

ically a proton or antiproton was directed to a fixed hydrogen

target, and it is also not true for meson proton scattering, such

as πp, K p or γ p, where pions, kaons or photons are directed

to a fixed hydrogen target. In such cases, for the kinematics

in the laboratory frame we get

s = m2
a + m2

b + 2ma Eb (2.17)

so that

spp = 2m2
p + 2m p Elab, (2.18)

sπp = m2
p + m2

π + 2m p Eπ , (2.19)

sγ p = m2
p + 2m p Eγ . (2.20)

In all the above cases, the proton is at rest in the laboratory. A

different case is the one encountered at HERA, where the two

beams, photons and protons, collide with different momenta.

For real photons of momentum q colliding with a proton of

energy E p, one has

q = s − m2

2m2
E p

(

1 −
√

1 − m2

E2
p

)

. (2.21)

The kinematics is still different for virtual photon scattering

and will be described in Sect. 7.

Because of energy–momentum conservation and of the

condition imposed by Eq. (2.11), physical processes can take

place only for those values of the variables s, t and u which

lie in the so called physical region. Such a region is defined

as [2]

stu ≥ as + bt + cu (2.22)

where

ah = (m2
1m2

2 − m2
3m2

4)(m
2
1 + m2

2 − m2
3 − m2

4), (2.23)

bh = (m2
1m2

3 − m2
2m2

4)(m
2
1 + m2

3 − m2
2 − m2

4), (2.24)

ch = (m2
1m2

4 − m2
2m2

3)(m
2
1 + m2

4 − m2
2 − m2

3). (2.25)

For the equal-mass case, this reduces to the condition stu ≥ 0

and the allowed regions are shown in the dashed areas of

Fig. 1.

2.3 Unitarity and the scattering amplitude

The measurement of the total cross section is based on two

complementary methods: counting the number of collisions

and, measuring the very forward scattering probability. The

second method is based on a fundamental physical property

i.e., the conservation of probability, which is embedded in

the unitarity property of the S-matrix, namely

t=0

s=0u=0

t

su

Fig. 1 Physical region for equal-mass elastic scattering
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SS† = 1. (2.26)

In terms of the matrix elements, we have

(SS†) f i =
∑

n

S f n S∗
ni = δ f i (2.27)

where n runs on all possible intermediate states. This con-

dition ensures the normalisation and orthogonality of states

in the reaction. In particular, for the i = f case, Eq. (2.27)

ensures that the sum over all allowed transitions from a given

state |i〉 to any possible final state, is one, namely

∑

n

|Sni |2 = 1. (2.28)

Equation (2.28) is the statement of conservation of probabil-

ity in the scattering.

We can now proceed to derive the optical theorem, by

using Eqs. (2.27) and (2.2) to obtain

T f i − T ∗
i f = (2π)4i

∑

n

δ4(P f − Pn)T f nT ∗
in . (2.29)

Because the left-hand side of this equation is linear in T,

while the right-hand side is quadratic, if the T-matrix can be

expanded in a small parameter (say a coupling constant), then

unitarity ensures that the T-matrix elements are hermitian. In

the general case, one uses Eq. (2.29) to obtain the optical

theorem, namely

2ImTi i = (2π)4
∑

n

δ4(Pi − Pn)|Tin|2 (2.30)

where the amplitude Ti i indicates elastic scattering in the for-

ward direction and where the right-hand side, a part from a

normalisation factor, gives the total cross section for scatter-

ing from an initial state |i〉 into any possible final state, as

shown in the following subsection. The reader is warned that

different authors use different normalisations for the elastic

scattering amplitudes and hence due care must be taken in

using various unitarity expressions.

2.4 The optical theorem and the total cross section

We follow here the definitions and normalisations as in [6].

Let us start with the general definition of total cross section,

by first introducing the probability that a given two parti-

cle initial state |i〉 scatters into all possible final states | f 〉,
namely

∑

f

P f i =
∑

f α

∫

⎡

⎣

N f
∏

n=1

d3 pn

(2π)32En

(S
†
i f S f i )

⎤

⎦ (2.31)

where the sun runs over all final states and all possible quan-

tum numbers α of all possible final states. Next we use the

S-matrix definition in terms of the T-matrix

∑

f

P f i =
∑

f α

∫
N f
∏

n=1

d3 pn

(2π)32En

×|T f i |2(2π)4δ4(P f − Pi )(2π)4δ4(P f − Pi )

(2.32)

and define the probability of the scattering per unit volume

and unit time, by using the conventional way to interpret

(2π)4δ4(P f − Pi ) as the four-dimensional scattering vol-

ume VT. Using the language of the laboratory frame, where

the initial state consists of a target particle (T) and a projectile

(P), a further step is taken by considering the scattering per

target particle, dividing by the target particle density 2ET ,

and obtaining the cross section by further dividing this prob-

ability by the flux of incoming particles, 2EPvP,lab. We then

have

σtot

≡
∑

f α

(Probability per target particle per unit time)

flux of incoming particles

=
∑

f α

(Prob. per target particle per unit time)

2EPvP,lab

= (2π)4

4ET EPvP,lab

∑

f α

∫
N f
∏

n=1

d3 pn

(2π)32En

|T f i |2δ4(P f − Pi ).

(2.33)

The next step is to use Eq. (2.30) to relate the total cross sec-

tion to the imaginary part of the forward scattering amplitude

so as to obtain, in the cm frame,

σtotal = ImTi i

2k
√

s
(2.34)

where k is the center of mass momentum of the incoming

particles and
√

s the c.m. energy. We then see that the total

cross section can be measured in two different ways, either

through the total count of all the final states hitting the detec-

tor or through the imaginary part of the forward elastic ampli-

tude. In the next section, we will establish some definitions

and properties of the elastic scattering amplitude.

2.5 The elastic scattering amplitude and its partial wave

expansion

For two equal-mass particle scattering in the c.m. system, the

Mandelstam invariants s, t, u take a particularly simple form

and the physical region for the s-channel is defined as

q2
s = s − 4m2

4
> 0, cos θs = 1 + t

2q2
s

< 1; (2.35)

or s > 4m2, t ≤ 0, u ≤ 0. (2.36)
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Let then the elastic scattering amplitude A(s, cos θs) be

expanded in a series of Legendre polynomials

AF (s, cos θs) =
√

s

πqs

∞
∑

l=0

(2l + 1)Pl(cos θs)a
F
l (s), (2.37)

where the subscript F refers to the normalisation used

by Froissart. Martin’s normalisation differs by a factor π ,

namely

AM (s, cos θs) =
√

s

qs

∞
∑

l=0

(2l + 1)Pl(cos θs)a
M
l (s). (2.38)

For simplicity, we shall now use θs ≡ θ . Using elastic uni-

tarity, it is rather simple to obtain some limits on the partial

wave amplitudes al .

2.6 Asymptotic behaviour and Regge theory

We present here a brief description of the Regge expansion

which has been very useful in molding our ideas about the

behavior of elastic and total cross sections as a function of

energy. The Regge picture forms the backbone of high energy

phenomenology of cross sections. To illustrate its central

theme, let us consider the partial wave expansion of an elastic

scattering between two equal mass spinless particles of mass

m

A(s, cos θs) =
∞
∑

l=0

(2l + 1)Pl(zs)a(l, s), (2.39)

where the partial wave amplitude a(l, s) = (
√

s

πqs
)aF

l (s) and

zs = cos θs . This expansion, for physical s-channel scat-

tering (s > 4m2) certainly converges for |zs | ≤ 1. The

Regge expansion consists in obtaining a representation valid

for large zs through a continuation from integral values of

l to continuous (complex) values of l via the Sommerfeld–

Watson (W–S) transformation. In non-relativistic potential

scattering, Regge was able to prove that, for a superposition

of Yukawa potentials, the amplitude a(l, s) is an analytic

function of l and its only singularities are poles [the famous

Regge poles, l = α(s))] and that bound states and resonances

are simply related to them. The situation in the relativistic

case is less clear and technically more involved [7,8]. For

integral values of l, Eq. (2.39) can be inverted to give

a(l, s) = 1

2

∫ 1

−1

A(s, z)Pl(z). (2.40)

While the above equation permits an analytic continuation

of the function a(l, s) to complex values of l, it is not suit-

able for completing the W–S transformation due to the bad

asymptotic behavior of P(l, z) for complex l [7]. Hence, a

technical nicety, the Froissart–Gribov projection, is required.

Assume that A(s, z) is polynomially bounded so that a fixed

s-dispersion relation (with N subtractions) can be written

down in the variable z:

A(s, z) =
N−1
∑

n=0

γnzn + zN

π

∫ ∞

zr

dz′Dt (s, z′)

z
′ N (z′ − z)

+ zN

π

∫ −∞

−zl

dz′ Du(s, z′)

z
′ N (z′ − z)

, (2.41)

where Dt and Du are the t and u channel discontinuities of

the amplitude. Substituting the above in Eq. (2.40), we find

that

a(l, s) = 1

π

[∫ ∞

zr

dx Dt (s, x)Ql(x)

+
∫ −∞

−zl

dx Du(s, x)Ql(x)

]

, (2.42)

obtained upon using the identity

Ql(x) = 1

2

∫ 1

−1

(dx)
Pl(z)

z − x
. (2.43)

Since for positive integral values of l, Ql(−z) = (−1)l+1

Ql(z), we may rewrite Eq. (2.42) as

a(l, s) = 1

π

∫ ∞

zo

dx[Dt (s, x) + (−1)l Du(s, x)]Ql(x),

(2.44)

where zo is the smaller of zl and zr . To avoid obtaining dan-

gerous factors such as eiπl for complex l when we analyt-

ically continue Eq. (2.44), it is useful to define the “signa-

tured” Froissart–Gribov amplitudes a±(l, s)

a±(l, s) = 1

π

∫ ∞

zo

dx[Dt (s, x) ± Du(s, x)]Ql(x), (2.45)

which can be continued for all ℜe l > N , since in this region,

the above integrals converge. The positive signature ampli-

tude a+(l, s) = a(l, s) for even l and the negative signature

a−(l, s) = a(l, s) for odd l. Thus, the W–S transformation

is to be performed on the signatured total amplitudes

A±(s, z) =
l=∞
∑

l=0

(2l + 1)a±(l, s)Pl(z), (2.46)

separately. The physical amplitude is then given by the com-

bination

A(s, z) = 1

2
[A+(s, z) + A+(s,−z)

+ A−(s, z) − A−(s,−z)]. (2.47)

For each of the amplitudes in Eq. (2.46), one first replaces

the sum by a contour C which encircles all the integers in the

sum

A±(s, z) = i

2

∫

C

(2l + 1)a±(l, s)Pl(−z)

sin πl
, (2.48)
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Fig. 2 Graphical representation of the Sommerfeld–Watson transfor-

mation contour in the angular momentum plane

since the function sin πl has poles at all the integers with

residue (−1)l/π and use has been made of the property that

for integers Pl(−z) = (−1)l Pl(z). The next step is to open

the contour as in Fig. 2 and one finds a large semi-circle in the

positive quadrant, a background integral running vertically

at ℜe l = −1/2 and the contributions from any singularities

in a±(l, s). We expect Regge poles and perhaps Regge cuts.

Ignoring the cuts for the moment, we may write

A±(s, z) = i

2

∫

C ′

(2l + 1)a±(l, s)Pl(−z)

sin πl

−
∑

j

πβ±
j (2α

±
j + 1)Pα±

j
(−z)

sin πα±
j

, (2.49)

where the sum includes all poles with ℜe α j (s) > −1/2 and

the corresponding β±
j (s) denote their residue. For large z

(which is synonymous with large t for fixed s), Pα(z) → zα

and thus, in this limit A±(s, z) would be controlled by the

Regge pole to the farthest right (called the leading Regge

pole). Hence, one arrives at the Regge asymptotic behavior

result that

A±(s, t) → χ±(s)tα±(s), (2.50)

in the limit t → ∞ for fixed s. Of course, had we made the

Regge expansion in the t channel, we would have obtained

the result

A±(s, t) → χ±(t)sα±(t), (2.51)

in the limit s → ∞ for t fixed. Putting in the proper phases,

we obtain for the pole contribution to the amplitude (which

dominates the background integral for all Regge poles with

ℜe α(t) > −1/2) to be of the form

A(s, t) → −γ+(t)
e−iπα+(t) + 1

sin πα+(t)

(

s

s0

)α+(t)

−γ−(t)
e−iπα−(t) − 1

sin πα−(t)

(

s

s0

)α−(t)

. (2.52)

Using the form – valid for large s (i.e. ignoring masses) –

σtot(s) =
(

16π

s

)

ℑm A(s, 0), (2.53)

we have

σtot(s) → 16π

s0

[

γ+(0)

(

s

s0

)α+(0)−1

+ γ−(0)

(

s

s0

)α−(0)−1
]

. (2.54)

If α+(0) = 1, then the total cross section would go to a

constant value. This is the celebrated Pomeron pole. It has

the added virtue that the ratio of the real part to the imaginary

part of the forward elastic amplitude would be strictly zero,

i.e.

ℜe A(s, 0)

ℑm A(s, 0)
|α+(0)=1 → 0, (2.55)

exhibiting the limiting feature of diffraction scattering.

Hence, the early excitement about the Pomeron.

By contrast, were α−(0) = 1, not only would the relative

roles of the real and the imaginary parts be reversed but there

would be a genuine spin 1 massless physical particle pole

(analogous to the photon) in the elastic amplitude. Since in

the hadronic spectrum we have no massless particles – of

any spin – we would conclude that γ−(0) = 0 if α−(0) =
1. Hence, there would be no contribution to the total cross

section from an α−(0) = 1 Regge pole (since it would have

a vanishing residue). However, the real part may be finite

then.

Experimental data clearly indicate that (i) all total cross

sections increase at high energies and that (ii) the “rho”

parameter

ρ(s, o)| = ℜe A(s, 0)

ℑm A(s, 0)
≪ 1. (2.56)

The question then arises as to how to implement these

facts phenomenologically in a Regge picture. Some the-

oretical progress has been made regarding the imaginary

part in QCD. In the BFKL Pomeron [9] model, one finds

that the Pomeron intercept is slightly greater than 1, i.e.,

α+(0) = 1 + ǫ, where ǫ = (4αs Nc/π) ln 2, where αs is

the QCD coupling constant and Nc is the number of colours

(3 for QCD). Thus, σtot ≈ (s/s0)
ǫ would rise with energy.

While for small enough ǫ, this may work for some energy

band, it would eventually be in conflict with the Froissart

bound discussed at length in the subsequent sections. The
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Froissart upper bound only permits a maximum increase

σtot ≤ σP ln2(s/s0).

Powers of logarithms can arise due to the confluence of

two (or more) pole singularities. For example, if in the angu-

lar momentum plane, there occurs a double pole at l = α(t),

its contribution to the W–S integral would be through a

derivative (in l evaluated at l = α) [10]. Asymptotically

then, if a simple pole gave A(s, t) ≈ (s/s0)
α , a double pole

would give A(s, t) ≈ (s/s0)
α ln(s/s0). To saturate the Frois-

sart bound, we need two derivatives in α i.e., a third order

pole, with of course α(0) = 1. On the other hand, the more

general case, i.e., generation of a fractal power such as

ℑm A(s, t) → (s/s0)[ln(s/s0)]1/p (with 1/2 < p < 1)

(2.57)

(as found in a phenomenologically successful model for total

cross section to be discussed later in Sect. 5.9.7 of this review)

would require a confluence of an indefinite number of pole

trajectories all converging at α(0) = 1. We remark here in

passing that, near a threshold, due to unitarity, a confluence

of an infinite number of trajectories (the “threshold poles”)

does occur and it has been well studied [10]. It is an open

problem to deduce what happens in the vacuum channel of

QCD with (almost massless) quarks and gluons. This prob-

lem is particularly difficult in QCD because it can only be

answered satisfactorily after unitarity is imposed – a daunting

task indeed.

The spectrum of mesonic masses leads one to conclude

that there are four almost-degenerate Regge trajectories with

intercepts close to 1/2 [8]. Hence, in a total cross sec-

tion for the scattering of particle a with b, these terms

provide the next to the leading contribution (about half a

unit lower than the Pomeron) of the form σ(ab)Regge(s) =
∑4

i=1 σi (ab)(s/s0)
(αi −1) with the sum running over the ρ,

ω, f and A2 Regge trajectories. This nomenclature recalls

the lowest spin resonance associated with a given Regge tra-

jectory. As discussed in the FESR and duality section, the

approximate degeneracy αi ≈ 1/2 is deduced from the

absence of resonances in “exotic” channels.

Thus, a phenomenological parametrisation based on the

Regge picture for the high energy total cross section of par-

ticles a and b may be formulated as [11]

σtot(ab) = σP (ab)[ln(s/s0)]1/p + σo(ab)

+
∑

i

σi (ab)(s/s0)
(αi −1), (2.58)

where the constants σP (ab), σo(ab), and σi (ab) are the

respective coefficients of the “Pomeron”, an overall constant

and the various Regge terms for the scattering process a on

b. The constant p obeys the condition (1/2 ≤ p ≤ 1) and

αi ≈ 0.5.

Regarding the asymptotic behavior of the ρ parameter,

defined in Eq. (2.56), let us use the generic fractal amplitude

as given in Eq. (2.57)

Afractal(s, 0) = A0

(

se−iπ/2

s0

)[

ln
se−iπ/2

s0

]1/p

, (2.59)

where A0 is a real constant and we have employed the phase

rule s → se−iπ/2 for crossing-even amplitudes [12]. This

would give for the asymptotic form for ρ

ρfractal(s, 0) → π

2p ln(s/s0)
. (2.60)

This generalises for arbitrary p a rigorous result [13],

valid for an amplitude saturating the Froissart bound (here

achieved for p = 1/2).

While it may be difficult to distinguish between a total

cross section increasing as ([ln(s/s0)]2) or [ln(s/s0)] [or

some power in-between for 1/2 < p < 1], it may be easier to

use experimental measurements of ρ and employ Eq. (2.60)

to decipher the value of p, since ρ depends on (1/p) linearly.

In any event, one has two consistency conditions provided

by Eqs. (2.58) and (2.60) for the parameter p.

In the next section, we discuss an important off-shoot from

the Regge expansion which goes under the names of finite

energy sum rules and duality.

2.7 Constraints from FESR and duality for the total cross

sections

Analyticity in the complex (energy) plane for a function (say

a form factor or an elastic scattering amplitude) quite gen-

erally implies that its values in the “low” and “high” parts

of the complex plane must be intricately related. This obvi-

ous fact has been used successfully to relate integrals over the

low-energy parts of amplitudes to those over their asymptotic

high energy (Regge) parts.

To illustrate what is involved, consider the simplest but

physically quite important example of the charge form factor

F(s) of the proton normalised as F(0) = 1. Under the usual

hypothesis that for space-like values s = −Q2 < 0, the

function is real and that it has a right-hand cut beginning

at the physical charged particle-antiparticle thresholds, so =
4m2

π , s1 = 4m2
K , s2 = 4m2

p, . . . , we may write a dispersion

relation

F(s) = 1 + s

π

∫ ∞

so

ds′ℑm F(s′)

s′(s′ − s − iǫ)
. (2.61)

Let us use the extra (experimental) information that, for large

(space-like) Q2 → ∞, F(Q2) → 0. Then Eq. (2.61) gives

us a sum rule

1

π

∫ ∞

so

dsℑm F(s)

s
= 1, (2.62)
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which provides a relationship between the integrals over the

low and high energy parts of (the imaginary parts) of the

form factor. Since also, the neutron charge form factor goes

to zero for large Q2, we would obtain an expression analo-

gous to Eq. (2.62) also for the neutron except that the right-

hand side would be zero. In vector meson dominance (VMD)

models, the couplings of the ρ, ω and the φ to the nucleons

get constrained accordingly.

Actually experimental data regarding form factors are

much more stringent: it appears that the fall off of the proton

form factor is of the “dipole” type. For purposes of illustra-

tion, let us assume that Q2 F(Q2) → 0 as Q2 → ∞. Then

we can derive a “superconvergence” relation

∫ ∞

so

(ds)ℑm F(s) = 0. (2.63)

Equation (2.63) tells us thatℑm F(s)must change sign at least

once. To meet this exigency then, a generalised vector meson

(GVMD) model with other vector mesons ρ′, ω′, φ′ etc. with

their couplings (of reversed signs) to the nucleons have to be

introduced. It is not our purpose here to advocate GVMD

models but to illustrate very simply that dispersion relations

with some knowledge – be it experimental or theoretical –

about the behaviour of an amplitude at some value, allows us

to put constraints at other values.1

Let us now turn to a specific case that of the elastic meson-

baryon amplitudes, with an eye towards their later applica-

tions to photon–nucleon total cross sections. For fixed t , in

order to exploit the crossing symmetry between the s and the

u channels, one defines the variable [8]

ν = s − u

4m
= ω + t

4m
, (2.64)

so that ω denotes the energy of the meson in the rest frame

of the baryon and m denotes the mass of the baryon. For a

crossing-odd scattering amplitude [8] T (ν, t) = T ∗(−ν, t),

we may write a fixed-t dispersion relation

T (ν, t) = (possible poles) + 2ν

π

∫ ∞

o

(dν′)
ℑmT (ν′, t)

(ν
′2 − ν2)

.

(2.65)

Let us assume generic asymptotic Regge terms of the form

TRegge(ν, t) =
∑

i

βi (t)

[

±1 − e−iπαi (t)

Γ (αi (t) + 1) sin παi (t)

]

ναi (t).

(2.66)

1 Sergio Fubini, the discoverer of superconvergence relations, made

an analogy between the knowledge of an amplitude locally and some

knowledge about the amplitude through sum rules (e.g., superconver-

gence integrals) to that between Coulomb’s law giving the local value

of a field and Gauss’ law providing an integrated statement about the

field.

Using arguments previously given, if all the α(t) < −1, we

would obtain a superconvergence relation
∫ ∞

o

(dν)ℑmT (ν, t) = 0. (2.67)

Instead, we can subtract the contributions from all αi (t) >

−1 to obtain a superconvergence relation of the form

∫ ∞

o

(dν)

⎡

⎣ℑmT (ν, t) −
∑

αi (t)>−1

βi (t)

Γ (αi (t) + 1)
ναi (t)

⎤

⎦ = 0.

(2.68)

Since asymptotically – by construction – the integrand in

Eq. (2.68) goes to zero, we may replace the upper limit of

the integration to be ν = N and include the left over Regge

terms with α < −1, and find

∫ N

o

(dν)

⎡

⎣ℑmT (ν, t) −
∑

αi (t)>−1

βi (t)

Γ (αi (t) + 1)
ναi (t)

⎤

⎦

+
∑

α j<−1

β j (t)

Γ (α j (t) + 1)

∫ ∞

N

(dν)να j (t) = 0. (2.69)

Doing the integral, we have the finite energy sum rule (FESR)

So = 1

N

∫ N

o

(dν)ℑmT (ν, t) =
∑

all α

βNα

Γ (α(t) + 2)
. (2.70)

Also, higher moment sum rules may be written. For even

integer n, we have

Sn = 1

N n+1

∫ N

o

(dν)νnℑmT (ν, t)

=
∑

all α

βNα

(α(t) + n + 1)Γ (α(t) + 1)
. (2.71)

FESR can also be constructed for crossing even amplitudes

and we shall return to them later.

As emphasised in [8], the relative importance of succes-

sive terms in a FESR is the same as in the usual Regge expan-

sion: if a secondary pole is unimportant at a high energy above

ν = N then this term would be unimportant to exactly the

same instant in the sum rule. For πN elastic scattering in the

t-channel iso-spin It = 1, FESR have been exploited with

much success to obtain information as regards the ρ and the

ρ′ trajectories [14]. Different variants of the idea have been

used; see for example [15].

In FESR, the scattering amplitude is multiplied by an inte-

gral power of the laboratory energy. This was generalised to

continuous moment sum rules (CMSR) [16]. In contrast to

FESR, in CMSR, the multiplicative energy factor is non-

integral. However, CMSR turn out to be simply a superposi-

tion of FESR, if the real part of the amplitude is calculated

using dispersion relations [17]. For a review of the applica-

tions of these ideas to specific processes; see [18].
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An interesting fall out from FESR was the concept of

duality [19] which in its final form may be phrased as

follows. Consider a generic amplitude A(s, t) and decom-

pose its imaginary part (in the s-channel) in terms of

the s-channel resonances and a smooth background. Then

the assertion is that “direct” (s) channel resonances are

“dual” to the crossed (t) channel Regge trajectories and the

Pomeron term(s) is(are) dual to the background. Explic-

itly, it means that in Eq. (2.71) the integral over the left-

hand side would contain contributions from s (and u)

channel (baryonic) resonances whereas the right-hand side

would contain contributions from mesonic Regge trajecto-

ries.

Let us give a practical example of FESR for total cross

section. Suppose experimental data are available for a cer-

tain total cross section σtot within a given energy range. Opti-

cal theorem then allows us to convert this into a knowledge

about the imaginary part of the forward elastic amplitude in

the same energy range. Integrals of this amplitude over the

available energy range must match a similar integral for a

model describing the same asymptotic amplitude (ergo the

asymptotic total cross section). Thus, unknown parameters

in the model, usually Regge residues and intercepts, can be

fixed.

For the phenomenology of high energy pp and p p̄ total

cross sections of interest at the Tevatron and LHC, one forms

combinations of the sum and difference of the two cross sec-

tions, thus focusing attention on crossing-even A+(ν) and

crossing-odd A−(ν) forward amplitudes. For the odd ampli-

tude A−(ν), the procedure described above is applicable. For

the even amplitude A+(ν), one constructs an odd amplitude

νA+(ν), to which the above arguments again apply. We shall

discuss how it works in practice when we discuss models for

total cross sections.

2.8 The Froissart–Martin bound

We shall now derive the Froissart bound following three

slightly different methods, the original one by Froissart [3],

the one by Martin in [1,4], and Gribov’s derivation in [20].

These different derivations expose the different assumptions

underlying them.

2.8.1 Froissart’s derivation of the asymptotic behaviour of

the scattering amplitude

In [3], the bound on the total cross section is given an intuitive

explanation. It must be noted (in hindsight) that this intuitive

explanation relies upon the existence of confinement. Indeed,

the whole description applies not to parton scatterings but to

hadronic scattering. Let us go through Froissart’s intuitive

explanation. Let the two particles (hadrons) see each other

at large distances through a Yukawa-type potential, namely

ge−κr/r , where κ is some momentum cut-off. Let a be the

impact parameter, then the total interaction seen by a parti-

cle for large a is proportional to ge−κa . When ge−κa is very

small, there will be practically no interaction, while, when

ge−κa is close to 1, there will be maximal probability for the

interaction. For such values of a, κa = ln |g| one then can

write for the cross section σ ≃ (π/κ2) ln2 |g|. If g is a func-

tion of energy and we assume that it can grow with energy at

most like a power of s, then one immediately obtains that the

large energy behaviour of the total cross section is bound by

ln2 s. What κ is remains undefined for the time being, except

that it has dimensions of a mass.

Following this heuristic argument, Froissart’s paper pro-

ceeds to the actual derivation of the bound. The derivation is

based on the validity of the Mandelstam representation and

the optical theorem. From the validity of the Mandelstam rep-

resentation for the scattering amplitude and the convergence

of the partial wave expansion, he derives an upper limit on

each partial wave, which depends on the value L of angular

momentum, after which the partial wave amplitudes become

negligible. All the al are then put equal to their maximum

value al = 1 and, then, in the forward direction, one has

∞
∑

0

(2l + 1)al = L2 + negligible terms ≤ L2. (2.72)

The value of L is determined as being such that for l ≤ L

|al | ≤ qs B(s)√
s(L − N )

{

1

x0 + (x0 − 1)1/2

}L−N

= 1 (2.73)

where N − 1 is the minimum number of subtractions needed

for the validity of the Mandelstam fixed-s dispersion relations

and B(s) behaves at most like a polynomial in s, q being the

c.m.momentum. Equation (2.73) leads to

L ≃ (qs/κ) ln(B(s)), (2.74)

and from this through the optical theorem to the bound

σtotal ≤ ln2 s. (2.75)

2.8.2 André Martin’s derivation

Martin’s derivation does not require the existence of the Man-

delstam representation and is thus more general. Also, it pro-

vides an estimate of the constant pre factor to the maximum

square of the logarithmic growth. We shall write s = 4k2

ignoring all particle masses except when necessary and use

his normalisation of the elastic amplitude.

σTOT(s) =
(

16π

s

) ∞
∑

l=0

(2l + 1)Im fl(s)

=
(

16π

s

)

As(s, 0), (2.76)
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wherein

fl(s) = ηl(s)e
2iδl (s) − 1

2i
;

Im fl(s) =
(

1

2

)

[1 − ηl(s) cos(2δl(s))]; (2.77)

0 < ηl(s) < 1 is the inelasticity and δl(s) is the real part of

the phase shift and

As(s, x) =
∞
∑

l=0

(2l + 1)Im fl(s)Pl(x); x =
(

1 + 2t

s

)

,

(2.78)

denotes the s-channel absorptive part of the elastic amplitude.

This partial wave series should converge upto t > 4m2
π .

For the Froissart bound, Martin uses the majorisation

scheme

Im fl(s) = 1 for l ≤ LT ; (2.79)

Im fl(s) = ǫ for l = LT + 1; (2.80)

Im fl(s) = 0 for l ≥ LT + 2. (2.81)

Let us make a few remarks:

– (i) The first statement, Eq. (2.79), assumes that even for

large s, the partial wave amplitude is elastic and a max-

imum i.e., ηl(s) = 1 and δl(s) = π/2. This is a gross

overestimate since we expect that at large s, ηl(s) → 0,

so realistically we should take 1/2 and not 1 for low

l. This then would get the heuristic result Martin obtains

towards the end of a recent paper [21] improving the total

cross section bound by a factor 2.

– (ii) Let us also note that Eq. (2.79) assumes that the partial

wave amplitudes have a sharp cutoff, i.e., its value is

exactly 1 for all l up to LT , then brusquely it drops to ǫ

for l = LT + 1 and then identically to 0 for all higher l.

Clearly, this is a very unphysical assumption for a partial

wave amplitude and cannot be true in any theory which

enjoys analyticity in the variable l.

– (iii) The more reasonable behavior for large l, through

the convergence of the partial expansion in the Lehmann

ellipse leads to Im fl(s) → e[−l/(s/so)] times a very

smooth function of l and s. [Eq. (3.4) et sec in Martin’s

book [1]]. This is also the p ≥ (1/2) discussed in [11]

in the context of our BN (Bloch and Nordsieck) inspired

model discussed later in Sect. 5.9.4, and is the minimum

realistic dropoff. However, in obtaining the upper bound,

Martin assumes it is identically zero beyond a certain l

which is certainly true but again unrealistic.

Now to a derivation of the upper bound. Clearly from

Eqs. (2.78) and (2.79), we have

As(s, x) >

LT
∑

0

(2l + 1)Pl(x) = P ′
LT +1(x) + P ′

LT
(x).

(2.82)

To prove the last identity in Eq. (2.82), use the recursion

identity (2l + 1)Pl(x) = P ′
l+1(x) − P ′

l−1(x) and then write

the sum to be performed in the opposite order (beginning

from the end)

LT
∑

0

(2l + 1)Pl(x) =
[

P ′
LT +1(x) − P ′

LT −1(x)
]

+
[

P ′
LT

(x) − P ′
LT −2(x)

]

+
[

P ′
LT −1(x) − P ′

LT −3(x)
]

+ · · ·
(2.83)

All terms cancel, leaving only two terms

LT
∑

0

(2l + 1)Pl(x) = P ′
LT +1(x) + P ′

LT
(x). Q.E.D. (2.84)

For large LT , using Eqs. (2.78) and (2.84), we have

As(s, x) > 2P ′
LT

(x). (2.85)

Use the Laplace integral for the Legendre function to bound

the right-hand side:

Pl(x) = 1

π

∫ π

0

(dχ)
[

x +
√

x2 − 1 cosχ
]l

, (2.86)

so that we can write for the derivative in a useful form

P ′
l (x) = lx

π(x2 − 1)

∫ π

0

(dχ)
[

x +
√

x2 − 1 cosχ
]l−1

×
[

x − 1

x
+
√

x2 − 1 cosχ

]

. (2.87)

Since x > 1, we can bound the above

P ′
l (x) >

lx

π(x2 − 1)

∫ π

0

(dχ)
[

x +
√

x2 − 1 cosχ
]l

.

(2.88)

Using the mean value theorem, we can impose the bound

P ′
l (x) >

lxφo

π(x2 − 1)

[

x +
√

x2 − 1 cosφo

]l

, (2.89)

for any 0 < φo < π . Since x → 1 and (x2 − 1) → (4t/s),

2P ′
LT

(x) > (Constant)LT

( s

4t

) [

x +
√

x2 − 1 cosφo

]LT

(2.90)
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and hence using Eq. (2.85), we have

[

(Constant)

(

t

s

)

As(s, t)

]

> LT

[

x +
√

x2 − 1 cosφo

]LT

>
[

1 +
√

x2 − 1 cosφo

]LT

. (2.91)

Taking logarithms of both sides we have

ln

[

(Constant)

(

t

s

)

As(s, t)

]

> LT ln
[

1 +
√

x2 − 1 cosφo

]

→ LT

√

4t/s cosφo.

(2.92)

We need only two subtractions in As(s, t) and so As(s, t) <

(s/so)
2/ ln(s/so). Using it in the above, we arrive finally at

the maximum value allowed for LT

LT <
√

(s/4t)

[

ln(s/so)

cosφo

]

. (2.93)

Now the Froissart bound for the total cross section follows

from

σTOT <
16π

s
L2

T = 4π [ln(s/so)]2

t cos2 φo

. (2.94)

Letting t = 4m2
π and φo = π , we have the Froissart–Martin

result

σTOT <

[

π

m2
π

]

[ln(s/so)]2. (2.95)

All of this can be duplicated in the eikonal scheme and of

course much more simply as shown below.

2.8.3 Eikonal picture derivation

In the limit of large s and fixed t < 0, the eikonal pic-

ture emerges under the hypothesis of identifying the impact

parameter b formally as (l + 1/2) → b
√

s/2, so that

Pl

(

1 + 2t

s

)

→ Io(b
√

t), (2.96)

where Io is the Bessel function of the “imaginary argument”.

With this identification, Eq. (2.78) reads

As(s, x) =
( s

2

)

∫ ∞

0

(bdb) Im F(b, s)Io(b
√

t), (2.97)

where the “b-wave amplitude” reads

F(b, s) = η(b, s)e2iδ(b,s) − 1

2i
. (2.98)

We may now impose a similar majorisation scheme as before

Im F(b, s) = 1 for b ≤ bT ; and

Im F(b, s) = 0 for b > bT , (2.99)

whence

As(s, t) >
( s

2

)

∫ bT

0

(bdb)Io(b
√

t). (2.100)

The last integral can be done. Changing variables YT =
bT

√
t , we have

[

2t

s
As(s, t)

]

>

∫ YT

0

(ydy)Io(y) = YT I1(YT ). (2.101)

For large YT ,

I1(YT ) → eYT

√
2πYT

, (2.102)

so that, for large YT

[

2t

s
As(s, t)

]

>

√
YT eYT

√
2π

> eYT , (2.103)

upon which by taking the logarithms of both sides, and

remembering that As(s, t) < (s/so)
2/ ln(s/so), we obtain

from
[

2t

s
As(s, t)

]

>

√
YT eYT

√
2π

> eYT , (2.104)

that

YT < ln(s/s1), (2.105)

and thus that

σTOT <
( s

2

)

∫ bT

0

(bdb) =
[

π

m2
π

]

[ln(s/s1)]2, (2.106)

upon imposing t = 4m2
π .

2.8.4 Gribov’s derivation

What follows is almost verbatim from Sec. (1.4) of [20]. To

show that asymptotically

Im A(s, t)|t=0 ≤ const · s log2 s

s0
s → ∞, (2.107)

Gribov proceeds as follows. His notation differs slightly from

the one in the previous section. Defining

A(s, t) =
∞
∑

l=0

(2l + 1) fl(s)Pl(z), (2.108)

with the partial wave amplitudes defined as

fl(s) = 8π i[1 − ηle
2iδl (s)]. (2.109)

[With respect to Martin, the difference is a factor of 16π .]

Using the fact that the singularity of Ims A(s, t) closest to

the physical region of the s-channel is situated at t = 4μ2,

one tries to estimate fl(s) at large s. At large l, the partial
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wave amplitude must fall exponentially in order to ensure

convergence for t > 0. This is a consequence of

Pl(cosh α) ≃ elα

√
2πl sinh α

; for l → ∞

cosh α = 1 + 2t

s
. (2.110)

To ensure convergence for t < 4μ2, the partial wave ampli-

tudes must then decrease as

fl ≈ e−lα0 , cosh α0 = 1 + 8μ2

s
. (2.111)

Now, in the limit s ≫ t , cosh α ≈ 1 + α2/2, hence α0 =√
4μ2

ks
and one can write

fl(s) ≈ c(s, l)e
− l

ks

√
4μ2

, l → ∞, s → ∞ (2.112)

where ks =
√

s − 4μ2/2. The function c(s, l) may be a

slowly varying (non-exponential) function of l.

To establish the Froissart bound, Gribov now assumes that

the scattering amplitude grows no faster than a power of s, in

the vicinity of the t = 4μ2 pole in the t-channel. This con-

dition is analogous to the one about subtraction in Martin’s

derivation, just before Eq. (2.93). If A(s, t) < (s/s0)
N , one

can then see that this also valid for Im c(s, l). Let us see how.

(

s

s0

)N

> Im(A(s, t)

=
∞
∑

l=0

(2l + 1)Im fl(s)Pl

(

1 + t

2k2
s

)

. (2.113)

Since all the Im fl(s) are positive due to the unitarity condi-

tion as well as the Pl for t > 0, it must also be true for each

term on the sum, namely

(

s

s0

)N

> Im c(l, s)

(

2πl

√
t

ks

)−1/2

e
l

ks
(
√

t−
√

4μ2)

(2.114)

and for t < 4μ2 it will also be

Im c(l, s) <

(

s

s0

)N

(2.115)

and finally we have

Im fl(s) ≤
(

s

s0

)N

e
− 2μ

ks
l
. (2.116)

With the bound on Im fl(s), we can now derive the bound on

the imaginary part of the forward scattering amplitude and

hence on the total cross section.

Im A(s, t = 0) =
∞
∑

l=0

(2l + 1)Im fl(s), (2.117)

≤ 8π

L
∑

l=0

(2l + 1) +
∞
∑

l=L

(2l + 1)Im fl(s) (2.118)

where one has divided the sum into a term where the partial

waves are large and for which the partial waves take the

maximum value allowed by unitarity, and one which contains

all the higher partial waves. To estimate the value of L after

which the partial waves are small, consider that they will

become less than 1 when
(

s

s0

)N

e
− 2μ

ks
L ≤ 1 or L ≤ ks

2μ
log

s

s0
. (2.119)

Now using

L
∑

l=0

(2l + 1) = L2 (2.120)

we immediately obtain

Im A(s, t = 0) ∝ L2 ∝ s log2 s

s0
. (2.121)

The question arises as to how large are the neglected terms.

We can estimate them by using fL+n ∼ fLe
− 2μ

ks
n

and then

sum the second series as

∞
∑

n=0

2(L + n)e
− 2μ

ks
n ∼ L

ks

μ
+ k2

s

2μ2
≪ L2. (2.122)

These terms are at most of order L2/ log(s/s0) and are sub-

dominant.

Now, using the optical theorem, Im A(s, 0) = sσ tot(s)

one obtains the bound

σtot(s) ≤ σ0 log2 s

s0
. (2.123)

Thus this demonstration uses

– position of the t-channel singularity closest to the s-

channel physical region, at t = 4μ2

– convergence of the partial wave series for t > 0 (and at

most up to the singularity)

– large l-behaviour of the Legendre polynomials for z > 1

– that the amplitude does not grow with s faster than a fixed

power

– unitarity condition to ensure that Im fl(s) is positive.

2.9 The Pomeranchuk theorem

Here again we follow Gribov. The Pomeranchuk theorem

[22] says that, if total hadronic cross sections go to a constant

at very high energy, then asymptotically particle-particle or

particle-antiparticle total cross sections should be equal. It
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was derived using the property of crossing symmetry of the

elastic scattering amplitude.

We know, since the early 1970s, that total cross section

grow with energy [23], and therefore the Pomeranchuk the-

orem could be considered obsolete. However, there are two

reasons to discuss it, one of them being that our understand-

ing of high energy particle collisions if dominated by gluon–

gluon scattering in QCD framework, would give the same

result as the Pomeranchuk theorem, as discussed later in this

section. On the other hand, since the total cross section is not

a constant at high energy, there is space for the existence of

the so-called Odderon, whose exchange may be relevant at

very high energies. We shall discuss more about this point in

later sections.

The Pomeranchuk theorem is derived very simply. First

of all, let us move from the discrete representation of the

scattering amplitude in angular momentum l to the impact-

parameter space. To do this, one notices that, for the total

cross section not to decrease at very high energy, one needs

contributions from higher and higher partial waves. At high

energy, and in the forward direction, the main contribution

to the total cross section comes from higher partial waves.

For large l then we can use the asymptotic expression for the

Legendre polynomials,

Pl(cos θ) ≈ J0

(

(2l)
θ

2

)

l ≫ 1 θ ≈ 0. (2.124)

We can then substitute the sum over the partial waves with an

integral and introduce the impact-parameter variable lks = b.

Then the partial wave expansion becomes

A(s, t) ≈ k2
s

∫

d2b f (b, s)J0(b
√

−t). (2.125)

To obtain a constant total cross section, assume the integral

to be dominated by values of the impact parameter whose

distribution is independent of the energy: in such a case, the

s and t dependences can be factorised. One puts f (b, s) ≈
a(s)B(b), to obtain

A(s, t) ≈ sa(s)F(t). (2.126)

Assuming the further possibility that a(s) has no residual

s-dependence, from the optical theorem there follows the

constant high energy behaviour of the total cross section. To

summarise, constant total cross sections can be seen to arise

if one can factorise the s and t dependence in the scattering

amplitude, and if the dominant partial wave amplitudes also

become constant at very high energy. Both assumptions are

not necessarily satisfied. These two assumptions, however,

allow demonstration of the Pomeranchuk theorem, when we

use crossing symmetry to relate two processes, in which one

particle in the initial state is substituted with an antiparticle

from the final state. This amounts to relating the analyticity

Fig. 3 Physical region for equal-mass elastic scattering

properties in the s-channel to those in the u-channel. The

argument goes as follows.

Let us consider the two processes

a + b → c + d, (2.127)

a + d̄ → c + b̄ (2.128)

and let A(s, t) be the amplitude which describes the first

of the above processes. The s-channel physical region for

process a + b → c + d is shown in Fig. 3, i.e. with the

usual right-hand cut starting at s = 4μ2 and the left-hand

cut starting at s = 0. It is convenient to assume that the

amplitude for a +b → c +d corresponds to the value above

the right-hand cut, namely, to be given by limǫ→0 A(s+iǫ, t),

whereas the crossed process a + d̄ → c + b̄ corresponds to

exchange s = (pa + pb)
2 = (pc + pd)

2 with u = (pa −
pd)

2 = (pc − pb)
2. For the crossed process, the physical

region corresponds to limǫ→0 A(u+iǫ, t) = limǫ→0 A(−s+
iǫ − t − 4μ2, t) = limǫ→0 A(−(s − iǫ) − t − 4μ2, t), and

therefore the physical region for this process, in the s-channel

is obtained by approaching the real axis, on the left-hand side,

from below, as indicated in Fig. 3. Because the amplitude

A(s, t) is real for 0 < s < 4μ2, t < 0, its value at the edge

of the cuts complex conjugates, namely

A(s − iǫ, t < 0) = A∗(s + iǫ, t < 0), (2.129)

but the amplitude at the left-hand side is for process a + d̄ →
c + b̄, whereas the one at the right-hand side is the amplitude

for a + b → c + d and one then can write

Aa+d̄→c+b̄(s) → [Aa+b→c+d(s)]∗ for s ≈ −u. (2.130)

Now apply the above result to the elastic amplitude for a +
b → a + b and consider the imaginary part of the forward

amplitude. If the s-dependence is of the simple type which

leads to constant total cross section, namely A(s, t) ≃ s F(t)

at large s, then optical theorem gives
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σ(a + b) ≈ σ(a + b̄) asymptotically. (2.131)

For more complicated s and t-dependences in the ampli-

tude, i.e. those that do not imply constant total cross sections,

Eq. (2.131) can still be obtained in some simple cases such

as A(s, t) ≃ s ln sβ F(t). However, the derivation then needs

the additional hypothesis that the real part of the amplitude

does not exceed asymptotically the imaginary part, a hypoth-

esis de facto supported by experimental data.

2.10 Determination of the ρ parameter through Coulomb

interference and soft radiation

Here we discuss how near the forward direction, the real part

of the hadronic amplitudes is determined through its interfer-

ence with the Coulomb amplitude. We highlight some of the

subtleties associated with the procedure. Also, a proposal is

presented for obtaining information as regards the behavior

of the purely nuclear amplitude through the measurement of

the soft radiation spectrum in a quiet event, i.e., unaccompa-

nied by any other visible particle.

2.10.1 Coulomb interference

At high energies, the ρ-parameter, which denotes the ratio

of the real to the imaginary part of the forward (complex)

nuclear scattering amplitude A(s, 0)

ρ(s) = ℜeA(s, 0)

ℑm A(s, 0)
, (2.132)

is rather small (about 0.12 ÷ 0.14). Since, the total (nuclear)

cross section depends only on ℑm A(s, 0) and through the

optical theorem, the elastic differential cross section in the

forward direction depends on ρ quadratically

(

dσel

dt

)

(t = 0) =
(

σ 2
tot

16π

)

[1 + ρ2], (2.133)

it is difficult to measure ρ accurately and in any event such

a measurement would not determine the sign of the real part

of the nuclear amplitude.

Fortunately, when we augment the nuclear with the

Coulomb amplitude (due to one-photon exchange, in the low-

est order), the interference between the Coulomb and the

real part of the nuclear amplitude (for small t) allows us

to determine both the sign and the value of ρ. The Ruther-

ford singularity (∝α/t) renders the Coulomb amplitude suf-

ficiently large to become competitive with the nuclear term,

for small t . On the other hand, away from very small angles,

the Coulomb term dies out and one can safely revert to the

purely nuclear amplitude. However, to obtain numerically

accurate information as regards ρ, some care is required to

obtain the correct Coulomb phase for the nuclear problem.

To see what is involved, let us consider first Coulomb scat-

tering in non-relativistic potential scattering. The classical

Rutherford amplitude (or, the Born approximation, quantum-

mechanically), with a Coulomb 1/r potential, for the scat-

tering of two charges (Z1e) and (Z2e), is given by

fC (k, ϑ) = 2Z1 Z2μα

t
, (2.134)

where μ denotes the reduced mass, t = −4k2 sin2 ϑ/2 and

α ≈ 1/137 is the fine structure constant. But the exact

(quantum-mechanical) Coulomb scattering amplitude has an

oscillating phase eiφS multiplying the above. This phase is

given by [24]

φS =
(

Z1 Z2αc

v

)

ln(sin2 ϑ/2), (2.135)

where v denotes the relative velocity and the presence of α

reminds us of the quantum nature of this phase The physical

reason for this phase is that the Coulomb potential is infinite

range and however far, a charged particle is never quite free

and hence is never quite a plane wave. For pp or p p̄ scat-

tering, in the relativistic limit (v → c) and for small angles,

Eq. (2.135) reduces to

φS ≈ (∓2α) ln

(

2

ϑ

)

. (2.136)

Equation (2.136) is exactly the small-angle limit of the rel-

ativistic Coulomb phase obtained by Solov’ev [25]. On the

other hand, this result was in conflict with an earlier potential

theory calculation by Bethe [26] employing a finite range (R)

nuclear potential in conjunction with the Coulomb potential.

According to Bethe, the effective Coulomb phase reads

φB ≈ (±2α) ln(k Rϑ). (2.137)

This discrepancy was clarified by West and Yennie [27].

These authors computed the effective Coulomb phase through

the absorptive part of the interference between the nuclear

and the Coulomb amplitude. They found – again in the small

angle, high energy limit –

φW Y = (∓α)

[

2 ln

(

2

ϑ

)

+
∫ 0

−s

dt ′

|t ′ − t |

{

1 − A(s, t ′)

A(s, t)

}]

.

(2.138)

If one ignores the t dependence of the nuclear amplitude,

the integral term above is zero and one obtains Solov’ev’s

result. On the other hand, a result similar to that of Bethe is

reproduced, if one assumes the customary fall-off eBt/2 for

the nuclear vertex and a dipole form factor for the EM vertex.

Explicitly, if we choose

A(s, t ′)

A(s, t)
= eB(t ′−t)/2

(

1 − t/Λ2

1 − t ′/Λ2

)2

, (2.139)
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we find

φW Y ≈ (±α)

[

γ + ln(B|t |/2) + ln

(

1 + 8

BΛ2

)]

,

(2.140)

where γ ≈ 0.5772 is the Euler–Mascheroni constant. This

expression for the effective Coulomb phase agrees with

Block [51], upto terms proportional to (|t |/Λ2), which are

quite small near the forward direction. Hence, Eq. (2.140) is

sufficiently accurate for determining ρ through interference

at LHC energies and beyond.

Block has defined a practically useful parameter to for

which the interference term is a maximum: to = [8πα/σtot].
For the maximum LHC energy of 14 TeV, to ≈ 7 ×
10−4 GeV2. Putting it all together, the Coulomb corrected,

differential cross section for pp or p̄ p reads [51]

[

dσ

d|t |

]

o

=
(

σ 2
tot

16π

)

[

G4(t)

(

to

t

)2

∓ 2
to

|t | (ρ ± φW Y )

× G2(t)e−B|t |/2 + (1 + ρ2)e−B|t |
]

, (2.141)

where for the magnetic form factor, one may employ G(t) =
[ 1

1−t/Λ2 ]2, with Λ2 ≈ 0.71 GeV2.

One other aspect of the EM radiative corrections needs

to be investigated. So far, we have not considered real soft-

photon emissions in the scattering process. As is well known,

contributions due to an infinite number of soft photons can

be summed via the Bloch–Nordsieck theorem. If (dσ/dt)o

denotes the differential cross section without the emitted soft-

photons, the inclusion of soft radiation introduces a param-

eter which is the external energy resolution ΔE . A compact

expression for the corrected cross section can be written as

follows [28]:

dσ

dt
=
(

ΔE

E

)β̂ (
dσ

dt

)

o

, (2.142)

where the radiative factor β̂ combines the various combina-

tions of the momenta of the charged emitting particles in our

equal-mass elastic case

β̂ =
(

2α

π

)

[I12 + I13 − I14 − 2], (2.143)

where

Ii j = 2(pi · p j )

∫ 1

0

dy

[m2 + 2(pi · p j − m2)y(1 − y)] .

(2.144)

In the high energy limit, I12(s) → 2 ln(s/m2) and I14(s) →
2 ln(|u|/m2), so that the sum I12− I14 → 0 vanishes, leaving

us with I13(t). For small-angle scattering of interest here, we

have the correction from real photon emission of the form

dσ

dt
=
(

ΔE

E

)β(t) (
dσ

dt

)

o

, (2.145)

where

β(t) ≈
(

4α

π

)( −t

3m2

)

; (−t ≪ m2), (2.146)

which is rather small and vanishes as t = 0. The physical rea-

son is that the amount of radiation is small for low velocities.

For the CM elastic amplitude, the energy loss ΔE due to real

soft bremsstrahlung is estimated by the lack of collinearity

in the outgoing particles. Thus, (ΔE/E) ≈ Δϑ . Even for

Δϑ ∼ 10−4, the real radiative correction is extremely small

and thus can be ignored.

2.10.2 Soft photon radiation as a possible tool for

measurements of the total cross section

Through the above expressions, we may compute the differ-

ential probability for a single soft photon produced in asso-

ciation with the near forward elastic process. That is, the

differential cross section for the process p(p1) + p(p2) →
p(p′

1) + p(p′
2) + γ (k), for small |t | ≪ m2 and small k is

given by

dσ

dkdt
≈
(

4α

πk

)( −t

3m2

)(

dσ

dt

)

o

, (2.147)

where m denotes the nucleon mass.

To obtain a leading order of magnitude estimate, let us

insert only the nuclear amplitude in Eq. (2.147) and integrate

over all t :

dσ

dk
≈
(

4α

3m2

)(

1

k

)

[ σtot

4π B

]2
. (2.148)

Putting in nominal values for the LHC, σtot ≈ 100 mb and

for the diffractive width B ≈ 20 GeV−2, we estimate

dσ

dk
≈
(

1

k

)

(4.35 × 10−3 mb). (2.149)

This would lead us to a comfortable soft photon-production

rate [associated with elastic scattering]

Ṅ ≈ (435 Hz) ln

(

kmax

kmin

)(

L

1032/cm2/s

)

, (2.150)

where L is the machine luminosity. Thus, observation of only

soft photons accompanied by no other visible particles (an

otherwise quiet event) would be very useful in determining

some crucial nuclear high amplitude parameters. Transcend-

ing the specific model estimates, what the soft radiation spec-

trum really measures is the mean value of 〈−t〉 associated

with the elastic cross section σel.

A simple variant of the procedure outlined above of obtain-

ing information as regards the background process through

the spectrum of a single photon in an otherwise quiet event
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was utilized earlier at LEP. One way adopted to measure the

number of neutrinos into which the Zo could decay consisted

in measuring the rate for the process

e− + e+ → γ (k) + nothing visible. (2.151)

Thus, measuring the initial state photon radiation, allowed

one to deduce the correct branching ratio of Zo into all

neutrino–antineutrino pairs, which obviously escaped exper-

imental detection. On the other hand, at LHC, if indeed a sin-

gle soft photon spectrum in a quiet event – up to some very

small angle – can be measured, one can be reasonably be sure

that two protons (to conserve baryon number) must have been

produced which escape within the very small angular cone on

either side of the beam. Relaxing the angular aperture might

allow one to learn something about single diffraction cross

section as well. We shall not pursue this interesting topic here

any further.

3 Non-accelerator experiments

In this section, we discuss the measurement of proton–proton

scattering as performed through cosmic ray experiments, the

results and their interpretation.

Until the advent of particle accelerators in the mid-1950s,

information as regards high-energy elementary particle scat-

tering, and hence its dynamics, was obtained through the

observation of cosmic ray showers, which resulted from the

interaction of primary particles (those arriving from the inter-

stellar space and beyond) with the earth’s atmosphere. The

energy distribution of the primary particles was measured

through the depth and extent of particle showers observed

after the interaction, following a technique we shall describe

in more detail later in this section.

Through these observations, it was possible to extract

proton–proton total cross sections. To this day, the extrac-

tion of proton–proton total cross sections from cosmic ray

measurements reaches center of mass energies usually higher

than contemporary accelerator data. As we shall see however,

this extraction procedure is still affected to a large extent upon

modelling.

The energy spectrum of cosmic ray particles is shown in

Fig. 4 from the 2014 Review of Particle Physics (PDG) [29],

where an up-to-date review of the subject can be found.

We shall follow the historical development of the methods

proposed to extract pp cross sections from p-air scattering

data and present results thus obtained. This section is struc-

tured as follows:

– Heisenberg’s observations about the effective cross sec-

tion for scattering in the Yukawa theory, interesting

because they involve still currently debated questions

such as the simultaneous occurrence of multiple scat-
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E2.6, from [29] and 2015 update

tering processes and the range of applicability of pertur-

bation theory, are presented in Sect. 3.1,

– Glauber’s model for high energy particle scattering,

which is the basis of present methods for the extraction

of proton–proton scattering from p-air cross sections, is

outlined in Sect. 3.2,

– in Sect. 3.3 developments in the extraction of pp scat-

tering from cosmic ray data from early 1970s, after the

appearance of the ISR data, up to phenomenological

analyses following 1980s accelerator results in the TeV

energy range, are delineated further as follows:

– early models are in Sect. 3.3.1

– more precise extractions after data from the CERN

Super proton–antiproton Synchrotron (S p̄ pS) in

Sect. 3.3.2,

– appearance of mini-jet descriptions are presented in

Sect. 3.3.3,

– uncertainties in the extraction of the p-air data are

presented in Sects. 3.3.4, 3.3.5, 3.3.6, with updated

analysis of pp data extraction by Bloch, Halzen and

Stanev in Sect. 3.3.7,

– further clarifications about extraction of p-air cross sec-

tion from cosmic rays in Sect. 3.4,

– a discussion of critical indices for cosmic ray radiation

is presented in Sect. 3.5,

– cosmic ray results after the new pp total cross section

measurements at LHC, from the AUGER and Telescope

Array Collaborations can be found in Sect. 3.6, with

associated uncertainties due to diffraction discussed in

Sect. 3.6.1,

– eikonal models as tools for extraction of pp data are dis-

cussed in Sect. 3.7, with results from a two-channel model

in Sect. 3.7.1 and a recent one-channel analysis briefly

presented in Sect. 3.7.2.
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3.1 Heisenberg and cosmic radiation

In a collection of papers prepared by Heisenberg in 1943

to commemorate A. Sommerfeld’s 75th birthday, and later

translated in 1946 [30] there appear two important issues.

The first concerns the observed power-law flux of cosmic

ray particles as they appear on Earth along with hypothe-

ses regarding the flux of primary cosmic radiation. We shall

return to this problem in Sect. 3.5.1. The second is a descrip-

tion of the Theory of explosion-like showers, interesting for

the strict analogy established by Heisenberg between mesons

and light quanta.

This collection of papers has an interesting history of its

own. As stated in the foreword by T. H. Johnson, the Ameri-

can editor and translator of the book from German to English,

the volume was published in Berlin in 1943 in commemora-

tion of the 75th birthday of Arnold Sommerfeld. The articles

present a general view of the state-of-the-art of cosmic ray

research. However, and here lies the historical interest of

this note, on the very day which the book was intended to

commemorate, and before many copies had been distributed,

bombs fell on Berlin destroying the plates and the entire stock

of printed volumes. To make the material available to Amer-

ican physicists, S. Goudsmith loaned his copy of the Ger-

man book and T. H. Johnson translated it. Also interesting

are some of the comments by Heisenberg in the foreword to

the German edition. After mentioning that investigations on

cosmic radiation had been sharply curtailed by the misfor-

tunes of the times, Heisenberg recalls that the papers come

from symposia held in Berlin during 1941 and 1942, and

that the American literature on the subject had been available

only up to the summer of 1941, so that the present collection

could be considered to give a unified representative picture

of the knowledge of cosmic radiation at about the end of

the year 1941. The book is dedicated to Arnold Sommerfeld,

the teacher of atomic physics in Germany, as Heisenberg

says.

In a brief note, page 124, Heisenberg is interested in

estimating the effective cross section for scattering in the

Yukawa theory, to be applied to cosmic ray showers. He

objects to what was, at the time, the current interpreta-

tion of the Yukawa theory as a perturbative one and dis-

cusses the presence of multiple simultaneous processes

when the energy of the colliding particles is above a cer-

tain value. Thus, above this value, the assumption that per-

turbation theory converges reasonably, i.e. that the prob-

ability for the simultaneous emission of many particles

be small, is not valid. According to Heisenberg, there

are two reasons for the occurrence of multiple processes,

namely the close relationship of the Yukawa particle (the

π meson) with light quanta, and the peculiarity of the

meson-nucleon interaction. Unlike QED, whose convergence

depends only on the dimensionless constant α, Yukawa’s

theory depends on a constant with the dimensions of a

length (of order 10−13 cm) and thus perturbation theory will

diverge as soon as the wavelength of the particle concerned

is smaller than this length. Thus in high energy scattering

processes, with very short wavelength of the colliding par-

ticles, there occur the possibility of multiple particle pro-

cesses.

As for the close analogy between light quanta and meson

emission, the similarity lies in the fact that in the collision

of two high energy hadrons, several mesons can be cre-

ated in a way similar to when an infinite number of light

quanta is emitted in charged particle collisions. One can

describe soft photon emission in a semi-classical way as tak-

ing place because in the sudden deflection of an electron,

the electromagnetic field surrounding the charged particle

becomes detached from the particle and moves away like a

relatively small wave packet. This process can be described

by a delta function in space-time, whose Fourier transform is

constant. Interpreting this spectrum as the expected spectrum

of the radiation, one can calculate the mean number dn(E)

of light quanta emitted in a given energy interval dE and

thus

dn(E) ≈ dE

E
, (3.1)

which is the usual infinite number of emitted soft (E → 0)

photons. In complete analogy, the sudden change in direc-

tion of a nucleon will result in multiple meson emission,

as the difference of the associated Yukawa fields becomes

detached and, as Heisenberg puts it, “wanders off into space”.

However there is of course a difference, namely that the

pions are massive and therefore the total number of emit-

ted pions will be finite and increase with the logarithm of

the collision energy. This effect thus gives in principle the

possibility of an increasing multiplicity accompanying the

high energy collision, but, according to Heisenberg, it is

not enough to explain the experiments. Thus a second ele-

ment is introduced. There are non-linear terms in the Yukawa

theory which distort the spectrum and give rise to a suf-

ficiently large emission to explain experiments. This part,

however, is described only in qualitative terms, at least not

in this reference. As we shall see later more developed

models lead to a cross section that saturates the Froissart

bound.

3.2 The Glauber model for high energy collisions

We shall now discuss Glauber’s theory of high energy scatter-

ing [31]. It derives in part from Moliere’s theory of multiple

scattering [32], whose simpler derivation was obtained by

Bethe [33] in 1955 and which we shall outline in Sect. 5.

Prior to that, Rossi and Greisen had discussed cosmic ray
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theory [34] and many of the concepts they used were later

elaborated in the theory of high energy scattering.

Glauber starts by recalling the complexity of high energy

collisions, that comes from the large number of final states

which open up as the energy increases, but comments on

the fact that at high energy it is possible to use a number

of approximations to deal with this complexity. The inspi-

ration for the treatment of such collisions comes from the

diffraction properties of optics, and this gives the model its

name, i.e. optical model. The major difference of course

lies in the fact that in optics the obstacles, namely the

target of the colliding system, is fixed and macroscopic,

whereas in nuclei, and of course also in nucleons, the

scattering is constituted of moving microscopic particles.

Thus a quantum mechanical treatment needs to be devel-

oped. The model originally deals with elastic scattering

alone, treating inelastic scattering as if the particles not scat-

tered elastically had been absorbed by the nucleus. This

is the origin of the term absorption still used for inelas-

tic scattering. Glauber explicitly mentions that this work

can be considered as an extension and generalisation of the

Moliére method of multiple scattering [32]. Notice, how-

ever, a basic difference between Glauber’s treatment and

Moliére, namely that Glauber deals with amplitudes, while

Moliére with probabilities. We shall comment on this in

Sect. 5.

The scattering amplitude f (θ) is related to the differential

cross section in the solid angle dΩ as

dσ = Flux through dΩ

Incident flux
dΩ = | f (θ)|2dΩ (3.2)

and is related to the potential V (r) through the integral equa-

tion

f (k,k′) ≡ f (θ) = − m

2π h̄2

∫

(d3r)V (r)e−ik′·rψk(r).

(3.3)

To obtain this expression, a boundary condition has been

applied, namely that the potential V (r) is different from zero

only in a limited region so that as r → ∞ the wave function

takes the asymptotic form

ψk(r) ∼ eik·r + f (θ)
eikr

r
. (3.4)

Glauber then proceeds to establish some general proper-

ties and starts by looking for the consequences of particle

conservation. For a real potential, he obtains

1

2i
{ f (k,k′) − f ∗(k′,k)}

= k

4π

∫

f (kr ,k′) f ∗(kr ,k)dΩr , (3.5)

which assumes a particularly simple form for the case k′ = k,

ℑm f (k,k) = k

4π

∫

| f (kr ,k)|2dΩr = k

4π
σscatt (3.6)

where σscatt is the total scattering cross section. The above

relation is also formulated as the optical theorem. For the

case k �= k′, Eq. (3.5) corresponds to the condition that the

operator, which yields the final state, is unitary, namely to

the so called unitarity condition.

If the final states, as we know to be the case in high

energy scattering, will include also inelastic processes, then

the potential to be considered in such case is a complex poten-

tial. For a complex potential Eq. (3.5) becomes

1

2i
{ f (k′,k) − f ∗(k,k′)}

= k

4π

∫

f (kr ,k′) f ∗(kr ,k)dΩr

− m

2π h̄2

∫

(ℑmV (r))ψ∗
k′ψk(d

3r). (3.7)

Again for the case k = k′ one can write the generalised

optical theorem, namely

ℑm f (k,k) = k

4π
(σscatt + σabs) = k

4π
σtot (3.8)

where the absorption cross section σabs has been introduced

to account for particles which have “disappeared”. In the

optical language, these particles have been absorbed by the

scattering material, while in high energy language this cross

section corresponds to the inelastic cross section, namely to

the creation of a final state different from the initial one.

The three cross sections defined above, σscatt, σabs, σtot,

can also be expressed using the partial wave expansion for

the scattering amplitude. Writing

f (θ) = 1

2ik

∑

i

(2l + 1)(Cl − 1)Pl(z), (3.9)

one obtains

σscatt =
∫

| f (θ)|2dΩ = π

k2

∑

i

(2l + 1)|Cl − 1|2

σtot = 2π

k2

∑

i

(2l + 1)[1 − ℜeCl ]

σabs = σtot − σscatt = π

k2

∑

i

(2l + 1)[1 − |Cl |2]. (3.10)

The expression for the scattering amplitude for an axially

symmetric potential is obtained by Glauber, under certain

approximations, as

f (k′,k) = k

2π i

∫

ei(k−k′)·b{eiχ(b) − 1}d2b (3.11)
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where

χ(b) = − 1

h̄v

∫ +∞

−∞
V (b + k̂z)dz. (3.12)

He notes that an important test of the self consistency of this

approximation is furnished by the unitarity theorem, and he

proceeds to show that, in the absence of absorption, i.e. for

χ purely real, one has

σscatt =
∫

dΩk′ | f (k,k′)|2 = σtot

= 4π

k
ℑm f (k,k), (3.13)

since for χ purely real

σscatt =
∫

|eiχ(b) − 1|2d2b

= 2

∫

(1 − ℜe eiχ(b))d2b

= σtot. (3.14)

If there is absorption, namely χ is complex, then the conser-

vation of probability implies for the inelastic cross section to

be obtained from the difference σtot − σscatt, and one has

σabs =
∫

(1 − |eiχ(b)|2)d2b. (3.15)

In what follows in Glauber’s paper, various examples are

discussed and solved, whenever possible. These are:

– an absorptive potential (negative imaginary) confined to

a sphere of radius a and in such case the sphere can be

considered to be opaque in the optical sense

– a square potential well

– a Gaussian potential

– the Coulomb potential

– a screened Coulomb potential

In nuclear applications, the incident particle is subject both

to nuclear forces and to the Coulomb field, and superposi-

tion of the phase-shift functions for χ(b) for the nuclear and

Coulomb interactions is suggested. Thus the nuclear phase-

shift function needs to be added to the Coulomb one, given

by

χc(b) = 2
Ze2

ℏv
ln

b

2a
+ Ze2

ℏv

b2

2a2
+ O

(

b4

a4

)

, (3.16)

which represents an expansion in the ratio between the

impact-parameter distance b and the range a for which the

potential is non-zero. According to Glauber, this procedure

will take proper account of the two types of effects and of

the interference between the two types of scattering.

Fig. 5 View of the Glauber model geometry in the transverse plane

relative to the z axis of scattering direction

3.2.1 Scattering with bound particles

In the first part of his lectures on high energy collision the-

ory, Glauber discusses scattering of one-on-one particle. To

study actual scattering experiments of particles on nuclei,

one needs to take into account that particles are usually in

a bound state and thus transitions from one state to another,

bound or free, can take place. The generalisation is done first

treating the one-dimensional problem and then going to the

three-dimensional one. The basic expression for the scatter-

ing amplitude in such cases takes the form

Fi f (k
′,k)

= k

2π i

∫

ei(k−k′)·b
∫

u∗
f (q)[eiχ(b−s) − 1]ui (q)dq db

(3.17)

where s corresponds to the impact-parameter coordinate rel-

ative to the individual state of the target as shown in Fig. 5.

The initial states ui have been defined from the wave func-

tion expression

Ψ (x, t) = ei(kx−ωt)φ(x, t)ui . (3.18)

The phase-shift function is now generalised from the previous

expression so as to include the impact parameter of the target

particles, and is thus given as

χ(b − s) = − 1

ℏ v

∫ +∞

−∞
V (b − s + k̂z)dz. (3.19)

3.2.2 The Glauber model for high energy scattering of

protons by nuclei

In [35], the previously developed theory for multiple scatter-

ing is applied to describe the results of an experiment by

Bellettini et al. [36] for the scattering of 20 GeV/c pro-

tons on different nuclei. The starting formula is the one

for proton-nucleon collision in the diffraction approximation

(small angle), with spin effect neglected, i.e.

f (k − k′) = ik

2π

∫

(d2b)ei(k−k′)·bΓ (b) (3.20)
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with

Γ (b) = 1

2π ik

∫

d2qe−ib·q f (q). (3.21)

When Γ (b) only depends on the scattering angle, one can

perform the integration over the azimuthal angle, i.e.

f (k − k′) = ik

∫

bdbJ0(|k − k′|b)Γ (b). (3.22)

The proton–proton scattering amplitude at high energies and

small angle is taken to be

f (q) = f (0)e− 1
2β

2q2

(3.23)

where f (0) = (i +ρ)kσtotal/4π . The values used by Glauber

and Matthiae in [35] are ρ = −0.22, β2 = 10(GeV/c2)−2

and σtotal = 39.0 mb. What is needed to compare with data

(also later in the case of cosmic ray data) are the elastic and

the inelastic proton–nucleon cross section. After a number

of simplifying approximations, the nuclear elastic scattering

amplitude is defined by means of a suitable nuclear phase-

shift function χN (b) as

FN (Δ) = ik

∫

bdbJ0(Δb)[1 − eiχN (b)]. (3.24)

For large atomic number A, the function χN (b) can take a

simple form [31]

iχN (b) = − 1

2πk

∫

e−iq·b f (q)S(q)d2q (3.25)

where f (q) is the proton–proton scattering amplitude and

S(q) is the nuclear form factor, i.e. the Fourier transform

of the nuclear density. The overall density of the nucleon in

this case is taken as the sum of the single particle densities.

Through Eq. (3.24), one can then use the optical theorem

to calculate the total cross section. A further approximation

could be made if the nuclear radius is large compared to the

range of the nuclear forces. In such a case, the form factor is

peaked near zero and Eq. (3.24) is approximated as

FN (Δ) = ik

∫

bdbJ0(Δb)[1 − e(2π i/k) f (0)T (b)] (3.26)

with the thickness function T (b) =
∫

dzρ(b + k̂z). At the

time when their paper was written, Eq. (3.26) was referred

usually as the optical nuclear model. However, according to

Glauber and Matthiae, it is not a very good approximation,

since the size of the nuclei of interest in this study were

not much bigger that the range of the nuclear forces. Thus

different approximations were looked for.

The quantity of interest here is the total inelastic cross

section. This will be obtained as the difference between the

rate for all possible final states and the elastic differential

cross section. For large Δ values, and for the large nuclear

radius approximation, the following expression is proposed

∑

f �=i

|F f i (Δ)|2 =
(

k

2π

)2 ∫

(d2b)(d2B)ei∆·b−σtotalT (B)

×
{

exp

[

T (B)

k2

∫

e−iq·b| f (q)|2d2q

]

− 1

}

. (3.27)

Since actually the large radius approximation does not quite

hold for light nuclei, one needs to use a non-approximate

expression. Different models for the nuclear density func-

tions and the nuclear forces are discussed and the results

plotted and compared with the data due to Bellettini et al.

The situation is easier for small Δ, namely for small scat-

tering angles,Δ ≪ R−1 where R is the nuclear radius. When

Δ becomes small, and the nuclear radius is large compared

to the interaction range, for large A one can use

∑

f �=i

|F f i (Δ)|2 = | f (Δ)|2

×
{

N1 − 1

A

∣

∣

∣

∣

∫

ei∆·b+iχN (b)T (b)(d2b)

∣

∣

∣

∣

2
}

, (3.28)

where N1 refers to the number of free nucleons.

This model can be used then to extract information as

regards pp total cross section from cosmic ray experiments,

given the correlation between the proton-nuclei cross sec-

tion and σtotal. However, apart from modelling the nuclear

density, which by itself may introduce some degree of theo-

retical uncertainty, there is another problem connected with

the extraction of data from the cosmic ray shower, namely

how to extract the energy of the initial hadron or proton from

the actual measurement of the shower. To this we turn in the

next sections.

3.3 Cosmic rays: measurements and extraction of pp data

Cosmic rays have traditionally afforded information as

regards particle scattering at very high energies. Indeed,

the rise of the total cross section, hinted at by the earliest

experiments at the CERN Intersecting Storage Rings (ISR),

could be seen clearly in cosmic ray experiments as shown

in [37,38]. In [37], Yodh et al. stress the inconclusiveness of

data concerning the energy behavior of the total cross section.

Since the rise, if at all, would be logarithmic, it is pointed out

that one needs to go to much higher energies, such as those

reached by cosmic ray experiments, where even logarith-

mic variations can be appreciable. Figure 6 from [37] shows

results from cosmic ray experiments compared with ISR ear-

liest results [39]. Subsequent ISR measurement of σ
pp

tot then

confirmed the early rise and the cosmic ray observations.

In order to relate pp total cross sections to p-air mea-

surements, Yodh et al. followed Glauber multiple scattering

theory [35] using a method previously discussed in [40]. A

value for σ
pp

tot could be obtained essentially through the fol-

lowing basic ideas:
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Fig. 6 Figure 2 from [37], in which measurements for the inelastic

p-air cross section from cosmic ray experiments are compared with

various theoretical models and values extracted from then available

ISR results [39] for σ
pp

total. Reprinted with permission from [37], ©1972

by the American Physical Society

– what can be measured in cosmic-rays is the inelastic p-air

cross section,

– once a model for the p-nucleus elastic amplitude is

advanced, the inelastic p-nucleus cross section follows

from σinel = σtotal − σelastic,

– the pp cross section corresponds to the mean free path

for interaction of a proton in a nucleus and can be input

to an effective inelastic cross section for protons in air.

Different theoretical models for pp cross section were then

inserted in the calculation and compared with cosmic ray

data as well as an early ISR measurement [39]. The results

were given as a set of different curves, of which the one

fitting cosmic rays data followed a behaviour saturating the

Froissart bound. With the latter parametrisation, the curve at

Elab = 105 GeV gives a most reasonable value of

σ
pp

tot = 60 mb at Elab = 105 GeV (3.29)

corresponding to a c.m. energy
√

s = 450 GeV. We notice

that the above value is very close to what subsequent fits to

σ
pp

tot (up to the LHC energies) have given [41].

In the following, after briefly recalling the status of the

problem in the early 1970s [42], we shall summarise sub-

sequent developments following [43], for the connection

between p-air and pp. Then we shall see how Durand and

Pi [44] applied their mini-jet model [45] to cosmic rays. We

shall examine the discussion by Engel et al. [46], followed

by Block et al. [47,48]. Subsequently we update these with

a discussion from a review [49], including later results by

Block [50,51] along with work by Lipari and Lusignoli (LL)

[52].

3.3.1 Cosmic ray experiments and the extraction of energy

dependence of σ
pp

total up to 10 TeV after the ISR data

The question of model dependence of the relation between

pp total cross section and p-air inelastic cross section was

discussed by Gaisser, Noble and Yodh in 1974 [53,54]. The

starting point was of course the ISR confirmation of the rise of

the total pp cross section, suggested from cosmic ray experi-

ments [37]. The question being posed in the physics commu-

nity was basically whether a behavior already saturating the

Froissart bound was in action or one was observing a tran-

sient behavior due to some sort of threshold, or to the rising

importance of parton–parton scattering [55].

An answer to this question was considered impossible to

obtain from the then available accelerator data alone, so the

question of reliability of cosmic rays estimates of σ
pp

total nat-

urally arose. The conclusion of this paper is that not only

the extraction of σp-air from air showers is by itself affected

by rather large uncertainties, but there is also a large model

dependence in the extraction of the pp cross section from the

observation of unaccompanied hadrons in the atmosphere.

More investigation of the modelling for both crucial steps

was needed.

Before proceeding, we mention the work by Cline, Halzen

and Luthe [55] who interpreted the rising cross sections as

receiving a contribution from the scattering of the constituent

of the protons, the so-called partons, quarks and gluons.

Parton-parton scattering would give rise to jets of particles

in the final state. An early estimate of a jet cross section

contribution, given as

σtot =
∫ pT =√

s/2

pT =(2÷3)GeV/c

dσ

d pT

d(phase space) (3.30)

was obtained in this paper for jets with final transverse

momentum pT > (2 ÷ 3) GeV/c and is shown in Fig. 7.

by the shaded area. Adding such an estimated contribution

to a constant or diffractive term, strongly suggested the (jet)

phenomenon could to be responsible for the observed rise.

It must be noticed that hadron jets had not been observed at

ISR. Indeed, to get a sizeable contribution from such a simple

model, sufficient to fully explain the cosmic ray excess at high

energy, softer jets, contributing from a smaller pT ≃ 1 GeV,

are needed: and such small pT jets would be very hard to

observe.

What appears here for the first time is the idea of small

transverse momentum cluster of particles, which can be

ascribed to elementary processes which start appearing in

sizeable amounts, what will be later called mini-jets. It will

be necessary to reach a much higher cm energy, to actually
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Fig. 7 This early attempt to estimate jet contributions to the rising

total cross section shows cosmic ray extracted pp total cross section as

well as ISR results. Reprinted with permission from [55], ©1973 by the

American Physical Society

see particle jets and mini-jets at the CERN S p̄ pS, a proton–

antiproton accelerator which would explore energies as high

as
√

s = 540 GeV.

However, in 1974, accelerator data could give information

on the total hadronic cross section only up to
√

s � 60 GeV

and new accelerators reaching higher energies, such as near

and around the TeV region, were very much in the future.

Thus the question of whether it could be possible to extract

the total pp cross section at c.m. energies around 10 TeV

and choose among different theoretical models for σ
pp

tot was

of great interest and was further examined in [42]. The state-

of-the-art for total cross section studies (circa 1974) is shown

in Fig. 8, where added lines and arrow indicate results in the

range of LHC energies, as expected, for instance, in [41,56].

As already known, the cascade development through

which one measures p-air cross section is sensitive only

to production processes, and the quantity measured is an

inelastic cross section. Then one could write the simplest

possible model, which would ascribe the breaking up of the

stricken nucleus both to elastic and inelastic scattering from

the nucleon–nucleon scattering, using Glauber’s formalism,

as

Fig. 8 State-of-the-art of total cross section models in 1974 from [42]

and comparison with expected results at LHC13. Reprinted with per-

mission from [42], ©1974 American Physical Society

σ
p-air

inel ≡ σabs =
∫

d2b
[

1 − e−σtotalT (b)
]

(3.31)

where σtotal indicates the total nucleon–nucleon (proton–

proton) cross section. T (b) indicates the profile function

of the stricken nucleus of atomic number A. Two limits of

Eq. (3.31) can be taken as

σabs ≃ Aσtotal σtotal small, (3.32)

σabs ≃ π R2
A ≃ C A2/3 σtotal large (3.33)

where RA is the nuclear radius.

Such a simple model is unable to provide enough informa-

tion on σtotal at high energy, where σ
pp

total can become large,

and a more precise expression seemed required. Within the

Glauber model, convoluting the nucleon profile function with

the nuclear density function ρ(r), the following expression

was proposed:

σabs =
∫

d2b[1 − |1 − ΓA(b)|2] (3.34)

where

ΓA(b) = 1 −
[

1 −
∫

d2b′dzΓN (b − b′)ρ(z,b′)

]A

,

(3.35)

ΓN (b) is the nucleon profile function. There exist various

models for the nuclear density, as already mentioned, depend-

ing on the nucleus being light, heavy or in between. Often, as

in [42], the gaussian form is used. Next, one needs a nucleon

profile function and the frequently used expression is again

a gaussian distribution, namely

ΓN (b) = σtotal
e−b2/2B

4π B
. (3.36)
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This expression is based on the description of the elastic

differential cross section in the small −t-region, namely:

dσelastic

dt
=
∣

∣

∣

∣

∫

d2bΓN (b)

∣

∣

∣

∣

2

=
[

dσelastic

dt

]

o

eBt (3.37)

where B is defined in the usual way,

B(s) =
[

d

dt

(

ln
dσelastic

dt

)]
∣

∣

∣

∣

t=0

. (3.38)

It became clear, however, that there were other uncertainties

to take into account, in particular those related to processes

which could not easily be classified as elastic or inelastic,

but, rather, were quasi-elastic.

3.3.2 Prescriptions for more precise extraction of σ
pp

tot after

the advent of the CERN S p p̄S data

The need to extract from cosmic ray experiments more pre-

cise information as regards the proton–proton cross section

led to scrutinize better the original use of the definition of

inelastic cross section for nucleon–nucleus collision. Follow-

ing the discussion by Gaisser, Sukhatme and Yodh in [43],

the inelastic p-air expression for the cross section should

include various processes which are neither totally elastic

nor inelastic. Such are

– σquasi-el: quasi-elastic excitations of the air-nucleus,

– σ ∗: processes where there are diffractive excitations of

one of the nucleons in the stricken nucleus,

– Δσ : multiple collisions with excited nucleon intermedi-

ate states

However, the cascade shower which is measured in cosmic

rays is not sensitive to these processes. Thus, the p-air inelas-

tic cross section which is being extracted from the cosmic ray

cascade is not

σ
p-air

inel = σ
p-air

total − σ
p-air

elastic, (3.39)

but rather

σ
p-air

inel = σ
p-air

total − σ
p-air

elastic

− σquasi-el − σ ∗ − Δσ. (3.40)

Hence, in order to be able to extract information as regards

pp cross sections from p-air, one needs to have a model for

various nuclear excitation processes and for the diffractive

part of the nucleon–nucleon cross section which contributes

to Δσ . These various processes can be taken into account

through the Glauber technique. Equation (3.40) requires [43]

knowledge of the following quantities:

– σ
pp

total

– B pp(t = 0), the forward elastic slope parameter

– σ
pp

SD , σ
pp
DD , the total single and double diffractive pp cross

sections

– d2σ

dtdM2
X

the shape of the diffractive cross section for p p →
p + X near tmin ≈ −[m2(M2 − m2)2]/2s2

– the nuclear density

In [43] use is made of unitarity to either exclude some of the

then current models or to restrict the various contributions

entering Eq. (3.40). In particular, when inclusion of diffrac-

tive processes are taken into account, the Pumplin limit [57],

to be discussed in Sect. 6, has to be included:

σelastic + σdiffractive ≤ 1

2
σtotal. (3.41)

The total, elastic and quasi-elastic p-air cross sections can

be calculated in a straightforward manner using the model

parameters for σ
pp

total, σ
pp

elastic, B pp and ρ, as for instance in

[12]. In brief, after having determined the values of σtotal as

a function of
√

s as well as that of B(s), the scheme of the

calculation is to start with the elastic pp scattering amplitude

at small angle,

f (q) = kσtotal

4π
(ρ + i)e−Bq2/2, (3.42)

which is now fully determined and insert it into the nucleon–

nucleon profile function

Γ j (b) = 1 − eiχ j = 1

2πk

∫

d2qe−iq·b f (q), (3.43)

which assumes that each nucleon has a static profile, thus

automatically identical to a given function, the same for all.

This nucleon–nucleon profile function is put into the profile

factor for the nucleus

Γ = 1 − eiχ = 1 − e
i
∑

j=1,A χ j (3.44)

and then this is put into the nucleon–nucleus scattering ampli-

tude, together with the nuclear density of nucleons in the

nucleus ρ(r). The nuclear amplitude is thus written as

F(q) = ik

2π
θ(q2)

∫

d2beiq·b

×
∫

· · ·
∫

· · ·Γ (b, s1, . . . , sA)

A
∏

i=1

ρ(ri )d
3ri (3.45)

with Γ (b, s1, . . . , sA) being the profile function for the

nucleus, s being the component of r in the b plane. One now

uses the basic Glauber hypothesis that the overall phase shift

χ of a nucleon on a nucleus is the sum of the phase-shifts of

individual nucleon–nucleon phase-shifts, and the following

is now the proposed nucleon–nucleus amplitude:
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Fig. 9 Relations between the total pp cross section σtotal, the slope

parameter B(s) and σ p-air from Block, Halzen and Stanev [47].

Reprinted with permission from [47], ©1999 by the American Physical

Society

F(q) = ik

2π
θ(q2)

∫

d2beiq·b

×
[

1 −
[

1 −
∫

d3rρ(r)Γ j (b − s)

]A
]

(3.46)

where Γ j is the nucleon–nucleon profile function. One can

now see how, by using various models for the nuclear density,

and various models for nucleon–nucleon scattering, one can

estimate σ
p-air

elastic, σ
p-air

total through the optical theorem, i.e.

σ
p-air

total = 4π

k
ℑm F(0), (3.47)

σ
p-air

elastic =
∫

dΩk |F(q)|2. (3.48)

Before proceeding, let us notice that the Block and Cahn

model [12] fits B(s) and σtotal from available data in a large

energy range and the result is a curve where B(s) and σtotal

can be plotted against each other. The effect is that the larger

values of σ
pp

total correspond to larger values of B(s), as one

can see from the straight line in Fig. 9 from [47].

The above takes care of the first two terms in Eq. (3.40),

and we now turn to the last three terms. While different

models were used for the nuclear density function in eval-

uating the proton-nucleus amplitude, for the calculation of

the other three terms, whose details are in the appendix

of [43], only a gaussian density distribution is used. The

calculation of σquasi-el is obtained from [35] by integrating

the expression for quasi-elastic scattering and making an

expansion, i.e.

σquasi-el = π R2
∞
∑

n=1

ǫn

n
(3.49)

with

R2 = 2

3
〈a2〉, (3.50)

ǫ = 1 + ρ2

16π

σtotal

B
(3.51)

a being the rms nuclear radius. Given an input for the nuclear

radius, in this model, the quasi-elastic term is again obtained

from the pp parameters. Next one needs to estimate σ ∗,

which represents the correction for diffraction dissociation

of the nuclear target. This is estimated, in Gaisser’s model,

from

σ ∗ = σ
pp

SD

σ
pp

inel

(

2π

3
〈r2〉

)

(3.52)

where the last term in round bracket represents the cross

section for absorptive p-nucleus interaction involving only

one nucleon. One can use unitarity to put bounds on the ratio
σ

pp
SD

σ
pp

inel

and from the Block and Cahn model, one obtains for

σ ∗ a range of values between 28 and 15 mb as the energy

changes from
√

s = 20 GeV to 10 TeV.

As stated in [43], the last term, Δσ , is a correction to

Glauber’s model, to include cases when one nucleon is

excited in one encounter and then returns to the ground state

through a subsequent encounter. This correction is evaluated

to be of the order of 10 mb. For its estimate, the differen-

tial cross section for diffractive excitation of the nucleon to

a mass M is modelled to be

dσ

dM2dt
= A(M)eB(M2)t . (3.53)

Once the five steps of the calculation have been performed

in terms of the given input from B(s) and σtotal for various

energies, one can now try to extract the proton–proton cross

section from the measured p-air cross section.

The procedure consists of two steps. First, one finds curves

of fixed value of σp-air in the (B(s), σ
pp

total)-plane, namely

one finds the corresponding points in the (B, σtotal) plane

which show that particular p-air cross section. This proce-

dure gives curves such as the ones shown in Fig. 9 from

a later paper by Block, Halzen and Stanev (BHS) [47] to

which we shall return next. To obtain then σtotal at a given

energy from this procedure depends on the model for pp

scattering. In a given model let one draw the line which

corresponds to predicted values for B(s) at a given energy.

The same model will also give a value for σtotal(s) and

thus a line can be drawn to join these various points in the

(B(s), σtotal(s)) plane. This line will meet the constant σ
p-air

inel

at some points. Now if the experiment says that a proton

of energy
√

s ≃ 30 TeV has produced σp-air = 450 mb,
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say, all we need to do is to look at which set of {B, σtotal}
values the model crosses the constant contour. It is possible

that the model cannot give such a high value for the p-air

cross section for the B and σ
pp

total values input by the model.

This was for instance the case for one model by Goulianos

[58], in which diffraction dominated the cross section, or a

model by Block and Cahn, in which both σ
pp

total and B(s)

were not asymptotically growing. In such cases, seen clearly

in (Fig. 6 of) [43], these values can never give a cross section

for p-air as the one observed. Thus, the cosmic ray obser-

vation allows one to exclude these models, at least within

the validity of the given construction based on the Glauber

model and on a correct estimate of the cosmic ray compo-

sition. But other models can give values which would be

as high as the observed cross section: in such cases, when

the line crosses (say a value 450 mb) of the p-air curve,

one has correspondence between the experimental point for

σp-air and the value of σ
pp

total in that particular model. One

can also prepare a different plot, which shows which value

of σp-air one can get for a given σ
pp

total for different values

of the slope parameter. Depending on how different mod-

els obtain/parametrise B vs. σtotal, one can then extract the

relevant information.

Conclusions about the validity of a given model, from

plots such as the one in Fig. 9, depends also on the uncer-

tainties about the measured values for σ p-air. In particular,

as emphasised in [43], fluctuations in individual hadronic

interactions and on the chemical composition of the pri-

mary particles in the observed showers influence the final

result.

3.3.3 The Durand and Pi mini-jet model for p-air

interactions

So far, we have discussed approaches which use the Glauber

method to extract information as regards σ
pp

total from cosmic

ray measurements at very high energy. As we have seen, in

some cases, such approach yielded information not only on

the energy dependence but also about the model validity at

such very high energies. This was for instance the case of

a diffractive dominance model [58] or one of two models

by Block and Cahn [12]. We now discuss a rather different

approach.

The approach followed by Durand and Pi [44] employs

their QCD-driven model [59] to predict σabs(p-Air).2 This

model, which is described in detail in Sect. 5 for the case of

pp scattering, uses an eikonal formalism with QCD mini-jets

as input for the energy dependence and an impact-parameter

distribution (of quarks and gluons in a proton) modelled

after the proton e.m. form factor. In this paper the model

2 Here, as everywhere else in this review, we adopt the notation used

by the authors in their articles.

is extended to scattering of protons on nuclei of nucleon

number A, by basically treating the process as the scatter-

ing of quarks and gluons from the incoming protons against

quarks and gluons in the nucleus. We shall now follow their

description to see how the model is applied to p-air or more

generally to p − A.

The authors start with the proton-nucleus profile function

which enters the (proton-nucleus) scattering amplitude f (t)

for the given process (t being the momentum transfer), i.e.

f (t) = iπ

∫

bdbJ0(b
√

−t)Γ (b). (3.54)

Instead of the usual parametrisation given as

Γ (b) = σtotal

4π
e−b2/2B, (3.55)

B =
[

d

dt

(

ln
dσ

dt

)]

t=0

, (3.56)

Equation (3.54) is written in terms of an eikonal function

whose high energy behavior will entirely be based on the

mini-jet model, namely

f (t) = iπ

∫

bdbJ0(b
√

−t)[1 − e−χ̃p A ], (3.57)

χ̃p A = 1

2
(σ0 + σQCD) Ã(b) (3.58)

in close connection with the similar treatment for pp. In this,

as in other similar models, the eikonal function is assumed

to have a negligible real part. Corrections for this can be

included. The absorption cross section is then given as

σabs(p A) = 2π

∫

bdb[1 − e−2χ̃p A(b,s)]. (3.59)

We now sketch the procedure followed by Durand and Pi and

postpone a discussion of how this production cross section

differs from the total inelastic cross section. For an eikonal

mini-jet model such as the one discussed here one needs to

start with the following input:

1. how partons of given energy, momentum and position b

are distributed in the nucleus

2. an elementary cross section for parton–parton scattering

dσ̂ /dt̂(ŝ, t̂)

3. density of nucleons in the nucleus.

Consider the p − A scattering process as built from the

uncorrelated scattering of an incoming proton with an aver-

age target nucleon a, which carries a fraction 1/A of the

nucleus momentum. Quarks and gluons in the incoming pro-

ton then scatter against quarks and gluons in the average

nucleon a inside the nucleus. This model assumes that, at high

energy, the parton distribution in the nucleus A is given by

the parton distributions in the nucleon a convoluted with the

distribution of nucleons in the nucleus A. We are now dealing
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with a proton-nucleus scattering and, as in the original mini-

jet model for pp scattering, the impact-parameter depen-

dence is factored out from the energy and transverse momen-

tum dependence. Let ρa(b) be the average impact-parameter

distribution of partons in nucleon a, and fi,a(x, |t̂ |) the usual

nucleon Parton Density Function (PDFs), where x is the frac-

tional longitudinal momentum carried by the parton, t̂ the

parton–parton momentum-transfer in the scattering. Next,

parton distributions inside the nucleus are proposed for a

model of A uncorrelated nucleons. In the model, parton dis-

tributions inside a nucleus, fi,A(x, |t̂ |, b), are obtained as

a convolution of the distribution of partons in the nucleon

fi,a(x, |t̂ |)ρa(b) with the distribution of nucleons in the

nucleus, ρA(r), namely

fi,A(x, |t̂ |, b) = 1

A

A
∑

a=1

∫

d2r⊥dz fi,a(x, |t̂ |)

×ρa(|b − r⊥|)ρA(r⊥, z) (3.60)

with ρA(r⊥, z) being the nuclear density function, subject to

the normalisation condition
∫

d2r⊥dzρA(r⊥, z) = A. (3.61)

Nuclear binding and small differences between protons and

neutrons are neglected and one arrives at the following sim-

plified expression:

fi,A(x, |t̂ |, b)

= fi,A(x, |t̂ |)
∫

d2r⊥dzρa(|b − r⊥|)ρA(r⊥, z). (3.62)

Folding the above with the elementary parton cross sections

and integrating in the sub-process variables, leads to very

simple result that the QCD contribution, also called mini-

jets, to the eikonal is the same as the one calculable for pp

scattering, and the difference between the hadronic and the

nuclear eikonal function only lies in the impact-parameter

distribution, namely the eikonal function for p A scattering

is written as

χ
QCD
p A (b, s) = 1

2
Ã(b)σQCD (3.63)

where σQCD is the mini-jet cross section which will be used

to describe (fit) σ
pp

total and Ã(b) is a convolution of the nuclear

density with the parton density A(b) in the proton, i.e.

Ã(b) =
∫

d2r⊥dzρA(r⊥, z)A(|b − r⊥|). (3.64)

The next step in the calculation is to deal with the non-QCD

part, what can be defined as the soft scattering contribution,

σ̃soft. One may ask if this quantity is the same as in pp scat-

tering. The model indicates that the same σQCD gives the

high energy contribution (and hence the rise with energy) to

both nucleon and nuclear proton scattering. But there is no

Fig. 10 The absorption cross section for p-air as calculated in the

QCD model by Durand and Pi in [44] compared with cosmic ray data.

Reprinted with permission from [44], ©1988 by the American Physical

Society

reason to expect the soft part to be the same. Indeed the phe-

nomenology indicates a smaller σ̃soft in fits to the data. The

point of view here is that it should be smaller, because soft

processes (in mini-jet language -see later- final partons with

pt < pt min) may not be sensitive to such processes as much

as the pp cross section. Whatever the reason, the end result

is that a good fit yields σ̃soft = 31.2 mb, instead of the value

σ
pp

soft = 49.2 mb used to describe pp scattering.

Folding the impact-parameter distribution of partons of

their model with different nuclear distributions according to

the nuclear composition of air, gives the result for p-air, and

obtains the expression for the absorption cross section for

protons in air

σabs(p A) =
∫

d2b(1 − e−2χ̃p A(b,s)), (3.65)

χ̃p A(b, s) = 1

2
(σ̃0 + σQCD) Ã(b). (3.66)

We show their result in Fig. 10 for two different nuclear den-

sity models, and σ̂0 = 31.2 mb fitted to low energy nuclear

data, a value 30% lower than what enters the fit to free pp

scattering. The fit to AKENO and Fly’s Eye are quite accept-

able. However, the inverse procedure, that of trying to extract

from the cosmic ray data a value for σ
pp

total poses some prob-

lems. The Fly’s eye value of σabs(p-Air) = 540 ± 50 mb

is seen to correspond to a σ
pp

total = 106 ± 20 mb at the cms

energy of 30 TeV, a decidedly low value, especially after the

latest TOTEM results at LHC.
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3.3.4 More about uncertainties in extracting σ
pp

tot from

cosmic ray data, after the Tevatron

While cosmic ray measurements can shed light on the

behaviour of σ
pp

tot at very high energies, the hope to exclude

or confirm a given model for pp scattering is clouded by

large uncertainties.

An updated analysis of such uncertainties was done in

1998 by Engel et al. [46], and a summary of their analysis is

presented in the following. The starting point is the calcula-

tion of the absorption cross section with the Glauber model

[35]. First, Engel et al. [46] discuss the relation between

nucleon–nucleon and nucleon–nucleus cross sections. This

discussion is based on the procedure used to extract σ
pp

tot from

σ p-air, following Gaisser et al. in [43], where the definition

of a production cross section is adopted, namely

σ
prod
p-air = σ tot

p-air − σ el
p-air − σ

q-el
p-air (3.67)

with σ
q-el
p-air the quasi-elastic p-air cross section where no par-

ticle production takes place, but there are inelastic contribu-

tions as intermediate states while the nucleon interacts with

the nucleus. In this procedure a crucial role is played by the

B-parameter, and the relation between σtotal and σelastic in

elementary hadronic cross sections. After this, a discussion

of how air shower experiments infer the p-air cross section

is presented and the relevant uncertainties summarised.

In this model, the basic sources of uncertainties arise from

modelling of:

1. σ p-air, the interaction cross section between hadrons and

the atmosphere, vs. σ pp, the proton–proton cross sections

(total and elastic)

2. σ pp the hadron–hadron cross section

3. the shower development and the primary cosmic ray com-

position and the relation withλp-air, the interaction length

of hadrons in the atmosphere.

In the model, the profile function of the stricken nucleus

is obtained through a combination of the following inputs:

(i) the elastic differential cross section in the forward region,

(ii) σtotal and (iii) B(s), the slope parameter at t = 0, defined

as in Eq. (3.56). The connection between B(s) and the ele-

mentary hadron–hadron cross sections, σelastic and σtotal is, as

before, obtained from the optical theorem and the gaussian

approximation for the forward region, namely

σ el
AB = (1 + ρ2)

(σ tot
AB)

2

16π B(s)
. (3.68)

While Eq. (3.68) is a good approximation to the data, the

high energy behavior of σ tot
AB and B(s) depends on the model

used. In [46], one of two models discussed is the standard

Donnachie and Landshoff (DL) fit [60], i.e.

Fig. 11 Contour plot of constant p-air cross section in the B(s) vs

σ
pp

total plane from [46]. Solid symbols are experimental accelerator points,

dashed line is the DL model, dotted line a geometrical model. Dashed

area excluded by the unitarity constraint, the five curves are the region

within one or two standard deviations from the central Fly’s Eye exper-

iment, σ
prod
p-air = 540 ± 50 (mb) measurement. The open point is the

expectation of the DL model at 30 TeV cm energy. Reprinted with per-

mission from [46], ©1998 by the American Physical Society

σ tot
AB = X ABsǫ + YABs−η (3.69)

with ǫ ≃ 0.08 and η ≃ 0.45. The Regge–Pomeron interpre-

tation of the expression for the slope parameter would lead to

B(s) = B0 + 2α′(0) ln

(

s

s0

)

. (3.70)

We shall see later, in Sect. 5, that a linear extrapolation in

(ln s) up to present LHC results can be challenged [61] and

that the high energy behavior of B(s) is still an open problem.

In general, once fits to the elastic and total cross sections

have been obtained in a given model, the by now familiar

plot of B vs σtotal is used with curves of constant p-air cross

section drawn in it. Intersection of the model lines with a

given curve allows one to extract pp cross section in a given

model at the given cosmic ray energy. One such plot, from

[46] is reproduced in Fig. 11. This plot gives rise to large

uncertainties: for instance the same low p-air cross section

can be obtained with a small B-value and a range of σ
pp

total

values, and so on. Given a certain model and its fit to elastic

and inelastic data, and then its input into p-air cross section,

three observations are worth repeating:

– model for the pp interactions usually show that at high

energy the larger B(s) the larger is σtotal

– along a line of constant σ p-air, larger B(s) values corre-

spond to smaller σtotal

– extrapolations of the slope parameter to higher energy

depends on the model and it may lead to large uncertain-

ties in σ p-air.
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Two models are shown in Fig. 11, the Donnachie and Land-

shoff (DL) models [60] and a geometrical scaling model.

Geometrical scaling was a useful approach to the behavior of

the elastic differential cross section up to ISR energies. The

hypothesis of geometrical scaling is that the entire energy

dependence of the cross section comes from a single source,

a radius R(s), thus implying automatically the black-disk

limit Rel = σelastic/σtotal = 1/2. Geometrical scaling, how-

ever, is not observed by experiments at S p̄ pS energies and

beyond. We shall return to this point in the section about

models and elastic scattering.The dashed area indicates the

region excluded by unitarity, as discussed in Sect. 3.6.

3.3.5 Extracting information from cosmic ray showers

The uncertainties encountered in determining values forσtotal

from σ p-air are only one of the problems encountered in try-

ing to find the asymptotic behavior of proton–proton scat-

tering. More uncertainties lie with the air shower technique

which is used to extract σ p-air. Such uncertainties are sum-

marised in a parameter, sometimes called a, more often k,

which relates the interaction length of protons in air, i.e.

λp-air = 14.5
m p

σ
prod
p-air

(3.71)

where 14.5 is the mean atomic mass of air, to the attenuation

length Λ defined as

Λ = aλp-air. (3.72)

The attenuation length Λ is a measure of the initial proton

energy, and is obtained from the air showers generated by the

interaction of the primary cosmic ray with the atmosphere.

This uncertainty entering data extraction is the rate of energy

dissipation by the primary proton. The p-air cross section is

thus affected by uncertainty related to the parameter a.

But uncertainty also comes from the composition of the

most penetrating cosmic rays, and this is also related to the

question of the origin of cosmic rays. Engel et al. [46] discuss

how different Monte Carlo programs simulate air shower

development using the same Λ = 70 ± 6 g/cm2 and extract

different values for σ p-air according to the chosen parameter

set.

3.3.6 Air shower modelling

The energy of the particle starting the shower and the interac-

tion length of the proton in air are obtained from the depth and

extension of the electromagnetic shower they initiated. The

most important processes of interest for air shower modelling

are electron and muon bremsstrahlung and pair production.

The electromagnetic shower, which develops as an electron

or a photon starts losing energy because of EM processes

such as bremsstrahlung and pair production, can be divided

into three phases:

– the shower grows as long as all the particles have energy

larger than the typical ionisation energy ǫ0 which cor-

responds to an electron energy too small for pair pro-

duction, and such as to typically induce ionisation in the

nuclei

– the shower maximum, which has an extension deter-

mined by the fluctuations around the point where all the

particles have energy just about ǫ0

– the shower tail where particles lose energy only by ioni-

sation or by absorption, or decay.

To determine the quantity Xmax one can use a simple model

due to Heitler and summarised in [49].

These processes are characterized by a typical quantity,

the radiation length X0, which represents the mean distance

after which the high-energy electron has lost 1/e of its initial

energy. Namely, X0 is the constant which defines the energy

loss of the electron as it traverses a distance X ,

dE

dx
= − E

X0
. (3.73)

Then, in a simplified model in which only bremsstrahlung

and pair production are responsible for energy losses, the air

shower can be modeled, as follows. At each step the electron,

or photon can split into two branches, each of which will then

split into two other branches as long as the energy of each

branch is >ǫ0. At a depth X , the number of branchings is

roughly n = X/X0 and after n branchings, the total number

of particles will be 2n . The maximum depth of the shower will

be reached when the initial energy E0 is equally distributed

among the maximum number of secondaries, each one of

which has energy just above the ionisation limit ǫ0, Thus,

E0 = Nmaxǫ0, Nmax = 2nmax = 2Xmax/X0 = E0/ǫ0. This

leads to

Xmax = X0

[

ln E0
ǫ0

ln 2

]

. (3.74)

The matter is further complicated by the fact that not all

groups employ the Xmax method.

The attenuation length Λ is obtained from the tail of the

function describing the Xmax distribution.

3.3.7 Block, Halzen and Stanev: models vs. measured

attenuation length

Shortly after Ref. [46], the uncertainties arising through the

a parameter values used by different experiments, were again

discussed [47,48] in light of the QCD-inspired model for σ
pp

tot

in [62], referred to as BHM model. This model incorporates

analyticity and unitarity, in a context in which QCD shapes
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the parameterisation of the terms which contribute to the rise

of the cross section. We shall discuss it later in more detail.

Anticipating more recent debates, we notice that the cos-

mic ray experiments can give information on the interaction

p-air, and hence on pp, but the extraction of data depends

not only on the rate at which the primary particle dissipates

energy in the atmosphere, but on cosmic ray composition.

In this work, Block, Halzen and Stanev choose to ignore

the possibility that the most penetrating particles may not be

protons, and focus instead on the consistency of the values

extracted by cosmic ray experiments with those extracted by

the Glauber method implemented with their model for pp

scattering.

They rename the parameter a as k, and use the slightly

different nomenclature

Λm = kλp-air = k
14.5m p

σ
p-air

inel

, (3.75)

σ inel
p-air = σp-air − σ el

p-air − σ
q-el
p-air, (3.76)

where the subscript m in Eq. (3.75) stands for measured, k

measuring the rate at which the primary proton dissipates

energy into the electromagnetic shower as observed by the

experiment, and σp-air is the total p-air cross section. Once

more, here are the steps as described in this paper:

1. experiments obtain σ
p-air

inel from Eq. (3.75) at a given

energy of the most penetrating primary particle, mea-

suring Λm and estimating a value for k,

2. model builders use Eq. (3.76), with Glauber’s theory and

a nuclear density model as described in [43], and draw

constant contours of fixed σ inel
p-air in the B(s) and σ

pp
tot

plane,

3. the QCD-inspired model by [62] establishes the corre-

spondence between B(s) andσ
pp

tot : (i) at any given energy,

extrapolated values for σ
pp

tot and B(s) can be determined

through a fit of the model parameters of all the pp and p̄ p

accelerator data. Thus a plot such as the one in Fig. 11,

where the dashed line is for the DL model, is now con-

structed for the BHM model,

4. the intersection of a given curve for p-air, which corre-

sponds to the measured σ
p-air

inel for primary proton energy,

with the B(s) vs. σ
pp

tot line determines the σ
pp

tot value at

that energy.

Figure 12, shows the one-to-one correspondence established

between σ
pp

tot and σ inel
pair via the constant contours in the

(B, σ
pp

tot ) plane, according to the BHM model.

It appears that in such a procedure, one has to first trust

two models, (i) the Glauber model along with the relation

between B(s) and σ
pp

tot , and (ii) the model which extrapolates

B(s) and σ
pp

tot at ultrahigh energies, but then one has also to

Fig. 12 Plot of the predicted pp cross section vs. for any given value

of a measured σ inel
p-air , using the constant contour procedure, from Fig. 3

of [47]. Reprinted with permission from [47], ©1999 by the American

Physical Society

trust the correctness of the extraction procedure ofσ inel
p-air from

the air showers.

In [47] a contradiction is seen to arise between the predic-

tions for pp in the model as obtained from accelerator data

and cosmic ray extracted values.

In their conclusion, the authors point a finger to the param-

eter k, as already noted before [46]. Different experiments

use different values for k, obtained from different analyses

of shower simulation. The authors thus proceeded to do a χ2

fit to the cosmic ray data and extract a value for k, and obtain

k = 1.33 ± 0.04 ± 0.0026, which falls in between values

used by different Monte Carlo simulations.

Shortly there after, in a subsequent paper [48], to reduce

the dependence on the determination of the parameter k, a

simultaneous fit to both accelerator data and cosmic ray data

was done by the same authors and a reconciliation between

pp cross section between accelerator data and cosmic ray

data was obtained when a value k = 1.349 ± 0.045 ± 0.028

was used. The resulting agreement is shown in Fig. 13 from

[48]. This analysis now gives a value σ total
pp (

√
s = 14 TeV) =

107.9 ± 1.2 mb and the predictions from the model are now

in agreement with extracted cosmic ray pp data.

Other questions arise if one were to challenge the assumed

primary composition or Eq. (3.76), as we shall see through

a summary of a review paper by Anchordoqui et al. [49], to

which we now turn.

3.4 The extraction of p-air cross section from cosmic rays

A good review of the experimental techniques used to mea-

sure cosmic ray showers and extracting information from

them can be found in [49] and lectures covering many aspects

of cosmic ray physics can be found in [63].
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Fig. 13 pp scattering total cross section predictions compared to

rescaled Cosmic ray data from [48], as described in the text. Reprinted

with permission from [48], ©2000 by the American Physical Society

This 2004 review focuses on cosmic ray phenomenology

from the top of the atmosphere to the earth surface. For pri-

mary cosmic ray energies above 105 GeV, the flux is so low

that direct detection of the primary particles above the upper

atmosphere is practically impossible. In that range, however,

the primary particle has enough energy to penetrate deeply in

the atmosphere and generate Extensive Air Showers (EAS),

namely a measurable cascade of detectable products. Vari-

ous techniques are used to detect the cascade products, and

different types of detectors are employed.

In addition to various ways to extract from air showers

information about primary composition of the incoming cos-

mic rays and energy of the primaries thus selected, one tries

to extract σ
pp

totalfrom σ p-air. There are various Monte Carlo

simulation programs which do this, the ones mentioned in

this review being SiBYLL [64], QGSJET [65] and DPM-

JET [66]. DPMJET simulates hadronic interactions up to the

very high cosmic energies of interest using the Dual Parton

Model [67]. The other two are both based on the eikonal

approximation and mini-jet cross sections, but differ in how

they introduce the impact-parameter distribution of partons

in the hadrons. According to this review, in SYBILL the b-

distribution is the Fourier transform of the proton e.m. form

factor, whereas in QGSJET it is taken to be a Gaussian, i.e.

A(s,b) = e−b2/R2(s), (3.77)

R2(s) ≃ 4R2
0 + 4α′

eff ln2 s

s0
. (3.78)

In this way, they can easily obtain the diffraction peak in

agreement with the experimentally observed increase with

energy. DPMJET has its name from the Dual Parton Model

and is based on soft and hard Pomeron exchanges.

We can see now how various models for proton–proton

scattering influence the information as regards the behaviour

of the total pp cross section at the highest energy available. In

Fig. 14 The above is Fig. 5 from [49] and shows the energy dependence

of the pp inelastic cross section compared with different models for the

impact-parameter distribution inside the protons. This figure is courtesy

of L. Anchordoqui. Reprinted from [49], ©(2004) Elsevier

Fig. 14, values for σinel from cosmic ray data from AGASA

and Fly’s Eye are plotted against the two model entries from

SYBILL and QGSJET for the inelastic pp cross section. At

low energy, data come from CERN ISR and the cross sec-

tions are normalised to these values. The experimental errors

indicated in this figure are mostly due to a limited under-

standing of the interaction of protons with nuclei and also

nuclei with nuclei at such very high energies, as we shall try

to show in the following. An even greater uncertainty seems

to come from the modelling of the pp cross section itself,

as indicated by the two different bands. This uncertainty is

actually not as large as it appears in this figure, since data

at
√

s ≈ (60 ÷ 1800) GeV severely limit the high energy

behaviour, as one can see from the section on models and

fits.

Let us now turn to describe how one extracts the data for

pp cross section from p-nucleus, basically p-air data, always

following [49]. In order to simulate cosmic ray showers, cur-

rent event generators will need first of all to extrapolate the

pp cross section to very high energy (but this is by now

provided by the many models and fits described in the next

section) but also to make a model for the impact-parameter

distribution of nucleons in nuclei. Indeed, all the event gen-

erators or models included in the event generators, use the

Glauber formalism, with the nucleon density folded into that

of the nucleus.

In Ref. [49], the distinction between a production and

an inelastic p-air cross section as related to the total vs. the

inelastic pp cross section is clearly emphasised. We antici-
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pate here that the definition of σ
pp

inelastic is model dependent.

Following Ref. [68], two expressions are discussed:

σ̃inel ≈
∫

d2b{1 − exp[−σtotalTA(b)]}, (3.79)

σ̃prod ≈
∫

d2b{1 − exp[−σinelTA(b)]} (3.80)

where TA(b) gives the impact-parameter distribution of the

hadronic matter in the target (air for instance) folded with

that of the projectile particle. σtotal and σinel are the rele-

vant quantities for pp scattering or hadron–hadron scatter-

ing. Here σ̃inel uses the usual eikonal format, with as input

the total pp cross section. The physical description amounts

to consider all the possible ways in which the proton can

interact with another proton, σtotal and this will then be input

to the formal expression for the inelastic p-air cross section.

Then the result, compared with p-air data should allow one

to extract the pp data. The second equation starts with the

pp inelastic cross section and thus corresponds to breaking

up single protons in the nucleus. What will it give for p-

air? Clearly it is a scattering process in which at least one

proton has broken up, generating a new particle. Accord-

ing to Anchordoqui et al., σ̃prod gives the cross section for

processes in which at least one new particle is generated.

For this to happen, one must exclude elastic pp processes,

and this is why the input in this case is the inelastic pp

cross section. This latter quantity, σ̃prod, is the one which

enters the cascade, since this is what will start the cas-

cade.

Notice that, in the cascade, π–p is also playing a role and

this cross section needs to be entered in the simulations as

well. The π − p cross section is smaller than the one for pp,

but only by perhaps a factor 2/3. The relevant parameters

in modelling these processes are two, the mean free path,

λ = 1/(nσ̃prod) and the inelasticity K = 1 − Elead/Eproj,

where n is the density of nucleons in the atmospheric target

and Elead and Eproj are energy of the most energetic hadron

with a long life time in the shower and the energy of the

projectile particle, respectively.

3.4.1 Extraction of σ
pp

tot in Block and Halzen model

The extraction of σ
pp

tot from cosmic ray data has been con-

sidered once again in [51]. Block summarises his description

of the connection between p-air and pp data and examines

different methods by which data are extracted and analyzed.

In addition, a different model for σ
pp

tot is used. The discussion

covers now two different methods by which one can obtain

σ
prod
p-air from the Xmax distribution.

In the first of the methods examined, which is the one

used by Fly’s Eye, AGASA, Yakutsk and EASTOP, the mea-

sured quantity is of course Λm , which implies that, in order

to extract first of all a value for σ
prod
p-air one needs the value of

the parameter k. The range of values used by different exper-

iments for the parameter k is given in the paper and it lies

within (1.15 ÷ 1.6) from EASTOP to Fly’s Eye experiment.

The smallest value is the one used by EASTOP, which is

also the most recent and corresponds to more modern shower

modelling,

A second method is the one used by the HiRes group,

which, according to Block, has developed a quasi-model-

free method of measuring σ
prod
p-air. Basically, the shower devel-

opment is simulated by randomly generating an exponen-

tial distribution for the first interaction point in the shower.

By fitting the distribution thus obtained, one can obtain

σ
prod
p-air = 460 ± 14 ± 39 ± 11 mb at

√
s = 77 TeV.

The analysis in this paper differs from the one in [48]

in two respects, one concerning the model used for σ
pp

tot ,

and the other the treatment of different cosmic ray exper-

iments. The extraction of σ
prod
p-air from the model used

for pp description does not use all the results from the

QCD-inspired model. A hybrid combination enter into the

(B(s), σ
pp

tot ) plane, namely: (i) σ
pp

tot is obtained from an

analytic amplitude expression, which saturates the Froissart

bound [69], i.e. σ
pp

tot ≃ ln2 s at asymptotic energies, with

parameters fitted to both pp and p̄ p accelerator data, (ii)

B(s) is obtained via a fit to data from the QCD-inspired

model [50]. Values for σ
pp

tot at LHC remain unchanged,

but changes appear in the thus determined value for the

parameter k.

3.4.2 The inelastic cross section and model uncertainties,

including diffraction

A short review by D’Enterria et al. [70] deals with vari-

ous hadronic quantities entering cosmic rays analyses, such

as multiplicity distributions and energy flow. In addition,

extracting an inelastic cross section from total and elastic

scattering requires, in most models, a theoretical description

of diffraction, single and double, low and high mass.

In Regge-based models, diffraction uses a multichannel

formalism along the line of previous analyses by Mietti-

nen and Thomas [71], also discussed by Pumplin [72,73],

and based on the Good and Walker decomposition of

diffractive scattering [74]. Within a Reggeon Field The-

ory (RFT) framework, a QCD based description of diffrac-

tion has been applied to cosmic rays by Ostapchenko [75]

and in the simulation program QGSJET [65]. The formal-

ism uses a multichannel decomposition, and the physics

contents include description of non-perturbative effects,

such as gluon saturation, and semi-hard interactions. We

shall see in the section dedicated to the elastic differential

cross section how other authors have introduced diffrac-

tion within Regge field theory, in particular Khoze, Mar-

tin and Ryskin and Gotsman, Levin and Maor, also using
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a Good and Walker (GW) formalism with a Regge model

for the high mass diffraction, through triple Pomeron inter-

actions.

Another approach is found in the work by Lipari and

Lusignoli (LL) [52], who have combined the mini-jet

approach with the GW description of diffractive states. The

approach by LL is based on the mini-jet description, which

the authors consider most useful to implement in simula-

tion programs, and on a continuous distribution of diffractive

states, all contributing to the total diffraction cross section.

Their work on diffraction is described in the part of our review

dedicated to the elastic cross section.

Later, in Sect. 3.6.1, we shall discuss again this point,

following a recent analysis by Engel and Ulrich [76].

3.5 Modelling the cosmic ray flux and energy distribution

of particles

Of course, a fundamental problem – still unsolved – concerns

the origin of the primary cosmic ray flux, specially at high

energies, of interest for this review. Related issues concern

the composition and the energy distribution of the cosmic ray

constituents. As some progress has been made in this regard,

in the following we shall briefly review it.

3.5.1 Power-law flux and critical indices of cosmic

radiation

As stated at the beginning of this chapter, starting with

Heisenberg, many physicists, including Landau [77] and

Fermi [78], devoted much time and effort to understanding

the observed isotropy and a stable power-law energy spec-

trum of the cosmic radiation flux. Presently, it is known exper-

imentally that [79] the energy distribution law of cosmic ray

nuclei in the energy range 5 GeV < E < 100 TeV obtained

via the differential flux per unit time per unit area per stera-

dian per unit energy obeys

[

d4 N

dtdAdΩdE

]

≈ (1.8 nucleons)

sec cm2 sr GeV

(

1 GeV

E

)α

(3.81)

wherein the experimental critical index α ≈ 2.7. At the

“knee” of the distribution, i.e. at energy E ∼ 1 PeV, there is

a shift in the critical index to the value α ≈ 3.1.

In a recent series of papers [80–83] the hypothesis has

been made that cosmic rays are emitted from the surfaces of

astronomical objects (such as neutron stars) by a process of

evaporation from an internal nuclear liquid to a dilute external

gas which constitutes the vacuum. On this basis, an inverse

power in the energy distribution with a power-law exponent

of 2.701178 has been obtained in excellent agreement with

the experimental value of 2.7.

The heat of nuclear matter evaporation via the entropy

allows for the computation of the exponent. The evapora-

tion model employed is based on the entropy considerations

of Landau and Fermi that have been applied to the liquid

drop model of evaporation in a heavy nucleus excited by

a collision. This model provides a new means of obtaining

power-law distributions for cosmic ray energy distributions

and, remarkably, an actual value for the exponent which is in

agreement with experiment and explains the otherwise puz-

zling smoothness of the cosmic ray energy distribution over

a wide range of energies without discontinuities due to con-

tributions from different sources required by current models.

The argument runs as follows.

3.5.2 Evaporation of fluid particles

The heat capacity c per nucleon of a Landau-Fermi liquid

drop at a non-relativistic low temperature T is given by

c = dE

dT
= T

ds

dT
= γ T as T → 0. (3.82)

Equation (3.82) implies an excitation energy E = (γ /2)T 2

and an entropy Δs = γ T so that

Δs(E) =
√

(2γ E) = kB

√

E

Eo

. (3.83)

Consider the evaporation of nucleons from such a droplet

excited say by an external collision. Given the entropy per

nucleon Δs in the excited state, the heat of evaporation

qvaporisation = T (Δs), determines the energy distribution of

vaporized nucleons through the activation probability

P(E) = e−Δs(E)/kB = e−
√

E/Eo , (3.84)

using Eq. (3.83). We now turn to relativistic cosmic ray par-

ticle production through evaporation.

3.5.3 Cosmic ray particle production

The sources of cosmic rays here are the evaporating stellar

winds from gravitationally collapsing stellar (such as neutron

star) surfaces considered as a big nuclear droplet facing a

very dilute gas, i.e. the vacuum. Neutron stars differ from

being simply very large nuclei in that most of their binding

is gravitational rather than nuclear, but the droplet model of

large nuclei should still offer a good description of nuclear

matter near the surface where it can evaporate.

The quantum hadronic dynamical models of nuclear liq-

uids have been a central theoretical feature of nuclear matter

[84]. It is basically a collective Boson theory with condensed

spin zero bosons (alpha nuclei) and spin one bosons (deuteron

nuclei) embedded about equally in the bulk liquid. In the

very high energy limit, the critical exponent α occurring in

Eq. (3.81) in this model are computed as follows [80–82].
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3.5.4 The critical exponent for classical and quantum

particles

The density of states per unit energy per unit volume for

ultra-relativistic particles is proportional to the square of the

energy. The mean energy per particle in an ideal gas of parti-

cles obeying classical or quantum statistics can be succinctly

described using, for classical (Boltzmann) statistics η = 0

whereas for quantum statistics, η = 1 for bosons and η = −1

for fermions, as:

Eη =

∫∞
o

[

ǫ3dǫ

eǫ/kBT −η

]

∫∞
o

[

ǫ2dǫ

eǫ/kBT −η

] = αηkBT

η = 0;�⇒ αBoltzmann = 3;

η = 1;�⇒ αbosons = 3ζ(4)

ζ(3)
≈ 2.701178;

η = −1;�⇒ αfermions = 7α1

6
≈ 3.151374, (3.85)

where

ζ(s) =
∞
∑

n=o

1

ns
, (3.86)

is the Riemann zeta function.

To establish α as a power-law exponent when the energy

E = α(kBT ), one computes (i) the entropy as

E = αkBT = αkB
dE

dS
; �⇒ S = kBα ln

(

E

Eo

)

(3.87)

and (ii) employs the heat of vaporisation to compute the evap-

oration energy spectrum

e−S/kB =
(

Eo

E

)α

(3.88)

as in Eq. (3.81). A more detailed interacting quantum field

theoretical calculation of α power-law exponents involves

the construction of single particle spectral functions in the

context of thermal quantum field theory. While they have

here been computed the critical indices for the free Fermi

and free Bose field theories, the results are already in quite

satisfactory agreement with experimental cosmic ray power-

law exponents.

In a recent paper, the AMS Collaboration [85] has reported

detailed and extensive data concerning the distribution in

energy of electron and positron cosmic rays. A central

result of the experimental work resides in the energy regime

30 GeV < E < 1 TeV, wherein the power-law exponent of

the energy distribution is measured to be αexperiment = 3.17.

In virtue of the Fermi statistics obeyed by electrons and

positrons, the theoretical value was predicted as αtheory =
3.151374 in very good agreement with the AMS data.

The reason for this remarkable agreement would appear

to be due to a Feynman parton structure for the high energy

Fig. 15 Figure 2 of [86], showing the AUGER Collaboration result

for σ
prod
p-air in comparison with other cosmic ray results, with references

as indicated in the figure. Various dotted or dashed curves indicate

different models used to extract the data through different simulation

programs as indicated. Reprinted from [86], ©2012 by the American

Physical Society

asymptotic tails of the single particle spectral functions. In

this case that structure would be described by free non-

interacting particles thanks to asymptotic freedom in QCD.

Following Feynman’s physical reasoning and employing dis-

persion relations in a finite temperature many body quantum

field theory context, in principle, it is possible to compute

rather small corrections to the renormalised energy depen-

dent power-law exponent α(E) for interacting theories. For

further details about a phase transition and the behaviour

around the “knee” etc. an interested reader may consult [83]

and references therein.

3.6 Cosmic ray results after start of the LHC

Since 2011, accelerator data for σ
pp

tot at LHC c.m. energy of√
s ≥ 7 TeV have provided new accurate information on

the high energy behavior of the total pp cross section. The

question of whether one is now reaching a region of satu-

ration of the Froissart bound was posed again. At around

the same time, a new generation of cosmic ray experiments,

which probes ultra-high cosmic ray energies, started to pro-

vide data. In 2012 the measurement of σp-air was released by

the AUGER Collaboration [86] for an equivalent cm. energy√
s pp = 57 ± 0.3 (stat.) ± 6 (sys.) TeV. The result depends

on the simulation program, in particular models of hadronic

interactions, as described in [86,87], and the model used for

extracting the proton-air production cross section. The spread

of results is shown in Fig. 15 from [86].

One important difference between AUGER result and pre-

vious results lies in the assumed primary composition: all

the measurements in the highest energy group, HiRes, Fly’s
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Fig. 16 Figure 3 of [86], showing the AUGER Collaboration result for

σ
prod
p-air in the {B(s), σ inel

pp (s)} plane. The unitarity limit is indicated, as

is the uncertainty due to modelling of the pp cross section. Reprinted

from [86], ©(2012) by the American Physical Society

Eye, Yakutsk and Akeno, assume pure proton composition,

whereas AUGER opts for a 25% helium component.

Further uncertainties lie in how diffraction is taken into

account in the calculation. In [88], one can find a recent dis-

cussion of the tension between LHC results on single and

double diffraction as reported by TOTEM, ATLAS and CMS

Collaborations, and their impact on the cosmic ray results.

Averaging the result between the different hadronic mod-

els leads to

σ
prod
p-air = [505 ± 22(stat)+28

−36(sys)] mb (3.89)

at a center of mass energy of (57±6) TeV. The correlation

between the parameters of the Glauber model which con-

verts p-air to pp, B(s) and σinel(proton–proton), is shown in

Fig. 16, which includes a comparison with accelerator data,

at their respective energies. The hatched area in the figure

corresponds to the unitarity limit imposed by the relation

between the total, the inelastic and the elastic cross section,

derived as follows:

B ≥
[σin

4π

]

. (3.90)

The above inequality may more usefully written in terms of

their commonly used units as [86]

BGeV2 ≥
[ σin

mb

]

[

mb GeV2

4π

]

�

[

1

5

]

( σin

mb

)

. (3.91)

[A heuristic derivation of Eq. (3.91) proceeds as follows.

Assume that there exists an effective B so that the elastic

differential cross section can be approximated as

dσ

dt
≈ σ 2

tot

16π
eBt , (3.92)

so that

σel = σ 2
tot

16Bπ
. (3.93)

Since σel = σtot − σin, Eq. (3.93) may be written as

B = σ 2
tot

16π(σtot − σin)
. (3.94)

Let x = σin/σtot, so that Eq. (3.94) reads

4π B

σin
= 1

4x(1 − x)
≥ 1, (3.95)

from which Eq. (3.91) follows.]

The inequality Eq. (3.91) is mildly stringent. For example,

at LHC [7 TeV], the left side is ∼20 whereas the right side

is ∼15. Incidentally, the lower limit is reached only in the

black-disk limit when σin = σel = σtot/2. This provides yet

another evidence that we are still nowhere near the black-

disk limit. But this would be discussed in much more detail

in our section on the elastic cross section.

Finally, the extraction of the pp total and inelastic cross

sections for
√

spp ≃ 57 TeV, leads to the quoted results for

pp scattering:

σ inel
pp = [92 ± 7(stat)+9

−11sys) ± 7(Glauber)] mb, (3.96)

σ tot
pp = [133 ± 13(stat)+17

−20(sys) ± 16(Glauber)] mb.

(3.97)

There is a strong warning in the paper, that the error from the

application of the Glauber model may actually be larger than

what is quoted here. It is also noted that this error is smaller

for the inelastic cross section, and this can be accounted for

by the inelastic cross section being less dependent on the

B(s) parameter than the total. We shall return later to the

question of how to estimate the needed inelastic cross section

for cosmic rays. We notice that, very recently, the AUGER

Collaboration has released results [89] estimated in the two

energy intervals in log(ELab/eV) from 17.8 to 18 and from

18 to 18.5. The corresponding values for σ p-air are within

the errors of the 2012 measurements, the central values lying

in a curve lower than the one drawn across the central 2012

reported value. These results are shown in the right-hand plot

of Fig. 18, in the context of a mini-jet model whose results

are discussed in Sect. 3.7.2.

In the next subsection we shall summarise the method

used by the AUGER Collaboration to extract the proposed

values for σ tot
pp in [86].

3.6.1 A recent analysis of Glauber theory with inelastic

scattering

The details of the actual inputs used in the various Montecarlo

simulations used by the AUGER Collaboration to extract

σ
prod
p-air and thence pp total and inelastic cross sections can be
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found in an internal report by Engel and Ulrich [76]. Here

we shall summarise the salient aspects of this analysis that

includes inelastic screening through a two channel Good-

Walker approach in the Glauber theory.

Considering just two states: |p〉 and |p∗〉, where the first

is the proton and p∗ is an effective state standing for all

inelastic states. A coupling parameter λ is introduced so that

the 1-channel elastic amplitude Γpp becomes a 2 ×2 matrix:

|p〉 =
(

1

0

)

; |p∗〉 =
(

0

1

)

�⇒ Γ̃pp =
(

1 λ

λ 1

)

Γpp. (3.98)

The elastic impact-parameter amplitude for a hadron h on a

nucleus with A nucleons becomes

Γh A(b; s1, . . . , sA)

= 〈p|Γ̃h A(b; s1, . . . , sA)|p〉

= 1 − 〈p|
A
∏

j=1

[1 − Γ̃hN (b − s j )]|p〉. (3.99)

After diagonalisation, it reads

Γh A(b; s1, . . . , sA)

= 1 − 1

2
〈p|

A
∏

j=1

[1 − (1 + λ)Γ̃hN (b − s j )]|p〉

− 1

2
〈p|

A
∏

j=1

[1 − (1 − λ)Γ̃hN (b − s j )]|p〉. (3.100)

For the Gaussian profile functions, an analytic closed form

expression forΓh A(b; s1, . . . , sA) is obtained and, through it,

analytic but somewhat long expressions for total, elastic and

quasi-elastic cross sections for proton-nucleus are obtained

and can be found in [76].

The parameter λ2(s) is related to the ratio of σSD(s) to

σelastic(s) and hence to available accelerator data on sin-

gle diffractive dissociation (SD) and elastic pp-scattering.

It can be parametrised and extrapolated to higher energies

as needed. Thus, accelerator data can in principle determine

(modulo extrapolation) λ2(s). In practice, empirical func-

tions such as the following are employed

σSD(s) =
[

s log[103 GeV−2s]
4s + 400 GeV2

]

(mb);

valid for ζmax =
M2

D,max

s
< 0.05. (3.101)

Here MD,max is the maximum invariant mass of the diffrac-

tive system expected to be coherently produced by a nucleon.

Typical values ζmax = (0.05 ÷ 0.15) are considered to

describe SD. The choice of ζmax controls the scale of σSD

and thus λ. At very high energies λ2 should decrease since

we expect σSD ∼ ln(s) and σelastic ∼ ln2(s). These authors

find that, for the AUGER measurement at
√

s = 57 TeV,

λ(
√

s = 57 TeV) = (0.35 ÷ 0.65). This is then folded into

the errors associated with the various cross section estimates.

The conversion of the proton-air to proton–proton cross

section proceeds along the lines discussed earlier, i.e., plots

of B vs. σinel are used with constant values of p-air produc-

tion cross sections drawn and the intersection giving the pp

inelastic cross section at that energy. With λ = 0.5, these

authors deduce that at
√

s = 57 TeV:

σ inel
pp = [92 ± 7(stat)+9

−11(sys) ± 1(slope) ± 3(λ)] mb

σ tot
pp = [133 ± 13(stat)+17

−20(sys) ± 13(slope) ± 6(λ)] mb,

(3.102)

also shown in Eqs. (3.96) and (3.97).

3.6.2 The Telescope-Array measurement at 95 TeV c.m.

energy

In 2015, the Telescope Array (TA) Collaboration has pre-

sented a measurement of the p-air cross section at the never

attained before c.m. energy of
√

s = 95 TeV. The method

used is that of K-factor, in which the attenuation length, and

hence the p-air cross section, is proportional to the slope of

the tail of the Xmax distribution. As seen before, the factor K

depends on the model used for the shower evolution. In [90],

averaging over different models, a value K = 1.2 is obtained,

with an uncertainty (model dependence) of ∼3%. Including

a systematic error from the uncertainty on the primary cos-

mic ray composition, the procedure therein described leads

to a value

σ inel
p-air = (567 ± 70.5[Stat]+29

−25[Sys]) mb (3.103)

at an energy of 1018.68 eV. The proton-air cross section from

this measurement appears to lie higher than the more recent

AUGER values, but it is consistent with the observed trend

within all the errors. Some of the difference could be ascribed

to assuming a different primary composition, a question still

not fully resolved. Results from a higher statistical sample

are expected shortly.

The TA Collaboration has also presented a value for the

total pp cross section, following the procedures from [43,46],

which we have described in Sects. 3.3.2 and 3.3.4. Using

Glauber theory and the BHS QCD-inspired fit [47], they pro-

pose:

σ tot
pp = 170+48

−44[Stat.]+19
−17[Sys] mb. (3.104)

While consistent within the errors with the trend shown by

the lower energy measurement by the AUGER Collaboration,

the above value for the pp total cross section is thus higher

than the value extracted by AUGER. In this respect we should

notice that the methods used by the two collaborations to pass
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from p-air to proton–proton are not the same. In the next

subsection, we present another model about how to extract

pp cross section from that of p-air.

3.7 Eikonal models for inelastic p-air scattering

As we have seen, in order to extract information as regards

the basic pp scattering, cosmic ray measurements require

models to link the inelastic p-air cross section to the total

and elastic ones. Glauber theory provides such a connection,

through an eikonal formalism in impact-parameter space.

However, one-channel eikonals provide an incomplete pic-

ture at high energy, as has been noticed since a long time. As

we shall see in more detail in the sections dedicated to the

total and the elastic cross section, a single channel eikonal

model with an approximately real profile function is unable to

clearly discriminate between elastic and inelastic processes.

As a result, various techniques have been developed: we have

described in the preceding a two channel model as that due

to Engel and Ulrich, and recalled the analytical model with

QCD-inspired input by Bloch and Halzen. The present uncer-

tainties and difficulties with these extractions lead to large

errors and hence, in part, to the inability to fully exploit the

very high energy data provided by the cosmic ray experi-

ments.

In the following we shall briefly outline the results from a

multichannel model by Gotsman, Levin and Maor and then

show corresponding results that can be obtained in a single-

channel eikonal model with QCD mini-jets and compare

them with present data.

3.7.1 A multichannel model inclusive of diffraction and

triple Pomeron coupling

An example of a QCD model used to extract p-air cross sec-

tion can be found in [91]. This is a multi-channel model,

to which we shall return in the section dedicated to elas-

tic scattering. It includes diffraction contributions and triple-

Pomeron exchanges. The final formula for the inelastic p-air

cross section is given as

σin(p + A; Y )

=
∫

d2b

[

1 − exp

(

−
{

σ
pp

tot

SA(b)

1 + g̃G3P Genh(Y )SA(b)

− (σ
pp

el + σ
pp

diff)
SA(b)

(1 + g̃G3P Genh(Y )SA(b))2

})]

(3.105)

with SA(b) the nuclear density, G3P the triple Pomeron

coupling, Genh(Y ) the Green’s function of the Pomeron

exchange, g̃ includes the parameters of the GW diffraction

couplings, which are used to determine σtot, σel, σdiff .

Fig. 17 The inelastic p-air cross section from the two channel model

of Gotsman, Maor and Levin, compared with cosmic ray data, from

[91]. Reprinted with permission from [91], ©(2013) by the American

Physical Society

A comparison between data and results from this model is

shown in Fig. 17 from [91]. From Eq. (3.105) and the figure,

one can notice the following:

– both recent AUGER and Telescope Array data (within

their large errors) can be described by the model. Shown

are two curves: for G3P = 0 or G3P = 0.03;

– the impact-parameter (b-)dependence, over which the

eikonal is integrated, includes only the nuclear shape.

In the exponent, it can be factored out of the QCD part.

Namely, there is convolution of the nuclear distribution

with the inner nucleon structure;

– the case G3P = 0, reduces Eq. (3.105) to

σin(p + A; Y )

=
∫

d2b[1 − exp(−SA(b){σ pp
tot − (σ

pp
el + σ

pp
diff)})];

– the curve where also σ
pp

diff = 0 lies higher than the data.

Thus, the authors conclude that a small triple Pomeron cou-

pling and σ
pp

diff �= 0 can give a good description of data, when

a two channel GW formalism is employed to describe total

and elastic pp cross sections.

An interested reader may also consult some related work

in [88] that is based on QCD and the Regge picture.

3.7.2 A single-channel model with QCD mini-jets

In a recent work [92], a single channel eikonal formalism has

been proposed for a somewhat different reconstruction of the
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quantity σ
prod
p-air measured in cosmic rays, from the underlying

pp dynamics.

The starting point of this approach is the realisation that in

single-channel mini-jet models, σelastic includes both purely

elastic and correlated-inelastic processes [41,56].

The model we present here exploits this observation and

has the virtue of eliminating the complicated and model

dependent untangling of the elastic and diffractive parts

to deduce the needed inelastic non-diffractive contribution,

called here σ
pp

inel-uncorr, that serves as an input in the Glauber

reconstruction of σ
prod
p-air. The argument runs as follows.

As Eq. (3.40) makes evident, cosmic rays measure and

probe the part of the scattering process that is shorn of its

elastic and quasi-elastic parts. We may thus identify the

needed remainder to be the “inelastic-uncorrelated” part of

the cross section. If such is indeed the case, then σinel com-

puted through a single channel mini-jet eikonal formalism

based on an exponentiation of the basic parton–parton scat-

tering would indeed correspond to the inelastic-uncorrelated

cross section for pp scattering, as we have discussed in

[41]. This last point will also be discussed in more detail

in Sect. 5.

Under the above hypothesis, the steps relating pp dynam-

ics to the cosmic data in a one channel formalism become

rather simple and can be outlined as follows:

– 1. Neglecting the real part of the scattering amplitude at

t = 0, the same eikonal χI (s, b) can be used to describe

both σ
pp

tot (s) and σinel-uncorr(s):

σ
pp

tot = 4π

∫

(bdb)[1 − e−χI (b,s)], (3.106)

σ
pp

inel-uncorr = 2π

∫

(bdb)[1 − e−2χI (b,s)]. (3.107)

In the mini-jet model of [93,94],

2χI (b, s) ≡ n pp(b, s) = n
pp
soft + A(b, s)σ

QCD
jet (pt min, s)

(3.108)

where the impact-parameter function A(b, s) describes

the impact-parameter space parton distributions in the

proton, obtained through soft-gluon resummation, and

σ
QCD
jet (pt min, s) is calculated through elementary parton–

parton scattering and library used parton density func-

tions (PDFs), as already discussed in the context of the

Durand and Pi model in Sect. 3.3.3;

– 2. Next, the usual Glauber impact-parameter expression

is used for the cosmic ray production cross section:

σ
p-air

prod (Elab) = 2π

∫

(bdb)[1 − e−n p-air(b,s)] (3.109)

with

n p-air(b, s) = TN (b)σ
pp

inel-uncorr(s) (3.110)

where σ
pp

inel-uncorr(s) in Eq. (3.110) is obtained from Eqs.

(3.106) and (3.107), with the same QCD term, but a dif-

ferent parametrisation of the low energy part, as also

discussed in the Durand and Pi model. TN (b) is the

nuclear density, for which the standard gaussian choice is

made:

TN (b) = A

π R2
N

e−b2/R2
N , (3.111)

properly normalised to
∫

d2bTN (b) = A. (3.112)

The parameters used in the profile (3.111), namely the

average mass number of an “air” nucleus, A, and the

nuclear radius, RN , are again standard:

A = 14.5, RN = (1.1 fermi)A1/3. (3.113)

The authors of [92] have used the above in an eikonal model

for the elastic amplitude based on gluon resummation (with

a singular αs), which we label BN from the Bloch and Nord-

sieck classical theorem on the infrared catastrophe in QED.

The BN model and the choice of χ(b, s) are discussed in the

elastic cross section part of this review.

We show here only the final model results and their com-

parison with experimental data in Fig. 18. In this figure, the

left hand panel shows a comparison of data with the results

from two different nuclear density models, the gaussian dis-

tribution and a Wood–Saxon type potential, as in [97], as

well as with different low energy contributions. The right-

hand panel shows a comparison of p-air data, including the

most recent AUGER and Telescope Array results just dis-

cussed, with two different parton densities used in the BN

model, as indicated. The band highlights the uncertainty due

to the low-x behavior of these two PDFs parametrisations.

We notice that in this model, the impact-parameter dis-

tribution of partons is not folded in with the nuclear density

distribution, rather it is factored out, just as in the model

described in Sect. 3.7.1. This assumption may not be valid

at low energies. In the above mini-jet model this uncertainty

is buried in the low energy contribution n
p-air
soft , but it is likely

to be correct in the very high energies region now being

accessed. Thus the model differs from the usual Glauber

applications.

The AUGER data at
√

s ≈ 57 TeV are very well repro-

duced by this model. It is reasonable to conclude that a single

channel eikonal model that describes well σ
pp

tot indeed gen-

erates a correct uncorrelated-inelastic pp-cross section. The
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Fig. 18 p-air production cross section as deduced from the mini-jet

model of [93,94] and its comparison with experimental cosmic ray data.

At left we show the model predictions using MSTW parton densities

[95] and different nuclear density models, at right using both MSTW

and GRV densities [96], and including recent AUGER data [89] as well

as those at
√

s = 95 GeV from the Telescope Array Detector [90].

Reprinted with permission from [92], ©2015 Springer

latter in turn provides the proper input to generate σ
prod
p-air as

observed in cosmic rays. Work is still in progress to under-

stand the implications of the above description on the con-

struction of multi-channel models.

3.8 Conclusions

In this section, we have presented an overview of how,

over the past 60 years, cosmic ray experiments have pro-

vided much needed information (albeit with large errors).

They have helped guide the theorists towards more real-

istic particle physics models and make better predictions

for their asymptotic behaviour. However, many uncertain-

ties still affect the extraction of the more fundamental pp

cross section from the cosmic ray experiments, some of them

related to the Glauber formalism and the modelling of quasi-

elastic contributions, and others pertaining to diffraction in

pp scattering and its relation to p-air processes. Other uncer-

tainties depend on understanding the actual composition of

cosmic rays and the relation between the measured high-

energy power-law distributions of cosmic electron/positron,

proton and nuclei and the origin of high energy cosmic

rays.

4 The measurement of σtotal before the LHC:

description of experiments and their results

In this chapter, we give a brief account of crucial hadronic

cross section experiments at particle accelerators, beginning

in the 1950s up to the Tevatron, including how the measure-

ments were done at each machine. Relevant experimental

data with figures, plots and tables shall be shown. Whenever

it appears useful, there would be a discussion of the error

estimates and the difference between results from different

experimental groups.

The focus of these experiments has been to determine the

following four basic physical quantities:

– (i) total cross section σtotal;

– (ii) elastic cross section σelastic;

– (iii) slope of the forward elastic amplitude B;

– (iv) ρ-parameter, that is the ratio of the real to the imag-

inary part of the forward elastic amplitude.

Before the advent of particle accelerators in the 1950s,

cosmic ray experiments were the only source for measure-

ments of total proton cross sections. The situation changed

with the first measurements at particle accelerators, which

took place at fixed target machines; see for instance [98].

These measurements were followed in the 1960s by exten-

sive ones, again at fixed target machines, at the CERN Proto-

Synchrotron [99], at Brookhaven National Laboratory [100]

and in Serpukhov [101]. These earlier measurements showed

decreasing total cross sections, more so in the case of p̄ p,

only slightly in the case of proton–proton. These results were

in agreement with the picture of scattering as dominated at

small momentum transfer by exchange of Regge trajecto-

ries (leading to a decrease) and multi peripheral production,

resulting in the exchange of the Pomeron trajectory, with the

quantum numbers of the vacuum, and intercept αP (0) = 1.

Things changed dramatically when the CERN Intersecting

Storage Ring (ISR) started operating in 1971. We show the

scheme of operation of the ISR in Fig. 19 from [102]. Cross

sections were seen to rise. Since then, accelerator measure-

ments for the total cross section for pp as well as for p̄ p

have been performed only at colliders and the cross sec-

tion has continued to increase, with the latest measurement

released at c.m. energies of
√

s = 7 and 8 TeV at the Large
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Fig. 19 A schematic view of the ISR set up from [102]. Reprinted

from [102], ©(1979) with permission by Elsevier

Hadron Collider (LHC7 and LHC8) by the TOTEM exper-

iment [103], with predictions and measurement in general

agreement with latest cosmic ray experiments [86].

The spirit of this section is to show how many different

experiments took place from early 1970s until the end of the

century, and established beyond doubt the rising behavior of

the total cross section while the center of mass increased by

almost a factor 100 from the first ISR experiment, at 23 GeV

c.m., to the 1800 GeV at the Tevatron.

This section is structured as follows:

– the description of measurements through fixed target

experiments is given in Sect. 4.1,

– the measurements at the CERN Intersecting Storage

Rings (ISR) are discussed in Sect. 4.2, including a discus-

sion of measurement of the ρ parameter with description

of the various methods to measure the total cross section

in Sect. 4.2.2 and ISR final results in Sect. 4.2.3,

– experiments confirming the rise of the total cross section

at the CERN Sp p̄S are presented in Sect. 4.3, with results

from UA1 in Sect. 4.3.1, which includes a comment on

the energy dependence of the slope parameter, UA4 and

UA4/UA2 results are in Sect. 4.3.2, UA5 and the ramping

run in Sect. 4.3.3,

– measurements at the FermiLab TeVatron are described

in Sect. 4.4 with results from E710, CDF and E811 in

Sect. 4.4.1 and an overview of the Black Disk model, for

a long time a very useful and commonly held model in

Sect. 4.4.2,

– further discussion of the ρ parameter is in Sect. 4.4.3.

4.1 Fixed target experiments

Proton-nuclei cross sections by Bellettini et al. [104] were

among the first experiments to measure the expected diffrac-

tion pattern from the optical model, for elastic scattering of

protons on nuclei. In this experiment, the momenta of the pro-

ton before and after the scattering were measured, the recoil

of the nucleus was not measured at all. The experimental

technique was the same as the one used for the measurement

of proton–proton scattering [99].

A system of quadrupoles and bending magnets transported

a well collimated (almost monochromatic) beam of protons

of average momentum 19 GeV/c from the CERN ProtoSyn-

chrotron to the experimental area. The incident proton beam

was defined by scintillation counters C1,2,3 while the scat-

tered protons were detected by another set of counters, C4,5,

placed after the target. An anti-coincidence counter, placed

directly in the path of the beam, was used to reduce the back-

ground trigger rate from unscattered particles. The position

of the incident and scattered protons were measured by sonic

spark chambers, S1,2,3,4,5. It is clear from the above descrip-

tion why such experiments received their name: the trans-

mission method.

A description of the transmission method can be found

in [105], where the measurement of pion–proton total cross

section between 2 and 7 GeV/c laboratory momentum is

described. The total cross sections for pp and p̄ p were mea-

sured [100] along with that for π p and K p on both hydro-

gen and deuterium targets. In this set of experiments total

cross sections were measured between 6 and 22 GeV/c at

intervals of 2 GeV/c and the method utilized was that of a

conventional good-geometry transmission experiment with

scintillation counters subtending various solid angles at tar-

gets of liquid H2 and D2. The results showed a variation of

the cross section with momentum, namely a small but sig-

nificant decrease in σT (pp) [and σT (pn)] in the momentum

region above 12 GeV/c was found.

The measurement of total cross section in these trans-

mission experiments was done essentially by following the

initial and final particle paths through a series of (scintilla-

tion) counters placed at subsequent intervals and covering

different solid angle portions. For each set of counters, at a

given solid angle, a transmission factor was defined to take

into consideration signals from the various detecting com-

ponents and the total cross section at a given momentum

transfer value (t) was computed from the expression

σ(t) = (1/N ) ln(TE/TF ) (4.1)

where N was the number of nuclei per cm2 in the target,

TE and TF the transmission factors for an empty or a full

target, respectively. Subsequently partial differential cross

sections measured at different t-values were fitted either by a

polynomial or preferably by an exponential and extrapolated

to zero.

In Figs. 20 and 21, we show schematic views of the trans-

mission set up for the measurement of the total cross section

from [100,105].

4.2 The ISR measurement and the rise of the total cross

section

At ISR, in order to measure physical cross sections, com-

pletely different methods had to be employed. At least three
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Fig. 20 A schematic view of the transmission type experiment from

[105]. Reprinted from [105], ©(1966) by the American Physical Society

Fig. 21 A schematic view of the transmission type experiment from

[100]. Reprinted with permission from [100], ©(1965) by the American

Physical Society

such methods were used, two of them depending on the so-

called luminosity of the accelerator, one independent. Lumi-

nosity is the key parameter for cross section measurements at

intersecting storage rings and is defined as the proportional-

ity factor between the number of interactions taking place at

each beam crossing, R, and the particle cross section σ to be

measured, i.e. R = Lσ . The concept of luminosity had been

introduced in the mid-1950s, when storage rings had started

being discussed in the community. The name itself is prob-

ably due to Bruno Touschek, who used it when proposing

the construction of the first electron–positron colliding beam

accelerator, AdA, in 1960 [106] and the process e+e− → γ γ

was suggested as the monitor process for other final states.

At the CERN Intersecting Storage Rings (ISR), σtotal

and/or σelastic were measured by a number of different exper-

iments, with different methods, in different t-regions. A list

of all these experiments up to the end of 1978, can be found

in the extensive review of physics at the ISR by Giacomelli

and Jacob [102]. We reproduce information as regards some

of them in Table 1. While early measurements of the elas-

tic scattering at
√

s = 30 and 45 GeV were not conclusive,

a combination of various methods allowed one to definitely

establish the rise of the σtotal, as clearly shown in Fig. 22

from [23], where the rise appears beyond doubt.

Unlike fixed target experiments which used the transmis-

sion method to measure the total cross section, storage ring

experiments such as those performed at the ISR, needed

either a measurement of the total rate, and hence an accurate

estimate of the luminosity, or a measurement of the differ-

ential elastic cross section and its extrapolation to the opti-

cal point, namely t = 0. Such measurements are described

in [108] where first results from the operation of the ISR at

beam momenta of 11.8 GeV and 15.4 GeV are reported along

Table 1 Experiments measuring the total and the elastic cross section

at ISR as of 1977. For complete references see [102], where C and R

refer to Completed and Running experiments, respectively

Observable Experiment Refs.

Elastic scattering E601 [23,107,108]

at small angle CERN-Rome

Elastic scattering E602 [39,109–112]

Aachen-CERN-Genoa-

Harvard-Torino

σtotal R801-Pisa–Stony Brook [113]

CERN-Pisa-Rome-Stony

Brook

[114,115]

Small-angle

scattering

E805 [116]

CERN-Rome

Fig. 22 From Amaldi et al. measurement [23], one can clearly see

the rise of the total cross section. Reprinted from [23], ©(1973) with

permission from Elsevier

Table 2 Results of early measurements at ISR from [108]

ISR beam σtotal ρ σelastic√
s (mb) (mb)

(GeV)

11.8 38.9 ± 0.7 +0.02 ± 0.05 6.7 ± 0.3

15.4 40.2 ± 0.8 +0.03 ± 0.06 6.9 ± 0.4

with values for σtotal, ρ and σelastic. These are shown here in

Table 2.

4.2.1 ISR measurements for the total cross section

and the elastic scattering amplitude

A luminosity dependent measurement of the total cross sec-

tion which uses the optical point method, relies on the lumi-
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nosity and on extrapolation of the elastic rate down to t = 0.

Through the optical theorem, one sees that the total (nuclear)

cross section depends only on ℑm A(s, 0) and the elastic dif-

ferential cross section in the forward direction can be written

as
(

dσel

dt

)

(t = 0) =
(

σ 2
tot

16π

)

[1 + ρ2], (4.2)

with only a quadratic dependence on the ratio of the real to the

imaginary part of the forward (complex) nuclear scattering

amplitude A(s, 0),

ρ(s) = ℜeA(s, 0)

ℑm A(s, 0)
. (4.3)

However, a method relying only on Eq. (4.2) does not allow a

precise determination of the nuclear amplitude, since at high

energies, from ISR onwards, the ρ-parameter is rather small

(∼0.1). It is then difficult to measure ρ accurately and in any

event such a measurement would not determine the sign of

the real part of the nuclear amplitude.

Fortunately, when we augment the nuclear with the

Coulomb amplitude (due to one-photon exchange, in the low-

est order), the interference between the Coulomb and the real

part of the nuclear amplitude (for small t) allows us to deter-

mine both the sign and the value of ρ.

At ISR, experiments using this method fitted the observed

elastic scattering rate to the expression

R(t) ∝ dσ

dt
= π | fc + fN |2 (4.4)

where fc is the Coulomb scattering amplitude and fN the

nuclear scattering amplitude. The two amplitudes are both

complex, with a relative phase to be determined theoretically.

The expression for the Coulomb amplitude is then written as

fC = −2α
G2(t)

|t | eiαφ (4.5)

where the minus sign holds for proton–proton scattering, with

opposite sign for p̄ p scattering, α is of course the fine struc-

ture constant and G(t) is the proton electromagnetic form

factor. This expression corresponds to “spinless” scattering,

a good approximation at high energies. A more complete dis-

cussion inclusive of magnetic terms can be found in [50], part

of which was presented in Sect. 2. Here we follow the abbre-

viated discussion in [108]. The expression used for the proton

electromagnetic form factor was the usual dipole expression

G(t) =
[

1

1 − t/Λ2

]2

, (4.6)

with Λ2 ≈ 0.71 GeV2. To complete the parametrisation

of the Coulomb amplitude, one needs to specify the phase,

which was taken to be

αφ = α[ln(t0/|t |) − C]

t0 = 0.08 GeV2, C = Euler’s constant = 0.577. (4.7)

For the nuclear, or hadronic amplitude, use was made of the

optical theorem, namely

fN = σtotal

4π
(ρ + i)eBt/2 (4.8)

and of a parametrisation of the very small t behaviour

described by a falling exponential, with B the so-called slope

parameter, in fact a function of s. One immediately sees that

the rate of elastic events involves all the quantities we are

interested in, namely

R(t) = K

[

(

2α

t

)2

G4(t) − (ρ + αφ)
α

π
σtotal

G2(t)

|t | eBt/2

+
(σtotal

4π

)2
(1 + ρ2)eBt

]

, (4.9)

where K is a proportionality constant and the sign in front

of α holds to pp scattering and is reversed for p̄ p.

Recently, there has been a study of the amplitudes

for pp and p p̄ elastic scattering in the Coulomb-Nuclear

Interference region based on derivative dispersion relations

[117]. Work on this subject was done early on by Bour-

rely et al. [118] and more recently also in collaboration

with Khuri [119]. An interested reader may consult these

references.

4.2.2 The four methods used at ISR

Here we present a short discussion of the four methods used

at ISR to measure the total cross section.

The Pisa–Stony Brook method (R801) to measure the total

cross section at ISR was based on measuring the luminosity

L and the inclusive interaction rate Rel + Rinel, through the

definition

R(number of events/second) = L(cm−2 sec−1)σtotal(cm2).

(4.10)

This method had the advantage of making a totally model

independent measurement.

Two different approaches were adopted by the CERN-

Rome group. They measured the differential elastic cross

section at small angles, but not in the Coulomb region, and

then extrapolated it to the optical limit, i.e. t = 0. The mea-

surement was based on the parametrisation of the hadronic

part of the cross section given by Eq. (4.2), which assumed

a constant (in t) exponential t-dependence of the scatter-

ing amplitude, and a parameter ρ constant in the range of
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Fig. 23 The measurement of the total cross section by the R801, Pisa–

Stony Brook, experiment. This figure is courtesy of G. Bellettini, also

published in [113]. Reprinted from [113] ©(1973) with permission from

Elsevier

t of interest. Elastic events at smaller and smaller scatter-

ing angles were measured through the so-called Roman pots,

which were detectors inserted in containers called the Roman

pots and which could penetrate the beam pipe and get very

close to the beam.

The CERN-Rome group also applied a third comple-

mentary method, the one described in the previous sub-

section, which measured the rate in the region where the

Coulomb and nuclear amplitudes interfere. At ISR this hap-

pens in a region 0.001 < |t | < 0.01 GeV2. From Eq. (4.9)

one can fit dσ/dt in terms of σtotal, ρ,L and the slope

parameter B.

A fourth method was adopted by a combined Pisa–Stony

Brook (PBS) and CERN-Rome Collaboration. By combin-

ing the measurement of the total interaction rate Rtot, i.e.

the PBS approach, Eq. (4.10), with the Cern-Rome method,

Eq. (4.2), based on the optical theorem, one obtains a lumi-

nosity independent measurement, i.e.

σtotal = 16π(dN/dt)t=0

Ntot(1 + ρ2)
(4.11)

where (d N/dt)t=0 is the elastic rate measured at t = 0 and

Ntot is the total rate. This was a combined Pisa–Stony Brook

and CERN-Rome measurement.

For a description of the luminosity measurements at ISR,

we refer the reader to [102].

These measurements indicated a rising total cross section.

The result was surprising, given the then accepted constant

cross section emerging from the simple Pomeron pole model

with an interceptαP (0) = 1. The measurement was repeated

several times against possible systematic errors. We show in

Fig. 23 from [113], the published results for the total cross

section as a function of s, the squared center of mass energy.

The Pisa–Stony Brook experiment also produced a beautiful

pictorial description of single diffraction [120], but because

of the difficulty in separating the non-diffractive background,

these results were not published.

Fig. 24 Proton–proton differential elastic scattering cross section

dσel/dt in the very small |t | region, at ISR operating energy
√

s =
52.8 GeV from [121]. Shown are the Coulomb region, the interference

and the beginning of the nuclear region. Reprinted from [121] ©(1985)

with permission by Elsevier

4.2.3 A final analysis of ISR results

A final analysis from the group from Northwestern, compre-

hensive of both pp and p̄ p scattering in the full range of ISR

energies is given in [121]. This analysis was published after

the CERN S p̄ pS had already been operational for a cou-

ple of years and the rise of the total cross section had been

confirmed. We shall now summarise this paper.

In the following we use the notation of [121], where the

slope parameter B is indicated by b. The method used for

measuring σtotal, ρ and b, is luminosity dependent and is

based on measuring the differential elastic rate and then mak-

ing a simultaneous fit of the elastic differential cross section

in and around the Coulomb region, typically 0.5 × 10−3 <

|t | < 50 × 10−3 GeV2. For αφ ≪ 1, from the Rutherford

scattering formula and the optical theorem, the usual expres-

sion is used to parametrise elastic scattering in this region,

i.e.

dσ

d|t | = 4πα2G4(t)/|t |2 ∓ σtotalα(ρ ± αφ)G2(t)e−b|t |/2/|t |

+ (1 + ρ2)σ 2
totale

−b|t |/16π. (4.12)

For this method, a precise determination of the luminos-

ity is crucial. Notice the known expression for Coulomb

scattering allows a calibration of the |t | scale. We show in

Fig. 24, one of the many plots presented by this collab-

oration, for pp, at
√

s = 52.8 GeV. This figure clearly

shows the transition between the Coulomb region −t �

0.005 GeV2 and the nuclear region, −t > 0.01 GeV2

through the interference region. Similar distributions are

presented in the paper for the full range of ISR ener-

gies,
√

s = 23.5–62.3 GeV for pp and
√

s = 30.4–
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Table 3 Resulting values for σtotal, ρ and b at ISR from [122]

√
s σtotal ρ b

GeV mb GeV−2

pp 23.5 39.65 ± 0.22 0.022 ± 0.014 11.80 ± 0.30

pp 30.6 40.11 ± 0.17 0.034 ± 0.008 12.20 ± 0.30

p̄ p 30.4 42.13 ± 0.57 0.055 ± 0.029 12.70 ± 0.50

pp 52.8 42.38 ± 0.15 0.077 ± 0.009 12.87 ± 0.14

p̄ p 52.6 43.32 ± 0.34 0.106 ± 0.016 13.03 ± 0.562

pp 62.3 43.55 ± 0.31 0.095 ± 0.011 13.02 ± 0.27

p̄ p 62.3 44.12 ± 0.39 0.104 ± 0.011 13.47 ± 0.52

Fig. 25 The ratio ρ from
√

s = 5 GeV up to the highest ISR energy,

from a compilation in [122]. Reprinted from [122] ©(1983) with per-

mission by Elsevier

62.3 GeV for p̄ p. The measured differential cross sections

as a function of |t | are presented and a simultaneous fit of

Eq. (4.12) allows one to extract the values we reproduce in

Table 3.

4.2.4 Measurements of ρ and the slope parameter

The CERN-Rome experiment had measured the ratio of the

real to the imaginary part of the forward elastic scattering

amplitude. The trend with energy of the ρ parameter was

confirmed by other experiments as well and found in good

agreement with a dispersion relation calculation by Amaldi.

These results are shown in Fig. 25 from [122].

We mention here the question of the |t | dependence of the

slope at ISR. In [111], the distributions of the differential rates

for pp elastic scattering are presented nominally for 4 differ-

ent ISR energies,
√

s = 21.5, 30.8, 44.9 and 53 GeV.3 All

three sets of data points exhibit a break for |t | ∼ 0.1 GeV2.

For all the energies under consideration, the measurement of

the slope in the smaller |t | interval, was found to be larger

than the one at larger |t |. At 53 GeV, the two slopes would

be b(0.050 < |t | < 0.112 GeV2) = 12.40 GeV−2 and

b(0.168 < |t | < 0.308 GeV2) = 10.80 GeV−2. The steep-

ening of the slope at small |t | values increases the forward

scattering cross section above the value extrapolated from

larger |t | by about 20%.

We now turn to a 1982 paper by a group CERN–Naples

together with some members of the Pisa–Stony Brook Col-

laboration [123]. Measurements were done for p̄ p and for pp

at the ISR energy
√

s = 52.8 GeV for the quantities dσel/dt ,

σelastic and, using the optical theorem σtotal. The measure-

ment of the elastic cross section was obtained by measuring

the elastic rate while simultaneously measuring the luminos-

ity of the colliding beams. The differential cross section – in

the small-|t | region – was then parametrised as usual, i.e.

dσel/dt = A exp(bt). (4.13)

A fit to the data yielded σelastic and b. Elastic scattering was

studied in the t range 0.01−1.0 GeV2 using different parts

of the detector. The fitting took account of the Coulomb cor-

rections, through Eq. (4.12).

In Table 1 of this paper, the results for 0.01 < |t | <

0.05 GeV2 are displayed and the following final values for

the slope are given

b(p p̄) = 13.92 ± 0.37 ± 0.22

b(pp) = 13.09 ± 0.37 ± 0.21 (4.14)

where errors quoted are statistical only, and include error

on luminosity and uncertainty on determination of the |t |
interval (see [123] for details). When reporting the results

for the slope at larger |t | intervals, i.e. 0.09−1.0 GeV2 for

pp and p̄ p, the slope was found to be smaller, 10.34 ±
0.19±0.06 GeV−2 and 10.68±0.20±0.06 GeV−2, respec-

tively, in agreement with [111]. Results for the slope in

the smaller interval were in agreement not only with [111]

but also with [124] whose measurement covers the interval

|t | = 1.0 × 10−3 to 31 × 10−3 GeV2. The larger |t | interval

is not discussed in [124]. Results for the slope in the larger

|t | interval are summarised in Table 4.

Notice that this experiment also gives explicit values for

σtotal, the ratioσelastic/σtotal, and the ratioσtotal/b, all of which

will be discussed in the context of models.

We now look at Amaldi’s later work in [125,126]. Refer-

ence [125] contains a complete review of all the data collected

at ISR for the usual slope, total, elastic cross section and real

3 However only three such distributions appear in their Fig. 3, the one

at 30.8 GeV is apparently absent.
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Table 4 Values of the slope parameter at
√

s = 52.8 GeV in different

t intervals, as shown

Experiment reaction |t | interval b

GeV2 (GeV−2)

[111] pp 0.168–0.308 10.80 ± 0.20

[123] p̄ p 0.09–1 10.68 ± 0.20 ± 0.06

[123] pp 0.09–1 10.34 ± 0.19 ± 0.06

part of the amplitude in the forward direction, while [126]

discusses in detail the optical picture and its connection to

the Pomeron exchange description.

Before going to illustrate accelerator measurements at

higher energies, we note a recent review of ISR results by

Amaldi [127], where the history of the discovery of the rise

of the total cross section at the ISR is described.

4.3 Measurements at the Sp p̄S

In the early 1980s, an hitherto unimagined energy value in the

CM was reached at the CERN Sp p̄S, i.e.,
√

s = 540 GeV.

At the Sp p̄S, the luminosity [128] due to Np protons and

N p̄ antiprotons crossing at zero angle with effective area A

is L = f Np N p̄/A where f is the frequency of revolution of

the bunches. The effective area is given by A = wh where

the effective width (w) and height (h) of the crossing bunches

are

w =
∫

dx Np(x)N p̄(x) h =
∫

dyNp(y)N p̄(y) (4.15)

where Np(x) is the normalised proton density profile along

the transverse horizontal axis at the crossing point. At the

time of the UA1 early measurement a systematic error of 8%

on the integrated luminosity measurement was reported due

to various uncertainties in the factors entering the luminosity

formula.

At S p̄ pS the total cross section was measured by experi-

ments UA1 and UA4, later on followed by a combined col-

laboration UA2/UA4 and by a ramping run measurement by

UA5.

4.3.1 Early total cross section measurements: UA1 and

UA4

UA1 experiment made a measurement of the elastic scat-

tering cross section [128], with forward detectors covering

angles down to 5 mrad, measuring the elastic differential

cross section for 0.04 < −t < 0.45 GeV2. The data col-

lected by UA1 were fitted by the usual exponential form

dNel/dt ∝ eBt . A measurement of the integrated luminosity

allowed the extraction of values B = 13.7±0.2±0.2 GeV−2

for |t | = 0.21–0.45 GeV2 and B = 17.1 ± 0.1 GeV2 for

Fig. 26 This figure from [128] shows the total cross section as mea-

sured by UA1 at the CERN S p̄ pS compared with the UA4 early mea-

surement [129]. The two curves correspond to different fits by Block

and Cahn. For details see [128], from which this figure is extracted.

Reprinted from [128] ©(1983) with permission by Elsevier

|t | = 0.04–0.18 GeV2. The values σtot = 67.6±5.9±2.7 mb

and σel/σtotal = 0.209±0.18±0.08 were thus obtained. The

UA4 experiment had also made an earlier measurement of

σtotal [129] and we show both measurements in Fig. 26 from

[128]. The two curves shown in this figure correspond to two

different fits by Block and Cahn [130], where a simultaneous

analysis of σtotal and ρ, from s = 25 GeV2 to the ISR data

is performed. The two fits follow from the expression for the

even amplitude at t = 0 [131], i.e.

M+ = −is

[

A + B(ln s/s0 − iπ/2)2

1 + a(ln s/s0 − iπ/2)2

]

+ C. (4.16)

Let the parameter a take a small value. Then at intermediate-

to-high energies such as that at the Sp p̄S, one obtains a lin-

ear (fit2, lower, dashes) ln s dependence, while obtaining a

constant behaviour for the total cross section at really high

energies. The other curve (fit 1, upper, full) follows from an

expression for the amplitude which saturates the Froissart

bound, namely is quadratic in ln s [130]. Fit 2, with a very

small value for the parameter a, i.e. a = 0.005 ± 0.0031,

gives a slightly better fit, as the authors themselves point out.

The problem with this fit is that, at extremely high energies,

the total cross section would go to a constant, a behaviour

still not yet observed even at very high cosmic ray energies.

In [132], the behaviour of the slope parameter B was fitted

with the asymptotic form ln2 s, that is with the same curva-

ture as the total cross section. Such form follows from the

standard parametrisation of the forward scattering amplitude

as in Eq. (4.8). The rationale behind this choice of behavior is

that if B ∼ (ln s) and σtot ∼ (ln s)2, asymptotically there is a

problem with unitarity, i.e., σel > σtot. But, if σtotal saturates

the Froissart bound, i.e., σtotal ∼ ln2 s, and we require that

the slope parameter B rises as σtotal, then there is a problem
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with the simple Regge–Pomeron picture, because we would

expect

dσ

dt
∝
(

s

s0

)2[αPom(t)−1]
= e−2α′ ln(s)|t | (4.17)

namely the slope parameter to be proportional to ln s. [This

argument holds even with three Pomeron trajectories, inter-

secting at 1, and conspiring to produce a total cross section

to increase as (ln s)2]. Where, in such picture, a ln2 s for the

slope parameter B would come from is not clear. On the other

hand, using the Block and Cahn simple analytic expression,

only a constant or a ln2 s behaviour results.

This debate is still of interest, as we discuss in the follow-

ing sections of this review.

4.3.2 UA4 and UA2

UA4 was the experiment dedicated to the measurement of the

total and elastic cross section, and of the parameter ρ. UA4

measured the total cross section with the luminosity inde-

pendent method by comparing the forward differential cross

section with the total elastic and inelastic rate [129,133]. In

[129] the valueσtotal = 66 mb with a 10% statistical error was

reported. Subsequently, using the same method and through

a comparison with a luminosity dependent measurement, the

final value of σtotal = 61.9 ± 1.5 mb was given [133]. The

difference with previous measurements was attributed to a

1.1% overestimate of the beam momentum above the nomi-

nal energy E = 270 GeV and thus to an overestimate of 2.2%

on the total cross section. The inelastic rate at intermediate

angles was measured by a set of dedicated telescopes, while

the total inelastic rate in the central pseudorapidity region was

measured by the UA2 detector. UA4 was able to measure very

small scattering angles, as small as ∼1 mrad, down to values

0.002 < |t | < 1.5 GeV2. This was accomplished through

the use of the Roman Pot technique, already employed at

the ISR. The result confirmed the shrinking of the diffraction

peak, with a value of the slope, B, defined, as customary, from

the parametrisation dσel/dt = dσel/dt (t = 0) exp(Bt). We

show in Fig. 27 a plot of the total cross section from [133],

where the UA4 result is compared with earlier measurements

at ISR and fixed target machines.

The ratio ρ was also measured and found to be surpris-

ingly large, namely ρ = 0.24 ± 0.4. As the authors them-

selves note in a subsequent paper [134], this measurement

was affected by poor beam optics and limited statistics. It

was then repeated by a combined UA4/UA2 collaboration

under very clean conditions with higher precision and better

control of systematic errors, and found to be

ρ = 0.135 ± 0.15, (4.18)

which supersedes previous measurements and was in agree-

ment with the original theoretical expectations.

Fig. 27 The result of the UA4 experiment for the measurement of the

total cross sectionat the CERN Sp p̄S from [133]. Reprinted from [133]

©(1984) with permission by Elsevier

4.3.3 The ramping run and UA5 measurement

The UA5 experiment measured the total p p̄ cross section

at
√

s = 200 and 900 GeV [135]. Data were normalised

at 900 GeV from an extrapolation by Amos el al. [121]

and the result, σ 900
total = 65.3 ± 0.7 ± 1.5 mb, was found

to be consistent with previous measurements. We show in

Fig. 28 the result of UA5 measurement compared with the

UA4 measurement [133], with the extrapolation from [121],

the expectations from Donnachie and Landshoff Regge–

Pomeron exchange model [136], as well as a description by

Martin and Bourrely [131,137], with explicit analytic and

crossing symmetric form of the even signature amplitude at

t = 0 as in Eq. (4.16).

4.4 Reaching the TeV region

Starting from 1985, an even higher center of mass energy for

proton–antiproton scattering was reached in FermiLab near

Chicago through the TeVatron accelerator. At the Tevatron,

the total cross section was measured by three experiments:

E710 [138,139], Collider Detector Facility (CDF) [140] and

E811 [141].
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Fig. 28 The total cross section for pp and p̄ p from [135], including

the measurement by the UA5 Collaboration, compared with models

and data, as explained in the text. Reprinted from [135], ©(1986) by

Springer

4.4.1 Measurements at the TeVatron

Experiment E710 at the Tevatron was the first to measure

the total interaction rate and the forward elastic cross section

[142]. In the detector for elastic events, two Roman pots were

placed one above and one below the beam, with drift cham-

bers and trigger scintillators. The inelastic rate was measured

at large and intermediate angles through ring shaped scin-

tillators and tracking drift chambers, respectively. The first

measurement by E710 was based on the optical theorem,

i.e.

dNelastic

dt

∣

∣

∣

∣

t=0

= L
dσ

dt

∣

∣

∣

∣

t=0

= L
σ 2

total

16π
(1 + ρ2) (4.19)

and extrapolation to zero of the usual exponential behavior

of the elastic rate measured in the interval 0.025 < |t | <

0.08 GeV2, i.e.

Fig. 29 Schematic view of the CDF Roman Pots operation at the FNAL

Tevatron from [143]. Reprinted with permission from [143], ©(1993)

by the American Physical Society

dσ

dt
= dσ

dt

∣

∣

∣

∣

t=0

eBt . (4.20)

Coulomb effects were included in the analysis, although

small in the range used for the extrapolation. A second mea-

surement [139] used the luminosity independent method,

described in the previous subsection, and the total cross sec-

tion was obtained from

σtotal = 16π

1 + ρ2

1

Nelastic + Ninelastic

dNelastic

dt
|t=0. (4.21)

CDF at the FermiLab Tevatron Collider repeated the

σtotal measurement at
√

s = 546 GeV and extended it to√
s = 1.8 TeV using the luminosity independent method

[140]. The measurement of the primary particle scattered in

the forward direction was possible only on the antiproton

side. CDF used the Roman Pot detector technique. Inside

the pots, two scintillation counters were used for triggering,

with a drift chamber backed by silicon detectors measur-

ing the particle trajectory at 5 points. In Fig. 29 we show

the layout of the detector assembly, which also shows the

bellows technique employed to move the silicon detectors

in and out of the beam. Elastic events were distinguished

by left-right collinearity, while silicon detectors behind the

chambers allowed one to reach off-line higher angular reso-

lution.

The total cross section was obtained from a measurement

of the forward elastic and inelastic interaction rate. The rate

of inelastic events for scattering at intermediate angles was

measured through two telescopes. On the antiproton side,

quasi-elastic antiprotons were detected allowing the mea-

surement of single diffraction with the result

σSD(x > 0.85) = 7.89 ± 0.33 mb (4.22)

to be compared with the previous UA4 result of σSD(x >

0.85) = 10.4 ± 0.8 mb, indicating the difficulty in con-

trolling systematic errors in diffractive event measurements.
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Fig. 30 Comparison with lower energy data of results for the total

cross section from the two experiments which first measured the total

cross section at the Tevatron, E710 and CDF, from [140]. Reprinted

with permission from [140] ©(1993) by the American Physical Society

The measurement of the small-angle elastic cross section was

reported in [143].

The result for the total cross section measured by CDF

differs by more than 3 standard deviations from the E710

result, as one can see in Fig. 30. This figure shows a compar-

ison between these two results from [140]. CDF also mea-

sured the total cross section at
√

s = 546 GeV and the result

with σtotal = 61.26 ± 0.93, obtained assuming ρ = 0.15,

was consistent with the UA4 result, assuming the same value

for ρ.

Because of the discrepancy by more than 3 standard

deviations between the CDF and the E710 measurements,

E811 analyzed the very small-angle data, 0.0045 < |t | <

0.036 GeV2, using the luminosity independent method in

order to measure σtotal [141] and the ρ-parameter [144] and

obtained a result consistent with the one from E710. We show

a compilation of all the TeVatron results for σtotal in Fig. 31.

The final numbers for σtot(p p̄) measured at the Tevatron

by the three different experiments, CDF, E710 and E811 are

a follows:

σCDF
total = 80.03 ± 2.24 mb,

σE710
total = 72.8 ± 1.63 mb,

σE811
total = 71.42 ± 2.41 mb.

Notice that at
√

s = 1.8 TeV, the CDF result

σelastic

σtotal
= 0.246 ± 0.004 (4.23)

agrees with the E710 value 0.23 ± 0.012 [140].

Fig. 31 Results for the total cross section at the TeVatron, in a com-

pilation by E811, from [141]. Reprinted from [141] ©(1998) with per-

mission by Elsevier

4.4.2 A comment on the black disk model

Fits to the total cross section from measurements prior to

ISR and up to the latest Tevatron data accomodate a ln2 s

rise. It should however be mentioned that in models such as

in Refs. [11,93] for instance, the rise can be (ln s)1/p where

1/2 < 1/p < 1.

The ln2 s behaviour would reflect a geometrical picture

such as that arising from of a black disk with all partial waves

to be zero beyond a maximum impact-parameter value b <

R, i.e. angular momentum values bk = l < Lmax = k R.

As discussed in more detail in Sect. 6, the black disk picture

gives

dσ

dt
∼ π R2 J 2

1 (Rq)

|t | (4.24)

with
√

−t = q = kθ and J1 the Bessel function of order

1. At small values of Rq, J1 can be approximated by an

exponential with slope defined by the interaction radius and

one can write

dσ

dt
≈ π R4

4
eR2t/4. (4.25)

Integrating the above equation, one obtains the elastic and

the total cross sections in the black-disk limit, i.e.
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Table 5 Total and elastic cross section from ISR to the Tevatron
√

s (GeV) Process σtotal (mb) σelastic/σtotal

62 pp 43.55 ± 0.31 0.175 ± 0.004

546 p̄ p (63.3 ± 1.5)/(1 + ρ2) 0.213 ± 0.06

1800 p̄ p 71.4 to 80.0 0.246 ± 0.04

σelastic = π R2, σtotal = 2π R2,
σelastic

σtotal
= 1

2
. (4.26)

As we shall see in later sections, even considering latest

LHC and cosmic ray results at 57 TeV, such behaviour is not

observed yet for the ratio of the two cross sections. Indeed

what one has so far, before the LHC measurements described

in the next sections, is shown in Table 5.

4.4.3 The ρ parameter at the Tevatron

In previous subsections we have described the measurement

of various quantities related to σtotal, among them the ρ-

parameter, the ratio of the real to the imaginary part of the

forward scattering amplitude. The behaviour of the ρ param-

eter with energy has been discussed in many papers. In most

of the literature concerning models for the total cross sec-

tion, ρ is considered to be small and often taken to be ≈ 0

so as to simplify many analytical calculation, as in most

mini-jet models for instance. The sudden change of per-

spective arose in the 1980s, when the experiment UA4 at

the CERN Sp p̄S reported a measurement well above previ-

ous theoretical estimates. These results, however, were soon

superseded by a more precise measurement, in agreement

with theoretical expectations. At the Tevatron, in the range

0.001 ≤ |t | ≤ 0.14 (GeV/c)2, a three-parameter least square

fit, gave [145],

ρ = 0.140 ± 0.069, (4.27)

B = 16.99 ± 0.047 (GeV/c)2, (4.28)

σtotal = 72.8 ± 3.1 mb. (4.29)

These values are consistent within the quoted errors with the

earlier E710 values [138,139,142] and supersede them.

In Fig. 32, we show a compilation from [146]. The full

line represents the result from the QCD-inspired model by

Block and other collaborators, which will be discussed in the

section dedicated to models.

4.5 Conclusions

The period of experimentation discussed above led to an

enormous change in the view that physicists had held until

then, due to the observed rise in the total cross section,

changes in the value of ρ and the beginning of tension in

the dependence of the slope parameter with energy. These

Fig. 32 The ρ parameter as a function of the CM energy and its com-

parison with the prediction from [146]. Reprinted with permission from

[146], ©(1999) by the American Physical Society

results would lead to radically different formalisms and mod-

els for higher energy experiments during the following three

decades. This is a subject matter which we shall discuss at

length in the coming sections of this review.

5 Theoretical scenarios and phenomenological

applications

In this section an overview of the state-of-the-art of theoret-

ical and phenomenological aspects of total cross sections is

presented.

We show in Fig. 33 a compilation of total cross section

data, from accelerators and cosmic ray experiments, with

photon cross sections normalised at low energy together with

proton data [147]. The dashed and full curves overimposed to

the data are obtained from a mini-jet model with soft-gluon

kt resummation [93,94,148], which we call BN model, and

which will described later in Sect. 5.9.4.

One is often asked what one can learn from total cross

section measurements. Although the total cross section is

proportional to the imaginary part of the elastic scattering

amplitude in the forward region, and thus it can shed only

a limited light on the dynamics of scattering, the interest in

such a quantity – since more than 60 years – indicates that

it can give information on fundamental questions of particle

physics.

Indeed, the total cross section is the golden observ-

able as far as QCD confinement dynamics is concerned:

its behavior is dominated by the large distance behavior

of the interaction, and thus by QCD confinement dynam-
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Fig. 33 Total cross section data for pp and p p̄ scattering together with

normalised γ p and γ γ data. Curves describe predictions from a mini-

jet model with soft gluon resummation, and has been updated from the

corresponding one in [147] courtesy of A. Grau, with MSTW08 curve

courtesy of D. Fagundes

ics. This dominance of large distance behavior implies very

low-momentum exchanges, characterized, at high energy, by

gluons with kt → 0. These very soft quanta need to be

resummed, not unlike what happens in QED, and the problem

of the high energy behavior of total cross sections appears

related to the one of radiative corrections to parton–parton

scattering. Resummation for such effects, and hence inte-

gration over the infrared region, being mandatory, a knowl-

edge or a model for the behavior of emitted gluons in this

domain is needed for any parameter free description. In our

opinion, models which do not access the infrared region, for

instance introducing an infrared cut-off, may provide good

phenomenological descriptions and some understanding of

the dynamics, but so far fail to shed light on the essential

problem.

The still unsolved problem of confinement is presently

the reason why there is no model allowing to calculate the

total cross section from first principles from low energies to

high energies. In the context of the total cross section, we

shall define as low energy the region after the resonances

have died out,
√

s ≈ (5 ÷ 10) GeV for protons, and as high

energy the region where (10 ÷ 20) GeV ≤ √
s � (10 ÷ 20)

TeV. We shall refer to higher energies, accessible through

cosmic rays, as the very high energy region.

The above distinction between low and high energy is

not purely phenomenological. As the c.m. energy rises, par-

tons inside the scattering hadrons can undergo hard or semi-

hard collisions. Such collisions, by definition, are describable

with perturbative QCD (pQCD). In this regime, partons of

momentum p = x Ph are extracted from a hadron of momen-

tum Ph with a 1/x spectrum and scatter into final state partons

of transverse moment pt , with a strength calculable through

0

20

40

60

80

100

120

10 10
2

10
3

10
4

s (GeV)

to
t(
m

b
)

proton-antiproton

UA5
UA1
UA4
CDF
E710
E811

proton-proton

-
 

-

+ -

-
p PDG

PRS 
+
 p  extracted

+
p PDG

PRD 72, 076001 (2005), eikonal mini-jet model with kt-resummation

GRV densities,  p=0.75, ptmin=1.15  GeV

nsoft=AFF(b,s)( 0+A1E
1- A2E

2)

Fig. 34 Proton and pion total cross sections, as indicated, from [149].

Reprinted from [149], ©(2010) with permission from Elsevier

the asymptotic freedom expression for the strong coupling

constant, given to lowest order as

αAF (Q2) = 1

bo ln Q2/Λ2
QCD

; (5.1)

Eq. (5.1) is valid for Q2 ≫ Λ2
QCD, basically for Q2 ∼ p2

t �

1 GeV2. At the same time, as the c.m. energy rises, parton

emission for given momentum p probes decreasing values

of x , and, due to the 1/x spectrum, leading to an increase

of the cross section, as x ≪ 1. Combining the spectrum

behavior with Eq. (5.1), and calling high energy the region

where pQCD starts taking over, we see that the transition to

the perturbative region will occur when

1/x ≥
√

s/2 pt min ≫ 1 and pt min ≃ 1 GeV. (5.2)

For x ≃ (0.1 ÷ 0.2) the turning point where pQCD starts

playing a substantial role can be seen to occur when

√
s � (2/x) GeV, (5.3)

√
s ∼ (10 ÷ 20) GeV. (5.4)

Indeed, data indicate that, after the resonances die out, the p̄ p

cross section keeps on decreasing until reaching a cm energy

between 10 and 20 GeV. It is here that the cross section

undergoes a relatively fast rise, easily described by a power

law, which levels off as the energy keeps on increasing. In

the case of pp, the initial decrease is very mild and the rise

may start earlier. Notice that for pion cross sections, the onset

of the high energy region may be considered to start earlier,

as one can see from a compilation of ππ and πp total cross

sections, shown in Fig. 34 from [149]. In this figure, the

overlaid curves correspond to the same model as in Fig. 33,

discussed later.

As for the high energy behaviour of all total cross sec-

tions, there are two main features which need to be properly
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Fig. 35 The softening of the total cross section from early rise to log-

arithmic type behavior, consistent with the Froissart bound

addressed in any description of data in the TeV region: (i) how

to include the mechanism which drives the rise on the one side

and (ii) what dynamics transforms the early, almost sudden,

power law-like rise into the smoother observed behaviour,

consistent with the Froissart bound, σtotal � log2 s. A car-

toon description of this transformation appears in Fig. 35.

There is a general understanding that the rise is produced

by an increasing number of low-momentum parton–parton

collisions, and a similar general understanding that an effect

called “saturation”, brings about a balance and the Froissart-

like behaviour. However, models differ in their detailed

description. In our model, such a saturation is a conse-

quence of the scheme we propose for infrared gluon kt -

resummation.

The large number of models available can be divided in

various groups as follows:

• geometrical models

• eikonal models

• Gauge boson trajectories: the photon and the gluon

• Reggeon field theory

• QCD mini-jets

• AdS/CFT approaches

• fits with Froissart bound asymptotic constraint.

We shall dedicate some space to each of these different

approaches, with, however, particular attention to the QCD

models and to efforts on resummation, resulting in what is

phenomenologically described as the Pomeron Trajectory. To

put this in perspective, we present an extended summary of

the problem of infrared radiative corrections in QED, includ-

ing the question of the photon trajectory, and then a brief

overview of the Balitsky, Fadin, Kuraev and Lipatov (BFKL)

approach to hadron scattering.

Not all readers are expected to be familiar with all the

theoretical backgrounds, and it is clearly impossible to ren-

der justice to a field which has been active at least for

70 years, with new data appearing both from accelerator

and cosmic ray experiments. The literature on the subject

is very large and still increasing and the problem presents

yet unsolved aspects. Because many books and reviews are

available on specific models, our choice in this review has

been to follow a historical path and highlight some of less

treated aspects in models. The following aspects will be

examined:

• Molière’s theory in Sect. 5.1,

• Heisenberg model in Sect. 5.2,

• on the Froissart bound in Sect. 5.3,

• the impact picture: Cheng and Wu (also with Walker) and

Bourelly, Soffer and Wu in Sect. 5.4,

• Donnachie and Landshoff Regge–Pomeron description

in Sect. 5.5,

• hadronic matter distribution in Sect. 5.6,

• role of resummation in QED in Sect. 5.7,

– a digression on the Rutherford singularity in

Sect. 5.7.1

– Bloch Nordsieck theorem in Sect. 5.7.2,

– Touschek and Thirring about covariant formalism of

Bloch and Nordsieck theorem in Sect. 5.7.3,

– Schwinger’s exponentiation in Sect. 5.7.4,

– Double logarithms in QED: the Sudakov form factor

in Sect. 5.7.5,

– Early 60s and exponentiation in Sect. 5.7.6,

– Semi-classical approach to resummation in QED in

Sect. 5.7.7,

– Reggeisation of the photon in Sect. 5.7.8,

• role of resummation in QCD in Sect. 5.8,

– BFKL approach in Sect. 5.8.1,

– The Odderon in Sect. 5.8.2,

– Odderon in QCD in Sect. 5.8.3,

– Gribov, Levin and Ryskin in Sect. 5.8.4,

– BFKL inspired models in Sect. 5.8.5

• mini-jet models in Sect. 5.9,

– Non-unitary models and the rise ofσtotal in Sect. 5.9.1,

– QCD-inspired eikonal models in Sect. 5.9.2,

– Mini-jets and infrared kt resummation in Sect. 5.9.4

through Sect. 5.9.7,

• AdS/CFT models in Sect. 5.10,

• phenomenological fits in Sect. 5.11,

• the asymptotic behavior of total cross section models in

theories with extra dimensions in Sect. 5.12

Further discussion of related items can be found in the coming

Sect. 7, where one will also find a presentation of the non-

linear Balitsky–Kovchegov (BK) equation.
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5.1 Molière theory of multiple scattering

Most models for the total cross section are based on the opti-

cal theorem, and many of them use models for the differential

elastic cross section. In this subsection we wish to recall the

general features of one such model, Moliére’s theory of mul-

tiple scattering [32], developed for the scattering of electrons

on atoms, summarised, and compared to other pre-existent

models, by Bethe [33].

Moliére’s theory of multiple scattering is valid for small

angle scattering, i.e. sin θ ≈ θ , and is based on the transport

equation for f (θ, t), with f (θ, t)dθ the number of electrons

scattered within an angle dθ after passing through a slab of

atoms of thickness t , and an ansatz for the probability of

small-angle single scattering. The starting point is

∂ f (θ, t)

∂t
= −N f (θ, t)

∫

σ(χ)χdχ

+ N

∫

f (θ ′, t)σ (χ)dχ (5.5)

where N is the number of scattering atoms per unit volume,

σ(χ)χdχ is the electron–atom cross section into the angu-

lar interval dχ after traversing a thickness t . In Eq. (5.5)

the first term corresponds to electrons which were scattered

away from the studied position, namely probability of being

originally at angle θ times the number scattered away in any

direction, while the second is the probability of electrons

scattered into the observed position from any process, and

θ ′ = θ − χ , dχ = χdχdφ/2π . Taking the Fourier trans-

form of f (θ, t)

f (θ, t) =
∫ ∞

0

ηdηJ0(ηθ)g(η, t) (5.6)

one can use Eq. (5.5) obtaining, in the notation of Moliére,

g(η, t) = eΩ(η,t)−Ω0(t) (5.7)

where

Ω(η, t) = Nt

∫ ∞

0

σ(χ)χdχ J0(ηχ) (5.8)

with Ω0(t) ≡ Ω(η = 0, t) having the physical meaning of

the total number of collisions. Notice that Eq. (5.7) uses the

fact that g(η, 0) = 1, which follows from the fact that the

incident beam is exactly in the direction θ = 0, i.e. f (θ, 0) =
δ(θ). One can then solve for f (θ, t) obtaining

f (θ, t) =
∫ ∞

0

ηdηJ0(ηθ)

× exp

[

−Nt

∫ ∞

0

σ(χ)χdχ{1 − J0(ηχ)}
]

.

(5.9)

Bethe points out that this equation is exact provided the scat-

tering angle is small. He then proceeds to describe the approx-

Fig. 36 Description of the scattering in impact-parameter space from

[151], leading to Heisenberg total cross section formulation, and to the

AdS/CFT derivation, as discussed later. ©2005 Elsevier. Open access

under CC BY License

imations used by Moliére to evaluate the integral and, in the

remaining sections, to compare these results with others.

Moliére’s theory of multiple scattering analyzes and pro-

poses models for the scattering probability and it is an early

example of resummation of small-angle scattering.

5.2 The Heisenberg model

An early estimate of the total hadronic cross section was

obtained by Heisenberg in 19524 [150],

σtotal ≈ π

m2
π

ln2

√
s

〈E0〉
(5.10)

where 〈E0〉 is the average energy per emitted pion. We will

describe the argument behind Eq. (5.10) following the very

clear presentation by Kang and Nastase [151], who then use

it to derive similar results in AdS/CFT.

The description of scattering is the by now familiar pic-

ture of two hadrons colliding and interacting through their

surrounding cloud of pions. Due to Lorentz contraction at

high energy, we are dealing with two thin pancakes, and the

scattering degrees of freedom are in the transverse plane,

where the impact parameter b describes the scattering, as in

Fig. 36 from [151]. In such a picture, the total cross section

is written as

σtotal = πb2
max (5.11)

where bmax is the largest impact-parameter value which still

allows pion emission, so that the expression at the r.h.s. of

Eq. (5.11) can also be considered the maximum value which

the total cross section can take, as the energy increases.

The challenge is then to find bmax and its energy depen-

dence. Let E be the energy emitted in the scattering at impact

4 A translation of this article can be found at http://web.ihep.su/dbserv/

compas/src/heisenberg52/engl.pdf.
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parameter b, and 〈E0〉 the average pion energy for scattering

at a c.m energy
√

s. One can then write

E = α
√

s ≥ n〈E0〉 (5.12)

where n is the number of pions emitted withα a proportional-

ity constant which reflects the overlap of the wave functions

of the pions surrounding the colliding hadrons. As the trans-

verse distance between the two hadrons increases, the pion

wave function can be expected to decrease as an exponential,

and, at the maximum distance for the scattering to still take

place, one can write

α = e−bmaxmπ , (5.13)

since mπ is the size of the pion cloud. One then obtains

Eq. (5.10). This equation, however, does not provide much

information, unless one can determine how the average pion

energy depends on the c.m. energy. To obtain this energy

dependence, for instance whether the total cross section is

a constant or increasing with the square of the logarithm of

the c.m. energy or any other behavior, one needs a model to

calculate 〈E0〉. Notice that if 〈E0〉 is proportional to
√

s, then

the total cross section would go to a constant, whereas the

rise with a logarithmic power is only ensured by a constant

average pion energy. We shall now see, from [151], which

was the procedure followed by Heisenberg.

One starts with calculating the differential energy radiated

away during the collision for the case of a free massive scalar

pion of energy E0,

dE

dE0
= A = constant, (5.14)

which is found to be a constant up to a maximum energy

E0,max = γmπ with γ ≈ √
s/MH , MH being the hadron

mass.

Apparently a similar argument was also pictured by Som-

merfeld in his theory of the production of X-rays (according

to Touschek [152]). If the collision takes place in a time inter-

val much shorter than the one characterizing the emission,

then the process can be described by a δ-function in time,

whose Fourier transform is a constant. This would lead to

a constant spectrum for the energy emitted in the process,

namely Eq. (5.14).

The number of emitted pions per unit energy radiated is

then obtained:

dn

dE0
= A

E0
. (5.15)

Now, to get the energy E and the number n of emitted mesons,

we integrate Eqs. (5.14) and (5.15) between mπ (we need to

emit at least one pion) and E0,max. With the maximum energy,

which can be emitted, given by E0,max ≈ √
s mπ/MH , one

gets

E =
∫ E0,max

mπ

dE ≈ A(
√

s mπ/MH − mπ ) (5.16)

and

n =
∫

dn = A

∫

dE0

E0
= A ln

E0,max

mπ

, (5.17)

which immediately gives the average energy 〈E0〉 from

〈E0〉 = E

n
= (

√
s mπ/MH − mπ )

ln
E0,max

mπ

. (5.18)

This indicates that the average energy 〈E0〉 increases with

the c.m. energy
√

s, apart from logarithmic terms. For such a

case, then the total cross section would go to a constant. The

above result follows, according to [151], from the equation of

motion for a free pion. But the pion is not free at high energy

and the equation of motion, [� − m2
π ]φ = 0 is not valid. At

this point Heisenberg took the Dirac–Born–Infeld-like action

for the scalar pion

S = l−4

∫

d4x

√

1 + l4[(∂μφ)2 + m2φ2] (5.19)

with a length scale l and obtained

dE

dE0
= A

E0
→ dn

dE0
= A

E2
0

. (5.20)

Now, using Eq. (5.20), one repeats the above steps, namely

E =
∫

√
s mπ /MH

mπ

dE = A ln
E0,max

mπ

(5.21)

and

n =
∫

dn = A

∫

dE0

E2
0

≈ A

mπ

(

1 − MH√
s

)

. (5.22)

At this point, one can calculate the average energy

〈E0〉 ≡ E

n
= mπ

ln
E0,max

mπ

[1 − mπ

E0,max
] = mπ

ln γ

1 − 1/γ
≈ mπ ln γ

(5.23)

with γ ≈ √
s/MH . With this energy distribution for the pion

field, the average energy E0 ∝ mπ grows only logarithmi-

cally. This then immediately leads to a maximal behavior

consistent with the Froissart limit.

Kang and Nastase comment further on this result. They

write that the minimum energy emitted could be mistakenly

understood to be mπ , but it is instead the pion energy, which

for a free pion would grow linearly with
√

s. On the other

hand one needs an action with higher power of the deriva-

tives, such as the Dirac–Born–Infeld action, to obtain a con-

stant value for 〈E0〉 proportional to the pion mass. In their

subsequent treatment in terms of AdS/CFT, the model by

Kang et al. is applied to the case of pure gauge theories and
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the authors will talk interchangeably of pions and lightest

glueballs.

One can unify the two derivations from the previous part,

by using

dE

dE0
= A

(

μ

E0

)p

(5.24)

and hence

dn

dE0
= A

1

E0

(

μ

E0

)p

, (5.25)

which would give the two previous cases in the limit p = 0,

i.e. constant cross section and average pion energy increasing

with c.m. energy, or p = 1 with constant average pion energy

and cross sections limited by ln2
√

s. For dimensional rea-

sons, we must introduce the pion mass already in Eq. (5.24).

Then both the above results can be written in a single

expression, with 0 < p < 1. We write for simplicity mπ = μ

and then E0,max ≈ γμ. Integrating Eqs. (5.24) and (5.25),

we get

E = Aμ

1 − p
(γ 1−p − 1), (5.26)

−−−→
p→1

Aμ ln γ , (5.27)

−−−→
p→0

Aμγ (5.28)

and

n = A

p

[

1 −
(

1

γ

)p]

−−−→
p→1

A

[

1 − 1

γ

]

, (5.29)

−−−→
p→0

Aγ ln γ (5.30)

so that

〈E0〉 = μp

1 − p

γ 1−p − 1

1 − γ−p
(5.31)

and as a result we have the two limits

〈E0〉 −−−→
p→1

μ
ln γ

1 − 1
γ

, (5.32)

−−−→
p→0

μ
γ

ln γ
(5.33)

as it should be.

5.3 A general observation about the various ways to obtain

the Froissart bound

Heisenberg’s argument is geometrical to begin with, but

dynamics enters in defining the average pion energy. The geo-

metrical argument is also the one used by Froissart [3], and

in all the other derivations of the bound, including Martin’s

[4] and Gribov’s [20], as seen in Sect. 2. These derivations

are all obtained with

– optical theorem, σtotal ∝ ℑm A(s, t = 0)

– partial wave expansion truncated at Lmax so that

ℑm A(s, t = 0) ≤
Lmax
∑

0

(2l + 1) = L2
max. (5.34)

In other words the derivations are related to the partial waves

falling off at high energy for a finite Lmax which, in impact-

parameter space, then becomes proportional to a bmax. The

connection between Lmax, alias bmax, and the energy comes

from the high l-behaviour of the Legendre functions, and the

energy dependence enters because the scattering amplitudes

are said to grow at most like a polynomial in s. The difference

between Heisenberg’s argument and the S-matrix derivations

seems to be that for the latter case the energy dependence

comes from the hypothesis on the amplitudes taken to grow

with energy, whereas for Heisenberg, to obtain the limit one

needs an average pion energy to be a constant and total energy

emitted proportional to the c.m. energy.

Let us repeat here the heuristic argument given by Frois-

sart, at the beginning of his paper, to obtain his result. It must

be noted that this intuitive explanation relies upon the exis-

tence of confinement. Indeed, the whole description applies

not to parton scattering but to hadron scattering.

Let the two hadrons see each other at large distances

through a Yukawa-type potential, namely ge−κr/r , where

κ is some momentum cut-off. Let a be the impact parame-

ter, then the total interaction seen by a particle for large a

is proportional to ge−κa . When ge−κa is very small, there

will be practically no interaction, while, when ge−κa is close

to 1, there will be maximal probability for the interaction.

For such values of a, κa = ln |g| one can then write for

the cross section σ ≃ (π/κ2) ln2 |g|. If g is a function of

energy and we assume that it can grow with energy at most

like a power of s, then one immediately obtains that the large

energy behaviour of the total cross section is bound by ln2 s.

What κ is, remains undefined for the time being, except that

it has dimensions of a mass.

Since Heisenberg’s early result, many attempts have been

made to reproduce it with modern field theory techniques.

Leaving aside for the moment, the Regge–Pomeron lan-

guage, one can summarise this result and related attempts,

including those of Froissart and Martin, as follows:

– confinement is input to the derivation as one consid-

ers pions as a cloud around the interacting hadrons,

represented by a fall-off of the cross section at large

impact-parameter values. In [150] a value bmax is

defined and related to the energy emitted. In Frois-

sart’s heuristic explanation of his derivation, the poten-

tial is of the Yukawa type, with the coefficient of the

term in the exponential in r , proportional to a con-
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stant κ , which will later turn out to be the pion mass

(similar to the coefficient in Heisenberg’s exponen-

tial)

– with such an exponential behaviour, σtot, by definition

proportional to b2
max, will be proportional to

• inverse of the scale, which is mπ

• a logarithm of a function of the energy scales of the

collision, f (
√

s,mπ ,m H )

– the average emitted pion energy is what determines the

function f (
√

s,mπ ,m H ), through the relation 〈E0〉 =√
se−bmaxmπ

– for a free pion field f (
√

s,mπ ,m H ) = γ
ln γ

, while for the

more realistic case of not free pions, Heisenberg obtains

f (
√

s,mπ ,m H ) = ln γ with γ ≈ √
s/MH .

To obtain the logarithmic dependence in the cross section,

it is then necessary to understand the behaviour of the func-

tion f (
√

s,mπ ,m H ). In Froissart, the elastic amplitude is

assumed proportional to a finite power of the energy and this

brings in the energy term in the logarithm.

Finally, let us notice a recent paper by Azimov [153],

where the fundamentals of the Froissart bound are revisited

and the possibility of a different asymptotic behaviour of the

total cross section is proposed.

5.4 The impact picture

The impact picture for particle scattering is still at the basis of

many of the proposed descriptions for the total cross section.

It is often obtained as a direct consequence of an optical

model for scattering, with direct connection to the optical

theorem.

5.4.1 Cheng and Wu description of high energy scattering,

including work with Walker

In 1970 Cheng and Wu [154] (CW) described the general

qualitative features of the impact picture for high energy scat-

tering.

The final picture had arisen through a long series of papers,

the first of which studied the high energy limit of elastic

two body scattering amplitudes in (massive) quantum elec-

trodynamics [155]. In this paper, a systematic study, at high

energy, of all two body elastic scattering amplitudes was per-

formed and the concept of “impact factor” was introduced for

electrons, positrons, nuclei (all point-like) and the (massive)

photon. “After 16 months and 2000 pages of calculations”,

as the authors say, it was found that the matrix element for

the elastic scattering process a +b → a +b, for small values

of the momentum transfer r1 ≃ 0, can be stated in the form

[155]

Mab
0 ≃ i(2r2r3)(2π)−2

×
∫

d2q⊥[(q⊥ + r1)
2 + λ2]−1[(q⊥ − r1)

2 + λ2]−1

× /S
a
(q⊥, r1)/S

b
(q⊥, r1). (5.35)

This expression introduces the impact factor /S
a
. In Eq. (5.35)

the amplitude is cast as an integral over an internal variable,

which obtains from higher order diagrams, with r2 and r3

being averages over initial and final particle momenta. The

results obtained in this paper, which relies on a non-zero

photon mass λ to avoid infrared divergences, contradicts,

according to the authors, previous results on Regge-poles

and the droplet model for diffractive scattering, both of which

rely on potential model results.

In [154] the impact picture and the eikonal approximation,

which will later lead to their numerical prediction for high

energy scattering (with Walker), are presented and, in [156],

the limiting behaviour of cross sections at infinite energy

is stated in the following major predictions for two body

scattering:

1. the ratio of the real to the imaginary part of the elastic

amplitude

ℜeM(s, 0)

ℑm M(s, 0)
= π

ln |S| + O(ln |S|)−2 (5.36)

where S is obtained asymptotically as

S =
{

− (−s)a

[ln(−s)]2
+ (−u)a

[ln(−u)]2

}1/a

→ s/s0

[ln(s/s0)2/a
(5.37)

for −t ≃ 0. This expression shows that S increases at

least like a power of s, with a a positive constant;

2. the asymptotic behaviour of the total cross section is

given as

σtotal = 2π2 R2 + O(ln |S|) (5.38)

with R = R0 ln |S|, and R0 is a constant.

3. for the elastic cross section, the impact picture, extended

to t �= 0 leads to a prediction on the position of the first

dip, namely to geometrical scaling, a result previously

obtained in [13] on very general grounds, i.e.

− tdipσtotal = 2π3β2
1 + O(ln |S|)−1) (5.39)

with β1 corresponding to the position of the first zero of

the J1(πβ);

4. the ratio of elastic to the total cross section goes to a

constant, namely
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σelastic

σtotal
= 1

2
. (5.40)

The authors note that, with the exception of the result in

Eq. (5.36), all the above is model independent and believed

to be firm, whereas the first one could only be valid in QED.

We shall return to this point in a later section.

In 1973 Cheng, Walker and Wu proposed a quantitative

model, based on such picture, to the study of total cross sec-

tions [157], and, later, also applied it to study the ratio of the

elastic to the total cross section [158].

The impact picture presented by Cheng, Walker and Wu

(CCW) represents the collision, as seen by each individual

particle, as that of two thin pancakes, Lorentz contracted

along the direction of motion. The pancakes are seen as being

made of

1. a black core, where essentially total absorption takes

place, with a logarithmically expanding radius R(s) ≃
R0 ln s, which owes its existence to the production of rel-

atively low energy particles in the center-of-mass system

2. a grey or partially absorptive fringe, roughly independent

of the energy.

One of the immediate predictions of this picture is that the

ratio of the total to the elastic cross section becomes 1/2 at

very high energy. As we discuss later in this review in the

context of diffraction, this is a problem with the one channel

eikonal representation.

Lifting notation and everything else from [157], for an elastic

channel j , the amplitude at high energy is written as

M j (s,Δ) = is

2π

∫

dx⊥ exp(−i∆ · x⊥)D j (s, x⊥) (5.41)

where ∆ is the momentum transfer and D j is written as

D j (s, x⊥) = 1 − exp(− f j (Eeiπ/2)c)

× exp(−λ(x2
⊥ + x2

jo)
1/2) (5.42)

with E the laboratory energy of the projectile (incident par-

ticle). While c and λ are universal constants, f j and x jo are

parameters, which, however, are the same for particles and

antiparticles. The factor e−iπ/2 is present to allow for cross-

ing symmetry in the amplitudes. The normalisation of the

amplitude is such that the differential cross section is given

by

dσ

dt
= |M j (s,∆)|2 (5.43)

where t = −Δ2. The optical theorem then leads to the

expression for the total cross section

σtotal( j) = A j s
−1/2 + 4.893

s
ℑm M j (s, 0). (5.44)

In the above equation, the authors added a term, defined as a

background term, and the factor 4.893 is a conversion factor

to mb. The asymptotic energy scale is now controlled by the

power c in Eq. (5.42). When the paper [157] was written, the

parameter was fixed through the fit to hadronic data, includ-

ing results from ISR experiments. The value of the parameter

was given as c = 0.082925.

In a subsequent paper [158], the model is further defined.

The amplitude is written as the sum of 3 terms, namely a

vector and a tensor exchange, and the Pomeron contribution.

The authors write

σtotal(pp/p p̄)

= 4.893

[ℑm Ap(s, 0)

s
+ s−1/2(γ̄ f ∓ γ̄ω)

]

mb (5.45)

where the subscripts f and ω refer to the tensor and vec-

tor exchange. The Pomeron contribution appears through the

eikonal formulation, i.e.

Ap(s, t) = is

2π

∫

dx⊥e−i∆·x⊥ D(s, x⊥) (5.46)

with

D(s, x⊥) = 1 − exp[−S(s)F(x2
⊥)]. (5.47)

With this, CWW obtain the fit to the elastic scattering param-

eter, presently called the slope parameter, further discussed

in Sect. 6, B(s), which is seen to rise slowly with energy. It is

also seen that the ratio of the elastic to the total cross section

should rise by 7% at ISR.

5.4.2 The impact-parameter description by Soffer, Bourrely

and Wu

A particularly clear description of how the impact picture

developed after CW work can be found in a short review paper

by Soffer [159] in [160]. It is recalled that QED was the only

known relativistic quantum field theory in the late 1960s and

that CW introduced the small photon mass in order to avoid

what Soffer calls unnecessary complications. It is recalled

that the summation of all diagrams for Compton scattering

leads [156] to the asymptotic expression of Eq. (5.37).

In the model built by Soffer with Bourrely and Wu (BSW),

the scattering amplitude for proton scattering is written as

a(s, t) = aN (s, t) ± sac(t) (5.48)

where the signs refer to p̄ p and pp respectively, the hadronic

amplitude is given by aN (s, t) and the factor s has been fac-

torised out of the Coulomb amplitude ac(t).

The hadronic amplitude is obtained from the impact pic-

ture [161] as

aN (s, t) = is

∫ ∞

0

bdbJ0(b
√

−t)(1 − e−Ω(s,b)). (5.49)
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The eikonal functionΩ(s, b) is split into two terms, reflecting

different dynamical inputs, namely

Ω(s, b) = R0(s, b) + Ŝ(s, b) (5.50)

where R0(s, b) includes the Regge contribution important in

the low-energy region and is different for pp and p̄ p, whereas

the second term Ŝ(s, b) is the same for both processes and

gives the rising contribution to the total cross section. In this

paper, a factorised expression is chosen so that

Ŝ(s, b) = S0(s)F(b2) (5.51)

with the energy dependence given as in the CW model,

namely

S0(s) = sc

lnc′
s/s0

+ uc

lnc′
u/u0

. (5.52)

The impact-parameter dependence, and hence the t-depend-

ence, is inspired by the proton electromagnetic form factor,

namely it is the Fourier transform of

F̃(t) = f [G(t)]2

[

a2 + t

a2 − t

]

(5.53)

where G(t) is given by a parameterisation inspired by the

proton electromagnetic form factor, i.e.

G(t) = [(1 − t/m2
1)(1 − t/m2

2)]−1. (5.54)

This model had six parameters, which were fixed from

existing data. As in most models, the appearance of LHC

data required some adjustment of the parameters. In Fig. 37

we show some current predictions from this model, up to

very high energy cosmic rays [162].

The elastic differential cross section is defined as

π

s2
|a(s, t)|2 (5.55)

and the total cross section at
√

s = 40 TeV is predicted to

reach a value of 121.2 mb [163].

5.5 The universal Regge and Pomeron pole description by

Donnachie and Landshoff

In Sect. 2, we have seen that the analyticity properties of the

elastic scattering amplitude in the complex angular momen-

tum plane, make it possible to see that the amplitudes for large

t and small s exhibit a power-law behaviour. Using crossing,

one then obtains the usual large s and small t behaviour to

describe elastic scattering and different low energy processes.

The very successful parametrisation of all total cross sec-

tions provided in 1992 by Donnachie and Landshoff (DL)

[60]

Fig. 37 Total cross section predictions at LHC and beyond, from Sof-

fer’s contribution to Diffraction 2012 [162]. Reprinted from [162],

©(2013) with permission by AIP Publishing LLC

σTOT = Y s−η + Xsǫ (5.56)

was inspired by Regge and Pomeron exchange, and proposed

as a universal expression valid for all hadronic total cross sec-

tions. In Eq. (5.56) the first term is identified as arising from

ρ, ω, f, a (J = 1, 2) exchanges, the second from Pomeron

exchange, a vacuum trajectory, which, before the observa-

tion of the rise of σtotal had been given a constant intercept

αP (0) = 0. Requiring the same values for X, ǫ and η, the

DL fit to pp and p̄ p data gave

ǫ = 0.0808 η = 0.4525. (5.57)

What is remarkable about this expression is that the same

value of ǫ and η appeared to fit all available cross sec-

tion data, within the existing experimental errors, namely

π± p, K ± p, γ p, p̄n, pn.The interpretation of this expres-

sion for what concerns the first term is that it correspond to a

simple Regge pole with intercept α(0) = 1 − η. Clearly,

if one uses only one such decreasing term for different

sets of data, η is understood as being the intercept of an

effective trajectory, which actually takes into account dif-

ferent Regge term contributions as well as possible contri-

butions from non-Regge terms, including the exchange of

more than one Pomeron. As for the Pomeron, this is con-

sidered as an entity whose distribution and density func-

tion were actually measured at HERA, and to which we

shall return in the section dedicated to photon processes,

Sect. 7. The fact that the power is the same for different
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Fig. 38 Donnachie and Landshoff universal description of proton, meson and photon total cross sections with Regge and Pomeron pole exchange.

The figures are courtesy of the authors, reprinted from [60], ©(1992) with permission by Elsevier

processes finds its justification in that the Pomeron has the

quantum numbers of the vacuum. Thus, for crossing sym-

metric processes such as pp and p̄ p not only the power

is the same, but also the coefficient X. This is borne out

by the fit to various processes, which we reproduce in

Fig. 38.

In the introduction to this section, we have mentioned

the interpretation of the rise in terms of QCD processes like

mini-jets, which will also be discussed later in more detail.

We mention here that in [164] this possibility was considered

unlikely because, when the contribution from vector and ten-

sor meson exchange to the total cross section is subtracted

off, the rise appears to be present already at
√

s ≤ 5 GeV and,

in some cases, even earlier [165]. In the 1992 paper [60], this

statement is softened, although it is still said that the form

Xsǫ is unaffected by the onset at higher energies of new pro-

duction processes, such as charm or mini-jets. A word of

caution is, however, added, namely that at the Tevatron one

can expect a large number of mini-jets.

The question of the rise is also discussed with respect to

the impact picture by Cheng, Walker and Wu [157,158]. DL

considered unhelpful to adopt a geometrical approach and to

talk of hadrons becoming bigger and blacker as the energy

increases. We note that an early rise with the same power as

the one found by DL is also to be found in the CWW [157].

On the other hand, if the rise is due to mini-jets, at high

energy the rise should only depend on the gluon densities,

and thus be flavour independent. However, as in the case of

γ p and γ γ , there may be other ingredients, quark densities,

internal structure such as hadronic matter distribution etc.

which change the way the cross sections rise. Indeed, as we

shall show in the section dedicated to γ p processes, mini-

jet models do not expect the rise to be the same for photons

as for protons until such very high asymptotic energies are

reached where only gluons play a role.

The advantage of the DL formulation is that it provides

a simple and useful parametrisation of total cross sections,

without the need to introduce the question of the inner struc-

ture of protons. The disadvantages are that it does not connect

directly to QCD and it violates the limiting behavior imposed

by the Froissart bound.

5.6 Hadronic matter distribution

A crucial role in many of the models for the total cross sec-

tion is played by the distribution of matter in the colliding

hadrons in the plane perpendicular to the initial direction

of motion. Practically the only model which does not use

an impact-parameter description is the simple version of the

Regge–Pomeron model by Donnachie and Landshoff [60] or

phenomenological fits based on analyticity and other gen-

eral properties, discussed later in this section. However, any

dynamical description of hadron scattering uses information

as regards the breaking up of the proton, which is what is

described by the total cross section.

Models in current usage fall into one of the following

major categories:

– matter distributions obtained from the Fourier transform

of colliding hadron form factors (FF),

– parameterisations inspired by form-factor (FF) models,

such as the BSW [161], or QCD-inspired model by Block

and various collaborators [166,167],

– QCD dipole models, based on the BFKL equation in

transverse momentum space [168,169],

– Fourier transform of transverse momentum distribution

of QCD radiation emitted during the collision, using kt

Soft Gluon Resummation (SGR), extended to the infrared

region, as in the so-called BN model, described later in

this section [93,94,148].

The basic function of these models for the matter distribu-

tion in impact-parameter space, is to provide a cut-off in

space which describes the fact that hadrons have a finite size,

namely that quarks and gluons are confined into hadrons.

From this point of view, models which reflect this finite size,

such as the dipole model for the proton factor, can be a good

description, but the problem in this case lies in the energy

dependence.

Form factors in fact are a phenomenological description

of the inner structure and need to be placed in a QCD con-

text for a model independent understanding. Also, the prob-

lem with form-factor models, is that in some cases, such

as the case of photon total cross sections, the form factor
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is not known. One can always use a dipole (for protons)

or monopole (for pions) functional form, but then one may

have to change phenomenologically the scale parameter. On

the other hand, QCD-inspired matter distributions, which are

based on parton structure, can be useful only if they are

able to access the Infrared Region (IR), since the needed

impact-parameter description has to describes very large b-

values. Thus we require a model for ultra-soft, infrared, soft-

gluon emissions. One such model was proposed in [148]

and its application to total cross section will be described

in Sect. 5.9.4. In order to approach models based on resum-

mation, we shall dedicate the next subsections to a discus-

sion of resummation in gauge theories, QED first, and then

QCD.

5.7 Role of resummation in QED

We shall here first present a review of resummation in QED,

including the Sudakov form factor.

In this subsection, we shall provide the reader with a his-

tory of resummation beginning with the pioneering work

on the infrared catastrophe by Bloch and Nordsieck and its

importance for subsequent development both in QED and

QCD. The non-covariant formulation by Bloch and Nord-

sieck was substituted by a covariant one by Touschek and

Thirring in 1951. Previously, in 1949 Schwinger had antic-

ipated the need for resummation in perturbative QED. In

the 1950s and the 1960s, there were further refinements

by Touschek, Brown and Feynman, Lomon and Yennie

Frautschi and Suura. A different path to resummation was

initiated by Sudakov which later played a pivotal role in QCD

resummation. For QCD, resummations of soft-gluon trans-

verse momentum were developed by Dokshitzer Dyakonov

and Troian, Parisi and Petronzio, Collins and Soper, Curci

Greco and Srivastava, Pancheri and Srivastava. In a sub-

section to follow, we shall illustrate the highly influen-

tial work by Balitsky, Fadin, Kuraev and Lipatov, based

on the evolution equation formalism. Finally, their connec-

tion with total cross section computations will be estab-

lished.

The importance of large distance scattering in models

for the total cross section leads naturally to consider the

importance of very small momentum interactions, namely

the InfraRed (IR) momentum region is dual to the large dis-

tance region. When particle momenta are very small, resum-

mation of all processes involving small momenta is neces-

sary. In QED this has been the subject of interest for almost

a 100 years, in QCD for more than 40. In the following we

shall present a mini-review of the problem of resummation in

QED, followed by a discussion of the QCD case. The latter is

of course still not solved, a possible ansatz to describe the IR

region and the connection of resummation with the asymp-

totic behaviour of the total cross section will be presented

later, in the context of the eikonal mini-jet models.

All total cross sections reflect the effective area defined by

the (average) perpendicular distance between the two inci-

dent particles and hence are controlled by scattering at large

distances. Long distances correspond to their dual i.e., small

(transverse) momenta. Thus, the importance for a theoretical

understanding – in any model for high energy total cross sec-

tion – of scatterings at very small momenta. Unbroken gauge

theories, abelian[QED] or not [QCD], are plagued by two

types of singularities both originating from the masslessness

of the gauge boson. The exchange of a massless gauge boson

in any elastic scattering between (generalised) charges gives

rise to the Rutherford singularity as the momentum trans-

fer goes to zero. Thus, a total cross section becomes infinite

simply because of the infinite range of the potential. There

is a further, infra-red (IR) singularity which arises since any

charged particle can emit and absorb gauge particles of van-

ishing momenta leading to all vertices and amplitudes be

divergent in this limit [The IR catastrophe]. Hence, the need

for individual IR singularities (in perturbation theory) to be

summed and a discussion of the various ways to accomplish

this resummation is the purpose of this section. But before

embarking on it, let us pause to discuss briefly the Rutherford

singularity.

5.7.1 The Rutherford singularity

In QED, the elastic scattering amplitude between say two

electrons in the forward direction is indeed infinite. How-

ever, consider the scattering of a (moderately) high energy

electron from a neutral atom considered as a collection of

Z electrons and a (point-like) nucleus with charge (Ze). At

momentum transfers sufficiently large compared to the bind-

ing energy of the electrons, it would not be misleading to

compute the elastic (eA) amplitude in the Born approxima-

tion – using the impulse approximation – as an incoherent

sum of the incident electron scattering from the individual

charges of the atom [an atomic “parton” model]. But this

computation would hardly suffice for a reasonable estimate

of the total cross section since optical theorem relates the total

cross section to the [imaginary part] of the elastic amplitude at

zero momentum transfer which in this approximation would

diverge by virtue of the Rutherford divergence. However,

as the momentum transfer goes to zero, the incident elec-

tron sees the total charge of the atom which is zero and thus

there should be no divergence. The answer to this problem is

of course well known: the coherence between the electrons,

which is neglected in the impulse approximation, is the cul-

prit and cannot be neglected. If t is the momentum transfer,

the cross section contains a factor ([Z − F(t)]2), where F(t)

denotes the form factor of an electron in the atom
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(

dσ

dΩ

)

=
(

2mα

t

)2

[Z − F(t)]2. (5.58)

Since F(0) = Z , there is no Rutherford singularity and the

cross section is indeed finite as it should. In fact, a mea-

surement of the forward differential cross section has been

traditionally used to determine the charge radius (or the size)

of the atom.

We are recalling these well known facts from atomic scat-

tering for two reasons. One is to remind ourselves that elastic

scatterings at low-momentum transfers depend crucially on

the coherence size of the system and hence they cannot be

neglected even at high energies. The second reason is that,

for QCD, these facts take on a shade more relevant. Indi-

vidual elastic scattering amplitudes for all coloured particles

possess the Rutherford singularity which, however, must dis-

appear for hadronic scattering amplitudes since hadrons are

color singlets [“neutral atoms”]. By analogy from the atomic

case, the final amplitudes must reflect their coherence size

i.e., the distribution of color charges within the hadron.

But this is hardly the end of the story for QCD. It is widely

believed (often called IR slavery) that quarks and glue in

QCD are confined through the IR divergences and that the

strong coupling constant αs(t) becomes very large at small

momenta t . There are indications for it already in the diver-

gence of the one-loop asymptotic freedom (AF) formula for

αs(t). Hence, a natural paradigm for QCD emerges: If the

divergence of the (effective) coupling constant at small t is

responsible for confinement, the nature and the intensity of

its divergence must set the size of a hadron. But then, the

same must also enter into determining the size of the high

energy total cross sections. We shall return to these issues

later when we discuss models for total cross sections.

After this brief interlude, let us now discuss the underlying

issues beneath the IR divergences in QED and QCD.

5.7.2 Infra-red catastrophe and the Bloch–Nordsieck cure

The Infra-Red (IR) catastrophe was clearly brought to the

fore by Bloch and Nordsieck through their two classic papers

of 1937 [170,171]. Bloch and Nordsieck observed that previ-

ous analyses of radiative corrections to scattering processes

were defective in that they predicted a divergent low fre-

quency correction to the transition probabilities. This was

evident from the soft photon emission spectrum in the scat-

tering of an electron from a Coulomb field (as described by

Mott and Sommerfeld [172] and by Bethe and Heitler [173]):

as the emitted photon frequency ω → 0, the spectrum takes

the form dω/ω.

The two authors had noticed that, while the ultraviolet

[UV] difficulties were already present in the classical theory,

the IR divergence had no classical counterpart. They antici-

pated that only the probability for the simultaneous emission

of infinitely many quanta can be finite and that the probability

for the emission of any finite number of them must vanish.

To cure this “infrared catastrophe” phenomenon, a semi-

classical description was proposed. They noticed that, for

emitted photons of frequencies larger than a certain ω0, the

probability for emitting each additional photon is propor-

tional to e2

h̄c
log E/h̄ω0, which becomes large as ω0 → 0.

Thus, the actual expansion is not e2

h̄c
, which would be small,

but a larger number, driven by the logarithm. This led them

to analyze the scattering process in terms of what came to

be called Bloch–Nordsieck states, namely states with one

electron plus the electromagnetic field, and to substitute the

expansion in e2

h̄c
with a more adequate one. The important

result they obtained, in a non-covariant formalism, was that,

albeit the probability of emission of any finite number of

quanta is zero, when summing on all possible numbers of

emitted quanta, the total transition probability was finite. This

was so because, by summing on all possible frequencies and

numbers of photons, one obtained the result which one would

have obtained by neglecting entirely the interaction with the

electromagnetic field. Since they could show that the proba-

bility for emission of any finite number of quanta was zero,

whereas the total transition probability was finite and the total

radiated energy was finite, then they anticipated that the mean

total number of quanta had to be infinite. Thus the idea that

any scattering process is always accompanied by an infinite

number of soft photons was introduced and proved to be true

(later, also in a covariant formalism).

In the Bloch and Nordsieck paper we see the emergence of

the concept of finite total energy, with exponentiation of the

single photon spectrum which is logarithmically divergent.

They obtain that the probability per unit time for a transition

in which nsλ light quanta are emitted always includes a factor

proportional to

exp{−α lim
ω0→0

∫ ω1

ω0

dω

ω

∫

dΩk × Δ (5.59)

where

Δ =
[

(

µ

1 − μs

− ν

1 − νs

)2

−
(

μs

1 − μs

− νs

1 − νs

)2
]

(5.60)

where µ and ν are the momenta of the incoming and outgo-

ing electron, μs and νs the projection of µ and ν along the

momentum k of the emitted photon. Because of the expo-

nentiation of a divergent term, the transition probability for a

finite number of emitted photons is always zero. On the other

hand, when summation is done over all possible photon num-

bers and configurations, the result is finite. Clearly there was

still something missing because the fact that one must emit

an infinite number of photons is obtained by exponentiating

an infinite divergent term, and there is no hint of how to really
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cure the IR divergence. In addition the language used is still

non-covariant.

Before going to the covariant formulation, we notice that

the argument relies on the transition probability being pro-

portional to

Πsλe−n̄sλ
n̄

nsλ

sλ

nsλ!
(5.61)

namely to a product of Poisson distributions, each of them

describing the independent emission of nsλ soft photons, and

upon neglecting the recoil effects.

5.7.3 Covariant formalism by Touschek and Thirring

Touschek and Thirring reformulated the Bloch and Nordsieck

problem in a covariant formalism [174]. They proved that

|χ†
0χ

′
0|2, the probability for a transition from a state χ0 with

no photons to a state with an average number n̄ of photons,

χ ′
0, was given by e−n̄ , which goes to zero as n̄ goes to infinity,

namely that the probability of emission of any finite number

of quanta was zero.

Let us consider the Touschek and Thiring derivation. They

point out the importance of the Bloch and Nordsieck solution

and that, although the results they obtain are not new and have

been discussed by several authors, their solution being the

only one which admits an accurate solution justifies a general

reformulation of the problem. As already noted in [170] the

simplification which enables one to find an accurate solution

rests on the neglect of the recoil of the source particles.

Touschek and Thirring set out to determine the probabil-

ity for the production of a certain number n of quanta in

a 4-momentum interval Δ. They obtain that the probability

amplitude for the creation of n particles in a state r is given

by

(Fr
n χ0) = 1

(2π)3n
× 1√

n!

∫

Δ

dk1 · · ·
∫

Δ

dknΠiδ(k
2
i − μ2)

× ur∗
n (k1, . . . , kn)(χ

′
0(φ(k1) + δφ(k1))

· · · (φ(kn) + δφ(kn))χ0)

where use has been made of a complete set of orthogonal

functions ur
n which satisfy the completeness relation. χ0 is

the eigenvector describing an incoming state with no quanta

at all in the interval Δ, while χ ′
0 is the corresponding one for

the final state. For the probability to have n photons in the

final state they obtain

∑

r

|Fr
n χ0|2 = 1

n! n̄n|χ ′
0χ0|2 (5.62)

with

n̄ = 1

(2π)3

∫

Δ

dkδ(k2 − μ2)|δφ(k)|2 (5.63)

and, by imposing that the total probability to be 1, they obtain

the Bloch and Nordsieck result

|χ ′
0χ0|2 = e−n̄ . (5.64)

For the derivation, it is necessary that the motion of the

source particles be not affected by the emission of soft quanta,

namely that the wave operator describing the source field be

a c-number. Then φout differs by φin only by a multiple of the

unit matrix and, transforming to k-space, it may be written

as

φout(x) = 1

(2π)3

∫

dkδ(k2 − μ2)[φin(k) + δφ(k)]eikx

(5.65)

where δφ(k) = −ρ(k)ǫ(k), with ρ(k) the Fourier transform

of the source density describing the source particles. In their

paper TT first derive their results for a source scalar field,

then they generalise it to a vector source function jμ(x) for

a point-like electron, i.e.

jμ(x) = e

∫

pμ(τ )δ(x − τp(τ ))dτ (5.66)

where pμ(τ ) = pμ for τ less than 0 and pμ(τ ) = p′
μ for τ

larger than 0. Notice that the sudden change in momentum

imposes the restriction that in order to apply the results to a

real scattering process, the photon frequencies should always

be much smaller than 1/τ , where τ is the effective time of

collision. Otherwise the approximation (of a sudden change

in momentum) will break down. One then obtains

jμ(k) = ie

(2π)3/2

(

pμ

(pk)
−

p′
μ

(p′k)

)

(5.67)

and the average number of quanta n̄ now becomes

n̄ = e2

(2π)3

∫

Δ

dkδ(k2 − μ2)

[

(pǫ)

(pk)
− (p′ǫ)

(p′k)

]2

(5.68)

where ǫ is a polarisation vector. Notice that the photon mass

μ remains different from zero, so as to ensure convergence of

all the integrals. However, this is not necessary when higher

order QED processes are taken into account, as was shown

by explicit Quantum Electrodynamics calculations, starting

with Schwinger’s work [175].

5.7.4 Schwinger’s ansatz on the exponentiation of the

infrared factor and the appearance of double

logarithms

The solution found by Bloch and Nordsieck, and later brought

into covariant form by Touschek and Thirring, did not really

solve the problem of electron scattering in an external field

and of how to deal with finite energy losses. This problem

was discussed and solved in QED, where the logarithmic

divergence attributable to the IR catastrophe from emission
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of real light quanta of zero energy was compensated through

the emission and absorption of virtual quanta. This cancella-

tion took place in the cross section, and not between ampli-

tudes. In a short paper in 1949 and, shortly after, in the third

of his classic QED papers, Julian Schwinger [175] examined

the radiative corrections to (essentially elastic) scattering of

an electron by a Coulomb field, computing second order cor-

rections to the first order amplitude and then cancelling the

divergence in the cross section between these terms and the

cross section for real photon emission. The result, expressed

as a fractional decrease δ in the differential cross section for

scattering through an angle θ in the presence of an energy

resolution ΔE of the scattered electron, is of order α and

given by

δ = 2α

π
log

(

E

ΔE

)

× F(E,m, θ) (5.69)

where F(E,m, θ) in the extreme relativistic limit is just

log(2E/m). Notice here the first appearance of a double log-

arithm, which will play a crucial role in resummation and

exponentiation of radiative corrections.

Schwinger notices that δ diverges logarithmically in the

limit ΔE → 0 and points out that this difficulty stems from

the neglect of processes with more than one low frequency

quantum. Well aware of the Bloch and Nordsieck result, he

notices that it never happens that a scattering event is unac-

companied by the emission of quanta and proposes to replace

the radiative correction factor 1 − δ with e−δ , with further

terms in the series expansion of e−δ expressing the effects

of higher order processes involving multiple emission of soft

photons.

In 1949 however, such refinements, namely the exponen-

tiation of the radiative correction factor, were still far from

being needed, given the available energies for scattering pro-

cesses as Schwinger points out, estimating the actual correc-

tion to then available experiments, to be about 10%. Almost

20 years had to pass before the exponentiation became an

urgent matter for extraction of results from collider exper-

iments, such those at SPEAR, ADONE, ACO, VEPP-2M,

where the double logarithm term α log(E/ΔE) log(2E/m)

would climb to 20 ÷ 30% and beyond [176].

IR radiative corrections were also considered by Brown

and Feynman [177] some time after Schwinger, and the con-

cept of an external parameter (ΔE) which sets the scale of

the IR correction was confirmed.

It is not clear whether Touschek and Thirring were aware

of the Schwinger results when they formulated the covariant

version of the Bloch Nordsieck method. They do not cite his

results, and their interest is primarily on obtaining a covari-

ant formulation of the Bloch and Nordsieck method. Quite

possibly, at the time they were not interested in the practical

applications of the problem, which is instead the focus of

Schwinger’s calculation.

5.7.5 The Sudakov form factor

The problem of the double logarithms in perturbation theory

was investigated by Sudakov [178] who studied the existence

of double logarithms for vertex functions and established

their exponentiation.

Consider the vertex function in QED [e(p) → e(q) +
γ (l)] with all three particles off shell in the kinematic limit

l2 ≫ p2, q2 ≫ m2. Here the relevant double logarithmic

parameter is computed to be (2α ln(l2/p2) ln(l2/q2)) and

considerations to all orders show that it exponentiates. Thus,

the primitive vertex γ μ in the stated limit gets replaced by

γ μe−[2α ln(l2/p2) ln(l2/q2)]. (5.70)

These double logarithms imply that as q2 becomes very large,

the vertex goes to zero, a rather satisfactory result. From a

practical point of view, it was shown by Abrikosov et al. [179]

that the competing process where a large number of soft real

photons are emitted has a far greater probability and thus it

far overwhelms the Sudakov probability.

Incidentally, the double logarithms are completely sym-

metric in the variables (p2, q2, l2). Thus, if an electron say

p2 ≫ q2, l2, a similar result to Eq. (5.70) holds. The Sudakov

limit when extended to QCD does become relevant. For

example, in the light-quark parton model of QCD, one can

therefore justify the fact that very far off mass shell quarks

are suppressed through the Sudakov “form factor”.

5.7.6 Status of the field in the early 1960s

In the 1950s, with Feynman diagram technique available to

the theoretical physics community, many higher order QED

calculations came to be part of standard theoretical physics

handbooks.

Many important contributions to the radiative correction

problem appeared in the 1950s and early 1960s [177,180,

181], with a major step in the calculation of IR radiative cor-

rections done in 1961 by Yennie, Frautschi and Suura (YFS)

[182]. In their classic paper, they went though the cancella-

tion of the IR divergence at each order in perturbation theory

in the cross section and obtained the final compact expression

for the probability of energy loss. Their result is apparently

disconnected from the Bloch and Nordsieck result. In their

paper, they compute higher and higher order photon emission

in leading order in the low photon momentum, showing that

the leading terms always come from emission from exter-

nal legs in a scattering diagram. In parallel, order by order,

they extract the IR divergent term from the virtual diagrams,

making the terms finite through the use of a minimum pho-

ton energy. They show that the result is just as valid using a

minimum photon mass, and finally eliminating the minimum

energy, they show the final result to be finite.
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5.7.7 A semi-classical approach to radiative corrections

A semiclassical approach to resummation in QED can be

found in [152], where the Bloch and Nordsieck approach

is adopted and an important point made that the picture

of an experimentalist as counting single photons as they

emerge from a high energy scattering among charged par-

ticles is unrealistic. It is noted that perturbation theory is

unable to deal with the flood of soft photons which accom-

pany any charged particle reaction. Then the question of how

light quanta are distributed in momentum is discussed. As

discussed above, Bloch and Nordsieck had shown that, by

neglecting the recoil of the emitting electron, the distribution

of any finite number of quanta would follow a Poisson type

distribution, namely

P({n, n̄}) = 1

n! n̄ne−n̄ (5.71)

and Touschek and Thirring had recast n̄ in a covariant form.

In [152] the constraint of energy–momentum conservation

is added to this distribution. This is a major improvement,

which has sometimes been neglected in subsequent applica-

tions of the method to strong interaction processes.

Let us repeat the argument through which Touschek

obtained the final four-momentum probability distribution

describing an energy–momentum loss Kμ. The final expres-

sion is the same as the one proposed earlier by YFS, but

the derivation is very different and its physical content more

transparent. Touschek also discusses the different energy

scales which will become very important later, when deal-

ing with resonant states, and in particular with J/Ψ pro-

duction. The derivation is semi-classical and at the end

it will be clear that the quanta considered are both real

and virtual photons. The underlying reason for this can

be understood from a consideration by Brown and Feyn-

man [177] in their computation of radiative corrections

to Compton scattering. Brown and Feynman note that it

is difficult to distinguish between real and virtual quanta

of extremely low energy since, by the uncertainty prin-

ciple, a measurement made during a finite time interval

will introduce an uncertainty in the energy of the quantum

which may enable a virtual quantum to manifest as a real

one.

In [152] the probability of having a total four-momentum

loss Kμ in a charged particle scattering process, is obtained

by considering all the possible ways in which nk photons

of momentum kμ can give rise to a given total energy loss

Kμ and then summing on all the values of kμ. That is, we

can get a total final 4-momentum Kμ pertaining to the total

loss, through emission of nk1 photons of momentum k1, nk2

photons of momentum k2 and so on. Since the photons are

all emitted independently (the effect of their emission on

the source particle being neglected), each one of these dis-

tributions is a Poisson distribution, and the probability of a

4-momentum loss in the interval d4 K is written as

d4 P(K ) =
∑

nk

Πk P({nk, n̄k})δ4

(

K −
∑

k

knk

)

d4 K

(5.72)

where the Block and Nordsieck result of independent emis-

sion is introduced through the Poisson distribution and

four momentum conservation is ensured through the four-

dimensional δ function, which selects the distributions

{nk, n̄k} with the right energy–momentum loss Kμ. The final

expression is

d4 P(K ) = d4 K

(2π)4

∫

d4x exp[−h(x) + i K · x] (5.73)

with

h(x) =
∫

d3n̄k(1 − exp[−ik · x]), (5.74)

which is the same as the expression obtained by YFS through

order by order cancellation of the IR divergence in the cross

section. In this derivation, which is semiclassical, no mention

or no distinction is made between virtual and real photons

as stated above, but it is clear that the contribution of real

photons corresponds to the term which is multiplied by the

exponential e−ik·x , since this retains the memory that the

total energy–momentum emission is constrained. Thus, sin-

gle real photons of momentum (k) are all correlated through

the Fourier transform variable x . The next step was to per-

form realistic calculations of the radiative correction factors,

using an apparently difficult expression. The first objective

was to obtain the correction factor for the energy, by integrat-

ing Eq. (5.73) over the 3-momentum variable. Through a very

elegant argument based on analyticity, Touschek obtained the

probability for a total energy loss ω as

dP(ω) = Nβ(E)
dω

ω

(ω

E

)β(E)

(5.75)

where N is a normalisation factor [180,181]. In the high

energy limit,

β(E) = 4α

π

(

log
2E

me

− 1

2

)

. (5.76)

Integrating the four-dimensional distribution over the

energy and longitudinal momentum variables, one obtains a

transverse momentum distribution of the total emitted radi-

ation [183], namely

d2 P(K⊥)

d2K⊥
=
∫

dω dKz

d4 P(K )

d4 K
(5.77)

= 1

(2π)2

∫

d2b eib·K⊥−
∫

d3n̄(k)[1−e−ib·k⊥]
(5.78)

= 1

(2π)2

∫

d2b eib·K⊥−h(b). (5.79)
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This expression, unlike the energy distribution, does not

admit a closed form expression. In an Abelian gauge theory

with an energy independent (as in the case of QED), but not

small coupling constant, the corresponding β factor becomes

large. A useful approximation for the function d2 P(K⊥) was

obtained as [183]

d2 P̃(K⊥) = β(2π)−1

Γ (1 + β/2)

d2K⊥
2E2 A

(

K⊥
2E

√
A

)β/2−1

K1−β/2

×
(

K⊥
E

√
A

)

(5.80)

where this approximate expression is normalised to 1, as is

the original distribution, and it also admits the same average

square transverse momentum, given by

〈K 2
⊥〉 = 2βE2 A (5.81)

with E the maximum energy allowed for single gluon emis-

sion. β is in general obtained from

β =
∫

d4nθ(n0)n0δ(n0 − 1) jμ(n) j∗μ(n)δ(n2) (5.82)

with

jμ(n) = ie

(2π)3/2

∑

ǫi

piμ

pi · n
. (5.83)

The sum runs on all the emitting particles of momenta piμ,

and with ǫi = ± depending on whether the particle is posi-

tively or negatively charged, entering or leaving the scattering

area.

5.7.8 Reggeisation of the photon

In the previous subsection, we have discussed photon resum-

mation. Here we turn to the question of Reggeisation in QED

and, in the next subsection, in QCD. Both play an important

role in models for the total cross section. In fact, while the

Froissart bound regulates the asymptotic behavior of total

cross sections, asymptotic Regge behavior of the scattering

amplitudes and the optical theorem allow direct calculation

of the total cross section. Thus, the question of Reggeisation

in QED and later in QCD became the center of attention in

the 1960s and 1970s.

The question in the early ’70s was whether the photon

reggeises and soon after the discovery of QCD, whether

the gluon reggeises. Related questions in QED and QCD

were regarding the vacuum channel leading singularity which

we shall call the Pomeron. Reggeisation of gauge bosons,

in Abelian and non-Abelian gauge theories, has played an

important role in models for the total cross section. These

fundamental questions of compelling relevance for the the-

ories as well as for high energy phenomenology were vigor-

ously pursued by several groups and in Sect. 5.8.1 we shall

discuss the BFKL approach, starting with Lipatov and Fadin

and Kuraev, then by Lipatov and Balitsky, on the gluon Regge

trajectory [184–186]. These analyses can be followed more

easily if a discussion of the photon Regge trajectory is first

introduced. To this we now turn.

Reggeisation of elementary particles such as the photon

or the electron was amply discussed in the 1960s. In QED,

the infrared divergence and its cancellation bore many com-

plications and the conclusion was that the electron reggeised,

not so for the photon. The electron in fact had been shown to

reggeise by Gell-Mann et al. in a massive photon (Abelian)

QED up to the fourth order [187] and by Cheng and Wu to

the sixth order. Such a theory possesses a conserved current

but due to the mass of the photon, there are no IR diver-

gences. Radiative corrections turned the elementary electron

inserted into the Lagrangian into a moving Regge trajec-

tory passing through j = 1/2 at the mass m of the elec-

tron. Such a miracle did not occur for the massive photon;

it did not turn into a Regge pole. Moreover, in the vacuum

channel, in the leading logarithmic approximation (LLA),

no “Pomeron” trajectory but a fixed square root branch point

at the angular momentum j = 1 + (11π/32)α2 was found

[156].

The question remained open as to what happens in mass-

less QED. The reggeisation of a massless photon poses a

problem in that all charged particle scattering amplitudes

have IR divergences which are cancelled in the cross sec-

tions. Through a summation of IR radiative corrections (not

needed in the massive abelian theory) and imposition of di-

triple Regge behavior, it was found by Pancheri [188] that a

photon trajectory does emerge.

In other words, a reggeised behaviour of QED cross sec-

tions can be obtained from the well known factorisation and

exponentiation of infra-red corrections and, from this, a tra-

jectory for the photon, as was shown in [188]. We shall

describe it here.

In this approach, just as later in the approach to the gluon

trajectory of Lipatov et al., reggeisation arises through the

exponentiation of single soft photon emission accompanying

the scattering. Since in QED any reaction is necessarily an

inclusive one because of soft photon radiation, the process to

examine is

e(p1) + e(p2) → e(p3) + e(p4) + X (5.84)

where X stays for any undetermined number of soft photons,

hence for which M2
X ≪ s, where s = (p1 + p2)

2. One can

now compare the cross section for process (5.84) with the

one corresponding to the di-triple Regge limit in hadronic

physics [189]. Defining the 5 independent invariants of pro-

cess Eq. (5.84) as

s1 = (p1 + p2 − p3)
2, s2 = (p1 + p2 − p4)

2, (5.85)

t1 = (p2 − p4)
2, t2 = (p1 − p3)

2, (5.86)

M2
X = (p1 + p2 − p3 − p4)

2, (5.87)
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the limit t1 ≃ t2 = t with t fixed, and M2
X ≪ s, s1, s2, we are

within one of the kinematic limits of interest for the inclusive

di-triple Regge limit. For −t ≪ s, M2
X ≪ s ≃ s1 ≃ s2, the

cross section of interest becomes

d2σ

dtd(M2
X/s)

→
(

M2
X

s

)1−2αγ (t)

F(t). (5.88)

We have seen that for X corresponding to a four-vector K 2 ≪
s soft photon resummation applied to Eq. (5.84) at leading

order leads to

d5σ

dtd4 K
=
(∫

d4xei K ·x−h(x)

)

dσ0

dt
(5.89)

where dσ0/dt corresponds to the Born cross section for

e+e− → e+e− and the resummed soft photon spectrum is

obtained from the regularised soft photon spectrum

h(x) =
∫

d3n̄(k)[1 − e−ik·x ]. (5.90)

One can rewrite the single photon spectrum as

d3n̄(k) = β(s, t, u)
d3k

2k
f (Ωk) (5.91)

where the function f (Ωk) is normalised to 1 and gives the

angular distribution of the emitted soft photon. With such a

definition, the dependence from the momenta of emitting par-

ticles is specified byβ(s, t, u), which is a relativistic invariant

function of the Mandelstam variables. This compact expres-

sion is useful when overall integration over the soft photon

momenta is performed. From

dP(ω)

dω
=
∫

d3K
d4 P

d4 K
=
∫

dt

2π
eiωt−h(t) (5.92)

and

h(t) = β(s, t, u)

∫

dk

k
[1 − e−ikt ] (5.93)

the overall energy dependence from soft photon emission is

now

dP(ω)

dω
= Nβ(s, t, u)

dω

ω

(ω

E

)β(s,t,u)

(5.94)

where E is a typical scale of the process, and N a normali-

sation factor, i.e.

N = γ−β(s,t,u)

Γ (1 + β(s, t, u))
(5.95)

γ being the Euler constant. To leading order, E is the upper

limit of integration of the soft photon spectrum, and can be

taken to be proportional to the emitter energy. This choice of

the scale makes it easier to modify Eq. (5.94) when higher

order corrections are considered [152].

We can now inspect the function β(s, t, u) which will lead

us to a phenomenological definition of the photon trajectory

through Eqs. (5.94) and (5.88). For process (5.84), one has

β(s, t, u) = − e2

2(2π)3

∫

d2n̂

4
∑

i, j=1

piμǫi

pi · n

p
μ
j ǫ j

p j · n
(5.96)

with the four-vector n2 = 0, ǫi = ±1, for an electron or a

positron in the initial state, or positron and electron in the

final and the integration is over the angular distribution d2n̂.

Performing this integration leads to the following expressions

β(s, t, u) = 2α

π
{I12 + I13 − I14 − 2}, (5.97)

Ii j = 2(pi · p j )

∫ 1

0

dy

m2 + 2y(1 − y)[(pi · p j ) − m2] .

(5.98)

The soft photon approximation is the elastic approximation of

Eq. (5.84) and one can now take the Regge limit s ≫ −t,−u

and s ≫ m2, i.e.

I12 − I14 → 0 t ≪ s, s → ∞ (5.99)

obtaining, in this limit,

β(s, t, u) → β(t)

= 2α

π

[

(2m2 − t)

∫

dy

m2 − t y(1 − y)
− 2

]

. (5.100)

We notice that this function has the correct limitβ(t) → 0 for

t = 0, since this is the exact elastic limit and it corresponds

to no radiation at all at t = 0.

The next step is to integrate Eq. (5.94) up to a maximally

observableΔE using as a scale the c.m. energy of the process

(5.84), i.e. s = 4E2. Then one obtains

dσ

dt
=
(

ΔE√
s

)β(t) (
dσ0

dt

)

. (5.101)

We can now establish a correspondence between the correc-

tion rising from soft photon emission and the di-triple Regge

limit of Eq. (5.88). This can be done by integrating the spec-

trum of the inclusive mass M2
X up to the maximally allowed

value, which we can call ΔE in the case of no momentum

resolution. We then immediately get

dσ

dt
=
∫

dM2
X/s

d2σ

dtd(M2
X/s)

, (5.102)

→
(

M2
X

s

)2(1−αγ (t))

=
(

ΔE√
s

)4(1−αγ (t))

(5.103)

and hence are led to the correspondence

αγ (t) = 1 − β(t)

4
(5.104)
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and to [188]

αγ (t)

= 1 − α

π

(

2m2
e − t

√
−t
√

4m2
e − t

log

√

4m2
e − t +

√
−t

√

4m2
e − t −

√
−t

− 1

)

.

(5.105)

Notice that to establish the above correspondence one had to

assume Eq. (5.88), which obtains from the di-triple Regge

limit with a vacuum trajectory αV (0) = 1, i.e. the cross

section for two reggeised photons into any final state

Rγ + Rγ → X (5.106)

is controlled at large energy by a trajectory αvacuum(0) = 1.

This assumption seems reasonable [for estimates about the

photon trajectory computed to order α] since the perturbative

result for the vacuum trajectory is a branch cut, but whose

deviation from unity begins at order α2.

To summarise: the proposed photon trajectory [188]

αγ (t) = 1 − α

2π

[

(2m2
e − t)

∫ 1

o

dy

m2
e − t y(1 − y)

− 2

]

(5.107)

is an expression obtained in the large s, small t limit, from

resummation of all soft photons emitted in the scattering

e+e− → e+e−. In these expressions, me is the mass of

the fermion which emits the soft photons and the expression

exhibits a threshold behaviour with a square root singularity

(Notice that being fermions, the threshold behaviour is dif-

ferent from the one required for a pion loop, for instance).

The above expression may also be expressed as a dispersion

integral

αγ (t) = 1 − α

π

[

(2m2
e − t) (5.108)

×
∫ ∞

4m2
e

dt ′

(t ′ − t − iǫ)
√

(t ′(t ′ − 4m2
e))

− 1

]

= 1 +
(α

π

)

t

∫ ∞

4m2
e

dt ′(t ′ − 2m2
e)

t ′(t ′ − t − iǫ)
√

(t ′(t ′ − 4m2
e))

. (5.109)

From Eq. (5.108), we may directly compute the imaginary

part of the photon trajectory, which is positive definite:

ℑm αγ (t) = ϑ(t − 4m2
e)α

(t − 2m2
e)

√

(t (t − 4m2
e))

, (5.110)

and which has the asymptotic limit

ℑm αγ (t) → α, for t ≫ 4m2
e, (5.111)

exactly the same result found by Lipatov for the iso-spin one

vector boson trajectory in non-Abelian SU (2) model with

a doublet Higgs field [184]. We shall discuss it in the next

subsection.

We see that the trajectory goes to 1 as t → 0, in addition to

having the threshold singularity corresponding to the fermion

loop. The actual t → 0 and |t | → ∞ limits are also easily

taken and lead to

αγ (t) → 1 −
( α

3π

) −t

m2
e

|t | ≪ m2
e, (5.112)

αγ (t) → 1 − α

π
log

−t

4m2
e

|t | ≫ 4m2
e (5.113)

namely one recovers the linearity of the trajectory at small

|t | and the asymptotic logarithmic limit at large t .

5.7.9 Comments on the reggeisation of the photon

In the literature, one finds the statement that in QED the

photon does not reggeise [see, for example Gell-Mann et

al. [187]], apparently in conflict with the Regge trajectory

for the photon αγ (t) found and discussed in the previous

section. Hence, an explanation for the seeming discrepancy

is mandatory.

The question of Reggeisation in field theory was begun by

Gell-Mann et al. in the 1960s and continued in subsequent

literature [190–192]. Precisely to avoid IR divergences due

to the zero mass of the photon, they and most others, consid-

ered massive fermion QED with a conserved vector current

but with a massive photon (vector boson). Then perturbation

theory was used to show that up to the sixth order the fermion

reggeises whereas the vector boson (photon) did not.

On the other hand, massless QED requires a resummation

making it non-perturbative and under the hypotheses stated

in the previous section, the photon does reggeise. Moreover,

it was found in [193] that all gauge vector bosons – including

the photon – reggeise in a grand unified theory [GUT] based

on a semi-simple group with a single coupling constant. How-

ever, it is difficult to assign significance to the result obtained

in [193] in view of the lack of any phenomenological confir-

mation of GUT.

The problem of reggeisation of the gauge bosons in the

electro-weak SU (2)×U (1) theory has been discussed in the

leading log approximation by Bartels et al. in [194]. Through

a set of bootstrap equations they find that the W boson does

reggeise whereas the Zo and the photon do not.

5.8 High energy behaviour of QCD scattering amplitudes

in the Regge limit

In the preceding section, we have described in some detail the

question of gauge boson trajectories because in Regge the-

ory, the high energy behavior of the scattering amplitude is

given by the exchange of Regge trajectories. We have shown

there how an effective Regge-like behaviour can be obtained
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in QED, from soft photon resummation in charged particle

reactions. In QCD, the role of soft photons is taken on by soft

gluons, but, as we know, with enormous differences: not only

a running coupling constant, but also an unknown (very likely

a singular) behavior in the infrared. On the other hand, QCD

resummation is fundamental to the cross sections, since, at

high energy, the behavior of the total cross section is dom-

inated by large distance effects, which correspond to very

small momenta, and this immediately leads to the question

of resummation of such quanta with very small momenta.

While at low energy Reggeons (such as the ρ trajectory)

dominate the hadronic scattering amplitude, at high energy

the leading effect is obtained through a Pomeron exchange,

in correspondence with a leading vacuum singularity in an

even charge conjugation channel, C = +1. Thus theoret-

ically, it was natural to identify the Pomeron as emerging

from the exchange of two gluons (accompanied by soft-gluon

resummation) which does not change the quantum numbers

of the process. Phenomenologically, the one-to-one corre-

spondence between the asymptotic total cross section and the

Pomeron trajectory, made the Pomeron go from a fixed pole

(αP = 1) at low energies, to a moving pole with intercept

larger than one, to justify the rising cross section observed at

the ISR. As for the C = −1 possible partner of the Pomeron,

it is called an Odderon, but it is an object so far only seen

clearly in theoretical papers, as recently quibbed in [195].

The Odderon is also a QCD effect, and its trajectory so far

seems to correspond to a constant αO = 1. We shall briefly

discuss the Odderon in Sects. 5.8.2 and 5.8.3.

Clearly, for phenomenological applications, the dynam-

ics of scattering among quarks and gluons needs to be under-

stood, from high-pt jets to that of the infrared gluon emission.

In particular, for scattering in the soft region, the zero momen-

tum region needs to be incorporated adequately. Since the

latter, and most important aspect of the problem, has not yet

been completely solved, we can only try to give here some

specific examples of how one approaches the problem of

the total cross section in QCD, starting with the preliminary

building blocks such as the Balitsky–Fadin–Kuraev–Lipatov

(BFKL) equation in Sect. 5.8.1, followed by the Gribov,

Levin and Ryskin (GLR) treatment in Sect. 5.8.4 and then

the Balitsky, Kovchegov, Peschanski equation in Sect. 7.3. A

specific model that realises many of these QCD notions, the

Durham-St. Petersburg model, will be presented in Sect. 5.8.5

and then rediscussed in more detail in Sect. 6. Recently an

extensive description of QCD as applied to the high energy

scattering amplitudes in the Regge limit has appeared [196],

with both a theoretical and experimental up-to-date outlook.

The field is very vast and cannot be covered in depth in this

review. In the following, we shall attempt to outline some

of the most important physics chapters in the story hoping

that our summary would provide a starting point to a worker

interested in the field.

5.8.1 Non abelian gauge theory with Higgs symmetry

breakdown and the BFKL integral equation

With the advent of SU (2) Yang Mills (YM) theory contain-

ing a triplet of vector gauge bosons which acquire a mass

through an iso-doublet Higgs field, investigations turned into

answering the reggeisation questions for the massive gauge

bosons and the Pomeron in the vacuum channel of the the-

ory. Such a theory is renormalisable and endows the gauge

vector bosons a mass M through the spontaneous symmetry

breakdown mechanism.

In a series of papers, Lipatov et al. [184], Fadin, Kuraev

and Lipatov [197,198]; Balitsky and Lipatov [199–201], did

fundamental work in this field which goes under the generic

name of the BFKL formalism.

Lipatov et al. found that the gauge vector boson reggeises,

i.e., the elementary iso-vector gauge particle of angular

momentum j = 1 at mass t = M2 turns into a Regge trajec-

tory. Their expression may be written as a dispersion integral

αV (t) = 1 + αY M

π
(t − M2)

×
∫ ∞

4M2

dt ′

(t ′ − t − iǫ)
√

(t ′(t ′ − 4M2))
, (5.114)

where αY M = g2/(4π) and g is the gauge coupling constant.

The above expression verifies explicitly that the gauge vector

boson trajectory goes to 1 at t = M2.

It is instructive to note the remarkable similarity between

the expression Eq. (5.108) for αγ (t) found in QED with the

gauge vector boson trajectory given in Eq. (5.114). αγ goes

to 1 at the physical mass t = 0 of the QED gauge boson

(the photon), just as the non-Abelian gauge boson trajectory

αV goes to 1 at its physical mass t = M2. Furthermore, the

absorptive part of αV (t) reads

ℑm αV (t) = ϑ(t − 4M2)αY M

(t − M2)
√

(t (t − 4M2))
, (5.115)

and it differs from its corresponding expression Eq. (5.110)

for ℑm αγ (t) in the replacement (α,me) → (αY M , M)

and in the numerator (t − 2m2
e) to (t − M2). Asymptotically,

as stated earlier, the difference vanishes. For large |t |, both

imaginary parts go to their respective α or αY M .

The situation regarding the vacuum channel or the nature

of the Pomeron in this YM theory is still rather obscure. In

Lipatov’s original paper, it is stated that if only two particle

singularities in the t channel were included, a bare Pomeron

trajectory did emerge which may be transcribed in the form

α
(o)
P (t) = 1 + αY M

π
(2t − 5M2/2)

×
∫ ∞

4M2

dt ′

(t ′ − t − iǫ)
√

(t ′(t ′ − 4M2))
. (5.116)
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But going further and including three particle thresholds

in the t channel, led Lipatov to conclude that there is a branch

cut in the angular momentum plane in the vacuum channel

due to the exchange of two reggeised vector bosons. This was

confirmed in a later paper by Fadin, Kuraev and Lipatov. They

obtained the result that the leading j-plane singularity in the

vacuum channel is a branch point at j = 1+αY M [8 ln(2)/π ]
which for an SU (N ) theory would read

αY M
Pom = 1 + αY M

[

4N ln(2)

π

]

. (5.117)

Hence, they conclude that in the main LLA, the total cross

sections in a non-abelian gauge theory, would violate the

Froissart bound. The reason for this violation is that s chan-

nel unitarity is not satisfied in the LLA (which assumes

αY M ln(s/M2) ∼ 1) and presumably a proper computa-

tion of the vacuum exchange in the t channel would require

excursions beyond LLA which must also include contribu-

tions of order αY M ln(s/M2) ≫ 1.

At this juncture, s channel elastic unitarity may be

imposed via the eikonal expansion as proposed by Cheng

and Wu. Such eikonal procedures in various forms have been

followed over the years by various groups as discussed in var-

ious parts of our review.

Development of ideas and results from QED and non-

abelian SU (2) with a Higgs mechanism to the theory of

interest namely QCD [unbroken SU (3)colour] runs into a

host of well known difficulties. At the level of quarks and

glue, one can address the question of the reggeisation of the

gluon trajectory. Unlike the YM theory with spontaneous

symmetry breakdown which endows the gauge boson with

a mass M as discussed in the last subsection, gluon remains

massless. The difficulty is seen immediately as M → 0 in

the vector boson trajectory Eq. (5.114), which diverges at

the lower limit. The reason for this divergence is clear in

that all gauge boson thresholds condense at t = 0 as the

gauge boson mass vanishes. [Such is not the case for QED

due to the absence of non-linear couplings of a photon to

itself].

On the other hand, in the large t limit, we see from

Eq. (5.115) that, for SU(N) YM, ℑm αV (t) → ( N
2
)αY M .

Hence, we expect that

ℑm αgluon(t) →
(

3

2

)

αs as t → ∞, (5.118)

[at least for constantαs]. This expectation agrees with explicit

computations by Lipatov, Balitsky and Fadin in LLA which

reads

αgluon(t) − 1 =
[(

3t

2π2

)

αs

] ∫

(d2k)

k2[(q − k)2]

≈ −
(

3

2π

)

αs ln(−t/λ2). (5.119)

The scale λ corresponds to the lower integration cut-off,

introduced to avoid the IR region where perturbative QCD

cannot be applied.

It is useful to note the similarities and differences betweens

BFKL and the approach to the photon trajectory obtained

through resummation in QED, as described in Sect. 5.7.8.

In that approach, and its extension to QCD leading to what

we call the BN (for Bloch Nordsieck) model for the total

cross section (see Sect. 5.9.4), the IR divergence is cancelled

at the level of the observable cross sections and the asymp-

totic behavior is obtained directly from the cross section.

On the other hand, the BFKL result is obtained in terms

of matrix elements, which are calculated in different orders

in the coupling constant through dispersion relations and

unitarity.

In our approach [188] for the photon trajectory, we obtain

both a linear term in t for small t values as well as a loga-

rithmic behavior for large t . For large t , the correspondence

between the two trajectories αγ (t) as given by Eq. (5.113)

and αgluon(t) as given by Eq. (5.119) [written for SU (Nc)]

is immediate:

− α

π
ln

( −t

4m2

)

�→ −αs Nc

2π
ln

(−t

λ2

)

, (5.120)

from which the substitution α → (Nc/2)αs maps one into

another. The small t-behaviour is much more complicate,

because of the unknown infrared behaviour of the strong cou-

pling constant. In Sect. 5.9.4 we shall describe a model for

the coupling constant, which allows one to apply resumma-

tion in the infrared region, and its application to total cross

section studies.

For high energy hadronic (or, photonic) amplitudes, we are

primarily interested in the nature of the Pomeron emerging

from QCD. The physical underlying picture is that a Pomeron

is a bound state of two Reggeised gluons. For this purpose

the BFKL approach may be summarised as follows. In LLA,

colour singlet hadronic/photonic amplitudes are related to

their angular momentum amplitudes through a Mellin trans-

form

A(s, t = −q2) = is

∫ σ+i∞

σ−i∞

[

dω

2π i

]

sσ fσ (q
2)

fσ (q
2) =

∫

(d2k)(d2k′)Φ(1)(k, q)Φ(2)(k′, q) fσ (k, k′; q),

(5.121)

where k, k′ denote the transverse momenta of the exchanged

gluons and the function fσ (k, k′; q) can be interpreted as

the t channel partial wave amplitude for gluon–gluon scat-

tering with all gluons off mass shell, with squared masses:

−k2, −k′2, −(q − k)2, −(q − k′)2. The gluon propagators

are included in the function fσ (k, k′; q). The Φ1,2 functions

describe the internal structure of the colliding particles 1 and

2. Gauge invariance is then imposed so that
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Φ1,2(k, q)|k=0 = 0 = Φ1,2(k, q)|k=q . (5.122)

This property is crucial for using a gluon mass μ in its propa-

gator (as in the SSB YM theory of the last subsection) because

for colour singlet states there is no IR divergence and the

limit μ → 0 exists. There is no such IR safety for colour

non-singlet amplitudes.

Armed with the above, for high energy analysis of colour

singlet amplitudes, one may imagine to freely employ all the

results of the SSB YM of the last subsection extended to the

SU (N = 3) case. But such is not the case basically because

of asymptotic freedom, i.e.,αY M must be replaced byαs(q
2),

which for large q2 goes to zero logarithmically

αs(q
2) → 4π

(11N − 3n f ) ln(q2/Λ2)
; for q2 ≫ Λ2

(5.123)

with n f the number of flavours. On the other hand, for

q2 ≤ Λ2, αs begins to diverge and hence perturbative

QCD becomes inapplicable. However, one may derive some

useful results in the symptomatic freedom (AF) limit. As

ln(q2/Λ2) ≫ 1, an infinite set of poles condense to j → 1,

whose behaviour may be approximately described through a

moving cut

αPom(q2)|ln(q2/Λ2)≫1 → 1 +
[

4N ln(2)

π

]

αs(q
2). (5.124)

The fixed Pomeron branch cut at αY M
Pom = 1 + [ 4N ln(2)

π
]αY M

found in Eq. (5.117) is “made to move” as αs(q
2) for large

q2.

In various phenomenological models [186,202,203] on

the other hand, the Pomeron trajectory is taken to asymptote

to −∞ as q2 → ∞

αP (q
2) = α(0) − α1 ln(1 + α2q2), (5.125)

thus the forward slope of the Pomeron – not directly coupled

to α(0) – is given by

α′
P (0) = α1α2. (5.126)

5.8.2 The Odderon

In the following, we shall first give a brief introduction to the

Odderon. The Odderon was first introduced on phenomeno-

logical grounds in the early 1970s by Lukaszuk and Nico-

lescu [204] as a C = −1 exchange term in the amplitude,

and further discussed in [205]. Since then, there has been

no experimental confirmation of its existence, although no

confirmation of its non-existence has arrived either. One rea-

son for this sort of limbo in which the Odderon lives is

that this is not a dominant effect and since fitting of the

data requires a number of terms and concurrent parameters,

it is often possible to mimic its presence by adding some

terms.

Consider the crossing-odd amplitudes in pp and p p̄ scat-

terings defined as

F− = 1

2
[Fpp − Fp p̄]. (5.127)

Basically, there are three types of Odderons classified accord-

ing to their increasing order in energy asymptotic behaviour

[50]:

– Order zero Odderons F
(0)
odd are real and hence only change

the real parts of the elastic amplitudes

– Order one Odderons F
(1)
odd change the cross section

(between a pp and p p̄) by a constant amount

– Order two Odderons F
(2)
odd [also called maximally sin-

gular] lead to a cross section difference increasing as

ln(s/so) as well as real parts that are not equal asymptot-

ically.

Given that the high energy elastic amplitudes are predom-

inantly imaginary, the zero order Odderons are hard to look

for. For obvious reasons, the hunt has been to look for order

two or maximally odd amplitudes. We shall discuss in various

places the results of such searches.

Another quantity which could shed light on the presence

of the Odderon, is the parameter ρ(s), the ratio of the real

to the imaginary part of the scattering amplitude for hadrons

in the forward direction. Possibly, the rather precise mea-

surements of this parameter at LHC could allow one to draw

some conclusions about its presence. From this point of view,

we notice that the somewhat low, preliminary value for the

parameter ρ at LHC8 could be invoked to be a signal of the

Odderon. Also diffractive production of pseudo-scalar and

tensor mesons in ep scattering are suggested to be a good

place were effects from the Odderon could be detected.

An extensive review of the status of the Odderon appeared

in 2003 by Ewerz [206]. The Odderon could be responsi-

ble for the difference between the elastic differential cross

sections for pp, p p̄, past the forward peak. According to

Ewerz [207] for instance, hadronic exchanges occurring only

through mesonic reggeons are not sufficient to explain the

cancellation of the dip in p̄ p. In this respect however, one

can see that the dip may be slowly reappearing in p p̄, as

some analysis of the data show. One can in fact observe that

p p̄ data for the elastic differential cross section from ISR to

the TeVatron indicate that the observed change in curvature

becomes more and more pronounced as the energy increases.

Whatever the Odderon does, it would seem that as the energy

increases, it may disappear.

A discussion of the “missing Odderon” can be found in

Donnachie, Dosch and Nachtmann [208] where once more
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the evidence for the phenomenological Odderon is discussed

and found lacking.

A proposal was made to detect the Odderon at RHIC and

LHC by Avila, Gauron and Nicolescu [209]. The model by

Avila, Campos, Menon and Montanha which incorporates

both the Froissart limiting behavior as well as Pomeron and

Regge exchanges [210] is described later in the elastic scat-

tering chapter.

5.8.3 Odderons in QCD

In the Regge language, an Odderon is defined [211] as a

singularity at the angular momentum J = 1 at t = 0 in the

crossing-odd amplitude. Hence, the obvious question arose

as to whether an Odderon could be associated with three-

gluon exchanges in QCD [212–214] and a definite affirmative

answer in pQCD was obtained in [215].

Presently, apart from the phenomenological interest, there

has been a strong QCD attention paid to NLO corrections to

the Odderon trajectory [216] and on the properties of the

Odderon in strong coupling regime [217].

In [195], a model for soft high-energy scattering, which

includes a tensor Pomeron and vector Odderon has appeared

with detailed description of Feynman-type rules for effective

propagators and vertices.

5.8.4 Gribov–Levin–Ryskin (GLR) model

In 1984 Gribov, Levin and Ryskin [218] wrote a paper meant

to establish the theoretical basis of a QCD approach to parton

scattering, in which the focus was on semi-hard scattering.

In the first section they defined semi-hard scattering. The

framework is that of deep inelastic scattering as in Fig. 39.

The focus on DIS has resulted in introducing an external scale

q2 which rendered the extrapolation to real photons and, for

a while, application to purely hadronic processes difficult.

Fig. 39 Deep inelastic scattering representative figure from [218].

Reprinted from [218], ©(1984) with permission by Elsevier

GLR argument starting point is that, as the fractional

energy of the scattering partons, x , decreases, the increase

of the number of partons can be so high as to give a cross

section as large, or even larger, as the actual hadronic cross

section. But this cannot continue indefinitely. When the den-

sity of partons becomes very large, the partons within a given

hadron cannot be any more considered to be independent and

they instead start to interact with each other. GLR define the

probability W (x, q2) that partons interact with each other in

a hadron as

W (x, q2) = αs(q
2)

q2 R2
h

F(x, q2) (5.128)

where F(x, q2) is the parton density function, i.e. gives

the number of partons which interact with the probing vir-

tual photon, and Rh the hadron radius. In Eq. (5.128), the

ratio
αs (q

2)

q2 is the parton–parton cross section and Δb2
⊥ =

R2
h/F(x, q2) is the average perpendicular distance between

partons, measured through the area where they are and the

number density. This is a semi-classical description. When

the parton–parton cross section is smaller than the average

distance, W < 1 and for W ≪ 1 rescattering will not occur,

when it is larger, i.e. W � 1 rescattering will occur. W = 1 is

called the unitarity limit. This function allows then to distin-

guish three regions in the x-variable, depending on whether

pQCD applies (or does not apply) for the calculation of

the parton density function F(x, q2). Thus, while there is

a whole region where nothing can be obtained, for W ≤ αs

the authors have been able to obtain interesting results.

It is worth noting that their picture [Fig. 1.9 of their paper]

is at the basis of the subsequent work by this group. Consider

then the function F(x, q2) rewritten as

F(x, q2) = W (x, q2)
q2 R2

h

αs(q2)
, (5.129)

which is plotted as a function of x in Fig. 40. The curve

denotes the region W (x, q2) ≤ 1. The subsequent behaviour

is controlled by the ratio W/αs , both numbers being less

than 1.

One distinguishes 3 regions, with regions B and region C

separated at a value xb(q
2), where F(x, q2) = q2 R2

h . For

x < xb, q2 R2
h < F ≤ q2 R2

h

αs (q2)
. In region C, W/αs > 1.

Here the interactions are very strong and near the unitarity

limit, and the authors have not be able to take them into

account. Region A, is where W ≪ αs , region where pQCD

applies, it correspond to large x ∼ 1 and parton interactions

are negligible. In region B, W/α � 1 and, for W not too large,

the authors say that with the Reggeon-type diagram technique

developed in subsequent chapters they are able to take into

account interactions in this region. However, if W is largish,

W ∼ 1, they have not been able to sum all the essential

diagrams and only can give qualitative considerations. We
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Fig. 40 x-dependence of the structure function from [218]. Reprinted

from [218], ©(1984) with permission by Elsevier

show the three regions in Fig. 40. A is the region where

perturbative QCD can be applied, B is the result of this paper,

C is not to be obtained yet.

There is a useful, again semi-quantitative, argument to

determine the value xb(q
2), which we reproduce in the fol-

lowing. The conditions are

F ∼ q2 and hence ln F ∼ ln q2, (5.130)

∂F

∂x
∼ αs

x
F (5.131)

the second equation indicating that the origin of the partons

as the number of partons increase is due to bremsstrahlung

(hence the bremsstrahlung spectrum). Using the running αs

expression one obtains

∂ ln F

∂ ln x
∼ 1

ln F
, (5.132)

from which

ln
1

xb(q2)
∼ ln2 q2. (5.133)

After determining this value, the paper goes on to discuss

the inclusive jet spectrum, the authors introduce the quan-

tity k0 which corresponds to the limiting value xb(k
2
0), i.e.

2k0/
√

s = xb(k
2
0) and, using Eq. (5.133), with q2 = k2

0 , they

obtain

ln
1

xb(k
2
0)

∼ ln2(x2
b ), (5.134)

k0 ∼ ec
√

ln s . (5.135)

The last equation obtains by neglecting a ln k0 term relative

to ln2 k0 in Eq. (5.133).

As a consequence of the behaviour thus obtained for the

increase in the number of partons below xb(q
2), the authors

find that semi-hard processes have a large cross section and

contribute substantially to the average multiplicity as well.

In particular, since the average multiplicity is proportional to

the phase space factor k2
0 , one obtains also

n̄ ∼ e2c
√

ln s . (5.136)

The parameter c is determined in subsequent chapters.

The important result of this paper is that semi-hard pro-

cesses become responsible for large part of the cross section,

because of the behaviour with energy described through the

above equations. Just as the average multiplicity increases,

the average transverse momentum is also proportional to k0

and thus

〈qt 〉 ∼ k0 ∝ Λec
√

ln s . (5.137)

Therefore at very high energy many jets with comparatively

large transverse momenta are produced.

The above qualitative description of the region of small

x is then further developed in chapter 2 of the paper. The

authors promise to show how to apply the Leading Loga-

rithm Approximation (LLA) to the small x region and to

deal with the screening effects due to the parton–parton inter-

actions. Their aim in the second chapter is to calculate the

structure function F(x, q2) when both ln q2/q2
0 and ln 1/x

are large. Two problems are encountered: the necessity to

develop LLA in two large logarithms and how to deal with

unitarity i.e. the increase of the structure function at very

small x .

Notice that in the subsection dealing with unitarisation in

the Double Logarithm Approximation (DLA), a crucial role

is played by the quantity

ξ − ξ0 = b

∫ q2

q2
0

dk2

k2

αs

4π
(5.138)

with b = 11N − 3N f . In their Sect. 3.2, the structure of

the theory is developed. One of the conclusions is that it

is necessary to take into account not just corrections of the

type αs ln(1/x) ln(q2) but also αs ln(1/x) and αs ln(q2), that

multi ladder “fan” diagrams in the t-channel are crucial for

unitarisation. It is asserted that all other corrections are neg-

ligible, at least, up to the normalisation of the structure func-

tions. The asymptotic limit of resumming diagrams which

grow as (αs ln(q2))n and those which grow as (αs ln(1/x))n ,

i.e. the asymptotic behaviour in the DLA, gives

F ∝ exp
{

√

2(ξ − ξ0)y
}

. (5.139)

where y = 8N/b ln 1/x .

In Sect. 4, a discussion of the Reggeon Diagram Technique

(RTD) in QCD is given. In this version of RTD, the primary

object is an LLA ladder, which can also be conventionally

called a Pomeron. The vertices of interaction between lad-

ders are also calculated in perturbative QCD. In Fig. 41 we

reproduce Fig. 3.1 of the GLR paper, where the Pomeron and

the vertices are schematically indicated.

123



Eur. Phys. J. C (2017) 77 :150 Page 75 of 178 150

Fig. 41 The QCD Pomeron from [218] and the triple pomeron vertices.

Reprinted from [218], ©(1984) with permission by Elsevier

Before proceeding, one should notice two important dif-

ferences with respect to an approach based on mini-jets and

soft gluon resummation, such as the one we shall describe in

Sect. 5.9.4:

1. When dealing with parton–parton probability of interac-

tion or even single jet production as in Eq. (5.3) of their

paper, i.e.

Edσ jet

d3 p
∼ dσ̂

d p2
t

F(x1, p2
t )F(x2, p2

t ) ∼ αs

p4
t

F1 F2

(5.140)

the expression for jet-production is linear in αs , not

quadratic; this corresponds to a view in which soft

or semi-hard partons are all treated on equal foot-

ing, whereas mini-jet models distinguish between hard

parton–parton collisions from soft-gluon emission, which

is separately resummed.

2. The other consideration is an observation at the beginning

of Sect. 4.3 of their paper about infrared divergence. The

authors acknowledge that the quarks being coloured, the

quark–quark amplitude is divergent, but the divergences

are absent when discussing the scattering of colourless

objects, such as hadrons. The rationale being that the

divergences cancel if one takes into account the interac-

tions with the spectator quarks which, together with the

interacting quarks constitute the hadron.

Section 5 of the GLR paper is dedicated to large pt pro-

cesses. It is in this section, that the gluon Regge trajectory is

called in to play an important role in the correlations between

two large pt gluon jets. In this case, the double inclusive cross

section in the region

1 ≪ Δη ≪ 1

Nαs(p2
t )

(5.141)

is given by

Ec Eddσ 2-jet

d3 pcd3 pd

= 36

(16π2)2 p2
c p2

d

∫

d2k1d2k2

π4
α2

s (p2
t )φ(x1, k2

1)φ(x2, k2
2)

× δ2(k1t + k2t − pct − pdt )

(

s̃

4pct pdt

)2ᾱG (q2
t )

T 4
G,

(5.142)

with the gluon trajectory given as

αG(q2
t ) ≃ 3αs(q

2
t )

2π
ln

q2
t

μ2
, (5.143)

and μ an infrared cut-off introduced because the trajectory is

infrared divergent [197,198]. Of course the infrared divergent

part of the reggeisation is cancelled by the emission of real

soft gluons. After this is taken into account, it is given as

α̃G(p2
t ) = 3αs(p2

t )

2π
ln

p2
t

max{pΣ2 , k2
0}

+ O(αs), (5.144)

with pΣ = pct − pdt . Thus

Ec Eddσ 2-jet

d3 pcd3 pd

∝
(

s̃

4pct pdt

)2ᾱG (q2
t )

T 4
G . (5.145)

Finally a form factor TG is defined as follows:

TG(p2
t , (Δp)2) ≃ exp

[

−3αs(p2
t )

4π
ln2 q2

t

(Δp)2

]

, (5.146)

which incorporates the probability that the global momentum

of the emitted (bremsstrahlung) gluons which accompany the

emission of a hard gluon of momentum pt is smaller than a

Δp ≪ pt .

Electron–positron processes and the properties of pro-

duced jets and correlations are both examined in the remain-

ing part of Sect. 5, and mostly in Sect. 6. After this section,

the authors turn to a discussion of the phenomenology of

semihard processes from the perturbative QCD viewpoint.

5.8.5 KMR model with BFKL Pomeron

We shall now examine a specific model in which the the-

oretical input from the BFKL Pomeron is included into a

phenomenological application. Models of this type have been

developed by various groups, such as the Durham–St. Peters-

burg group of Khoze, Martin and Ryskin (KMR), the Telaviv

group of Gotsman, Levin and Maor (GLM), Ostapchenko et

al., among others, and they will also be discussed in Sect. 6.

Here we shall describe the model by Khoze et al. [219,220]

which has been applied to both the elastic and the total cross

section for quite some time. A description of the KMR model

for the total cross section and its extension to elastic scatter-

ing can be found in [221]. In this paper, the discussion is
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focussed on how to take into account the single and double

diffractive components of the scattering and the following

features are discussed

– an estimate for the diffractive components in a two chan-

nel model and comparison with the Pumplin bound [57]

– the t-dependence of the slope parameter B(t), at different

energies and how this dependence is related to the rela-

tive importance of pion loops in the calculation of the

Pomeron trajectory

– survival probabilities of rapidity gaps.

A simplified version of the model can be found in

Appendix A of [221]. From the expression for the total cross

section in impact-parameter space

σtotal = 2

∫

d2bt Ael(bt ), (5.147)

σelastic =
∫

d2bt |Ael(bt )|2 (5.148)

it is clear that Ael is purely imaginary in the model. A two-

channel eikonal is considered, elastic p → p and p →
N∗ → p, see Eq. (33) of their Appendix A, which will be

discussed in more detail in the section of this review on the

elastic cross section. In the case of a single channel they write

ℑm Ael =
[

1 − e−Ω(bt )/2
]

. (5.149)

With an effective (for illustration) Pomeron trajectory written

as αP (t) = αP (0) + α′
P t = 1 + Δ + α′

P t and vertex with

exponential t-dependenceβp exp(B0t), the opacity is written

as

Ω(b, s) = β2
P (s/s0)

αP (0)−1

4π BP

e−b2
t /4BP . (5.150)

This result is obtained starting with the usual Regge–

Pomeron expression, i.e.

ℑm Ael(s, t) = β2
P (t)

(

s

s0

)αP (t)−1

, (5.151)

= β2
P (t)

(

s

s0

)αP (0)−1

e
α′

P t log s
s0 . (5.152)

The amplitude in b-space is then obtained as the Fourier

transform of Eq. (5.152) with t = −q2

F[A(s, t)] = 1

(2π)2

∫

d2qeib·q A(s, t), (5.153)

=
(

s

s0

)Δ

e
(B0/2+α′

P log s
s0

)b2)/4
(5.154)

and then eikonalised, obtaining

σtotal = 4πℑm A(s, 0) = 2

∫

d2b[1 − e−Ω(b,s)/2)],

(5.155)

Fig. 42 Evolution of the Pomeron intercept from [223]. Reprinted with

permission from [223], ©(2012) INFN Frascati Physics Series

Ω(b, s) =
β2

P (s/s0)
αP (0)−1

4π BP

e−b2/4BP , (5.156)

BP = 1

2
B0 + α′

P log(s/s0). (5.157)

In two more recent papers [222,223] the crucial ques-

tion of the transition from soft to hard is examined again.

We shall first summarise their picture of the transition from

[223] and then, in the next section, dedicated to the elastic

differential cross section, describe their latest results. The

(QCD) Pomeron is here associated with the BFKL singu-

larity. It is noted that, although the BFKL equation should

be written for gluons away from the infrared region, after

resummation and stabilisation, the intercept of the BFKL

Pomeron depends only weakly on the scale for reasonably

small scales. We reproduce in Fig. 42 their description of the

connection between the intercept of the BFKL Pomeron and

the value for αs . The figure shows how the intercept Δ goes

to a smooth almost constant behaviour as αs increases.

Basically, the Pomeron picture by these authors is sum-

marised as follows [224]. In the soft domain, Reggeon

field theory with a phenomenologically soft Pomeron domi-

nates. In the hard domain, perturbative QCD and a partonic

approach must be used. In pQCD, the Pomeron is associated

with the so called BFKL vacuum singularity. In the perturba-

tive domain, there is thus a single hard Pomeron exchanged,

with αbare
P = 1.3+α′

baret with α′
bare � 0.05 GeV−2. In mini-

jet language, which we shall describe in the next subsection,

this corresponds to having the mini-jet cross section rising as

≃s0.3. The slope is associated to the size of the Pomeron, i.e.

α′
P ∝ 1/〈k2

t 〉. Thus the bare Pomeron is associated to the hard

scale, of the order of a few GeV. In a mini-jet model this hard

Pomeron is obtained from parton–parton scattering folded

in with the densities and summed over all parton momenta.

This is their perturbative description. But then transition from

hard to soft takes place, as one moves to smaller kt values. In

KMR approach, this is due to multipomeron effects, while in
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Table 6 Values for various total cross section components, in the orig-

inal KMR model [225], prior to the LHC data

Energy σtotal σel σ SD
lowM σ DD

lowM

TeV mb mb mb mb

1.8 72.7 16.6 4.8 0.4

7 87.9 21.8 6.1 0.6

14 96.5 24.7 7.8 0.8

100 122.3 33.3 9.0 1.3

Table 7 Values for various total cross section components in t the KMR

3-channel eikonal from [222], inclusive of LHC TOTEM data at
√

s =
7 TeV

Energy σtotal σel Bel σ DD
lowM σ DD

lowM

TeV mb mb GeV−2 mb

1.8 79.3 17.9 18.0 5.9 0.7

7 97.4 23.8 20.3 7.3 0.9

14 107.5 27.2 21.6 8.1 1.1

100 138.8 38.1 25.8 10.4 1.6

kt -resummation language (see next subsection), this comes

about because of resummation of soft kt -effects, which lower

the scale determining 〈k2
t 〉 from the hard scale, to the soft

one. As a result, in the case of the BFKL Pomeron, the

slope increases by a factor ∼5, while at the same time the

intercept decreases and one has an effective linear trajectory,

αeff
P ≃ 1.08 + 0.25t . A behaviour such as this, a transition

from soft to hard, from a bare to an effective trajectory for

the Pomeron, was also found by these authors to be present

in virtual photo production of vector mesons at HERA.

After this general overview of the model, let us see how

KMR apply it to elastic scattering. The basic building blocks

of this model are the following parameters:

– the bare Pomeron intercept Δ = αP (0)−1, s-dependent

– the bare Pomeron slope α′ ≃ 0

– a parameter d, which controls the BFKL diffusion in kt

– the strength λ of the triple-Pomeron vertex

– the relative weight of the diffractive states γ , determined

by low-mass diffractive dissociation

– the absolute value N of the initial gluon density.

KMR have discussed this model in comparison with the

recent TOTEM data and the values obtained by this program

for the total, elastic and diffrative cross section are given, in

this paper, in Tables 6 and 7 for two different models, the

original KMR [225] and the 3-channel eikonal [222].

5.9 Mini-jet models

When ISR confirmed the rise of the total cross section already

hinted at by cosmic ray experiments, an interpretation was

Table 8 Table of predicted values for σtotal by Gaisser and Halzen [226]

√
s pT min σjet Gaisser Halzen

GeV GeV mb

43 1.25 4

540 2 26

4330 3.2 63

43300 6 127

soon put forward that the rise was due to the appearance of

partonic interactions [55]. This early estimate of jet produc-

tion contribution to the rise of the total cross section and a

comparison with existing cosmic ray and accelerator data can

be seen from Fig. 7 in Sect. 3.3.1. In this figure, one could

see the appearance of the first parton model for the rise of

the total cross section and its comparison with data, with the

shaded area to represent an estimate of the parton contribu-

tion. Subsequently, models in which the hard component in

the rise could be calculated from pQCD or could be inspired

by pQCD have been put forward, as shall be discussed below.

5.9.1 Non-unitary mini-jet model by Gaisser and Halzen

When data at the CERN S p̄ pS gave further evidence of the

rise of the total cross section, the idea was subsequently elab-

orated by Gaisser and Halzen [226], who made a model in

which the rising part of the total cross section was obtained

from the QCD two jet cross section, calculated using QCD

parton–parton cross sections, folded in with parton densities.

In this calculation,

σtotal = σ0 + σjet(pT min) (5.158)

with

σjet(pT min) =
∫

4p2
T min/s

dσ

dx1
dx1 (5.159)

and

dσ

dx1
= π

18p2
T min

×
∫

dx2 F(x1, Q2)F(x2, Q2)α2
s (Q2)H(x1, x2, 4xp2

T min)

(5.160)

with H(x1, x2, 4xp2
T min) obtained from the cross sections

for parton–parton scattering, integrated over all scattering

angles and parton density functions F(xi , Q2). In the above

equation, there appear the by-now familiar parameter pT min,

which regularises the parton–parton cross section, otherwise

divergent as 1/p2
T min for small momenta of the outgoing

partons. Since these jet cross sections rise very rapidly with

energy, the parameter pT min was taken to be energy depen-
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Fig. 43 The first model for the total cross section which used QCD

calculated jet cross sections to describe the rise, is shown, from [226].

Reprinted with permission from [226], Fig.(1), ©(1985) by the Ameri-

can Physical Society

dent. In Table 8, we reproduce the values of pT min needed

to describe existing total cross section data from low energy

to high energy values. With σ0 = 38 mb, Fig. 43 shows the

corresponding plot, up to cosmic ray energies. This model

had no flexibility to satisfy unitarity. It was just a simple

parametrisation, but it already had the merit of including soft-

hard partonic interactions. The importance of such semihard

processes had been highlighted in [218], also discussed in

[227–230].

5.9.2 Eikonalisation of mini-jet models

A subsequent step which would avoid an energy dependent

value of the parameter pT min, was the introduction of multi-

ple scattering, as had been pointed by Durand [231]. This pos-

sibility was realised by Durand and Pi in [45] who proposed to

use the mini-jet cross section as input to the total cross section

through the eikonal representation. Their proposed expres-

sion enforced the idea that QCD processes at high energy

drive the rise of the total cross sections, while at the same

time satisfying unitarity. The price to pay, as always the case

when using the eikonal representation, was the introduction

of the impact-parameter distribution for the scattering par-

tons. In this, as in most other models, the impact-parameter

distribution at high energy was taken to be different from the

one at low energy. At low energy, the distribution was consid-

ered to be dominated mostly by quark scattering, and, accord-

ingly, taken to be a convolution of the proton electromagnetic

form factors, while for the gluons, it was a convolution of a

proton-like and a pion-like form factor. In the following, we

shall reproduce the expressions they use and the values of

the parameters which give the fits shown in Fig. 44.

The pp and p̄ p elastic scattering amplitudes were written

as

f pp, p̄ p = i

∫

bdbJ0(b
√

t)[1 − e−χpp, p̄ p(b,s)] (5.161)

Fig. 44 Description of the total cross section in the eikonal mini-jet

model by Durand and Pi from Ref. [45]. Reprinted with permission

from [45], Fig.(1), ©(1989) by the American Physical Society

with

χ = χ R + iχ I . (5.162)

We use here the notation of Ref. [45], noting that the defini-

tion of χ has a −i with respect to the more usual definition,

for instance the one in the model described in Sect. 5.9.6.

The normalisation is such that

dσ

dt
= π | f (s, t)|2 (5.163)

and then, using the optical theorem, one has the usual expres-

sions

σtotal = 4πℑm f (s, 0 =)

= 4π

∫ ∞

0

bdb[1 − cosχ I (b, s)e−χ R(b,s)], (5.164)

σelastic = 2π

∫ ∞

0

bdb|1 − e−χ(b,s)|2

= 2π

∫ ∞

0

bdb
[

1 − 2 cosχ I (b, s)e−χ R(b,s)

+ e−2χ R(b,s)
]

, (5.165)

σinel = 2π

∫ ∞

0

bdb[1 − e−2χ R(b,s)]. (5.166)

The authors had emphasised that the term e−2χR can be

interpreted semi-classically as the probability that no colli-

sion takes place in which particles are produced. The func-

tion χ R is calculated using parton–parton scattering, impact

parameter distributions as mentioned, and, through this func-

tion, the remaining component χ I is obtained from a disper-

sion relation. This allowed them to obtain both the real and

the imaginary part of the amplitude and through these, the ρ

parameter.The QCD contribution was calculated from mini-

jet cross sections and was input to the two, even and odd,
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eikonals in which the pp and p̄ p eikonal functions are split.

Namely, they write

χ p̄ p = χ+ + χ−, χpp = χ+ − χ−. (5.167)

The QCD-like contribution is input to the even eikonal. At

very high energy, if no Odderon is present, the two cross

sections for pp and p̄ p are equal and one can hope to be

able to calculate this part of the eikonal using perturbative

QCD. Actually, even at high energy, there will be a residual

contribution from processes which dominate at low energy,

and thus the eikonal is split into a soft and a hard part, namely

χ(b, s) = χsoft(b, s) + χQCD(b, s), (5.168)

χ I
QCD(b, s) = −2s

π
P

∫ ∞

0

ds′ χ
R(b, s′)

(s′2 − s2)
, (5.169)

χ R
QCD(b, s) = ℜe χQCD = 1

2

∑

i j

1

1 + δi j

×
∫

d2b′dx1dx2

×
∫

Q2
min

d|t̂ |dσ̂i j

d|t̂ |
fi (x1, |t̂ |, |b − b′|) f j (x2, |t̂ |, |b′|)

. (5.170)

One then assumes an approximate factorisation between

impact space and energy distribution, namely the probability

functions to find a parton of type i with fractional momen-

tum x at a distance b from the initial proton direction, are

factorised as

f j (x, t̂, |b|) ≈ f j (x, t̂)ρ(b) (5.171)

where ρ(b) is a function describing matter distribution inside

the colliding hadrons. One then can write

χ R
QCD(b, s) = 1

2
A(b)σ R

QCD (5.172)

with

A(b) =
∫

d2b′ρ(b′)ρ(|b − b′|) (5.173)

and
∫

d2bA(b) = 1.

For the impact-parameter distribution, for the soft part the

following expressions were used:

A±(b) =
ν2
±

12π

1

8
(ν±b)3

K3(ν±b) (5.174)

with K3(νb) the special Bessel function of the third kind

which comes from the convolution of the dipole-type expres-

sion of the proton e.m form factor. These functions will enter

the even and odd soft eikonals. For the hard part, on the other

hand, one takes into account that gluons are distributed dif-

ferently from the valence quarks and the expression which is

used is the convolution of gluon form factors given by

G(k2
⊥) = (1 + k2

⊥/ν2
+)−2(1 + k2

⊥/μ2)−1. (5.175)

To complete the picture, the authors set the soft eikonals as

2χ+,soft = A+(b)σsoft = A+(b)
[

σ0 + a

sα
eiαπ/2

]

, (5.176)

2χ−,soft = A−(b)
R√
s

e−iπ/4 (5.177)

with σ0 = σ R
0 + iσ I

0 ; a, α adjustable parameters.

The model, a part from the QCD inputs, namely densities

and Q2
min, has now 8 parameters, σ0 = σ R

0 + iσ I
0 , a, α and

R for the cross section type terms and ν±, μ for the impact-

parameter distributions. The parameters are then fixed so as

to obtain a good fit to the total cross sections, elastic and

total, to the elastic differential cross section and to the ρ and

slope parameters, given by

ρ = ℜe f (s, 0)/ℑm f (s, 0), (5.178)

B(s) = d

dt

[

ln
dσelastic

dt

]

|t=0. (5.179)

Within this framework, one obtains the description of the

total cross section shown in Fig. 44 and good descriptions

of the elastic cross sections and their energy dependence up

to S p̄ pS data. Notice that the slope parameter B(s) is thus

fully determined.

We have dedicated a rather long and detailed exposition to

this model since many other models follow a similar outline

and models similar to this one have been used (and still are)

in MonteCarlo simulations such as PYTHIA [232]. Many of

the features of the Durand and Pi model are also present in

the QCD inspired model which will be described in the next

section.

Durand and Pi in [45] made an effort to obtain a descrip-

tion of the ρ parameter which could accomodate the UA4

measurement [233], namely ρ = 0.24±0.04 and the param-

eter values for the overall description were influenced by

this choice. To explain such a large value, it turned out to

be quite difficult, in most case it was related to a possible

anomalous rise of the total cross section. The measurement

of the ρ parameter at the Tevatron by E-710 [145] and E811

Collaboration [144], however, did not confirm such a high

value for ρ, which had in any event already been measured

again by UA4,s obtaining a lower value, in line with theo-

retical expectations. That the ρ parameter could not be this

high was pointed out in 1990 by Block et al. [234] who dis-

cussed the theoretical implications of such measurements,

using a previously developed model [166]. We now turn to

this model.

5.9.3 QCD-inspired models, Aspen model

Applications of the mini-jet idea to the description of the

total and elastic cross sections were developed around the

1990s by many groups, for instance in [235,236]. We shall

illustrate here the one developed by Block with Fletcher,
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Halzen, Margolis and Valin [234], where the contribution

of semi-hard interactions was fully parametrised, separately

indicating quark and gluon contributions. This model is also

sometimes labelled as the Aspen model5 and is at the basis

of subsequent developments, where it was applied to photon

processes [146] and to the extraction of the proton–proton

cross section from cosmic ray experiments [48].

In this model, a QCD-inspired eikonal parametrisation of

the data is used. For the total cross section, a result similar to

simple ln2[s] analytic considerations [12] is obtained. One

starts with

σtotal = 4πℑm fN , (5.180)

dσ

dt
= π | fN |2, (5.181)

fN = i

∫

bdbJ0(b
√

−t)[1 − e−P(b,s)/2], (5.182)

P(b, s) = Pgg(b, s) + Pqg(b, s) + Pqq(b, s), (5.183)

Pi j (b, s) = Wi j (b, μi j )σi j (s). (5.184)

In the above equations, the probability function P(b, s) is

seen to be parametrised in terms of three QCD-like terms,

corresponding respectively to gluon–gluon, quark-gluon and

quark–quark interactions. The impact distribution functions

for proton–proton scattering are obtained from the convolu-

tion of the two proton-like form factors, and for i = j

Wi i (b, μi i ) =
μ2

i i

96π
(μi i b)

3
K3(μi i b). (5.185)

For the gluon–gluon terms, which become more important

at high energy and which drive the rise of the cross section,

they write

Pgg(b, s) ≃ Wgg(b)s
J−1 (5.186)

where J gives the large s behaviour of the gluon–gluon cross

section integrated over the gluon PDF’s in the proton. For the

probabilities involving quarks, and which are important at

low energy, the parametrisation is inspired by the x-behaviour

of the parton densities and they are written as

Pqq = W (μqqb)

[

a + b
m0√

s

]

, (5.187)

Pqg = W
(√

μqqμggb
)

[

a′ + b′ ln
m0√

s

]

. (5.188)

The difference at low energy between pp and p̄ p cross sec-

tions is obtained by first ensuring the correct analyticity prop-

erties through the substitution s → s−iπ/2 and then introduc-

ing an ad hoc odd-crossing amplitude as

5 This name was given by one of us, G.P, as a testimony of the con-

tribution to the field from Martin Block, who spent his latest years in

Aspen, working further, and until very recently, on the problems of the

total cross section.

Fig. 45 Description of the total cross section in the QCD inspired

model by Block et al., from [234]. Reprinted from [234], Fig.(1),

©(1990) by the American Physical Society

Podd = W (μoddb)a′′ m0√
s

e−iπ/4. (5.189)

The overall set of parameters can be found in the caption of

Figure 1 from [234]. We reproduce this figure for the total

cross section in Fig. 45. This model has 11 parameters.

Finally, notice an important feature of this model, i.e. how

the Froissart-type large energy limit is obtained through the

mini-jet contribution in combination with the impact param-

eter dependence. The authors search for the critical value

of the parameter b for which Pgg ≤ 1 and, using the large

energy behaviour of the mini-jet cross sections, namely s J−1,

they find

bc = J − 1

μgg

ln
s

s0
+ O

(

ln ln
s

s0

)

. (5.190)

Thus, the energy dependence of the QCD cross sections trans-

forms the s j−1 behaviour at lower energy into the black-disk

cross section at high energy, i.e. into

σtotal = 2π

[

J − 1

μgg

]2

ln2 s

s0
. (5.191)

5.9.4 Resummation and mini-jets

A model which incorporates many features of QCD is the one

developed in [93], following [148] and completed in a num-

ber of subsequent papers, in particular in [94]. The model

embodies the idea that resummation down into the infrared

region is a crucial component of total cross section asymp-

totics and provides a phenomenological structure linking the
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infrared behaviour of QCD to the asymptotic limit of the total

cross section.

The model is labeled following the idea that exponenti-

ation of the spectrum of soft emitted quanta when k → 0,

first proposed by Bloch and Nordsieck (BN) for QED [170],

must be extended to the soft gluons for the QCD processes

and that it must be carried through into the infrared region.

Thus, the model is developed along two basic ideas, that

the rise of the total cross section is driven by hard pro-

cesses, called mini-jets [227,229] and that the softening of the

rise into the smooth behaviour consistent with the Froissart

bound arises because of soft-gluon emission, resummed and

extended down into the zero momentum region of the spec-

trum of the emitted quanta [11]. To investigate this region,

use is made of the ansatz about the infrared behaviour of the

effective quark-gluon coupling first introduced in [237] for

the intrinsic transverse momentum of Drell–Yan pairs, and

later implemented to describe the impact-parameter distribu-

tion of partons in high energy collisions [148], as we have

described previously.

The basic structure of this model exhibits some of the

same features advocated by the work of GLR, KMR or GLM,

described in other parts of this review, describing implemen-

tation of BFKL dynamics, namely soft exchanges (the soft

Pomeron) and perturbative QCD (hard Pomeron) for medium

energy partons, but the hadronic amplitude at t = 0 of this

model is built through a probabilistic structure, with the soft

resummation contribution built as a term factored from the

hard parton–parton scattering, not unlike what one does in

QED when applying infrared radiative corrections.

5.9.5 Hadronic matter distribution and QCD soft kt

distribution

Because of its obvious relevance to total cross section esti-

mates through the transverse interaction size of hadrons, we

shall start by investigating the transverse momentum distri-

bution of soft quanta in QCD.

The expressions for transverse momentum distribution

discussed in the context of QED in Sect. 5.7.7 cannot be

extended simply to QCD, since the coupling constant is

momentum dependent. When taken into account, the trans-

verse momentum distribution due to soft-gluon emissions

became extremely interesting. This was first realised by Dok-

shitzer et al. [238], who generalised to QCD the Sudakov

form-factor expression, originally obtained in QED [178] and

discussed above. The application of resummation techniques

to the K⊥-distribution of μ pairs of mass Q produced in

hadron–hadron collisions was shortly after studied in [239].

In this paper, it was argued that the “soft limit of QCD could

be treated in full analogy with that of QED with the minor

[Author’s note: not so minor!] technical change of α into

α(k⊥)”.

Today the problem of transverse momentum distributions

in QCD is still not completely solved. The reason lies in the

lack of our certain knowledge about the momentum depen-

dence of the strong coupling constant αs(k⊥) when the gluon

momentum goes to zero, as is the case for the soft gluons

needed in resummation. Actually, what one needs to know is

the integral of αs(kt ) over the infrared region. The IR limit of

αs enters only when the gluon momenta are close to zero, i.e.

only in the resummation process, which implies exponentia-

tion of an integral over gluon’s momenta with a momentum-

dependent αs . Because the coupling constant in QCD grows

as the momenta become smaller, a Bloch and Nordsieck type

resummation of the zero momentum modes of the soft quanta

emitted by coloured quarks becomes mandatory. In this case,

the applicability of the above methods requires a knowledge

of (or, an ansatz for) the strong coupling constant in the IR

region.

Following the semiclassical derivation of Eq. (5.77), the

exponent describing the b-dependence for QCD now reads

h(b, E) = 16

3

∫ E αs(k
2
t )

π

dkt

kt

ln
2E

kt

[1 − J0(kt b)]. (5.192)

Its use is complicated by the asymptotic running of the cou-

pling constant on the one hand and our ignorance of the IR

behaviour of the theory, on the other.

To overcome the difficulty arising from the infrared

region, the function h(b, E), which describes the relative

transverse momentum distribution induced by soft-gluon

emission from a pair of, initially collinear, colliding partons

at LO, is split into

h(b, E) = c0(μ, b, E) + Δh(b, E), (5.193)

where

Δh(b, E) = 16

3

∫ E

μ

αs(k
2
t )

π
[1 − Jo(bkt )]

dkt

kt

ln
2E

kt

.

(5.194)

The integral inΔh(b, E) now extends down to a scaleμ �= 0,

for μ > ΛQCD and one can use the asymptotic freedom

expression forαs(k
2
t ). Furthermore, having excluded the zero

momentum region from the integration, Jo(bkt ) is assumed

to oscillate to zero and neglected. The integral of Eq. (5.194)

is now independent of b and can be performed, giving

Δh(b, E) = 32

33 − 2N f

{

ln

(

2E

Λ

)[

ln

(

ln

(

E

Λ

))

− ln
(

ln
(μ

Λ

))]

− ln

(

E

μ

)}

. (5.195)

Λ being the scale in the one-loop expression for αs . In the

range 1/E < b < 1/Λ an effective heff(b, E) is obtained by

setting μ = 1/b [239]. This choice of the scale introduces a

cut-off in impact-parameter space which is stronger than any

power, since the radiation function, for N f = 4, is now
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e−heff (b,E) =
[

ln(1/b2Λ2)

ln(E2/Λ2)

](16/25) ln(E2/Λ2)

, (5.196)

which is Equation (3.6) of Ref. [239]. The remaining b depen-

dent term, namely exp[−c0(μ, b, E)], is dropped, a reason-

able approximation if one assumes that there is no physi-

cal singularity in the range of integration 0 ≤ kt ≤ 1/b.

This contribution, however, reappears as an energy inde-

pendent smearing function which reproduces phenomeno-

logically the effects of an intrinsic transverse momentum of

partons. For most applications, this may be a good approxi-

mation. However, when the integration in impact-parameter

space extends to very large-b values, as is the case for the

calculation of total cross sections, the infrared region may be

important and the possibility of a physical singularity for αs

in the infrared region becomes relevant [11]. It is this pos-

sibility, which we exploit in studying scattering in the very

large impact parameter region, b → ∞.

Our choice for the infrared behaviour of αs(Q2) used

in obtaining a quantitative description of the distribution in

Eq. (5.194), is a generalisation of the Richardson potential

for quarkonium bound states [240], which we have proposed

and developed in a number of related applications [241,242].

Assume a confining potential (in momentum space) given by

the one gluon exchange term

Ṽ (Q) = K

(

αs(Q2)

Q2

)

, (5.197)

where K is a constant calculable from the asymptotic form

of αs(Q2). Let us choose for Q2 ≪ Λ2 the simple form

αs(Q2) = B

(Q2/Λ2)p
, (5.198)

(with B a constant), so that Ṽ (Q) for small Q goes as

Ṽ (Q) → Q−2(1+p). (5.199)

For the potential, in coordinate space,

V (r) =
∫

d3 Q

(2π)3
eiQ.r Ṽ (Q), (5.200)

Eq. (5.199) implies

V (r) → (1/r)3 · r (2+2p) ∼ C r (2p−1), (5.201)

for large r (C is another constant). A simple check is that,

for p equal to zero, the usual Coulomb potential is regained.

Notice that for a potential rising with r, one needs p > 1/2.

Thus, for 1/2 < p < 1, this corresponds to a confining

potential rising less than linearly with the interquark distance

r , while a value of p = 1 coincides with the infrared limit of

the Richardson’s potential and is also found in a number of

applications to potential estimates of quarkonium properties

[243].

Then, again following Richardson’s argument [240], we

connect our IR limit for αs(Q2) to the asymptotic freedom

region using the phenomenological expression:

αs(k
2
t ) = 1

b0

p

ln[1 + p(
k2

t

Λ2 )
p]

(5.202)

with 1/b0 = 12π
(33−2N f )

. The expression of Eq. (5.202) coin-

cides with the usual one-loop formula for values of kt ≫ Λ,

while going to a singular limit for small kt , and generalises

Richardson’s ansatz to values of p < 1. The range p < 1

has an important advantage, i.e., it allows the integration in

Eq. (5.194) to converge for all values of kt = |k⊥|. Some

considerations for the case p ≃ b0 can be found in [244].

Using Eq. (5.202), one can study the behaviour of h(b, E)

for very large-b values which enter the total cross section cal-

culation and recover the perturbative calculation as well. The

behaviour of h(b, E) in various regions in b-space was dis-

cussed in [93], both for a singular and a frozen αs , namely

one whose IR limit is a constant. There we saw that, for the

singular αs case, the following is a good analytical approxi-

mation in the very large-b region:

b >
1

NpΛ
>

1

M
, (5.203)

h(b, M,Λ) = 2cF

π

[

b̄
b2Λ2p

2

∫ 1
b

0

dk

k2p−1
ln

2M

k

]

+2cF

π

[

2b̄Λ2p

∫ NpΛ

1
b

dk

k2p+1
ln

M

k
+ b̄

∫ M

NpΛ

dk

k

ln M
k

ln k
Λ

]

= 2cF

π

[

b̄

8(1 − p)
(b2Λ2)p

[

2 ln(2Mb) + 1

1 − p

]

+ b̄

2p
(b2Λ2)p

[

2 ln(Mb) − 1

p

]

+ b̄

2pN
2p
p

[

−2 ln
M

ΛNp

+ 1

p

]

+ b̄ ln
M

Λ

[

ln
ln M

Λ

ln Np

− 1 + ln Np

ln M
Λ

]]

(5.204)

where Np = (1/p)1/2p, cF = 4/3 for emission from quark

legs and b̄ = 12π/(33 − 2N f ). The upper limit of integra-

tion here is called M, to indicate the maximum allowed trans-

verse momentum, to be determined, in our approach, by the

kinematics of single gluon emission as in [245]. The above

expression exhibits the sharp cut-off at large b values which

we shall exploit to study the very large energy behaviour of

our model.

The possibility that αs becomes constant in the infrared

can also be considered. We found that such possibility does

not contribute anything new with respect to the already

known results. In fact, using the expression [239,246,247]

123



Eur. Phys. J. C (2017) 77 :150 Page 83 of 178 150

αs(k
2
t ) = 12π

33 − 2N f

1

ln[a2 + k2
t /Λ

2]
(5.205)

with a > 1, in the same large b-limit as in Eq. (5.203), we

have [93]

b >
1

aΛ
>

1

M
, (5.206)

h(b, M,Λ) = (constant) ln(2Mb) + double logs (5.207)

namely no sharp cut-off in the impact parameter b, as

expected. More precisely, we have the following approxi-

mate expression:

h(b, M,Λ) = 2cF

π

{

ᾱs

8
[1 + 2 ln(2Mb)]

+ 2ᾱs

[

ln(Mb) ln(aΛb) − 1

2
ln2 (aΛb)

]

+ b̄

[

ln
M

Λ
ln

ln M
Λ

ln a
− ln

M

aΛ

]}

(5.208)

with ᾱs = 12π/(33−2N f ) ln(a2). These approximations are

reasonably accurate, as one can see from [93], where both

the approximate and the exact expressions for h(b, M,Λ)

have been plotted for the singular as well as for the frozen

αs case. Notice that, in the following sections, we drop for

simplicity the explicit appearance of the Λ in the argument

of h(b, M,Λ).

The above expressions derived for the overall soft-gluon

emission in a collision, are input for the QCD description of

the total cross section [148]. In this description, the impact

factor is defined as in

σtotal = 2

∫

d2b[1 − e−(Ωsoft(s,b)+Ωhard(b,s))/2], (5.209)

Ωhard(b, s) = AB N (b, s)σjet(s), (5.210)

AB N = N

∫

d2Keib·Kd2 P(K ), (5.211)

N being a normalisation factor such that
∫

d2bAB N = 1 and

the subscript B N indicates that this impact factor is obtained

through soft-gluon resummation. The detailed application of

such model and the phenomenological results are described

in the subsection to follow.

5.9.6 Bloch and Nordsieck inspired model for the total

cross section

As discussed above, in the BN model soft gluons of momen-

tum kt are resummed up to a maximum value qmax, and

partons, mostly gluons at high energy, of momentum pt .

Thus, there are three regions for the emitted parton trans-

verse momentum and hence three scales:

(i) pt > pt min, with pt min ≃ 1 GeV, one can apply pertur-

bative QCD (pQCD) and calculate the mini-jet contribu-

tion to the scattering process,

(ii) Λ < kt < qmax ≃ (10–20)%pt min, where kt indicates

the transverse momentum of a single soft gluon which

corresponds to initial state soft radiation from partons

with pt > pt min, and for which one needs to do resum-

mation, and Λ ≃ 100 MeV ≃ mπ ,

(iii) 0 < kt < Λ for infrared momentum gluons, which

require resummation but also an ansatz about the strong

coupling in this region.

In the pQCD region, parton–parton scattering and standard

Leading Order (LO) parton densities are used to calculate an

average mini-jet cross section as

σmini-jets ≡ σ AB
jet (s) =

∫

√
s/2

pt min

d pt

∫ 1

4p2
t /s

dx1

∫ 1

4p2
t /(x1s)

dx2

×
∑

i, j,k,l

fi |A(x1, p2
t ) f j |B(x2, p2

t )
dσ̂ kl

i j (ŝ)

d pt

. (5.212)

Here A and B denote particles (γ, p, . . . ), i, j, k, l are

parton types and x1, x2 the fractions of the parent particle

momentum carried by the parton. ŝ = x1x2s and σ̂ are hard

parton scattering cross sections.

Equation (5.212) is a LO parton–parton cross section aver-

aged over the given parton densities, through the phenomeno-

logically determined parton density functions fi |A(x, p2),

DGLAP evoluted at the scale pt of the mini-jet produced

in the scattering. As is well known, however, for a fixed

pt min value, and as pt min/
√

s → 0, gluon–gluon processes

become more and more important and, since the LO densities

of gluons are phenomenologically determined to increase as

x1+ǫ , the mini-jet integrated cross section will increase as

sǫ , with ǫ ∼ (0.3 ÷ 0.4) depending on the densities. This

rise of the parton–parton cross sections, averaged over the

parton densities, has its counterpart in the hard Pomeron of

BFKL models, where a behaviour sΔ corresponding to hard

Pomeron with very small slope is seen to describe the rise

of the profile function, before saturation starts changing the

hard behaviour into a softer one. Multiplying σhard with the

average probability for two colliding partons to see each other

(and interact) at a distance b would give the average number

of collisions at impact parameter b when two protons collide.

This number can become very large as the energy increases

and so proper eikonalisation and unitarisation is introduced,

just as in the QCD mini-jet models we have described ear-

lier.

Implementation of unitarity through the eikonal formula-

tion reduces the rise from this hard term, but unless one has a

cut-off in the impact-parameter distribution, the rise will not

be adequately quenched.
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We now let the mini-jet model morphe into an eikonal

mini-jet model for σtotal, i.e.

σtotal = 2

∫

d2b[1 − cos ℜeχ(b, s) e−ℑmχ(b,s)] (5.213)

where the s-dependence of the imaginary part of the eikonal

function χ(b, s) is driven by the mini-jet cross section and,

in first approximation, the eikonal will be taken to be purely

imaginary. Since the total cross section is dominated by large

impact parameter values, and, at high energy, ρ(s, t = 0) ∼
0.1, this is reasonable approximation at high energy and in

the calculation of the total cross section.

The name mini-jets was first introduced by M. Jacob and

R. Horgan to describe the flood of small transverse momen-

tum jet-like events expected to dominate at the S p̄ pS collider

[248,249]. The importance of mini-jets concerning the rise

of the total cross section was doubted however, as discussed

for instance by Jacob and Landshoff in [250]. In particu-

lar they think impossible for mini-jets to contribute to the

total cross section at
√

s ≃ 5 GeV. This may be true, or,

at least we do not know how to incorporate pQCD at such

low hadronic c.m. energies, however our phenomenology

indicates that the mini-jet contribution start being noticeable

around
√

s � 10 GeV. It also appears that when performing

a parametrisation of the low energy contribution, the hard

part plays a role to ameliorate the overall description, from

low to hard energies. Examples of these two different pro-

cedures can be found in our application of the BN model to

pion scattering [149] and to studies of inelastic cross sec-

tion at LHC7 [41]. In addition, from a microscopic point of

view, mini-jets are the only pQCD phenomenon to which

one can ascribe the drive of the rise of the total cross section.

Their contribution can be seen as the microscopic descrip-

tion of the hard Pomeron advocated by Reggeon field mod-

els.

We now turn to the question of the impact-parameter dis-

tribution in eikonal mini-jet models. As discussed at length

in [93], the standard use of hadronic form factors together

with standard library Parton Density Functions (PDF) in the

mini-jet cross sections does not allow one to reproduce both

the initial fast rise of the cross section as well as well as

moderating the rise.

The difficulty to use the EM form factors with standard

LO pQCD techniques has been one of the problems plaguing

the eikonal mini-jet approach. We thus introduced soft-gluon

resummation to solve this problem. However, as discussed

previously, resummation outside the infrared region and in

asymptotic freedom region, even at higher orders or beyond

the LLA, can hardly touch the basic question: how to intro-

duce a cut-off in impact-parameter space or, otherwise stated,

how to link the asymptotic behavior of the cross section with

confinement?

We shall now discuss the model in detail, but we anticipate

its outline in graphic form here. We show in Figs. 46, 47, 48

and 49 our cartoon representation of the building of the total

cross section. All these figures are reprinted with permission

from [251], with ©(2007) by Acta Physica Polonica B. We

have discussed in Sect. 5.9.5 our suggestion for the impact

parameter distribution. The underlying physics is that this

distribution is probed in the scattering when partons start

a Brownian-like motion inside the protons, each successive

change of direction generated by emission of soft gluons.

Thus, a matter distribution A(b, s) can be obtained as the

normalised Fourier transform of the expression for soft-gluon

resummation in transverse momentum space. Through it, the

average number of hard collisions is calculated to be

〈n(b, s)〉 = AB N
hard(b, qmax)σmini-jets(s, pt min)

= e−h(b,s)

∫

d2be−h(b,s)
σmini-jet(s, pt min) (5.214)

where we have introduced the notation BN to induce that

this function is calculated using soft-gluon kt resummation,

and the upper limit of integration qmax carries energy depen-

dence from the scattering partons. We have followed the early

work by Chiappetta and Greco about resummation effects in

the Drell–Yan process, where this upper limit is defined by

the kinematics of single gluon emission [252]. Namely for a

process such as

q(x1) + q(x2) → X (Q2) + g(kt ) (5.215)

with the subenergy of the initial (collinear) parton pair

defined as ŝ = √
sx1x2. In the no-recoil approximation, Q2

is the squared invariant mass of the outgoing parton pair X ,

with parton transverse momentum pt > pt min. Kinematics

then leads to

qmax(ŝ, y, Q2) =
√

ŝ

2

(

1 − Q2

ŝ

)

1
√

1 + z sinh2 y
(5.216)

and y is the rapidity of the outgoing partons [252]. In our

simplified model for the total cross section, we have approx-

imated qmax(ŝ, y, Q2) with its maximum value at y = 0 and

averaged its expression over the parton densities, namely

qmax ≡ 〈qmax(s)〉 =
√

s

2

×
∑

i, j

∫

dx1
x1

fi/a(x1)
∫

dx2
x2

f j/b(x2)
√

x1x2

∫ 1
zmin

dz(1 − z)
∑

i, j

∫

dx1
x1

fi/a(x1)
∫

dx2
x2

f j/b(x2)
∫ 1

zmin
(dz)

.

(5.217)

Furthermore, as discussed in [41], we have made the ansatz

that the LO contribution to the resummation effect comes

from emission from valence quarks. Emission from gluons

is certainly to be included, and will be dealt with in further

123



Eur. Phys. J. C (2017) 77 :150 Page 85 of 178 150

work on the model. For a discussion of this point see also

[56].

Following the interpretation by Durand and Pi, as dis-

cussed before, and in the spirit of Moliére theory of mul-

tiple scattering, we now obtain the pQCD contribution to

the imaginary part of the scattering amplitude at t = 0

and hence the total cross section through the identification

χ(b, s) = 〈n(b, s)〉/2, i.e.

σtotal = 2

∫

d2b[1 − e−〈n(b,s)〉/2]. (5.218)

The perturbative calculation we have outlined does not suf-

fice to account for all the process which contribute to the

total cross section. Other partonic processes with momentum

pt < pt min enter, and, at low energy constitute the dominant

contribution. By definition, pt min separates parton–parton

scattering with a pQCD description, from everything else.

Thus one needs to parametrise the low-energy part, and in

our model we propose a simple approximate factorisation of

the average number of collisions as

〈n(b, s)〉 = 〈n(b, s)〉pt<pt min + 〈n(b, s)〉pt>pt min

= 〈n(b, s)〉soft + 〈n(b, s)〉hard. (5.219)

We have proposed two different low energy parametrisations:

– 〈n〉B N
soft = AB N

softσ0[1+ 2ǫ√
s
] with ǫ = 0, 1 according to the

process being pp or p̄ p.

– 〈n〉soft = (Form Factors convolution) (polynomial in

1/
√

s)

As discussed in Ref. [94], the first of these two low energy

parametrisations has the same expression for A(b, s) as in

the hard pQCD calculation, except that the value of qmax is

chosen ad hoc to reproduce the low-energy data. The second

parametrisation is self explaining, and we have started using

it when describing π -p and ππ scattering [149]. Then the

elastic and the inelastic total cross sections follow from the

usual formulae. Numerically, the sequence of the calculation

is as follows:

1. choose LO densities (PDFs) for the partons involved in

the process to study, such as π, γ, protons, antiprotons

and thus calculate the mini-jet cross section

2. for the given pt min and chosen LO densities calculate the

average value for qmax, the maximum energy carried by a

single soft gluon, through the kinematic expression given

before in Eq. (5.216)

3. choose a value for the singularity parameter p in the soft-

gluon integral and, with the qmax value just obtained,

calculate AB N
hard(b, s)

4. parametrise the low-energy data to obtain 〈n(b, s)〉soft

5. eikonalise and integrate

Different choices of the PDFs call for different values of

the parameters p and pt min. The sequence of calculations

and some typical results for different Parton Densities can

be found in [251] and are shown in the right-hand panels

of Figs. 46, 47, 48 and 49. This approach led to the band

of predictions shown in Fig. 50 from [253]. In particular

we notice that the upper curve of our predicted band nicely

accommodates the TOTEM result, as we have already shown

in Fig. 33, reproduced at the beginning of this section.

The above is a rather general parametrisation of the total

cross section (of hadrons and photons) which we have devel-

oped over the past two decades. The central ingredients are

pQCD, i.e. mini-jets, and soft resummation in the infrared

with a singular but integrable effective couling constants

for gluons and quarks, and where unitarisation is achieved

through the impact parameter distribution. Not all the details

could be specified here, but most can be found in [93,94].

5.9.7 Soft gluon kt -resummation and the Froissart bound

The physics embodied in the phenomenology described in

the previous subsection is that soft-gluon resummation in

the infrared region provides a cut-off in impact-parameter

space, which leads to a smooth logarithmic behavior. In our

model such behavior depends on the ansatz about limit of
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Fig. 46 LO Partonic picture of mini-jet role in hadron–hadron scattering and representative mini-jet calculation from [251]
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Fig. 48 Representative

soft-gluon radiation from initial

quarks in LO picture of

hadron–hadron scattering. At

right, the impact-parameter

distribution associated to each

parton–parton scattering

process, for different average

qmax values, at LHC, from [251].

Dotted curve is convolution of

proton e.m. form factors
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Fig. 49 Representative multiple processes, resulting in eikonalisation

of mini-jet basic process corrected for soft-gluon emission. At right,

the eikonalised total cross section from different PDFs, as from above

input, from [251]. This and all the above three figures are reprinted from

[251] ©(2007) with permission by APPB

the effective quark-gluon coupling constant when kt → 0.

To see this, we start with taking the very large s-limit in

Eq. (5.218).

At extremely large energy values, we neglect the low-

energy part, and have

σtotal → 2

∫

d2b[1 − e−n(b,s)hard(b,s)/2]. (5.220)

With the QCD jet cross section driving the rise due to the

increase with energy of the number of partonic collisions in

Eq. (5.220), let us recall the energy behaviour of the mini-jet

cross sections. In the
√

s ≫ pt min limit, the major contri-

bution to the mini-jet cross sections comes from collisions

of gluons carrying small momentum fractions x1,2 ≪ 1,

a region where the relevant PDFs behave approximately
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as powers of the momentum fraction x−J with J ∼ 1.3

[254]. This leads to the asymptotic high-energy expression

for σjet

σjet ∝ 1

p2
t min

[

s

4p2
t min

]J−1

(5.221)

where the dominant term is a power of s. Fits to the mini-

jet cross sections, obtained with different PDF sets [255],

confirm the value ε ≡ J − 1 ∼ 0.3. To match such energy

behaviour as in Eq. (5.221) with the gentle rise of the total

pp and p p̄ cross sections at very high energy, we inspect

the impact parameter distribution we have put forward using

resummation of soft gluons in the infrared region. Let us

consider the integral for the function h(b, qmax), which is

performed up to a value qmax, corresponding to the maxi-

mum transverse momentum allowed by kinematics of single

gluon emission [252]. In principle, this parameter and the

overlap function should be calculated for each partonic sub-

process, but in the partial factorisation of Eq. (5.214) we use

the average value of qmax obtained by considering all the

sub-processes that can happen for a given energy of the main

hadronic process, as seen before. The energy parameter qmax

is of the order of magnitude of pt min. For present low−x

behaviour of the PDFs, in the high energy limit, qmax is a

slowly varying function of s, starting as ln s, with a limit-

ing behaviour which depends on the densities [251]. From

Eqs. (5.203) and (5.221) one can estimate the very large s-

limit

nhard(b, s) = AB N (b, s)σjet(s, pt min)

∼ A0(s)e
−h(b,qmax)σ1

(

s

s0

)ε

(5.222)

and, from this, using the very large b-limit,

nhard(b, s) ∼ A0(s)σ1e−(bΛ̄)2p

(

s

s0

)ε

(5.223)

with A0(s) ∝ Λ2 and with a logarithmic dependence on

qmax, i.e. a very slowly varying function of s. The large b-

limit taken above follows from Eq. (5.203). We also have

Λ̄ ≡ Λ̄(b, s)

= Λ

{

cF b̄

4π(1 − p)

[

ln(2qmax(s)b) + 1

1 − p

]}1/2p

.

(5.224)

It is now straightforward to see how the two crucial parame-

ters of our model, namely the power ε with which the mini-jet

cross section increases with energy and the parameter p asso-

ciated to the infrared behaviour of the effective quark-gluon

QCD coupling constant, conjure to obtain a rise of the total

cross section obeying the limitation imposed by the Froissart

bound, namely, asymptotically, σtotal � (ln s)2. Call σT (s)

the asymptotic form of the total cross section,

σT (s) ≈ 2π

∫ ∞

0

db2[1 − e−nhard(b,s)/2] (5.225)

and insert the asymptotic expression for σjet at high energies,

which grows as a power of s, and the large b-behaviour of

AB N (b, s), obtained through soft gluon resummation, and

which decreases in b-space at least like an exponential (1 <

2p < 2). In such large-b, large-s limit, one has

nhard = 2C(s)e−(bΛ̄)2p

(5.226)

where 2C(s) = A0(s)σ1(s/s0)
ε. The resulting expression

for σT is

σT (s) ≈ 2π

∫ ∞

0

db2

[

1 − e−C(s)e−(bΛ̄)2p
]

. (5.227)

With the variable transformation u = (Λ̄b)2p, and

neglecting the logarithmic b-dependence in Λ̄ by putting

b = 1/Λ, Eq. (5.227) becomes

σT (s) ≈ 2π

p

1

Λ̄2

∫ ∞

0

duu1/p−1[1 − e−C(s)e−u ]. (5.228)

Since, as s → ∞, C(s) grows indefinitely as a power law, the

quantity between square brackets I (u, s) = 1−e−C(s)e−u
has

the limits I (u, s) → 1 at u = 0 and I (u, s) → 0 as u = ∞.

Calling u0 the value at which I (u0, s) = 1/2 we then put

I (u, s) ≈ 1 and integrate only up to u0. Thus
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Λ̄2σT (s) ≈
(

2π

p

)∫ u0

0

duu
1−p

p = 2πu
1/p
0 (5.229)

and since, by construction,

u0 = ln

[

C(s)

ln 2

]

≈ ε ln s (5.230)

we finally obtain

σT ≈ 2π

Λ̄2

[

ε ln
s

s0

]1/p

(5.231)

to leading terms in ln s. We therefore derive the asymptotic

energy dependence

σT → [ε ln(s)](1/p) (5.232)

apart from a possible very slow s-dependence from Λ̄2. The

same result is also obtained using the saddle point method.

This indicates that the Froissart bound is saturated if p =
1/2, but also that we have the two following asymptotic limits

σtotal → (ln s)2 p → 1/2, (5.233)

σtotal → ln s p → 1 (5.234)

depending on our approximate singular expression for the

strong coupling in the infrared. We notice that the limits

1/2 < p < 1 are a consequence of our infrared descrip-

tion. Namely, from the requirement for the soft-gluon inte-

gral to be finite (p < 1) it follows that the cross section

should grow at least like a logarithm, while the limitation

p ≥ 1/2 is to ensure the confinement of the partons. Con-

finement of partons is essential in creating a “mass gap” lead-

ing to massive hadrons. Once we have massive hadrons, we

have a Lehmann ellipse for hadrons [11]. We recall that the

existence of a Lehmann ellipse is essential for obtaining the

Martin–Froissart bound for total cross sections. Through our

model, we have delineated the two limits: up to a linear con-

fining potential (p → 1) or down to a barely confining one

(p → 1/2).

Before closing this subsection and the description of the

BN model, in Fig. 51, from [56], we show how LHC data up

to
√

s = 8 TeV can be described by this and other currently

used models for the total cross section.

As can be seen from Fig. 50 from [253] it has been the

practice to reproduce total cross section data for both pp

and p̄ p, up to the TeVatron results. However, the large dif-

ferences among the Tevatron measurements did not allow a

precise description at higher energies, such as those explored

at LHC. Once the LHC data have been released, and as it has

been the case for all models for the total cross section, we

have updated our analysis. To this aim, we have used only

pp accelerator data, ISR and the recent LHC measurements,

namely p̄ p points are shown, but have not been used for the

phenomenological fit, nor the Cosmic ray extracted values

for pp. A more recent set of LO densities, MSTW [95] has
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Fig. 51 The one-channel predictions from the one-channel QCD mini-

jet with soft-gluon resummation model and pp total cross section (BN

model) are compared with accelerator data at LHC, from TOTEM

[103,256] and ATLAS measurements [257]. The BN-model results are

compared with one-channel model from Khoze et al. [258]. The red dot-

dashed curve corresponds to fits to the total cross section by Block and

Halzen [259], the dot-dashed blue line represents the fit by Fagundes–

Menon–Silva [260]. The figure is from [56]. Reprinted with permission

from [56], Fig. (3), ©(2015) by the American Physical Society

been included in the set of predictions for the BN model.

The values of p and pt min which better reproduce the LHC

result are obtained by varying pt min ≃ 1 ÷ 1.5 GeV and

1/2 � p � 0.8. The result, for the total pp cross sections, is

shown in Fig. 51.

The BN results, now stabilised at
√

s = 7 and 8 TeV

by tuning the parameters to TOTEM data, show marked dif-

ferences in the high cosmic ray region. The difference is

ascribable to the different low-x behaviour of the PDFs used

in the mini-jet calculation, GRV and MSTW, as discussed in

[56]. In addition, and as we shall briefly discuss at the end of

Sect. 8, as of 2016 there is some tension between measure-

ments by the two experiments presently providing values for

the total cross section, TOTEM and ATLAS.

5.10 AdS/CFT correspondence and the total cross section

A short, but compact discussion of the Froissart bound in the

context of the string/gauge duality can be found in [261]. In

[261], the Pomeron is defined as the leading contribution at

large Nc to the vacuum exchange at large s and fixed t . It is

stated that in both strong coupling and pQCD, the Pomeron

contribution grows as s1+ǫ with ǫ > 0, so that, in order not

to violate the Froissart bound, higher order corrections need

to be taken into account.

For the scattering of particles 1 and 2 into particles 3 and

4, the standard eikonal representation for the amplitude in

the case of large ’t Hooft coupling is then generalised to the

expression [262]
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A(s, t) = −2is

∫

dzdz′ P13(z)P24(z
′)

×
∫

d2beiq⊥·b[eiχ(s,b,z,z′) − 1] (5.235)

where the wave function Pi j (z) refers to the left moving

particles, 1 into 3, and right moving particles, 2 into 4. The

variables z and z′ correspond to the convolution over moving

direction in Ad S3 and they are normalised so that, when

confinement is implemented,
∫

Pi j dz = δi j .

In this description, one obtains the total cross section

through the standard geometrical picture σtotal ≈ b2
max and

the problem is, as usual, that of finding bmax.

In this picture, the quantity

σtotal(s, z, z′) = 2ℜe

∫

d2b[1 − eiχ(s,b,z,z′)] (5.236)

is the bulk cross section and the physical cross section is

obtained after convolution with the wave functions.

The picture in the bulk is split into two regions, respec-

tively called diffractive and black disk, as follows:

diffractive: in this region ℑmχ < ℜeχ , and it is ℜeχ ≈ 1

which sets the limit for contributions to the scattering,

with bmax = bdiff .

black disk: in this region ℑmχ > ℜeχ , the interac-

tion is dominated by the weak coupling Pomeron and

the maximum bblack at which scattering still takes place

corresponds to where absorption is of order 1, namely

ℑmχ ≈ 1.

For the example of an even-signature Regge exchange in four

dimensions, according to [261], one can write

bblack ∼ λ−1/4m−1
0 ln(βs/s0), (5.237)

bdiff ∼ m−1
0 ln(βs/s0) (5.238)

where in the fixed ’t Hooft coupling λ = g2
Y M Nc, and m0 is

the scale for the trajectory exchanged with

αt = 2 + α′
(

t

m2
0

− 1

)

. (5.239)

With α′ ∼ λ−1/2 ≪ 1, one obtains bdiff ≫ bblack . Thus, a

unique result of the strong coupling regime is that the eikonal

is predominantly real.

Scattering in the conformal limit, leads to a σtotal ∼ s1/3

in the strong coupling regime. But with confinement the sit-

uation is different and the spectrum has a mass gap which

then leads to a logarithmic growth. Tan [261] writes

bdiff ≃ 1

m0
ln(N 2s/m2

0). (5.240)

A full discussion of all these regions and the resulting expres-

sions can be found in [262].
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Fig. 52 The total proton cross sections, as compiled before the start of

the LHC and hence before of the TOTEM and ATLAS measurements,

by the COMPAS Collaboration for the 2009 RPP [263] with model

input from [264] ( COMPETE Collaboration). Figure downloaded from

http://pdg.lbl.gov/2009/figures/figures.html

5.11 Phenomenological fits to the total cross section

We shall now describe two different phenomenological fits

used to describe pp and p̄ p total cross section, published by

the Particle Data Group, one before and the other after the

start of LHC.

5.11.1 Cudell and COMPETE Collaboration

For the two reactions pp and p̄ p of interest here, we show in

Fig. 52 the data compilation from fig. 40.11 of the 2009 Par-

ticle Data Group (PDG) [263]. For this and other updates of

mini-reviews and figures, we refer the reader to the PDG site.

We shall start by summarising Ref. [265] where an overview

of the COMPETE program is given. In this paper, the authors

describe their data base policy and give a number of web

access information, which allow one to download and run

fitting programs.

The region to be focussed on is the Coulomb-nuclear inter-

ference region, and to do this one needs to use, for all the

experiments, the following common set of theoretical inputs:

– common parametrisation of electromagnetic form fac-

tors, where there is a problem with the usual VMD term,

since a fit to the dσel/dt alone gives a better χ2/d.o.f than

the fit to the combined data set of dσel/dt and G E/G M ,
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– common procedure to analyze data in the Coulomb inter-

ference region,

– common set of strong interaction elastic scattering

parameters,

– common study of Regge trajectories: already there is a

problem here since the slope of the meson trajectories is

different depending on the flavour content, although not

so much for the baryons.

The problem with the above program, of course, is that the

Regge description may be only a (albeit good) approximation

and while it may eliminate the systematic differences, it will

still have a model dependence. But more about this later.

The COMPETE Collaboration had been cleaning and

gathering all total cross section data [264] then available at

the PDG site [263]. Data have been fitted with the expression

σāb = Zab + B ln2

(

s

s0

)

+ Y ab
1

( s1

s

)η1

+ Y ab
2

( s1

s

)η2

|,

(5.241)

σab = Zab + B ln2

(

s

s0

)

+ Y ab
1

( s1

s

)η1

− Y ab
2

( s1

s

)η2

(5.242)

where Zab, B, Y ab
i are in millibarn, s, s0, s1 are in GeV2.

The scale s1 is fixed to be 1/GeV2, whereas
√

s0 ≈ 5 GeV.

The physical interpretation of this fit is that the power-law

terms reproduce the Regge behaviour from the imaginary part

of the forward scattering amplitude, with two Regge poles

if η1 �= η2, whereas the constant term and the ln2[s] term

reflect the so-called Pomeron exchange. For a summary of

the numerical values of the various parameters, we refer the

reader to the PDG review.

The first two terms in Eqs. (5.241) and (5.242) reflect the

bulk of semi-perturbative QCD processes which start dom-

inating the total cross sections as soon as the c.m. energy

of the hadronic process goes above
√

s ≈ (10 ÷ 20) GeV.

There are various ways to refer to these terms. In our QCD

model [93,94] the term which brings in the rise is the

one which comes from gluon–gluon scattering tempered

by soft gluon emission from the initial state, as we have

described in Sect. 5.9.4. The constant term is more com-

plicated to understand. It is probably due to quark scatter-

ing, well past the Regge region. Notice that in the simple

Donnachie and Landshoff successful original parametrisa-

tion [60], there is no constant term in the cross section. The

cross sections only apparently go to a constant, which is

where the minimum of the cross section lies, just after the

Regge descent and just before the cross section picks up for

the asymptotic rise. Indeed, whereas the Regge terms can

be put in correspondence with resonances in the s-channel,

the constant term is harder to interpret, except as the old

0.08
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s  (TeV)

10

σ
(b

)

Fig. 53 The range of values predicted for the total proton–proton cross

section by the COMPETE Collaboration as shown in [266]. Figure is

courtesy of J-R Cudell. Reprinted from [266], in CERN Proceedings

CERN-PROCEEDINGS-2010-002

Pomeron which was supposed to give constant total cross

sections.

Let us now review a comprehensive discussion of fits to

pre-LHC total cross sections data [266]. Cudell notes the

difficulty to make precise predictions at LHC because of a

number of problems with present data on the total cross sec-

tion:

– No data are available between the ISR energy,
√

s ≈
(60 ÷70) GeV and the S p̄ pS at

√
s ≈ (500 ÷600) GeV

– at Tevatron energies,
√

s ≈ 1800 GeV, there is a 2σ dis-

crepancy between the value calculated by two TeVatron

collaborations, E710 and CDF

– the t dependence of the differential elastic cross section

as t → 0 may not be a simple exponential exp(Bt) where

B assumed constant in t thus affecting the measurement

of the total cross section.

To the above one should add that total pp cross sections at

cosmic ray energies have very large errors, mostly due to the

theoretical uncertainty in the procedures adopted to extract

pp total cross section from p-air cross section, as discussed.

Predictions from the COMPETE Collaboration from [266]

are shown in Fig. 53.

Many of the problems discussed by Cudell can be related

to the type of unitarisation scheme. A new analytic unitari-

sation scheme was proposed in [267], but the actual problem

is the difficulty of doing a good fit to both elastic and total

cross section data.

In [264], it is pointed out that there are problems with

the ρ parameter data, where ρ ≡ ρ(s) = ℜeA(s, t =
0)/ℑm A(s, t = 0). Hence, it is said, that the first and safest

strategy is to obtain constraints from the reproduction ofσtotal

only. However, the final result is obtained by fitting the total

cross section and ρ.

In [264] the fits to lower energy total cross sections are

parametrised with
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σ a∓b = 1

s
((R+ab(s) ± R−ab(s) + Pab(s) + Hab(s))

(5.243)

with

R+ab(s) = Y ab
1 · (s/s1)

α1 , with s1 = 1 GeV2

R−ab(s) = Y ab
2 · (s/s1)

α2 (5.244)

wherein

Pab(s) = sCab (5.245)

describes a simple Pomeron pole at J = 1 and Hab(s) is the

rising term, which can be

– a supplementary simple pole with larger than one inter-

cept

– a double pole at J = 1, namely Lab = s(Bab ln(s/s1) +
Aab)

– a triple pole at J = 1, namely Lab = s(Bab ln2(s/s1) +
Aab)

Thus, their parametrisation for σtotal is a sum of various In

terms, with the parametrisation for ρ given below.

For the ρ parameter, in the appendix, the authors list the

following parametrisation:

R+
pole = −I +

pole cot[π/2α+], (5.246)

R−
pole = −I −

pole tan[π/2α−], (5.247)

RL = π

2
sCL , (5.248)

RL2 = πs ln(s/s0)CL2 (5.249)

where

I +
pole = C+(s/s1)

α+
, (5.250)

I −
pole = ∓C−(s/s1)

α−
, (5.251)

IL = CLs ln(s/s1), (5.252)

IL2 = CL2 ln2(s0). (5.253)

At the end of all this, the result favoured now and found in

2008 PDG [263], is the one given by Eqs. (5.241) and (5.242).

The paper [264] also contains a rather long discussion as

regards the sign in front of the logarithmic terms, which might

hint at the result we had originally found in our Pramana

paper [268].

Apart from fits to the total cross section, Cudell and Selyu-

gin in [269] also address the question of the measurement

itself, which, as described previously in this review, is based

on two methods, the optical point and the luminosity based

one. The optical point type measurement, also called the non-

luminosity measurement, is based on the extrapolation of

the elastic differential cross section to the value t = 0. The

extrapolation has been usually done assuming an exponen-

tial behaviour exp[B(s)t] for the differential elastic cross

section near the t = 0 point. However it is well known that

the exponent is not strictly linear in t . In this paper [269] the

authors examine the possibility that at the LHC expectations

based on simple Regge pole models are modified and that the

usual expectation of σtotal ≈ 90 ÷ 125 mb be superseded by

the higher values predicted from a number of unitarisation

schemes, such as hard Pomeron, which would give cross sec-

tions around 150 mb or U-matrix unitarisation which can give

cross sections as high as 230 mb. The impact of such different

expectations is discussed, together with the possibility that

ρ has a strong t-dependence. In this paper this t-dependence

of the ρ parameter is considered to be a possible reason for

the difference in the measurement of σtotal at the Tevatron.

Closing this example of a recent fit, we recall the latest

results from the TOTEM Collaboration, namely σ
pp

tot (8 TeV)

= (101.7±2.9)mb [103] and the preliminary resultρ(8 TeV)

= 0.104±0.027(stat)±0.01syst presented at the 2014 Ren-

contre de physique de La Thuile. As of 2016, both TOTEM

and ATLAS Collaboration have released data at
√

s = 8 TeV,

as we briefly discuss in Sect. 8.

5.11.2 COMPAS group (IHEP, Protvino)

The COMPAS group has presented (in a version of PDG 2012

[270], updated in the first half of 2013) a phenomenological

fit to all total hadronic cross sections and the ratio of the real-

to-imaginary parts of the forward elastic scattering hadronic

amplitudes. New data on total pp collision cross sections

from CERN-LHC-TOTEM and new data from cosmic rays

experiment have been added. They note -in agreement with

we what we also find and as we have discussed elsewhere

in the present review – that, the models giving the best fit of

accelerator data also reproduce the experimental cosmic ray

nucleon–nucleon data extracted from nucleon-air data with

no need of any extra phenomenological corrections to the

data.

COMPAS uses four terms in the total hadronic cross sec-

tion for hadron a± on hadron b:

σtot(a
±b) = H

[

ln

(

s

sab
M

)]2

+ Pab

+ Rab
1

(

s

sab
M

)−η1

± Rab
2

(

s

sab
M

)−η2

. (5.254)

The adjustable parameters are defined as follows:

– H = π/M2 (in mb) is named after Heisenberg.

– the scaling parameter sab
M = (ma + mb + M)2.

– A factorisable set Pab (in mb) stands for a constant

Pomeron.

– Two factorisable sets Rab
i (in mb), (for i = 1, 2) stand

for the two leading Regge–Gribov trajectories.
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Fig. 54 Total cross sections, as compiled by the Compas Collabora-

tion for PDG [270]. Reprinted with permission from [270], Fig.(46.9),

©(2012) by the American Physical Society

– The data for purely hadronic reactions used were p̄, p,

π± and K ± on p, n, d; Σ− on p.

– Also used, were fits to γ p, γ d and γ γ .

The above parameterisations were used for simultaneous

fits to the listed reactions with 35 adjustable parameters. To

trace the variation of the range of applicability of simultane-

ous fit results, several fits were produced with lower energy√
s ≥ 5,≥ 6,≥ 7, . . .GeV cutoffs, until the uniformity

of the fit across different collisions became acceptable with

good statistical value. Downloadable figures are available on

the PDG site. Figure 54 reproduces their results for various

total cross sections.

5.12 Asymptotic total cross sections in theories with extra

dimensions

The search for asymptotia has been driving many models,

with the question asked as to whether present measurements

of the total cross section have reached a stable situation,

where one cannot expect new phenomena to be detected in

the energy behavior of σtot. In this subsection, this question

will be addressed by focusing on behavior reflecting extra

dimensions.

The rate at which cross sections grow with energy is sen-

sitive to the presence of extra dimensions in a rather model-

independent fashion. In [271], one can find a review of how

rates would be expected to grow if there are more spatial

dimensions than 3 which appear at some energy scale, mak-

ing connections with black hole physics and string theory.

The salient point – as discussed for example in [272] – is that

the generalisation of the Froissart–Martin bound for space-

time dimensions D > 4 leads generically to a power-law

growth rather than the maximum square of logarithm growth

with energy allowed in D = 4.

5.12.1 Asymptotic relation between cross section and

entropy

A clear physical argument for estimating the total cross sec-

tion at a high energy s = E2 was given by Eden, a long time

ago [273]. It runs as follows:

(i) If the elastic scattering amplitude at high energy is dom-

inated by the exchange of the lightest particle of mass μ,

then the probability of the exchange at a space-like distance

r between the particles, reads

P(r, E) = e−2μr+S(E), (5.255)

where the entropy S(E) (in units of the Boltzmann constant

kB) determines the density of final states.

(ii) The probability becomes of order unity at a distance

R(E) = S(E)/(2μ)

(iii) The total cross section is then given by

σtot(E) = 2π R(E)2 = π

2μ2
S(E)2. (5.256)

The asymptotic total cross section at large E is thereby deter-

mined by the entropy S(E).

A typical entropy estimate may be made via the follow-

ing reasoning: The equipartition theorem for a gas of ultra-

relativistic particles implies a mean particle energy (ǭ) vary-

ing linearly with temperature ǭ = 3kBT . A Boltzmann gas

of such particles has a constant heat capacity. A system with

a constant heat capacity C∞ obeys

E = C∞T = C∞
dE

dS
; ⇒ dS = C∞

(

dE

E

)

, (5.257)

leading to the following important logarithmic relationship

between entropy and energy

S(E) = C∞ ln

(

E

Eo

)

. (5.258)

Hence, the total cross section for a constant heat-capacity

system saturates the Froissart–Martin bound:

σtot(E) =
(π

2

)

(

C∞
μ

)2

ln2

(

E

Eo

)

. (5.259)

In a more general thermodynamically stable situation, the

entropy S(E) is determined parametrically by the heat capac-

ity as a function of temperature [271]:

S(T ) =
∫ T

o

C(T ′)
dT ′

T ′ . (5.260)
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The saturation Eqs. (5.257) and (5.259) will then hold true

only in the high energy and high temperature limit of a stable

heat capacity C(T → ∞) = C∞.

To compute the total high energy cross section for models

with extra dimensions, the central theoretical problem is to

understand the entropy implicit in such models. Below we list

the entropies and total cross sections for a Hagedorn string

and for n = (D − 4) extra compact dimensions.

5.12.2 Entropies for higher dimensions and string theory

A Hagedorn string entropy grows linearly with energy in the

asymptotic limit [274,275]

S(E) → E

TH

, (5.261)

where TH is the Hagedorn temperature. The Hagedorn

entropy for bosonic and fermionic strings have a similar lin-

ear growth with energy but with different coefficients. Thus,

for such theories the total cross section is expected to grow

as σtot(s) ∼ s.

On the other hand, above the threshold for the observation

of n = (D − 4) extra compact dimensions, the total cross

section would grow as [271]

σtot(s) ∼
[

s

so

](n+2)/2

. (5.262)

Thus, once even if one such threshold is crossed (that is for

n = 1 or D = 5), σtotal(s) → (s/so)
3/2. It is fair to conclude

from the recent LHC total cross section data that no such extra

dimension thresholds have opened up until
√

s = 8 TeV,

and notwithstanding large errors with the AUGER cosmic

ray data, not even until
√

s = 57 TeV. Such a result is in

consonance with the fact that no evidence for beyond the

standard model physics such as that due to extra dimensions

has been found in any data from LHC for
√

s ≤ 8 TeV.

The arguments presented in [271] have been accepted in

[276] with an aim to extend it and the latter authors suggest

that higher dimensions might be ruled out to arbitrarily high

energies via the same arguments.

5.13 Concluding remarks

In this section, we have attempted to give an overview of the

existing models for the total cross section, highlighting the

chronological order of its long history. The total cross sec-

tion, as the imaginary part of the forward scattering ampli-

tude describes the very large distance behavior of the interac-

tion, but understanding of the underlying strong interaction

dynamics can only be completed by studying the amplitude

for −t �= 0. This, we shall approach in the next section ded-

icated to the elastic cross section.

Fig. 55 The first TOTEM measurement of the differential elastic cross

section from [277]. Published by IOP under CC BY license

6 The elastic cross section

We shall now summarise the state of the art of the differential

elastic cross section, discuss some representative models and

present their predictions. We shall try to put in perspective the

phenomenological work developed over more than 50 years,

up to the latest measurements made at the LHC running at√
s = 7 TeV (LHC7) and 8 TeV (LHC8) [103,257,277,278].

In Fig. 55 we reproduce the first plot of the elastic differ-

ential cross section measurement by the TOTEM Collabora-

tion at LHC [277]. It was the first time since almost 40 years

that the distinctive dip in the pp differential cross section

had been seen again, shifting to the left by a factor 3, as the

energy increased more than a hundred times.

As clearly shown in Fig. 56, elastic scattering is character-

ized by the following quantities: the optical point, i.e. imag-

inary and real parts of the scattering amplitude at t = 0;

the precipitous decrease at small t, related to the slope

B(s, t = 0); the change in slope and occurrence of the dip

where the imaginary part of the amplitude becomes smaller

than the real part; the |t | behaviour after the dip and connec-

tions with perturbative QCD. It is worth noting that at ISR

no dip is observed in p̄ p, but only a change in slope, whereas

the dip is quite pronounced in pp, both at lower and higher

energies.

The TOTEM experiment has measured σtotal, σinel, σelastic,

dσel/dt at LHC energies
√

s = 7, 8 TeV and, from these,

has given values for the slope parameter B(s, t), at different

−t-values, the position of the dip and provided a functional

form for the behaviour of dσel/dt after the dip [256,279,280].
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Fig. 56 ISR and Tevatron elastic differential cross sections from talk by K.Eggert, at Hadron Collider Physics Symposium, November 2011, Paris,

France. Reproduced with permission

Table 9 TOTEM results, with

σinel = σtotal − σelastic, for 7 TeV

[256] and for 8 TeV [103,282],

luminosity independent

measurements

√
s σtotal B σelastic σinel σelastic/σtotal σelastic/σinel

TeV mb GeV−2 mb mb

7 98.0 ± 2.5 19.9 ± 0.3 25.1 ± 1.1 72.9 ± 1.5 0.257 ± 0.005 0.345 ± 0.009

8 101.7 ± 2.9 27.1 ± 1.4 74.7 ± 1.7 0.266 ± 0.006 0.362 ± 0.011

From these data, one can extract the ratio σelastic/σtotal and

check whether the asymptotic black-disk limit has been

reached. At the time of this writing, data for the total and elas-

tic cross sections at
√

s = 8 TeV have been published from

both the TOTEM [103] and ATLAS [278] Collaborations,

with new data appearing from the TOTEM Collaboration for

the differential cross section [281]. In Table 9 we present the

available results from TOTEM for some of these quantities.

In addition, most recent data at
√

s = 8 TeV (LHC8), have

shown that a pure exponential behavior for the slope in the

region 0.027 < −t < 0.2 GeV2 can be excluded [281] with

significance greater than 7 standard deviations.

An exhaustive discussion of all the quantities defining

the elastic differential cross section can be found in [12].

Although the review of Ref. [12] pre-dates both the Teva-

tron and LHC measurements, most of its content and some of

its conclusions are still very much valid. In the following we

shall describe these different quantities, and the asymptotic

theorems which govern their energy dependence. Tables and

figures for each of them, σtotal, B(s, t), ρ(s, t), tdip are avail-

able at the Particle Data Group (PDG) site, here we shall

reproduce them as encountered in describing models.

We shall define the following measures of asymptotia:

the total cross section itself σtotal, satisfaction of asymptotic

sum rules for the elastic scattering amplitude, the forward

slope B(s), the ratio σelastic/σtotal. Then we shall examine

representative models for elastic scattering, starting from the

simplest possible case, the black and gray disk model.

Models for the elastic and total cross sections, are based

on two major approaches: the Pomeron–Regge road and the

unitarity–Glauber formalism. The Pomeron–Regge theory

expresses the differential elastic scattering amplitude in terms

of power laws sα(t), and it has provided more than 50 years

of good phenomenology for both elastic and diffractive scat-

tering. However, this raises problems with unitarity and the

Froissart bound. As well known, the elastic scattering ampli-

tude cannot be just described through a simple pole, since

then the high energy behavior of the total cross section would

violate the Froissart bound; on the other hand, the diffraction

peak is well represented by a Pomeron pole. Thus the prob-

lem is that at t = 0, the elastic differential cross section is

proportional to σ 2
total (modulo a small contribution from the

real part), hence for t ∼ 0, the cross section at the optical

point can increase at most as the fourth power of logarithm,

while, at the same time, the differential elastic cross section,

as soon as t �= 0 does indeed exhibit the exponential behavior

characteristic of the Pomeron pole contribution.

The Glauber-type description is unitary and it can eas-

ily embed the Froissart bound, as we have discussed, for

instance, in the context of the QCD-inspired model of Block

et al. or our BN mini-jet model, both of them discussed in

Sect. 5. However, a one channel eikonal, for both elastic and
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inelastic scattering, fails in its capacity to describe separately

the three components of the scattering, elastic, inelastic and

(single and double) diffractive, as measured up to present

energies. This is immediately obvious if one considers the

expression for the inelastic total cross section obtained in the

one channel eikonal:

F(s, t) = i

∫

d2beiq·b[1 − eiχ(b,s)], (6.1)

σtotal = 2

∫

d2b[1 − cos ℜeχ(b, s)e−ℑmχ(b,s)], (6.2)

σelastic =
∫

d2b|[1 − eiχ(b,s)]|2, (6.3)

σinel = σtotal − σelastic =
∫

d2b[1 − e−2ℑmχ(b,s)] (6.4)

where t = −q2. It must be noted that Eq. (6.4) can be

obtained by summing all possible inelastic collisions inde-

pendently distributed in b-space. Assuming in fact that for

every impact-parameter value the number of possible colli-

sions n(b, s) is Poisson distributed around a mean number

of collisions n̄(b, s), i.e.

P({n, n̄(b, s)}) = e−n̄(b,s)

n! n̄(b, s)n (6.5)

it immediately follows that a sum on all possible collisions

together with integration on all values of the impact param-

eter, leads to

σindependent collisions =
∫

d2b[1 − e−n̄(b,s)]. (6.6)

Comparing Eqs. (6.4) and (6.6), shows that one can obtain

ℑmχ(b, s) from n̄(b, s), but also that Eq. (6.4) for the inelas-

tic cross section only includes independent collisions. Since

diffractive processes, single, double, central, do exhibit cor-

relations, these processes need to be discussed with a formal-

ism beyond the one-channel eikonal.

Thus the question arises in eikonal models as to how to

include correlated-inelastic processes, which are identified

through particular final state configurations. Among the mod-

els which embed some of these properties, are those due

to Khoze, Martin and Ryskin (KMR), Gotsman, Levin and

Maor (GLM), Ostapchenko, Lipari and Lusignoli, to be seen

later in this section.

The way we choose to present this part of the review is

to start with general definitions and properties of quantities

defining the scattering and some comparison with data from

LHC at
√

s = 7 TeV (LHC7). Then models for the elastic

differential cross section from the optical point to past the

dip will be presented, both in their historical development

and in their contribution to describe TOTEM data. We shall

conclude this section on elastic scattering with a short review

of models specifically addressing diffraction and a discussion

of the inelastic part of the total cross section.

Each of the items above is discussed as follows:

– general features of the elastic cross section are discussed

in Sect. 6.1 with

– the slope parameter in Sect. 6.1.1,

– the real part of the scattering amplitude in Sects. 6.1.2

and 6.1.3,

– sum rules for real and imaginary parts of the scatter-

ing amplitude at b=0, in Sect. 6.1.4,

– asymptotia and the ratio σelastic/σtotal in Sect. 6.1.5,

– the dip structure and geometrical scaling in Sects. 6.1.6

and 6.1.7,

– early models in impact-parameter space and their updates

are to be found in Sect. 6.2 with

– the Glauber picture applied to pp scattering in

Sects. 6.2.1 and 6.2.2,

– the black disk picture in Sect. 6.2.3,

– models with Regge and Pomeron exchanges are pre-

sented in Sect. 6.3 with

– an early model by Phillips and Barger (PB) and its

updates in Sect. 6.3.1,

– a model by Donnachie and Landshoff in Sect. 6.3.2

– a model in which the slope parameter increases with

energy at the same rate as the total cross section in

Sect. 6.3.3,

– models including an Odderon exchange can be found in

Sect. 6.4,

– eikonal models are discussed in Sect. 6.5

– selected models including diffraction are to be found in

Sect. 6.6 with a comment on single-channel mini-jet mod-

els with soft-gluon radiation in Sect. 6.6.7,

– a parametrisation of diffraction to obtain the total, elas-

tic and inelastic cross section from one-channel eikonal

models is presented in Sect. 6.7.

6.1 General features of the elastic cross section

As stated earlier, elastic scattering is characterized by the

following quantities:

– the optical point, i.e. the imaginary and real parts of the

amplitude at t = 0,

– the precipitous decrease at small t , related to the forward

slope B(s, t = 0),

– the change in slope and occurrence of the dip where the

imaginary part of the amplitude becomes smaller than

the real part,

– the |t | behaviour after the dip and connections with per-

turbative QCD.
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Fig. 57 The energy dependence of the slope parameter, Eq. (6.7), from

ISR to LHC7. Data are from [263] for lower energies, from [283] for

LHC7. We also include the TOTEM result at
√

s = 8 TeV from [281],

for the case of a single exponential fit in the 0.027 GeV2 < −t <

0.2 GeV2 region

In the following we shall describe these different quanti-

ties, and the asymptotic theorems which govern their energy

dependence.

6.1.1 About the slope parameter

An earlier rather complete discussion of this issue can be

found in [12]. Here we discuss its definition and show the

present experimental status.

Although most models do not attribute a single exponen-

tial behaviour, and hence a single value for the slope, to the

small-t behaviour of the elastic differential cross section,

experimentalists usually describe the diffraction peak with

a single slope and a single term, i.e.

dσel/dt (t ≃ 0) = (dσel/dt)t=0 eB(s)t . (6.7)

This expression leads to the approximate result

B(s) ≃ 1

16π

σ 2
total(1 + ρ2)

σelastic
. (6.8)

We plot in Fig. 57, the values for B(s), reported by experi-

ments from ISR to LHC7, using Eq. (6.7) definition. For the

TOTEM experiment, the value for B(s) at LHC7 corresponds

to the measurement in the interval 0.02 < |t | < 0.33 GeV−2

[283]. There are general considerations which relate the

asymptotic behaviour of B(s) to that of the total cross section,

in particular one can derive the asymptotic relation, so called

MacDowell and Martin bound [284], discussed recently in

[285], given as

B(s) ≥ σtotal

18π

σtotal

σelastic
. (6.9)

Since the ratio σtotal/σelastic ≥ 1, the above relation implies

that the rise with energy of B(s) will at some point catch up

with that of the total cross section. We mention here in passing

that at LHC7, the right-hand side of the above inequality is

approximately 18 GeV−2 and the measured slope on the left-

hand side is about 20 GeV−2. Hence, the inequality is close

to saturation.

To reiterate, if and when the total cross section will have

reached an energy such as to saturate the Froissart bound,

then one should expect B(s) to grow with energy as (ln s)2.

Fig. 57 indicates that up to the Tevatron measurements,

data could to be consistent with a log s type behaviour.

After the LHC7 TOTEM data appeared, the possibility of

a stronger rise was examined in [61]. However, the LHC8

result (red dot in Fig. 57) sheds doubts on the single expo-

nential slope analyses, and it would need to be rediscussed

when higher LHC data, at 13 and 14 TeV, will be avail-

able.

One way to describe the variation in t as one moves away

from t ≃ 0 has been to introduce the curvature parameter

C(s) and parametrise the diffraction peak as

dσel/dt = (dσel/dt)t=0 eB(s)t+C(s)t2

. (6.10)

Such a parametrisation needs a change in sign for C(s) as t

moves away from the very forward direction. Higher powers,

such as a cubic term t3 are also discussed in the recent 2015

TOTEM analysis for the slope [281]. More generally, away

from t ≃ 0, the slope parameter is a function of both t and

s, defined as

Beff(s, t) = d

dt
log dσel/dt. (6.11)

Since models differ in their parametrisation of the forward

peak, depending on the extension in t , if the dip region has

to be included, Eq. (6.11) is to be used. One can distinguish

the following basic modellings for the forward peak

– impact parameter models

– one or more Pomeron pole exchanges

– di-pole and tri-pole exchanges

– Pomeron exchanges unitarised via eikonal representation

– soft-gluon resummation and exponential damping (work

in progress).

We see in the following the results from some of these mod-

els.
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√

ρ
ρ

Fig. 58 Data for the ρ parameter for pp scattering compared with dif-

ferent models as indicated in Fig. (10) of [286] ©(2011) by Springer.

Reproduced with permission of Springer. Figure is courtesy of J-R

Cudell

6.1.2 The real part of the elastic scattering amplitude,

at t = 0, and the energy dependence of the ρ(s)

parameter

The elastic scattering amplitude has both a real and an imag-

inary part. At t = 0, the imaginary part is proportional to

the total cross section, but there is no such simple way to

obtain the real part, although arguments, based on asymp-

totic theorems, have been used to extract an asymptotic value

for ρ(s) = ℜeF(s, t = 0)/ℑm F(s, t = 0) → π/ ln s as

s → ∞.

In the next paragraph we shall describe how one can con-

struct asymptotically a real part for values of t �= 0. In this

paragraph, we show an analysis of various high energy data,

by Alkin, Cudell and Martynov [286], aimed at determin-

ing the parameter ρ(s) = ℜeF(s, t = 0)/ℑm F(s, t = 0)

through integral dispersion relations. The authors use various

Pomeron and Odderon models, employing simple Pomeron

or double and triple poles. Recall that these three different

cases correspond to an asymptotic behaviour for the total

cross section given by a power law, a logarithmic rise, or a

(log s)2, while the Odderon term is always rising less than the

Pomeron. Reference [286] contains a rather clear description

of the phenomenology implied by these different models. We

show in Fig. 58 from [286] a compilation of data for the ρ

parameter for pp scattering, compared with four different

models.

If one uses the LHC7 TOTEM result to gauge which

model gives the best value for ρ, then the result of this

analysis seems to select the simple Pomeron model, since

this is the model which gives a total cross section closest

to the TOTEM measurement, i.e. σtotal(7 TeV) = (94.9 ÷
96.4) mb vs. σTOTEM

total = 98.3 ± 0.2stat ± 2.8syst mb. In

such case, ρ(7 TeV) = (0.138 ÷ 0.186). The triple-pole

Pomeron model also gives an acceptable total cross section,

with σtotal(7 TeV) = (94.1 ÷ 95.1) mb, corresponding to

ρ(7 TeV) = (0.130 ÷ 0.142). We note here that the deter-

mination of the total cross section initially released, used the

predictions from [287] with ρ(7 TeV) = 0.138+0.01
−0.08, while

the most recent TOTEM analysis, as of this writing, [281],

uses a value ρ(8 TeV) = 0.140 ± 0.007, using the COM-

PETE Collaboration favoured value [287].

Using the model by Block et al. [146], we reproduce data

and predictions for ρ for both pp and p̄ p in Fig. 32. Just as in

the previous figure, this figure shows that, at high energy, ρ

has been measured to be positive, swinging from the negative

values at energies below the ISR, to values ρ ∼ 0.12 at the

Tevatron.

Following [288], the behavior of ρ(s) can be seen to arise

rather naturally from present phenomenological analyses of

the total cross section alone. Consider the asymptotic terms

of a frequently used parametrisation for the even amplitude

at t = 0,

ℑm F+(s, 0) = 1

4π

[

H1

(

ln
s

s0

)2

+ H2 ln
s

s0
+
(

π2

4
H1 + H3

)]

, (6.12)

ℜeF+(s, 0 = 1

4

[

H1 ln
s

s0
+ 1

2
H2

]

. (6.13)

While the coefficient H1 is obviously positive, as it is related

to the asymptotic behavior of the obviously positive total

cross section, the sign of H2 is a priori undefined. Fits to σ
pp

tot

give H2 ≤ 0, even when the ρ parameter is not part of the

fits. This immediately shows that ρ(s) can go through zero,

as it does for 10 GeV �
√

s � 30 GeV. Asymptotically then

one has

ρ+(s) =
π
[

H1 ln s
s0

+ 1
2

H2

]

[

H1(ln
s
s0
)2 + H2 ln s

s0
+
(

π2

4
H1 + H3

)] , (6.14)

= π

(ln s
s0
)
[1 + non-leading in ln s/s0]. (6.15)

Thus, we see that analyticity coupled with the assumption

of Froissart limit saturation predicts that, at sufficiently high

energy, ρ ∼ π/ log s. While ρ rises at low energy, data from

the Sp p̄S and the Tevatron region are non-committal and

consistent with a constant ∼0.12. In our proposed Eikonal

Mini-jet with soft-gluon resummation, the imaginary part of

the forward scattering amplitude is proportional to [log s]1/p,

with 1/2 < p < 1. Through the substitution s → se−iπ/2,

the expression for the scattering amplitude is made analytic

and one can see that ρ ∼ π/2p log s.

The behavior of ρ as the energy swung through the ISR

region, and σ
pp

tot began rising, became an object of intense

scrutiny in the early 1970s and led to the first suggestion of
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the existence of the Odderon, [discussed later] in Sect. 6.4.1.

In [204], the observed rise of the total cross section at ISR

was the occasion to propose that both the imaginary and the

real parts of the amplitude could behave asymptotically as

(ln s/s0)
2 and fits to both σ

pp
tot and ρ(s) in the then avail-

able energy range were seen to be compatible with ρ(s)

passing through a zero in the ISR region. We shall men-

tion later, in Sect. 6.4.1 how this proposal was then applied

to study charge exchange reactions and then morphed in an

added term named the Odderon. One notices the obvious fact

that ρ(s) changes sign in the energy region where the total

cross section changes curvature. The change in curvature is

attributed in mini-jet models to the fact that perturbative QCD

processes become observable, which is also the region where

an edge-like behavior has been noticed by Block et al. in the

scattering amplitude [289].

6.1.3 The asymptotic behaviour

of the real part of the scattering amplitude at t �= 0

We shall discuss here how one can construct an asymptotic

ReF(s, t) given the imaginary part Im F(s, t). A discussion

of some of the issues presented here can be found in a 1997

paper by Andre’ Martin [290].

The construction of the elastic scattering amplitude at

asymptotic energies uses a number of asymptotic theorems.

The imaginary part at t = 0 is anchored to the optical theorem

and its asymptotic value is bound by the Froissart theorem.

The real part at t = 0 is asymptotically obtained through

the Khuri–Kinoshita theorem [13]. At t �= 0, models for the

imaginary part also allow one to obtain an asymptotic value

for the real part. This is discussed in an early paper by Martin

[291]. According to Martin, if the total cross section behaves

asymptotically as log2 s, then the real part of the even ampli-

tude F+(s, t), again asymptotically, behaves as

ℜeF+(s, t) ≃ ρ(s)
d

dt
[tℑm F+(s, t)] (6.16)

where, as usual, ρ(s) = ℜeF+(s, 0)/ℑm F+(s, 0). The result

of Eq. (6.16) is obviously consistent with the expression for

the differential cross section at t = 0, namely one has

(

dσ

dt

)

t=0

∼ (constant)

×
{

(ℑm F(s, 0))2 +
(

d

dt
tℑm F(s, t)

)2

t=0

}

, (6.17)

= (constant)(ℑm F(s, 0))2[1 + ρ(s)2]. (6.18)

It is also interesting to note that the asymptotic expres-

sion given by Martin, automatically satisfies one of the two

asymptotic sum rules for the elastic amplitude in impact-

parameter space, which will be discussed later, in Sect. 6.1.4.

Equation (6.16) was derived by Martin in the asymptotic

regime σtotal ∼ log2 s, but it is actually more general and

holds also for σtotal ∼ (log s)1/p with 1/2 < p < 1. Let us

start with the case p = 1/2. Defining the even amplitude

F+(s, t) = F+(s, 0) f (t), (6.19)

f (0) = 1, (6.20)

and assuming the asymptotic behaviour

F+(s, 0) ∼ iβ(log s/s0)
2, (6.21)

the real part is built using the amplitude properties of analyt-

icity and crossing symmetry. Using the additional property

of geometrical scaling obeyed by the asymptotic amplitude

[288], the argument then runs as follows:

– introducing the scaling variable τ = t log2 s, geometrical

scaling [288] says that

f (s, t) ≡ f (s, τ ) = f (t (log s/s0)
2) (6.22)

– for small values of t , the even amplitude must be cross-

ing symmetric, i.e. symmetric under the exchange s →
se−iπ/2, and the Froissart limit and the geometric scaling

variable turn into

F+(s, 0) → iβ(log s/s0 − iπ/2)2, (6.23)

≃ iβ(log s/s0)
2 + βπ log s/s0

τ → t (log s/s0 − iπ/2)2 ≃ t (log s/s0)
2 − iπ t log s/s0

→ τ

(

1 − iπ

log s/s0

)

, (6.24)

f

(

τ − iπ
τ

log s/s0

)

≃ f (τ ) − iπ
τ

log s/s0

d f

dτ

≃ f (τ ) − iπ
t

log s/s0

d f

dt
, (6.25)

so that

F+(s, t) = F+(s, 0) f (τ )

≃ [iβ(log s/s0)
2 + βπ log s/s0]

×
[

f (τ ) − iπ
t

log s/s0

d f

dt

]

≃ i

[

β(log s/s0)
2 f (τ ) − βπ2 td f

dt

]

+ f (τ )βπ log s/s0 + β log s/s0π t
d f

dt

≃ iβ(log s/s0)
2 f (τ ) + βπ log s/s0

[

f (τ ) + τ
d f (τ )

dτ

]

≃ iβ(log s/s0)
2 f (τ ) + π

log s/s0
β(log s/s0)

2 d(t f (t))

dt
.

(6.26)
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Since asymptotically, the Khuri–Kinoshita theorem says

that

ρ(s) ≃ π

log s/s0
, (6.27)

we thus see that if

ℑm F+(s, t) ≃ β(log s/s0)
2 f (t), (6.28)

then

ℜeF+(s, t) ≃ ρ(s)
d

dt
(tℑm F+(s, t)).

The demonstration leading to Eq. (6.16) holds even if the total

cross section does not saturate the Froissart bound, namely

we can also start with

ℑm F+(s, 0) ≃ β(log s/s0)
1/p (6.29)

with 1/2 ≤ p ≤ 1 and still obtain Eq. (6.16), with

ρ(s) ≃ π

2p log s/s0
. (6.30)

The limits on p are obtained here from the phenomenolog-

ical requirement that the total cross section is asymptoti-

cally rising at least like a logarithm, i.e. the case p = 1,

and that it satisfies the Froissart bound, corresponding to

p = 1/2. We have seen, when discussing our mini-jet model

in Sect. 5.9.7, how to relate these requirements to a phe-

nomenological description of confinement in the infrared

region.

For p �= 1, we shall now sketch the demonstration, which

runs very close to the one just given for p = 1/2.

Let the asymptotic behaviour of the even amplitude at

t = 0 be such that F+(s, 0) ∼ β(log s/s0)
1/p. Then

F+(s, 0) ∼ iβ(log s/s0 − iπ/2)1/p, (6.31)

≃ iβ(log s/s0)
1p

[

1 − iπ

2p log s/s0

]

. (6.32)

Now the scaling variable τ ∼ t F+(s, 0) = t (log s/s0)
1/p,

and the scaling in the variable τ gives

f (τ ) → f (τ − iπτ

2p log s/s0
) ≃ f (τ ) − iπτ

2p log s/s0

(

d f

dτ

)

(6.33)

and

F+(s, t) ≃ F+(s, 0) f (τ ). (6.34)

Following steps similar to the p = 1/2 case and using ρ(s)

given by Eq. (6.30) gives the same result as before, i.e.

ℜeF+(s, t) ≃ ρ(s)
d

dt
(tℑm F+(s, t)). (6.35)

This expression can be used to obtain a real part in eikonal

models with a purely real eikonal function. One would obtain,

for the full amplitude at t = −q2,

A(s, q) = i

∫

bdb(1 − e−χ(b,s))J0(bq)

+
∫

bdb(1 − e−χ(b,s))

×
[

J0(bq)ρ(s)) − ρ(s)
qb

2
J1(qb)

]

, (6.36)

which leads to

dσel/dt = π

{

I 2
0 + ρ2

[

I0 −
√

−t

2
I1

]2
}

(6.37)

with

I0 =
∫

bdb(1 − e−χ(b,s))J0(qb), (6.38)

I1 =
∫

b2db(1 − e−χ(b,s))J1(qb). (6.39)

Before leaving this discussion of the real part of the scat-

tering amplitude, we notice that the above is valid for the

dominant high energy part of the amplitude. Real terms can

be present at non leading order in the amplitude, such as the

one proposed by Donnachie and Landshoff, arising from a

three gluon exchange [292], and described later in this sec-

tion.

6.1.4 Asymptotic sum rules for the elastic scattering

amplitude at impact parameter b = 0

Here we shall derive two asymptotic sum rules which are

integrals over momentum transfer for the real and the imag-

inary parts of the elastic amplitude [293,294].

At high energies, ignoring all particle masses, let the com-

plex elastic amplitude F(s, t) be normalised so that

σtot(s) = 4πℑm F(s, 0); dσ

dt
= π |F(s, t |2. (6.40)

With this normalisation, the elastic amplitude in terms of the

complex phase shift δ(s, b) reads

F(s, t) = i

∫

(bdb)Jo(b
√

−t)[1 − e2iδR(s,b)e−2δI (s,b)],

(6.41)

and its inverse

[1 − e2iδR(s,b)e−2δI (s,b)] = −i
1

2

∫ 0

−∞
dt Jo(b

√
−t)F(s, t).

(6.42)
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Rewriting Eq. (6.42) as

1 − [cos(2δR(s, b)) + i sin(2δR(s, b))]e−2δI (s,b)]

= −i
1

2

∫ 0

−∞
dt Jo(b

√
−t)[ℜeF(s, t) + iℑm F(s, t)],

(6.43)

we have

1 − cos(2δR(s, b))e−2δI (s,b)

= 1

2

∫ 0

−∞
dt Jo(b

√
−t)ℑm F(s, t)], (6.44)

sin(2δR(s, b))e−2δI (s,b)

= 1

2

∫ 0

−∞
dt Jo(b

√
−t)ℜeF(s, t). (6.45)

Consider the hypothesis of total absorption. This is a stronger

hypothesis than the one which leads to the Froissart–Martin

bound, namely that there must exist a finite angular momen-

tum value, below which all partial waves must be absorbed.

Under the stronger hypothesis that in the ultra high energy

limit, namely in the central region (b = 0) a complete absorp-

tion occurs, and in the black-disk limit of δI (s, 0) → ∞, we

have the following two asymptotic sum rules

SI = 1

2

∫ o

−∞
dt ℑm F(s, t) → 1 as s → ∞, (6.46)

SR = 1

2

∫ o

−∞
dt ℜeF(s, t) → 0 as s → ∞. (6.47)

Satisfaction of these sum rules is a good measure to gauge

whether asymptotia and saturation of the Froissart–Martin

(FM) bound have been reached. Notice that the FM bound is

obtained under a weaker hypothesis than complete absorp-

tion and one has SI → 2 and SR → 0. Our phenomeno-

logical analysis of TOTEM, presented in Sect. 6.3.1, leads

to (6.46) reducing the FM bound by a factor 2. According to

the phenomenology presented in [295], at TOTEM(7TeV),

SI ≈ 0.94 and SR ≈ 0.05 bolstering our faith in the sum

rules.

If ℜeF(s, t) is constructed through the Martin recipe

Eq. (6.30), then the second sum rule Eq. (6.47) is automati-

cally satisfied.

6.1.5 Elastic vs. total cross section: the ratio

and the unitarity limit

The ratio of the elastic to the total cross section plays an

important role in all discussions of asymptotic behaviour. We

shall start our analysis by recalling some general character-

istics of this ratio from considerations about total absorption.

Let us write the expression for the total and the elastic

cross sections in terms of real and imaginary parts of the

complex phase shift δ(s) i.e.

fel(q) = i

∫

d2beiq·b[1 − e2iδ(b,s)], (6.48)

= 2π i

∫

bdbJ0(qb)[1 − e2iδR(s)−2δI ], (6.49)

σT = 2ℜe

∫

d2b[1 − e2iδR−2δI ], (6.50)

σel =
∫

d2b|1 − e2iδR−2δI |2. (6.51)

Then we examine two limiting cases

– elastic scattering only, δI = 0, i.e.

σ
(1)
T = 2

∫

d2b[1 − cos 2δR], (6.52)

σ
(1)
el =

∫

d2b|1 − ei2δR |2 = 2

∫

d2b[1 − cos 2δR].

(6.53)

Thus σel ≡ σT , and all the scattering is purely elastic.

– a different limit, δR = 0, i.e.

σ
(2)
T = 2

∫

d2b[1 − e−2δI ], (6.54)

σ
(2)
el =

∫

d2b(1 − e−2δI )2, (6.55)

σ
(2)
T − 2σ

(2)
el = 2

∫

d2be−2δI [1 − e−2δI ] ≥ 0, (6.56)

i.e. σelastic/σtotal≤ 1/2 for δI > 0.

Other important limits are examined in detail in the Block

and Cahn 1984 review [12], and we reproduce here parts of

their discussion of the black- and grey-disk limit.

Using Block and Cahn convention, with t = −q2, in the

c.m. given by t = −2k2(1 − cosθ∗), one has

fcm(t) = k

π

∫

d2beiq·ba(b, s) (6.57)

a(b, s) = 1

4πk

∫

d2qe−iq·b fcm(q), (6.58)

σtotal = 4π

k
ℑm fcm(t = 0), (6.59)

dσel

dt
= π

k2

dσel

dΩ∗ = π

k2
| fcm(t)|2. (6.60)

Writing the amplitude a(b, s) as

a(b, s) = i

2
[1 − e2iχ(b,s)] (6.61)

one then has

σelastic = 4

∫

d2b |a(b, s)|2, (6.62)
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σtotal = 4

∫

d2bℑm a(b, s). (6.63)

The black- and grey-disk model case corresponds to a scatter-

ing amplitude zero outside a finite region in impact-parameter

space, i.e.

a(b, s) = i A

2
θ(R(s) − b) (6.64)

where the radius R(s) of the disk is in general energy depen-

dent. In this very simple model

σtotal = 2Aπ R2(s), (6.65)

σelastic = π A2 R2(s). (6.66)

In the optical analogy, also extensively described in [125],

total absorption corresponds to A = 1, i.e. χR = 0 and

χI = ∞, and σtotal = 2σelastic. Purely elastic scattering is

A = 2. Defining the ratio

Rel = σel

σtotal
= A

2
(6.67)

there are the following cases: (i) A = 2, all the scattering

is elastic, a possibility close to the model by Troshin and

Tyurin, characterized by large elastic component, recently

rediscussed in [296], (ii) A = 1, total absorption, the scatter-

ing is equally divided between elastic and inelastic scattering,

iii) A ≤ 1, the total inelastic scattering contribution, which

includes also diffraction, is larger than the elastic. It is com-

mon practice to refer to the cases A = 1 and A < 1 as the

black and the gray disk model, respectively [12].

The black disk model is rather simple, but it is of present

interest to investigate whether at LHC, the black-disk limit

has been reached [259]. Using both the TOTEM data at

LHC7 and the cosmic ray data from the Auger Collabo-

ration for the inelastic cross section [297–299], it is pos-

sible to estimate how close one is to the asymptotic black

disk limit. We show this in Fig. 59, where the ratio Rel

is obtained from accelerator data (black triangles) [263],

including TOTEM’s [277,283], and the value extracted from

Auger. The ratio at 57 TeV is obtained by using Block

and Halzen (BH) estimate for the total cross section [259]

σBH
total(57 TeV) = (134.8 ± 1.5) mb, which is based on the

analytic amplitude method of Ref. [300]. We then obtained

σelastic(57 TeV) = σ B H
total − σ

Auger
inelastic = (44.8 ± 11.6) mb. We

also show the asymptotic result (green dot) from Ref. [259].

For a recent published reference see [86]. From this compi-

lation and a similar one in [301],6 the Rel = 1/2 limit does

not appear to have been reached yet, not even at the highest

energy of 57 TeV. One may wonder whether it can in fact

be reached. There are good reasons to expect that a more

realistic limit is

6 This analysis indicates a larger error than the one in [295].
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Fig. 59 The ratio of the elastic to the total cross section, using accelera-

tor data, including TOTEM [277,283] and a compilation which uses the

Block and Halzen estimate for the total cross section at
√

s = 57 TeV

and extraction of the inelastic total cross section from Auger Collabora-

tion data [297–299]. The green dot represents the asymptotic estimate

by Block and Halzen. Reprinted from [295], ©(2012), with permission

from Elsevier

Rel = σelastic + σdiffractive

σtotal
≤ 1

2
(6.68)

where σdiffractive include single and double diffraction. This is

the limit advocated by Jon Pumplin [72,73,302]. In the sub-

section dedicated to diffraction we shall describe Pumplin’s

model for diffraction and see how the limit of Eq. (6.68)

arises.

6.1.6 The differential cross section and the dip structure

A very interesting characteristic of the data released by the

TOTEM experiment [277] is the return of the dip, namely

the observation of a very distinctive dip at |t | = 0.53 GeV2,

signalling that the dip, observed at the ISR only in pp scat-

tering, and not seen or measured in p̄ p, is now reappearing,

in pp. The dip position has moved from ISR energies, where

−tdip ∼ 1.3 GeV2 to −tdip = 0.53 GeV2 at LHC7. Further

shrinkage is expected, but the question of how to predict its

energy behavior is model dependent, as we show in Fig. 60,

where the position of the dip, as measured at various energies,

is compared to a linear logarithmic fit [303] and expectations

from geometrical models [304]. The uncertainty is related to

the difficulty with most models to describe the entire region

from the optical point to past the dip, from ISR to LHC ener-

gies. Some models which had described this structure at ISR,

failed to accurately predict its position and depth at LHC, oth-
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Fig. 60 The position of the dip as the energy increases, extracted from

geometrical models [304] and a linear logarithmic fit. The figure is

courtesy of D. Fagundes, following Fig. (6) from [303], ©(2013) by the

American Physical Society

ers describe very well the behavior for small and/or large |t |,
but not the entire region, as we shall see.

In Fig. 60 the dashed and dotted lines (blue) are obtained

through models for the amplitude in which Geometrical Scal-

ing is partly embedded [304]. Clearly so long as Rel �= 1/2,

two energy scales are present in pp scattering, one from the

elastic and the other from the total cross section. In Sect. 6.1.7

we shall discuss this point in more detail.

6.1.7 Geometrical scaling

The idea of geometric scaling is originally due to Dias de

Deus and it has been extensively studied in the literature

[303–308] both for elastic and inelastic amplitudes, for par-

ticle multiplicities, etc. For a recent review; see [309].

We shall here limit ourselves only to its application to

elastic amplitudes and the position of the dip as a function

of the energy that is of timely relevance for the LHC data on

elastic pp data between
√

s = (7 ÷ 14) TeV.

As shown in Fig. 59, the black-disk limit is not reached

even until
√

s = 57 TeV and the geometrical scaling dip

structure, being anchored upon it, is hence violated. However,

we show in the following that a mean geometrical scaling

based on the two scales works quite well for the position of

the dip versus energy.

The elastic amplitude F(s, t) has a real and an imaginary

part. In the forward direction t = 0, the imaginary part is

anchored on the total cross section

ℑm F(s, 0) = σtot(s)

4π
, (6.69)

and thus is positive-definite and obeys the Froissart–Martin

bound. To a certain extent so is real part in the forward direc-

tion. It has an upper bound via the Khuri–Kinoshita theorem

ρ(s, 0) = ℜeF(s, 0)

ℑm F(s, 0)
→ π

ln(s/so)
, (6.70)

provided the Froissart bound is saturated. By contrast, we

have no such general results for t �= 0. As discussed in

Sect. 6.1.4 we have two sum rules we expect to be satisfied

asymptotically

SI = 1

2

∫ o

−∞
dt ℑm F(s, t) → 1 as s → ∞, (6.71)

SR = 1

2

∫ o

−∞
dt ℜeF(s, t) → 0 as s → ∞. (6.72)

Geometrical scaling as applied to the imaginary part of the

elastic amplitude -for example- may be stated as follows: that

at high energies

ℑm F(s, t) → [ℑm F(s, 0)]φ(τ); where τ = (−t)σtot(s)

with φ(τ = 0) = 1. (6.73)

For ℜeF(s, t), Martin uses analyticity and a saturation of the

Froissart–Martin and the Khuri–Kinoshita limit, to obtain the

form

ℜeF(s, t) = ρ(s, 0)
d

dt
[tℑm F(s, t)]. (6.74)

It is easy to see that the sum rule for the real part Eq. (6.72)

is identically satisfied, i.e., SR = 0, if Eq. (6.74) is obeyed.

On the other hand,
∫ ∞

o

(dτ)φ(τ) = (8π)SI → (8π) as s → ∞. (6.75)

Now let us focus on the movement of the dip in the elastic

cross section as a function of s. Geometric scaling would

imply that

tdip(s)σtot(s) → a constant as s → ∞. (6.76)

Writing the high-energy cross sections assuming a simple

diffraction pattern, we have (for −t = q2)

σtot(s) = 2πb2
T ; σel(s) = πb2

e

dσ

dt
=
[

σ 2
tot(s)

16π

] [

2J1(q R)

q R

]2

, (6.77)

so that the optical point is correct. In the black-disk limit,

bT = be = R; R
B D
el = σel

σtot
→ 1/2. (6.78)

For the black disk, the dip occurs at the first zero when

q B D
dip bT ≈ 3.83. Defining the geometric scaling variable

τGS = q2σtot and as shown in the left panel of Fig. 61, it

does not work. On the other hand, we can define a mean geo-

metric scaling with bT �= be where the radius R in Eq. (6.77)

is taken as the geometric mean and the mean geometric scal-

ing variable τmean
GS reads

R =
√

bT be; τmean
GS = q2√σelσtot. (6.79)
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Fig. 61 Data up to LHC7 for energy dependence of the dip −tdip(s)

from geometric scaling [left panel] and from mean geometric scaling

[right panel]. Green and red crosses are predictions at LHC8 and LHC14

from the empirical model of [303]. Reprinted from [310] with kind per-

mission from Società Itaiana di Fisica

The dip is now given by

− tdip(s) = q2
dip(s) ≈

[

(3.83)2π
√

2√
Rel(s)σtot(s)

]

. (6.80)

On the right-hand panel of Fig. 61, we show a comparison of

our mean geometrical scaling prediction with experimental

data. The agreement is quite good. We mention in passing

that this is yet another example that the black-disk limit is

quite far from being reached even up to 57 TeV.

On the other hand, we notice a recent work by Block and

collaborators [289], which we shall see in Sect. 6.8, where

the Black Disk limit is used to make predictions at very,

extremely, large energies.

6.2 Early models in impact-parameter space

Let us now examine various models and fits. Empirical fits

abound in total and elastic cross section description. They are

helpful in developing models, as a guide toward understand-

ing data. To be most useful, of course, empirical fits should

follow constraints imposed by general theorems on analytic-

ity, crossing symmetry and unitarity, all of which (or, more

realistically as much as possible) should then be satisfied by

the models one builds.

Between 1967 and 1968, Chou and Yang [311] and Durand

and Lipes [312] presented a framework for calculation of

the elastic scattering amplitude between elementary particles

based on the impact picture and on physical ideas very similar

to those in the Glauber model. The presence of kinks in the

elastic differential cross section was discussed. We shall start

with Chou and Yang and then discuss the results by Durand

and Lipes.

6.2.1 The Chou and Yang model

The Chou and Yang model was first discussed in 1967 and

fully written in 1968.To discuss particle scattering, rather

than that of nucleons on nuclei, Chou and Yang had to put tar-

get and projectile on equal footing, and comply with existing

phenomenology. They started in [311], with the partial wave

expansion of the scattering amplitude (as we have described

in the first section). From

a = /λ
2
∑

l

(2l + 1)Pl(cos θ)
1

2
(1 − S) (6.81)

the high energy limit was obtained by transforming the

sum into an integral, through the substitution Pl(cos θ) →
J0(b

√
−t) and the definition b = /λ(l + 1/2). This led to the

eikonal expression for the scattering amplitude

a(t) = 1

2π

∫

(1 − S)eiq·bd2b (6.82)

with t = −q2.

The crucial assumption of the Chou and Yang model was

that the attenuation of the probability amplitude for two

hadrons to go through each other was governed by the local

opaqueness of each hadron. In this model, the transmission

coefficient S is only a function of the impact parameter b,

and Chou and Yang proposed to calculate the transmission

coefficient S(b) through the Fourier transform of the form

factors of the colliding particles. Subsequently the authors

proceeded to show that their proposal for particle scattering

was the same as the Glauber proposal for nucleon–nucleus

scattering, with the two dimensional Fourier transform of

the form factors playing the role of the nuclear density of the

Glauber model. In formulating this connection between the

two models, a limit of infinitely many nucleons was postu-

lated, namely the nucleus was seen as a droplet of very finely
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granulated nuclear medium, in the spirit of the droplet model

formulated previously by Byers and Wu [313].

The quantity 〈s〉 = − log S(b) is called the opacity, with

the name deriving from the following physical interpretation:

if an incoming wave hits a slab of material of thickness g,

the slab partly absorbs and partly transmits the wave and the

transmission coefficient through the slab would be

S = e−αg. (6.83)

Thus log S(b) would be proportional to the thickness of the

slab and can be considered as the opaqueness of the slab to

the wave. For particle scattering, the thickness of the slab

represents how much hadronic matter is encountered by the

incoming wave, when the wave passes through the hadron at

impact parameter b. Thus S is a function of the impact param-

eter b, which is then integrated over all possible values. S(b)

was considered to be asymptotically energy independent, and

so would then be dσel/dt . This was consistent with the fact

that, at the time, data suggested that all cross section would

reach an asymptotic limit, independent of energy. It should in

fact be noted that the Chou and Yang model, was formulated

before 1970, i.e., before ISR experiments definitely proved

that the total cross section was rising.

To compare with experimental data for dσel/dt , two differ-

ent phenomenological expressions were considered, a single

exponential in t , i.e. a gaussian in b-space, and a sum of two

exponentials. The resulting fits to the data available at the

time, are shown in Fig. 62, where they are labeled with A

and B, respectively. A further comparison with data is done

by using the form-factor expression instead of the ansatz

on exponential t behaviour of the amplitude, a comparison

which we show in the right-hand plot in Fig. 62.

As a conclusion, the major points of this model can be

summarised as being the following:

1. the transmission coefficient S(b) can be obtained from

the convolution of the form factors of the scattering par-

ticles,

2. this model, with the amplitude expressed through the

transmission coefficient S includes the limit of a model

previously proposed with Wu [314], in which the scatter-

ing differential elastic cross section dσ/dt was propor-

tional to the fourth power of the proton form factor,

3. correction terms are important, namely one needs to use

the full (1 − S)

4. one can expect the appearance of a distinctive diffraction

pattern in the squared momentum transfer in the elastic

differential cross section, with dips and bumps.

6.2.2 The diffractive model of Durand and Lipes

A diffractive picture in impact-parameter space, in a close

correspondence to the Chou and Yang model, was formulated

by Durand and Lipes in 1968 [312].

In [312], it is shown that the elastic scattering diffractive

amplitude should exhibit two diffraction minima, which can

be filled by the real part of pp scattering amplitude and that

at large momentum transfer the amplitude is proportional to

Fig. 62 Comparison between the Chou and Yang model from [311]

and existing data for the differential cross section. The two figures cor-

respond to different approximations, left panel, and to a comparison

between the form-factor expression and their model for dσel/dt , right

panel. Reprinted Figs. (1,2 ) with permission from [311]. ©(1968) by

the American Physical Society
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the product of the form factors of the scattering particles.

The model uses the impact parameter picture and the paper

follows along the lines of Wu and Yang [314] and Byers and

Yang [313].

The suggestion that the pp scattering cross section at large

momentum transfer be proportional to the fourth power of

the proton form factor, suggested by Wu and Yang [314],

was prompted by the observations of the rapid decrease of

the cross section away from t = 0. Namely, such a decrease

could be seen as the breaking up of the proton extended struc-

ture as the momentum transfer was becoming large. For small

momentum transfer values, on the other hand, the coherent

droplet model by Byers and Yang [313] supplied inspiration.

The basic physical assumptions underlying the diffrac-

tion model by Durand and Lipes were: (i) elastic scattering

at high energy results from the absorption of the incoming

wave into the many inelastic channels which are opening up

at high energy as the extended proton structure (where par-

tons are confined) breaks up, (ii) at high energy, the absorp-

tion depends on the amount of relative interpenetration of

the two scattering protons, namely on the distance between

the scattering centers, in impact-parameter space. With these

assumptions and the form-factor expression for the matter

distribution in two hadrons, Durand and Lipes wrote the scat-

tering amplitude in the (now) familiar form

f (s, t) = i

∫

bdbJ0(b
√

−t)[1 − S(b)], (6.84)

S(b) = e−kρ(b), (6.85)

G A(t)G B(t) =
∫ ∞

0

bdbρ(b)J0(b
√

−t) (6.86)

where the density of matter inside the scattering region is

obtained as the convolution of the form factors of the two

particles A and B in the initial state.

The absorption coefficient κ was understood to be a func-

tion of the initial energy. Using the dipole expression for the

proton electromagnetic form factor, they obtained

S(b) = e− 1
8 A(νb)3 K3(νb) (6.87)

with A proportional to the absorption coefficient κ . Predic-

tions including both a real and imaginary parts for A were

given, fitting the real part of A through the total cross sec-

tion. The results of such a model, with value of the parameter

ν2 = 1 GeV2, are shown in Fig. 63 from [312]. The compar-

ison with data in the very forward region shows a very good

agreement with the model. Notice the prediction of two dips

which are filled partially through a complex absorption coef-

ficient with a non-zero imaginary part. Some of the observa-

tions made by these authors, still of interest, are:

– asymptotically, this diffraction model should describe

high energy scattering at fixed momentum transfer,

although the asymptotic limit described by the model

Fig. 63 In this figure from [312] comparison is made with existing

data and the diffraction model by Durand and Lipes. The two curves

labelled, respectively, a and b refer to fits made with a purely real or

an imaginary absorption coefficient. Reprinted with permission from

[312], Fig.(1), ©(1968) by the American Physical Society

can also be ascribed in a different language to asymptotic

contributions from the Pomeron trajectory (called Pomer-

anchuk Regge trajectory in this paper) and its cuts, with

other contributions, which will disappear at increasing

energy, describable by other Regge exchanges,

– two diffraction minima appear in the diffraction model.

6.2.3 The black disk model

One of the most popular representations of the proton as it

emerges from high energy scattering, is that of the proton as a

black disk. This definition of a black or gray disk is related to

the picture of scattering as one of total or partial absorption.

To show its making, and before entering into a description

of models including diffraction, we shall present here the

discussion of some simple elastic scattering models from
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Sect. 4 of the Block and Cahn review [12]. For definitiveness,

these models were illustrated by fixing the parameters so

as to reproduce the total cross section and the value of the

B-parameter at ISR, respectively σtot = 43 mb and B =
13 (GeV/c)−2.

With a(b, s) the scattering amplitude in impact space and

related quantities as in Eqs. (6.57), (6.58), (6.59), and (6.60)

the following models are considered,

– an amplitude which is purely imaginary with a constant

value a = i A/2 inside a radius R, corresponding to a

purely black disk for A = 1, so that near the forward

direction one has

dσ

dt
= π A2 R4

[

J1(q R)

q R

]2

. (6.88)

In this model, the real part can be added as shown in

Eq. (6.30), i.e. one has

dσel/dt |Black disk

= π R(s)4 A2

{

[

J1(Rq)

Rq

]2

+ ρ2

4
J0(Rq)2

}

. (6.89)

Variations of this model include an s-dependent radius,

as in the model obtained by Ball and Zachariasen [315] in

solving the multiperipheral equation for diffractive elas-

tic scattering, with R = R0 log s, A = κ[log(s/s0)]−1,

and giving a total cross section increasing as log s, and

an elastic cross section which is constant,

– a parabolic shape, i.e. a = i A[1−(b/R)2] inside a radius

A, and zero outside,

– a gaussian shape in impact-parameter space,

a = 1/2A exp[−(b/R)2], (6.90)

which leads to σtot = 2π AR2, σel = π A2 R2/2

– Chou and Yang [311,316] model, or the Durand and

Lipes model [312].

As in both Chou and Yang and Durand and Lipes model, the

matter distribution inside the hadrons is described through

their electromagnetic form factor, i.e. through the convolu-

tion of the Fourier transform of the dipole expression. Writing

a(b, s) = e2iδ−1

2i
≡ 1

2
(1 − e−Ω(b)), (6.91)

Ω(b) = A
1

8
(Λb)3 K3(Λb) (6.92)

and fitting the results to reproduce the total cross section at

ISR, it is found that Λ2 ∼ 0.71(GeV/c)2. In Fig. 64, we

show the profiles of the amplitudes in b-space at left, and the

differential cross sections resulting from the different shapes

at right, as obtained in [12].

These figures bring to focus the basic difference between

models with a Gaussian matter distribution and the others:

the Gaussian shape leads to an exponential decrease in −t ,

with no wiggles or dips and bumps, whereas all the other

distributions, grey disk, parabolic shape, or Chou and Yang

model, exhibit a diffraction pattern with minima and maxima.

Such difference among models persists till today.

6.3 Exponentials and parametrisations through Regge and

Pomeron exchanges

The models in impact-parameter space summarised so far

underline the optical nature of scattering, without specific

dynamical inputs, except for the hadron form factors. On the

other hand, data on elastic scattering from ISR appeared to

conform to a picture in which the elastic scattering amplitude

obtains from Regge–Pomeron exchange. We shall examine

some of such models. An additional group of models embeds

Regge–Pomeron exchanges into the eikonal representation,

thus ensuring satisfaction of unitarity, in addition to analyt-

icity of the input Born scattering amplitude. Some of these

models include QCD and diffractive contributions, as we

shall discuss in a separate subsection.

6.3.1 The model independent analysis by Phillips and

Barger (1973)

In 1973, Barger and Phillips (PB) proposed what they called

a model independent analysis of pp scattering [317].

They propose two slightly different parameterisations,

using a phase and two exponentials to describe the differ-

ent slope of the cross section as a function of momentum

transfer in the range −t = (0.15 ÷ 5.0) GeV2. The first, and

more model independent parametrisation, is given as

dσ

dt
= | Ã(s, t) + C̃(s, t)eiφ(s)|2, (6.93)

Ã(s, t) = i
√

Ae
1
2 B(s)t , (6.94)

C̃(s, t) = i
√

Ce
1
2 Dt . (6.95)

Data from plab = 12 GeV to plab = 1496 GeV (
√

s ≈
(5 ÷ 53) GeV) were fitted with this expression. The first

exponential is seen to have normal Regge shrinking, namely

B = B0 + 2α′ log s α′ ≈ 0.3 GeV−2, (6.96)

while the second exponential term is almost constant. The

values of the parameters at each energy value are given in

Table 10. Notice that, with this parametrisation, the phase φ

is fitted to be always larger than π/2, so that the interference

term is always negative and, in the energy range examined

here, the fitted phase is energy dependent.
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Fig. 64 Shown are examples of profile functions, ℑm a(b, s) (at left),

and the resulting elastic differential cross section (at right): dot-dashed

curve, grey disk; dotted curve, parabolic form; solid curve, Gaussian

shape; dashed curve, Chou-Yang model. Reprinted with permission

from [12], Figs.(7,8), ©(1985) by the American Physical Society

Table 10 From [317],

parameters obtained from a fit to

pp data in the interval

(0.15 < |t | < 5.0) GeV2 for the

model given in Eq. (6.93)

pL AB

√
s

√
A B

√
C D φ

GeV GeV
√

mb/GeV GeV−2
√

mb/GeV GeV−2 rad

12.0 4.84 7.47 7.33 0.370 1.66 2.06

14.2 5.25 7.53 7.79 0.305 1.69 2.12

19.2 6.08 7.96 8.00 0.232 1.73 2.12

24.0 6.78 7.97 8.07 0.194 1.76 2.16

29.7 7.52 7.82 8.41 0.175 1.81 2.16

1496.0 52.98 6.55 10.2 0.034 1.70 2.53

To understand better the role played by the energy depen-

dence, the authors proposed a second parametrisation, clearly

inspired by Regge phenomenology, i.e.

dσ

dt
= |i

√
Ae(

1
2 B+α′ log s−iα′π/2)t

+
(

√
C0

s
− i
√

C∞

)

e
1
2 Dt |2 (6.97)

with an explicit energy dependence and the following param-

eter values, valid for all the energies:
√

A = 6.88, B =
5.38, α′ = 0.306,

√
C0 = 10.3,

√
C∞ = 0.035, D = 1.78,

in the units of Table 10.The results are presented in the two

panels of Fig. 65 and the figure shows that the quality of the

two fits is good and about the same for both models.

The PB parametrisation applied to the preliminary

TOTEM data at LHC7 gave the results discussed in [295].

This parametrisation, however, misses the optical point by

some 5–10%, but the description of the region 0.2 < |t | <
2.5 GeV2 is quite satisfactory. We shall return to the question

of the very small −t behavior later.

In [317], it is also suggested that the “second exponen-

tial” can be identified with a term proportional to p−14
T ,

valid, according to the authors, for all available pp data for

s > 15 GeV2. Following this suggestion, and mindful of the

fact that the form-factor dependence of the amplitude would

contribute as (−t)−8, we have tried a slight modification of

the Barger and Phillips model, which consists in substituting

the second term in Eq. (6.93) with a term proportional to the

4th power of the proton form factor, namely to write
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Fig. 65 Model independent fits by Phillips and Barger [317]: parameters are energy dependent at left, constant at right. Reprinted from [317],

©(1973) with permission by Elsevier

A(s, t) = i

[

√

A(s)eBt/2 +
√

C(s)

(−t + t0)4
eiφ

]

, (6.98)

dσ

dt
=
∣

∣

∣

∣

√

A(s)eBt/2 +
√

C(s)

(−t + t0)4
eiφ

∣

∣

∣

∣

2

, (6.99)

which leads to

dσ

dt
= AeBt + C

(−t + t0)8
+ 2 cosφ

√
A
√

CeBt/2

(−t + t0)4
.

(6.100)

When applied to LHC7 data, this parameterisation would

comprehend both the proposal by Donnachie [318,319] (fur-

ther discussed at the end of this section), who advocates

a power-law decrease of the type t−8, as well as the fit

proposed by the TOTEM Collaboration, t−n , with n =
7.8 ± 0.3stat ± 0.1syst [277].

A discussion of how these two models, two exponentials

and a phase or one exponential, a form factor and a phase,

would be realised at LHC, reading data from [277], can be

found in [295].

That the behaviour past the dip at LHC is consistent with

an exponential was also noticed in [296].

One can see, however, that the expression

σtotal = 4
√
π [

√
A +

√
C cosφ] (6.101)

gives a value for σtotal below the data at all energies, includ-

ing at LHC7, where the fitted value misses TOTEM datum

by some 5%, but particularly so at low energy and that

the t-dependence of Beff for t ∼ 0, while reasonably well

described at LHC, is less so at lower energy values. These

two points are connected, since we have already noticed that

at very small |t | values at ISR the slope seems to increase.

An interpretation of this effect is given in the Durham model

[221], with pion loops contributing to the effective Pomeron

trajectories at very small t-values [320] and shall be discussed

together with diffraction.
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Fig. 66 Fits to the LHC7 data sets with model of Eqs. (6.102) and

(6.103) (labeled FFBP in the frame), with t0 a free parameter. Data sets

and parameter values can be found in [303]. Inset LHC7 data near the

optical point are shown in comparison with the present model, which

includes the proton form-factor modification. Reprinted Fig. (2) from

[303], ©(2013) by the American Physical Society

To overcome this problem and still provide a useful tool,

we have proposed an empirical modification of the original

BP model amplitude [303], i.e.

A(s, t) = i[G(s, t)
√

A(s)eB(s)t/2 + eiφ(s)
√

C(s)eD(s)t/2]
(6.102)

and

G(s, t) = F2
P (t) = 1/(1 − t/t0)

4. (6.103)

With free parameters in Eqs. (6.102) and (6.103), the result-

ing analysis of elastic pp data at LHC7 is shown in Fig. 66.

This figure includes a comparison with a parametrisation of

the tail of the distribution given by the TOTEM Collaboration

(dotted line). Such a parametrisation, (−t)−8, was suggested

in [292], and recently proposed again in [319], where it is

shown to describe large −t data from ISR to LHC8, and both

for pp and p̄ p, as we shall discuss shortly.

Before leaving this model, we remark that the dip present

both at lower and higher energies in pp is only a faint appear-

ance in p̄ p. The simple expression for the amplitude with two

exponentials and a phase may still be a valid phenomenolog-

ical tool also for p̄ p, but one cannot draw any conclusion

about the energy dependence of the parameters from this

channel; as one gets close to the dip, and the first term dies

out to zero, non-leading terms, present in p̄ p and not in pp

fill the dip and probably need to be added to the original

model, namely one has, as pointed out in many models, a

situation such as

Ap p̄ = App + R(s, t) (6.104)

where R depends on the Regge trajectories exchanged in the

t-channel, including a possible Odderon, as we shall see later.

Concerning the coefficient B(s), we notice that in the two

exponential model just described, this coefficient is related

to the slope as defined in Eq. (6.11) through the relation

Beff(s, t) = 1

dσel/dt
×
[

ABeBt + C DeDt

+
√

A
√

C(B + D)e(B+D)t/2 cosφ
]

. (6.105)

The PB model can be seen as an attempt to describe the

elastic differential cross section without appealing to uni-

tarity. It was defined as model independent analysis, but it

could also be understood as a modelling of elastic scattering

through Regge and Pomeron exchanges. Since then many

fits to data have appeared with a few Pomerons or many

Reggeons and Pomerons. We shall next look at recent con-

tributions, along these lines, by Donnachie and Landshoff.

6.3.2 Soft and hard Pomeron exchanges in Donnachie and

Landshoff model

In [318,319] the authors stress that the data from the TOTEM

experiment do confirm the results of Regge theory, which is

in many ways a major success of high energy physics. At

high energy, however, such success depends on interpreting

a power law as the ultimate solution, and at the end, as we

shall see, resulting in using models to describe the details of

the data. Indeed if one believes that the Froissart bound is

actually reflecting the existence of confinement, power laws,

which contradict the Froissart bound, must at a certain point

give up to the true asymptotic behaviour.

In Ref. [318] a hard Pomeron had been invoked to describe

LHC7 data, but in the more recent contribution of Ref. [319],

this is not considered necessary. Instead, a double Pomeron

exchange is seen to provide a better fit, as they show. Of par-

ticular interest here is the fact that in both their modelling

of the data, it is triple gluon exchange, ggg term, which

describes the decrease of the elastic differential cross sec-

tion past the dip in the tail region. This is a purely real con-

tribution, which behaves as ≃ (−t)−8 and could be energy

independent.

In [318] three different types of data are analyzed:

– pp elastic scattering at the ISR,
√

s = 30.54 GeV

– HERA data for the proton structure function F2(x, Q2)

at small x , used to determine the hard and soft pomeron

powers

– the TOTEM pp data for both the elastic differential dis-

tribution as well as the total cross section.

The expression used to fit the LHC data is

ADL(s, t) =
∑

i=0,3

Yi e
− 1

2 iπαi (t)(2να′
i )

αi (t)

2ν = 1

2
(s − u), Yi = −X i (i = 0, 1, 2), Y3 = i X3
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Fig. 67 The elastic differential cross section at LHC7, without inclu-

sion of a hard Pomeron [318]. Figure is courtesy of the authors

Fig. 68 The elastic differential cross section at LHC7, with inclusion

of a hard Pomeron, from [318]. Figure is courtesy of the authors

with X0, X1, X2, X3 real and positive. The four Regge tra-

jectories are parametrised as

αi (t) = 1 + ǫi + α′
i t (6.106)

with ǫi treated as free parameters and

• α0(t) is the hard Pomeron, with

α′
0 = 0.1 GeV−2, which, they find, works well

• α1(t) is the well known soft Pomeron, with

α′
1 = 0.25 GeV−2,

• α2(t) is the degenerate f2, a2 trajectory, with

α′
2 = 0.8 GeV−2

• α3(t) corresponds to ω, ρ trajectory, with

α′
3 = 0.92 GeV−2.

The normalisation of the amplitude is

σTOTAL = s−1ℑm ADL(s, t). (6.107)

The parameters ǫi are related to the proton structure function.

Thus a simultaneous fit to the HERA data and to LHC7 gives

the figures shown in Figs. 67 and 68, where the differential

elastic cross section is computed without and with a hard

Pomeron, respectively.

The difference between the two figures is due to the fact

that, since the total cross section cannot come out right with-

 1e-5
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Fig. 69 The elastic differential cross section at LHC7 from [319],

revisited as described in the text. Figure is courtesy of the authors,

reprinted from [319], ©(2013) with permission from Elsevier

out a hard pomeron, a hard Pomeron is added to obtain

the total cross section as given by TOTEM. This gives the

parameters for the hard pomeron as α′
0 = 0.1 GeV−2 and

ǫ0 = 0.362.

At large t , the authors add a real term to the amplitude of

the type Cst−4 which they understand as due to triple gluon

exchange [292,321]. In order to make it finite at t = 0 a

possible expression is proposed as

Cs

(to − t)4
. (6.108)

It is pointed out in this paper that in order to correctly model

the dip, both the real and the imaginary parts must become

very small at the same value of t .

In the more recent contribution [319], where no hard

Pomeron is invoked, the amplitude is given as three single

Pomeron exchange terms, one double exchange and a triple

gluon term. We show a representative fit of the LHC7 data

from this paper in Fig. 69.

Each one of the three single-exchange terms is related to

a trajectory αi (t), with

A(s, t) = F(t)

[

− X P

2ν
e− 1

2 iπαP (t)(2να′
P )

αP (t)

− X+
2ν

e− 1
2 iπα+(t)(2να′

P )
α+ P(t)

∓ X−
2ν

e− 1
2 iπα−(t)(2να′

−)α−(t)

]

(6.109)

for the pp/ p̄ p amplitude, respectively, ν = (s − u)/2m, and

F(t) is a form factor. The three trajectories are parametrised

as

αi (t) = 1 + ǫi + α′
i t. (6.110)

To these single-exchange terms, a double Pomeron exchange,

P P term, is then added. It corresponds to a trajectory

αP P (t) = 1 + 2ǫP + 1

2
α′(t) (6.111)
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but the corresponding amplitude term is not just a power

sαP P (t), and additional logarithmic terms appear at the

denominator.

The tail of the distribution is given by triple gluon

exchange [292], and is such that at large |t | one has

g(t) = C
t3
0

t4
. (6.112)

A joining with the other parts of the amplitude is obtained by

trial and error, as the authors say, and is parametrised with

C

t0
e2(1−t2/t2

0 ). (6.113)

The small |t | in the Coulomb region is included as

∓ αE M

t
. (6.114)

The description of data from ISR to LHC for pp is very good,

less so the description of p̄ p data, but this is common to many

present fits. The values for the 12 parameters which give the

best fit to total and elastic data are given in the paper, with in

particular ǫP = 0.110.

6.3.3 The model by Schegelsky and Ryskin

In [61], the emphasis is on the small-t behaviour and a con-

cern that the elastic slope may not be just a simple linear

power in log s. The authors start with the usual Regge and

Pomeron parametrisation for the elastic scattering amplitude,

namely

Tab = Fa(t)Fb(t)CP sαP (t) + FR(t)s
αR(t) (6.115)

where the first term corresponds to the Pomeron, the second

to a Reggeon and would be negligible at high energy. The

differential elastic cross section at high energy thus takes the

form

dσab

dt
= σ 2

0

16π
F2

a (t)F2
b (t)

(

s

s0

)2ǫ+2α′
P t

(6.116)

where the slope of the Pomeron trajectory accounts for the

growth of the interaction radius caused by a long chain of

intermediate (relatively low-energy) interactions. Agreement

with data, with an elastic slope given by

Bel = B0 + 2α
′e f f
P log

s

s0
(6.117)

is obtained by assuming a Gaussian type behaviour for the

form factors F2
a (t)F2

b (t) = exp(B0t). The second term

in Eq. (6.117) is supposed to be universal, and the value

obtained by examining fixed target experiments, i.e. up to√
s = 24 GeV, is given as α′ = 0.14 GeV−2. On the other

hand, the original analysis by Donnachie and Landshoff [136]

at
√

s = 52.8 GeV would lead to α′ = 0.25 GeV−2.

This discrepancy points to the fact that the energy depen-

dence of the elastic slope may be more complicated than a

simple logarithm. The first idea is that as the energy increases,

multiple interactions take place. In Regge-language, these

multiple interactions are described by multiple Pomeron dia-

grams.

One important point is that in impact parameter represen-

tation, as the energy increases towards the black-disk limit,

the imaginary part of the elastic scattering amplitude → 1.

However, while asymptotically going to the black-disk limit,

at the periphery the amplitude is still growing. This leads,

according to the authors, to an effective growth of the slope.

The reason is that the continuing increase of the amplitude

at the periphery of the impact parameter space implies an

increasing radius. In this way the authors understand the dis-

crepancy between their result for α′
P relative to Donnachie

and Landshoff. They also provide another way to understand

this behaviour, namely the interplay between one and two

Pomeron exchanges, which have different signs, so that as

the two Pomeron effect increases, the amplitude drops more

rapidly.

Assuming an s-dependence different from the simple log-

arithm of Eq. (6.117), may explain why α
′eff
P �= α′

P . The

authors propose

Bel = B0 + b1 log
s

s0
+ b2 log2 s

s0
, (6.118)

so that, if one rewrites Eq. (6.118) as

Bel = B0 + α
′eff
P (s) log

s

s0
≡ B0 + b1 log

s

s0
+ b2 log2 s

s0
,

(6.119)

one would obtain α
′eff
P (s) = b1 + b2 log s/s0. To determine

the coefficients, the authors plot the results from a series

of experiments, as we show in the left panel of Fig. 70. For

s0 = 1 GeV2, the coefficient b1 is consistent with zero, while,

for b2, the authors obtain b2 = 0.037 ± 0.006 GeV−2. Since

b1 is consistent with zero, the authors propose to drop this

term altogether and refit the data with only a (log s/s0)
2 term.

This fit gives b2 = (0.02860 ± 0.00050) GeV−2.

Their result is then discussed in light of the fits done by

Block and Halzen in [259] and the possible saturation of

the Froissart bound. Unlike Block and Halzen, the authors

here do not think that the black-disk limit is yet reached, and

believe the proton to be still relatively transparent, so that

σtotal = 2π R2, with Bel = R2/4, is not yet at its geometric

value. One word of caution is, however, put forward by these

authors, namely that the non-linear logarithmic rise of the

elastic slope is basically determined by the recent TOTEM

measurement of B(7 TeV) ∼ 20 GeV2. Up to and including

the TeVatron measurement, a linear logarithmic energy rise

for Bel is in fact actually still compatible, as one can see from

Fig. 70.
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Fig. 70 From [61]: at left, the effective slope for the elastic differential cross section from a set of experiments, compared with the proposed

effective parametrisation of Eq. (6.118). At right the energy dependence of 2α
′eff
P . Reprinted with permission from [61], Figs. (1,2), ©(2012) by

the American Physical Society

6.4 Analyses with Pomeron, Odderon and Regge

exchanges

The dip structure has been connected to C-odd exchanges in

the t-channel, phenomenologically referred to as the Odd-

eron. The existence of such a state is predicted by QCD and

has been advocated in particular by Nicolescu, also in col-

laboration with other authors [211,322].

As we have mentioned in Sect. 5, the QCD treatment of the

Odderon began in 1980 [212,214]. It was examined exten-

sively by Bartels and others in non-abelian gauge and color

glass condensate theories. Present QCD studies of the Odd-

eron trajectory focus on NLO contributions [216] and prop-

erties in the strong coupling limit [217]. Still, the major ques-

tion to face is whether and how to detect its presence in LHC

experiments and this takes us to the many phenomenological

analyses which include Reggeons, Pomerons and Odderons.

6.4.1 Phenomenological analyses with and without the

Odderon contribution

To discuss the proposal to detect the Odderon at RHIC and

LHC by Avila, Gauron and Nicolescu (AGN2006) [209], we

start with the model by Avila, Campos, Menon and Montanha

(ACMM2006) which incorporates both the Froissart limiting

behavior as well as Pomeron and Regge exchanges [210].

In [210], the elastic amplitude is normalised so that

dσ

dq2
= 1

16πs2
|ℜeF(s, q2) + iℑm F(s, q2)|2, (6.120)

σtot(s) = ℑm F(s, 0)

s
. (6.121)

Although, unlike the total cross section, both the real and the

imaginary parts of the scattering amplitude enter the elas-

tic differential cross section, in the small t-region, |t | <

0.2 GeV2, the scattering amplitude can be expected to be

still mostly imaginary. The steep decrease in this region can

be empirically parametrised in terms of an exponential, i.e.

one writes

ℑm F(s, q2) ≈ α(s)e−β(s)q2

. (6.122)

Experimental data suggest that their energy dependence can

be parametrised in terms of polynomials in log s. The differ-

ence between pp and p̄ p is then introduced as

ℑm Fpp(s, q2)

s
=

n
∑

i=1

αi (s)e
−
∑n

i=1 βi (s)q
2

ℑm Fp p̄(s, q2)

s
=

n
∑

i=1

ᾱi (s)e
−
∑n

i=1 β̄i (s)q
2

αi (s) = Ai + Bi log s + Ci log2(s)

ᾱi (s) = Āi + B̄i log s + C̄i log2(s)

βi (s) = Di + Ei log s

β̄i (s) = D̄i + Ēi log s. (6.123)

The above parametrisation implies 10n − 1 parameters, hav-

ing imposed the constraint

n
∑

i=1

(Ci − C̄1) = 0, (6.124)
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Fig. 71 Predictions for the elastic differential cross section by Avila

et al. [210] at LHC and the Tevatron for pp and p̄ p. Reprinted with

permission from [210] ©(2006) Springer

which is valid when the Froissart bound is reached and can be

considered a generalised form of the Pomeranchuk theorem

[210].

Concerning the real part of the amplitude, the authors

make use of the first order derivative dispersion relations

for the even/odd amplitudes, defined as

Fpp(s, q2) = F+(s, q2) + F−(s, q2), (6.125)

Fp̄ p(s, q2) = F+(s, q2) − F−(s, q2), (6.126)

which lead to

ℜeF+(s, q2)

s
= K

s
+ π

2

d

d log s

ℑm F+(s, q2)

s
, (6.127)

ℜeF−(s, q2)

s
= π

2

(

1 + d

d log s

ℑm F−(s, q2)

s

)

. (6.128)

The validity of the above expressions only extends to a region

0 < q2 < q2
max and depends on the value chosen for qmax. In

the subsequent fit to the experimental data, different values

of qmax are considered, leading to different parameter sets.

The above parametrisation, applied to the vast set of lower

energy data up to the Tevatron, gives the result shown in

Fig. 71. We see that, for the energy
√

s = 14 TeV, the

parametrisation does not show existence of a dip.

The above approach has been discussed because its no

dip at LHC result in contrast with the TOTEM measurement,

can falsify some of the assumptions, or lead to the need to

introduce the Odderon, as done in a subsequent work with

Nicolescu, as we discuss next.

Avila, Gauron and Nicolescu (AGN2006) [209] examine

the data in light of the possible existence of the Odderon, a

QCD effect corresponding to a singularity in the complex

Fig. 72 Data for the elastic differential cross section for p̄ p scattering

from the three experiments at the Tevatron, compared with UA4 data,

from [323]. Reprinted with permission from [323], Fig. (12), ©(2012)

by the American Physical Society

J-plane at J = 1 at t = 0 in the amplitude F−, which

is odd under crossing. The Odderon is considered a non-

leading QCD effect, which can only be detected in the elas-

tic differential cross section. In this analysis, its contribution

is parametrised according to the properties of a number of

Regge, Pomeron and Odderon trajectory exchanges, in the

context of total cross sections saturating the Froissart bound.

With such parametrisation, at LHC energies a dip is expected

both for pp and p̄ p scattering, something which cannot be

proved experimentally at LHC. In [209] the suggestion is

advanced to try to check the presence of the dip at RHIC,

namely at
√

s = 500 GeV.

The AGN2006 analysis describes the ISR data at
√

s =
52.8 GeV where both pp and p̄ p elastic differential cross

sections were measured. At this energy, while pp shows a

dip, p̄ p does not, and the model with the Odderon describes

these features well. At
√

s = 200 GeV and 500 GeV, where

only p p̄ scattering was present, the dip has morphed in a

break in the slope, with not much difference between the two

processes, with the p̄ p curve remaining slightly higher. At

900 GeV, the break is predicted to be more pronounced and

at the Tevatron energies there is the hint of a dip developing,

with p̄ p points remaining higher. Until recently, experimen-

tal data at the Tevatron did not go beyond |t | ≃ 0.6 GeV2.

Presently published data from the D0 Collaboration [323],

plotted in Fig. 72, indicate a pronounced break in the slope

(as at S p̄ pS ), possibly even a dip. This would correspond

to the fact that the terms from Regge exchange are becoming

increasingly negligible.

There are no predictions for LHC7, but at
√

s = 14 TeV

the dip is now predicted both for pp and p̄ p as shown

in Fig. 73. At LHC running at
√

s = 14 TeV (LHC14) the

position of the dip is expected at |t | ∼ 0.35 GeV2, to be com-

pared with the position at the ISR at |t | ≃ 1.3 GeV2 and the

position at LHC7 reported by TOTEM at |t | ∼ 0.53 GeV2.
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Fig. 73 Predictions for the elastic differential cross section by Avila et

al. [209] at LHC for pp and p̄ p for the case with the odderon. Reprinted

with permission from [209], ©(2006) Springer

We will discuss now in detail the parametrisation in [209].

The starting point is the maximal asymptotic behaviour of the

total cross sections, consistent with data, i.e.

σtot ∝ log2 s, (6.129)

Δσ(s) ≡ σ
p̄ p

tot − σ
pp

tot ∝ log s, as s → ∞. (6.130)

According to [209], the choice of a maximal behaviour

of the total cross section is not necessarily implying that

the imaginary part of F−(s, 0) is also maximal, i.e. that

F−(s, 0) ∼ log s, but, the authors argue, it is the natural

choice that strong interactions be as strong as possible. With

this assumption, a parametrisation for the two, even and

odd crossing, amplitudes is prepared and then determined

by comparison with the data.

These authors start with a general form for the hadronic

amplitudes compatible with Eq. (6.130). Their strategy is

to consider both the existence and the non-existence of the

Odderon, parametrising all the existing data (832 points when

the paper was written) for both processes pp and p̄ p for the

quantities σtot(s), ρ(s) and dσel(s, t)/dt . After choosing the

best description for the existing data, the model is applied

to predict future data and to recommend experiments which

might measure the difference between the two amplitudes

F+(s, t) and F−(s, t). The expressions for these even and

odd amplitudes are written as sum of Pomeron and Reggeon

contributions, following general theorems given in [288,324,

325], namely

F+(s, t) = F H
+ (s, t) + F P

+ (s, t)

+F P P
+ (s, t) + F R

+ (s, t) + F R P
+ (s, t)

F−(s, t) = F M O
− (s, t) + F O

− (s, t)

+F O P
− (s, t) + F R

− (s, t) + F R P
− (s, t) (6.131)

where the superscript H correspond to a polynomial in log s̄,

with

s̄ =
(

s

s0

)

e− 1
2 iπ (6.132)

maximally increasing as log2(s) with exponential t− depen-

dence, P is the contribution from the Pomeron Regge pole,

P P the Pomeron–Pomeron Regge cut, R corresponds to the

secondary Regge trajectories, R P the reggeon-Pomeron cut.

For the odd under crossing amplitude, M O represents the

maximal Odderon contribution, also increasing as log2 s, O is

a minimal Odderon Regge pole contribution with α(0) = 1,

O P is a minimal Odderon-Pomeron cut, R a secondary

Regge trajectory associated with the particles ρ(770) and

ω(782), R P a reggeon-Pomeron Regge cut.

In [209] the no Odderon case is obtained by choosing

parameters such that all the three amplitudes with con-

tributions from the Odderon are zero, i.e. F M O
− (s, t) =

F O
− (s, t) = F O

− P(s, t) = 0. Because of the contribution

from the Regge and the Reggeon-Pomeron cut, with

1

s
F R

− (s, t) = −C−
R γ−

R (t)eβ
R
− t

×
[

i + tan
(π

2
αR

−(t)
)]

(

s

s0

)α−
R (t)−1

1

s
F R P

− (s, t) =
(

t

t0

)2

C−
R P eβ

R P
− t

[

sin
(π

2
αR P

− (t)
)

+i cos
(π

2
αR P

− (t)
)]

×
( s

s0
)α

−
R P (t)−1

log[(s/s0) exp(−i π
2
)] (6.133)

the amplitude F− is not zero, but it fails to give a good descrip-

tion of the ISR data at
√

s = 52.8 GeV. The results can be

summarised with the fact that, starting with the ISR data,

the case without Odderon does not reproduce the data at√
s = 52.8 GeV as well as it can do with the Odderon.

According to the authors this is due to the fact that the t-

dependence of these two remaining terms is constrained by

the parameters of the Regge and Pomeron trajectories, which

are non-leading and fail to interfere with the even amplitude

F+ in the correct way.

Turning to the other case, namely the Odderon being

present, the model can count on 12 more parameters, which

add to the 23 parameters determining the F+ amplitude.

Numerically, it is now possible to do a good fit to ISR data

which show the clear difference between pp and p̄ p, with
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Fig. 74 The fit for the differential cross sections for pp and p̄ p at left, and, at right, the predicted oscillation in the difference of the cross sections.

Both figures are from Avila, Gauron and Nicolescu [209]. Reprinted with permission from [209] ©(2006) Springer

and without the dip. At LHC 14 TeV, the dip is fully in place,

but, unlike intermediate energies, it would be present in both

processes, and the difference between the two cross sections

is small. The predicted dip is at |t | ∼ 0.4 GeV2 and the cross

section after the dip rises to ∼10−1 mb/GeV2.

A pattern of oscillations is observed to develop in the dif-

ference Δ( dσ
dt

(s, t)) for pp and p̄ p. with two minima, one

around |t | = 0.1 GeV2 and the other around |t | = 1.1 GeV2.

In Fig. 74 we show the fit to the differential cross section at

ISR and the predicted difference.

In a subsequent paper [326] the model is extended to

higher values of 0 < |t | < 16 GeV2. They define as the stan-

dard data set the data set proposed by Cudell, Lengyel and

Martynov [327]. To generalise the results beyond the range

|t | = 2.6 GeV2 new terms are added to the parametrisation

originally proposed, namely

1. N± which behave like t−4 and growing like log s. The

motivation for N− was advanced to include the Odderon

3-gluon exchange, with elementary gluons.

2. a term Z− which has a role as “cross-over term” for very

small t ∼ 0.16 GeV2

3. two linear functions of the type 1 + AM O/O t multiply-

ing the maximal Odderon and the Odderon pole term,

and which are necessary to describe the smallness of the

Odderon forward coupling at present energies.

With these many parameters the fit is now very good and the

model predicts a dip at 14 TeV around |t | ∼ 0.5 GeV2 and

a shoulder around |t | ∼ 0.8 GeV2. They note that at LHC

energies the exponential behaviour of dσ/dt is no longer

valid.

A different set of parametrisation has been considered in

[328–330] that includes Coulomb interference region as well

as large t values, in terms of about 10 parameters.

6.4.2 Jenkovszky’s Pomeron/Odderon dipole model

We now discuss the contribution by Jenkovszky with differ-

ent collaborators from [331,332] and references therein. The

model described in [332] extends the Donnachie and Land-

shoff model, to include the dip-bump structure of the differen-

tial elastic cross section, non-linear Regge trajectories, a pos-

sible Odderon, i.e. C-odd asymptotic Regge exchange. The

extension should also be such as to be compatible with s and

t-channel unitarity. The authors recall that the first attempt to

reproduce the dip-bump structure was done through the Chou

and Yang model [316], whose major drawback is that it does

not contain any explicit energy dependence. As mentioned,

at the beginning of this section, the Chou and Yang model

describes an impact parameter distribution obtained from the

proton electromagnetic form factor. In the Chou and Yang
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model, just as in the eikonal models in general, the dip-bump

structure is obtained because of the zeroes of the imaginary

part of the amplitude, induced by the Fourier transform from

b-space. In [332], the pattern of the parametrisation proposed

by Barger and Phillips in 1973 [317], already discussed, is

followed. The amplitude is normalised so that

dσ

dt
= π

s2
|A(s, t)|2 and σtotal = 4π

s
ℑm A(s, t = 0)

(6.134)

with constants to be determined from the fits, and the

amplitudes written such as embodying the Regge–Pomeron

description, itself reflecting the collective processes partici-

pating to high energy scattering.

The model in [332] is based on four contributions to the

scattering amplitudes for pp and p̄ p, and the amplitudes are

written as a sum of Regge pole amplitudes, namely

A
p̄ p
pp = AP (s, t) + A f (s, t) ± [AO(s, t) + Aω(s, t)]

(6.135)

where P, O stand for the Pomeron and Odderon contribution

respectively C-even and C-odd with intercept α(0) > 1, f

and ω, again C-even and C-odd and α(0) < 1. The Pomeron

and the Odderon are treated on the same footing, their param-

eters to be determined by the fit to the data. For Pomeron and

Odderon, a dipole expression is chosen, with a non-linear

trajectory, i.e.

AP (s, t) = i
aP

bP

s

s0
[r2

1 (s)e
r2

1 [αP−1] − εPr2
2 (s)e

r2
2 [αP−1]],

(6.136)

AO(s, t) = aO

bO

s

s0
r2

O(s)er2
O [αO−1] (6.137)

with r2
1 = bP + log(s/s0) − iπ/2, r2

2 = log(s/s0) −
iπ/2, r2

O = bO + log(s/s0)− iπ/2. For the Pomeron trajec-

tory, both non linear and linear cases are considered, while

the Odderon is taken to lie on a linear trajectory, similar to the

reggeon trajectories for f and ω. The adjustable parameters

are the trajectory slopes and intercepts, the constants aP/O

and bP/O and ε, which quantify the presence of absorption.

The fits to the usual set of observables, differential elas-

tic cross section, total cross section and ρ parameter, lead

the authors to conclude that the Odderon contribution is nec-

essary in order to correctly describe the dip-bump structure

from ISR to the Tevatron. It should be noticed that in this

model there are no wiggles beyond the first dip, since this

model does not use the eikonal form for the amplitude, but

directly parametrises it in the (s, t) plane. For LHC, we repro-

duce their predictions in Fig. 75. More particularly, the con-

clusions from this model in [332] are the following:

1. A single shallow dip is expected at LHC followed by a

smooth behaviour

Fig. 75 Prediction from the model by Jenkovszky et al. [332] for the

elastic differential cross section at LHC, with linear Pomeron and Odd-

eron trajectories. The band indicates uncertainties in the fit procedure.

Republished with permission of L. Jenkovszky, from [332], ©(2011)

World Scientific; permission conveyed through Copyright Clearance

Center, Inc

2. The Odderon, described as a dipole, with a positive inter-

cept and almost flat behaviour in t is indispensable to

describe the dip-bump region

3. the diffractive minimum in pp at LHC7 is expected at

|t | = 0.65 GeV2, receding to 0.6 GeV2 at LHC14

4. the contribution from the non-leading Regge trajectories

can be neglected in the LHC region.

Recently, the possibility to extract the Odderon and the

pomeron contribution from pp and p̄ p data has been revis-

ited in [333]. After early results from LHC8 have been

published, the model has been applied [334] to include a

threshold singularity in the Pomeron trajectory, required by

t-channel unitarity and related to the pion pole to account

for the non-linear slope at very small −t-values, as reported

by the TOTEM Collaboration [281]. The possibility that the

amplitude reflects a square root singularity was suggested

long time ago [320,335], and is also present in the work by

Khoze, Martin and Ryskin, discussed in Sect. 6.6.3.

6.5 Eikonal models driven by Pomeron exchanges, parton

dynamics and QCD-inspired inputs

Eikonal models allow one to satisfy unitarity and comply

with the asymptotic requirements of the Froissart bound.

Models using this formulation differ depending on the par-

ticular dynamical input determining the eikonal function.

We shall briefly illustrate some results from models which

include partonic descriptions of the proton, such as the Islam

model, the so-called Aspen model, and resummation of many

Pomeron-like exchanges. We also include in this subsec-

tion the eikonal-based model by Bourrely, Soffer and TT

Wu. In a separate subsection we shall illustrate QCD models
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Fig. 76 Pictorial representation of the Condensate enclosed Chiral-

bag model from Luddy’s presentation at Blois 2009. Reprinted from

[339], in CERN-PROCEEDINGS-2010-002, ©(2010) CERN. Figure

is courtesy of the authors

which specifically include diffractive processes and derive

their input from QCD evolution equations, notably the BFKL

approach.

6.5.1 Quarks and gluons in the Islam model

A model based on the eikonal representation but reflecting

the internal structure of hadrons is given by the Islam model

[336–338].

In Islam’s original model for elastic scattering, the scatter-

ing is described as a two component process: the first giving

rise to diffractive scattering where the two pion clouds sur-

rounding the scattering nucleons interact with each other,

whereas the second hard scattering process, dominating at

large scattering angle, takes place via vector meson exchange,

while the pion clouds independently interact.

In a more recent paper [337] the model evolves into three

components, a soft cloud, a hard exchange at low c.m. energy

and a hard component at high energy, identified with the

BFKL Pomeron. Let us see how this picture is realised, also

based on Luddy’s presentation at Blois 2009 [339]. This

model is lately referred to as Condensate enclosed Chiral-

bag Model, and can be seen pictorially from a drawing of

this presentation, Fig. 76.

In this version of the model [337], a qq hard scatter-

ing term brings in four new parameters, namely the relative

strengths between the ω exchange term and the hard qq term,

the hard pomeron intercept αB F K L = 1 + ω, the black disk

radius r0 and the mass m0 which determines the size of the

quark bag. In total this model has 17 parameters which can

be fixed giving a quite satisfactory description of the total

and differential cross section, at various c.m. energies and of

the ρ parameters.

In [339,340], as in the previous papers, the proton is

described through three basic elements: an external cloud

of qq̄ pairs (sea quarks), an inner shell of baryonic charge

and a central quark-bag containing the valence quarks. The

external cloud and the inner shell have an obvious connection

to QCD phenomenology, a pion cloud or some gluon con-

densate and the valence quarks, while one nucleon probes

the baryonic charge of the other via ω-exchange. Thus the

picture is:

1. At very small values of the momentum transfer, the scat-

tering is diffractive and we see the interaction of one

cloud of one nucleon interacting with the cloud of the

other nucleon.

2. Then the ω-exchange starts dominating.

3. At even higher values, it is quark–quark scattering which

takes over, i.e. pQCD.

The diffractive contribution

TD(s, t) = i pW

∫

bdb J0(bq)ΓD(s, b) (6.138)

is built phenomenologically with a diffraction profile func-

tion given as

ΓD(s, b) ≡ 1 − eiχ(s,b)

= g(s)

[

1

1 + e(b−R(s))/a(s)
+ 1

1 + e−(b−R(s))/a(s)
− 1

]

.

The above profile function renders the asymptotic behaviour

of the total cross section through the function R(s) =
R0 + R1(log s − iπ

2
), a(s) = a0 +a1(log s − iπ

2
)with g(s) an

even crossing energy dependent coupling constant. Through

the assumed energy dependence of the radius R(s), the func-

tion ΓD(s, b) gives rise to an asymptotic energy dependence

which saturates the Froissart bound. It is thus possible to

obtain the following results, with corresponding asymptotic

theorems at the side

σtot(s) ∼ (a0 + a1 log s)2 Froissart−Martin bound

ρ(s) ≃ πa1

a0 + a1 log s
derivative dispersion relations

TD(s, t) ∼ is log2 s f (|t | log2 s) AKM scaling

T
pp

D (s, t) = T
p p̄ p

D (s, t) crossing even property (6.139)

where AKM stands for Auberson, Kinoshita and Martin scal-

ing [288]. The contribution from ω-exchange is written as

Tω(s, t) = ±i γ̂ ei χ̂ (s,b)s
F2(t)

m2
ω − t

(6.140)

where the first factor represents the absorptive effect from

soft hadronic interactions in ω exchange, and the ± refers to
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Fig. 77 The differential elastic cross section from Islam model [340]

at
√

s = 14 TeV. Reprinted from Fig. (2) of [340], in DESY-PROC-

2007-02, ©(2007) DESY. Figure is courtesy of the authors

p̄ p and pp scattering. The squared form factor in the ampli-

tude indicates that one is probing two baryonic charge dis-

tributions. Finally the last term, which dominates at larger

|t | values, is due to valence quark scattering, with the quarks

interacting via reggeised gluon ladders, described through the

BFKL Pomeron. This initially single valence quark scatter-

ing is then unitarised. We show these predictions in Fig. 77,

where the different contributions are indicated separately. A

recent fit to data, inclusive of predictions for LHC14, is shown

in Fig. 78 from [338]. In 2015, the model took a significant

step forward, with incorporation of polarisation of the outer

quark–antiquark cloud region of the proton by the enclosed

baryonic charge as described in [341].

6.5.2 The eikonal model by Bourrely, Soffer and Wu

Another model of interest is due to Bourrely, Soffer and Wu

(BSW). In [163], the total as well as the differential cross

sections are discussed. Recent results and a comparison with

LHC data can be found in [342,343]. We show in Fig. 79

their pre-LHC predictions at various energies for the elastic

differential cross section.

This model follows in the steps of the very early work

by Cheng and Wu. A particularly clear description of how

the impact picture developed after the work by Cheng and

Wu (CW) can be found in a short review paper by Soffer

[159] and also in [160]. It is recalled that QED was the only

known relativistic quantum field theory in the late ’60s and

that CW introduced a small photon mass λ in order to avoid

what Soffer calls unnecessary complications. After a brief

Fig. 78 A 2013 study of the differential elastic cross section in Islam

and Luddy model. Reprinted from [338]. Figure is courtesy of the

authors

Fig. 79 The elastic differential cross section at various cms energies

from BSW model [163] ©(2002) by Springer. Reprinted with permis-

sion from Springer

introduction to the CW results, Soffer [159] describes the

model developed together with Bourrely and Wu, starting

with the elastic amplitude for proton scattering namely

a(s, t) = aN (s, t) ± sac(t) (6.141)
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where the ± signs refer to p̄ p and pp respectively. The

hadronic amplitude is given by aN (s, t) and the factor s has

been factorised out of the Coulomb amplitude ac(t). For the

latter, one has

ac(t) = 2α
G2(t)

|t | e∓iαφ(t) (6.142)

where α is the fine structure constant, φ(t) is the phase intro-

duced by West and Yennie [27] as

φ(t) = log

[

t0

t

]

− γ (6.143)

γ being the Euler constant and t0 = 0.08 GeV2. G(t) is the

proton electromagnetic form factor, and the model chosen by

Soffer in [159] is

G(t) = [(t − m2
1)(t − m2

2)]−1. (6.144)

The usual quantities are defined accordingly as

σtot = 4π

s
ℑma(s, t = 0)

dσ(s, t)

dt
= π

s2
|a(s, t)|2

B(s, t) = d

dt
log

(

dσ

dt

)

(6.145)

and the hadronic amplitude is obtained from the impact pic-

ture [161] as

aN (s, t) = is

∫ ∞

0

bdbJ0(b
√

−t)(1 − e−Ω(s,b)). (6.146)

The eikonal functionΩ(s, b) is split into two terms, reflecting

different dynamical inputs, namely

Ω(s, b) = R0(s, b) + Ŝ(s, b) (6.147)

where R0(s, b) includes the Regge contribution important in

the low-energy region and is different for pp and p̄ p, whereas

the second term Ŝ(s, b) is the same for both processes and

gives the rising contribution to the total cross section. This

term is factorised into energy dependence and impact param-

eter dependence as

Ŝ(s, b) = S0(s)F(b2) (6.148)

with the energy dependence given as in the CW model. Thus

the model exhibits a Pomeron energy dependence given by

a complex crossing symmetric expression

S0(s) = sc

(log s/s0)c′ + uc

(log u/u0)c′ (6.149)

where u is the third Mandelstam variable. At high energy

and small momentum transfer, the real and imaginary parts

of the amplitude can be obtained through the substitution

log u = log s − iπ . As for the essential impact parameter

dependence, and hence the t-dependence, this is parametrised

Table 11 Parameter values for the BSW model from Diffraction 2012

[342]

c = 0.167 c′ = 0.748

m1 = 0.577 GeV m2 = 1.719 GeV

a = 1.858 GeV f = 6.971 GeV−2

Fig. 80 Absolute values of real and imaginary parts of the elastic dif-

ferential cross section at 7 TeV from [342,343]. Reprinted with permis-

sion from [342], Fig. (2), ©(2013) by AIP Publishing LLC

through an expression similar to the proton electromagnetic

form factor, namely the Fourier transform F(t) of F(b2) is

F(t) = f [G(t)]2

[

a2 + t

a2 − t

]

. (6.150)

This model had six parameters, of which two, c and c′, related

to the energy dependence, and the other four, a,m1,m2, and

f describing the impact parameter dependence.

Including the LHC7 data, the values obtained for the six

parameters are given in Table 11, from Soffer’s contribu-

tion to Diffraction 2012 [342]. The recent discussion of the

model in [342] gives the description shown in Figs. 80 and 81,

respectively for the scattering amplitude and the differential

cross section. Figure 81 shows that the tail of the distribution

after the dip reflects the usual oscillations characteristic of

eikonal models.

We note that the b-dependence, hence the t-dependence,

is obtained through the form factor F(b2), which is not the
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Fig. 81 Comparison between TOTEM data [344] and BSW model

description of the elastic differential cross section at 7 TeV from [342,

343], calculated with 68% CL. Reprinted with permission from [342],

©(2013) by AIP Publishing LLC

nucleon factor nor a convolution of two nucleon form factors,

as it would be in the eikonal mini-jet models or the Glauber

models. This form factor is independent of the overall energy.

6.5.3 Many Pomeron structures in eikonal models

We discuss here four papers by Desgrolard, Giffon, Mar-

tynov, Petrov, Predazzi and Prokudin, who have worked

together in different combinations. These authors have been

involved in a precision analysis of resonances and the forward

region, as in Desgrolard, Giffon, Martynov and Predazzi

[345], but they also deal with the elastic differential cross sec-

tion [346]. In Petrov and Prokudin [347] the three Pomeron

model is introduced. Then the model is again discussed in

[348] and the Coulomb interference problem is picked up by

the same authors, this time with Predazzi in [349] and before

in [348].

The main point of this approach is the need to go beyond

one or two Pomeron pole description of the elastic differ-

ential cross section, and allow for many Pomerons. Let us

begin with Desgrolard, Giffon, Martynov and Predazzi [346],

which contains in its introduction a good description of the

state-of-the-art in the year 2000, at the time LEP was closed

and construction for LHC started.

This model is based on eikonalisation of the input Born

amplitude. Namely, the scattering amplitude will be given

through the eikonal function χ(s, b), and one has the usual

set of equations

σtotal = 4π

s
ℑm A(s, t = 0), (6.151)

dσ

dt
= π

s2
|A(s, t)||2, (6.152)

ρ = ℜeA(s, t = 0)

ℑm A(s, t = 0)
. (6.153)

The eikonalised amplitude in (s, t) space can be written

through the Fourier–Bessel transform

A
p̄ p
pp = 1

2s

∫

H
p̄ p
pp (s, b)J0(b

√
−t)bdb (6.154)

of the function H
p̄ p
pp which is to be defined in terms of an

amplitude h
p̄ p
pp , which is the Fourier transform of the Born

amplitude in (s, t) space,

h
p̄ p
pp (s, b) = 2s

∫

a
p̄ p
pp (s,−q2)J0(bq)qdq. (6.155)

The next problem is the nature of the resummation procedure

which takes one from the Born amplitude to the full ampli-

tude. The Born input for the crossing-even and crossing-odd

amplitudes

a
p̄ p
pp (s, t) = a+(s, t) ± a−(s, t) (6.156)

will be determined by the available data on the total cross

section, the differential elastic cross section and the ratio

ρ(s, t = 0). The even part is parametrised through the con-

tribution of a Pomeron and an f -reggeon, while the odd part

is an Odderon and an ω-Reggeon, i.e.

a+(s, t) = aP (s, t) + a f (s, t), (6.157)

a−(s, t) = aO(s, t) + aω(s, t). (6.158)

For the Reggeon, the standard form is used, namely

aR(s, t) = aR s̃αR(t)ebR t , (6.159)

αR(t) = αR(0) + α′
R t (6.160)

where R stands for the f - or ω-trajectories. For the Pomeron,

the authors investigate two possibilities, a monopole (M) or

a dipole (D), respectively

aM
P (s, t) = aP s̃αP (t)ebP (αP (t), (6.161)

aD
P (s, t) = aP s̃αP (t)[ebP (αP (t)−1)(bP + log s̃)

+ dP log s̃]. (6.162)

As for the Odderon, the chosen form is

aO(s, t) = (1 − eγ t )a
(M/D)

O (s, t) (6.163)

with M or D standing for a monopole or a dipole. It should

be noticed that in this paper, the authors state that, for the
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ratio ρ(s, t = 0) to be fitted by the data, it is necessary that

the Odderon contribution vanishes at t = 0.The trajectories

are all taken to be linear in t , i.e.

αi (t) = αi (0) + α′
i t ≡ 1 + δi + α′

i t. (6.164)

There is a relationship between eikonalisation and unitarisa-

tion [350–352], which gives the following constraints

δP ≥ δ0, α′
P ≥ α′

0. (6.165)

Most fits give δO < 0.

Once the Born amplitude is stated, the authors discuss dif-

ferent eikonalisation procedures, one called Ordinary Eikon-

alisation (OE) in which one puts

H
p̄ p
pp,O E (s, b) = 1

2i

( ∞
∑

1

[2ih
p̄ p
pp (s, b)]n

n!

)

(6.166)

and the other is the Quasi-Eikonal (QE) with

H
p̄ p
pp,QE (s, b) = 1

2i

( ∞
∑

1

λn−1 [2ih
p̄ p
pp (s, b)]n

n!

)

. (6.167)

The explicit analytical form is

H
p̄ p

pp,QE (s, b) = 1

2iλ
(exp[iλχ p̄ p

pp ] − 1). (6.168)

When λ = 1, one obtains the OE. Still another form of eikon-

alisation corresponds to the case when the weight λ is differ-

ent for different terms. In the QE case, the various terms in

the sum have the same weight, but one can consider the pos-

sibility that the terms have different weights, and this case is

called the Generalised Eikonal (GE). The case with three λ’s

is discussed in detail, and fits are given. One observation here

is the development of structures in the amplitude as a func-

tion of t . Apart from the dip, there are oscillations, which are

a consequence of the properties of the Bessel function from

the Fourier transform. It is possible that some special feature

of the eikonal may eliminate these oscillations, but in this

model they are still present.

The authors discuss fits within the OE and the QE. They

have more freedom to do a best fit with the GE with 2 or 3

parameters, and different cases for fixed or variable parame-

ters for secondary reggeons are examined. The predictions of

this model are shown in Fig. 82 from [346]. They emphasise

three points:

• (i) The presence of the Odderon contribution is necessary

in order to describe the differential cross section in the dip

region and at large t , the Odderon intercept consistently

turns out to be negative from the fits.

• (ii) The real part of the even amplitude has a zero at small

|t |-values, which moves toward 0 as the energy increases,

being at |t | = 0.23 GeV2 at
√

s = 14 TeV. There are also

other secondary zeroes.

Fig. 82 The elastic differential cross section for pp from Desgrolard,

Giffon, Martynov and Predazzi [346]. Reprinted with permission of

Springer from [346], ©(2000) Springer

• (iii) The eikonalised Odderon contributes to reproduce

“perfectly” the large |t |-region.

We now proceed to Petrov and Prokudin [347], entitled

“The first three Pomerons”. This paper contains a short but

useful introduction to various models, and well summarises

the state-of-the-art at the time. They observe that the large

number of different models describing the scattering both at

t = 0 and for small t-values hints to the fact that the most

general way to deal with the problem is to introduce an arbi-

trary number of Pomerons. In [347] a first step is attempted

to formulate an eikonal structure with many Pomerons. They

begin with a three Pomeron structure, since, according to the

authors, one and two Pomeron structures are inadequate.

Writing the unitarity condition as

ℑmT (s,b) = |T (s,b)|2 + η(s,b) (6.169)

where T (s,b) is the scattering amplitude in the impact

parameter representation, η(s,b) the contribution of inelas-

tic channels, the scattering amplitude in terms of an eikonal

function δ(s,b) as

T (s,b) = e2iδ(s,b) − 1

2i
(6.170)

with ℑmδ(s,b) ≥ 0 for s > sinel. If the eikonal function has

only simple poles in the complex J-plane, and the poles are

parametrised as linearly rising Regge trajectories, modulo

the signature factor, the contribution to the eikonal in t is

written as
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δ̂(s, t) = c

s0

(

s

s0

)α(0)

etρ2/4

ρ2 = 4α′(0) log
s

s0
+ r2 (6.171)

in b-space one then obtains

δ(s, b) = c

s0

(

s

s0

)α(0)−1
e−b2/ρ2

4πρ2
. (6.172)

Three Pomerons are then introduced describing both pp

and p̄ p, as follows:

δ
p̄ p
pp (s, b) = δ+

P1
(s, b) + δ+

P2
(s, b) + δ+

P3
(sb)

∓δ−
O(s, b) + δ+

f (s, b) ∓ δ−
ω (s, b) (6.173)

where Pi are the Pomeron contributions, the ± sign refers

to even/odd trajectories, O referring to Odderon, f and ω

even and odd trajectories. To restore analyticity and crossing

symmetry, one substitutes s with

s̃ = s

s0
e−i π

2 (6.174)

and obtains the appropriate signature factors for the various

terms contributing to the eikonal as

δ+(s, b) = i
c

s0

(

s̃

s0

)α(0)−1
e−b2/ρ2

4πρ2
, (6.175)

δ−(s, b) = c

s0

(

s̃

s0

)α(0)−1
e−b2/ρ2

4πρ2
, (6.176)

ρ2 = 4α′(0) log s̃ + r2. (6.177)

The trajectories are dealt with in the linear approximation,

with a fit to the meson spectrum determining the parameters

of the secondary Regge trajectories, f andω. The parameters

defining the 3 Pomerons and the Odderon contribution (a

total of 20) are obtained by a fit to the total cross sections,

the ρ parameter and the elastic differential cross section, the

latter in the range 0.01 ≤ |t | ≤ 14 GeV2. Data for the total

elastic cross section are not included in the fit, but are a

result of the model. This is not surprising given the fact that

by fitting the total and the differential cross section, one fixes

both the normalisation (optical point) and the slope. The fits

require that the three Pomerons and the Odderon as well

have intercept at t = 0 larger than 1, which also implies that

eventually there will be a violation of the Froissart bound, the

slope of the Odderon being very close to zero.The exercise

is repeated with only two Pomerons, but the result is not

very good: in this case, unlike the three pomeron case, the

Odderon trajectory is fitted to have intercept less than 1.

This paper also contains a good discussion of the connec-

tion of the model to string theory models, and to the predic-

tions for BFKL.

Concerning predictions in the small t region, the model

indicates a dip at LHC around 0.5 GeV2 and a wiggle around

Fig. 83 The elastic differential cross section for pp from [347].

Reprinted with permission, ©(2002) by Springer

−t � 3 GeV2. We show in Fig. 83 the predictions for the

elastic differential cross section at RHIC and at LHC.

6.5.4 The Aspen model

This model [146] is a QCD-inspired version, applied to both

proton and photon processes, of a description of the total

and elastic differential cross section based on a large amount

of previous work. In the 1984 review, Block and Cahn [12]

describe in great detail the constraints arising from unitar-

ity, analyticity and crossing symmetry, introducing their own

proposal for low and high energy parametrisation. In the 2006

review, the phenomenological description is updated and an

extensive presentation of the subsequent work is given [50].

Thus, in the following the term Aspen model refers explicitly

to the description in Appendix A of [50]. A description of

this model has already been presented in Sect. 5.9.3, here

we recall its main points. The Aspen model uses the eikonal

representation in order to ensure unitarity. It embeds in addi-

tion the constraints of analyticity, and crossing symmetry.

The model includes both a crossing odd and a crossing even

eikonal, i.e.

χ p̄ p/pp = χeven ± χodd, (6.178)

χeven = χgg(s, b) + χqg(s, b) + χqq(s, b), (6.179)

= i
∑

i j

[σi j (s)W (b;μi j )] (6.180)
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Fig. 84 The elastic differential cross section in the Aspen model from

Block’s Report [50]. The full line represents expectations at LHC at√
s = 14 TeV, the dashed line are predictions at the Tevatron collider

in comparison with the E710 experiment [142,145]. Reprinted from

[50], ©(2006), with permission by Elsevier

with i j = gg, qg, gg, μqg = √
μqqμgg and

W (b;μi j ) =
μ2

i j

96π
(μi j b)

3 K3(μi j b), (6.181)

Σgg = 9πα2
s

m2
0

(6.182)

and

χodd = −σoddW (b;μodd) = −CoddΣgg

m0√
s

W (b;μodd)

(6.183)

with W (b;μodd) having the same functional form as the other

b-distributions, W (b;μi j ). All the b-distributions are nor-

malised to 1 and are obtained as the Fourier transform of a

dipole. As for the cross sections σi j (s), their QCD inspired

parametrisation leads to the following large s-behaviour:

σgg ∼ log2 s, σqg ∼ log s, σqq ∼ constant. (6.184)

For large s-values, the even contribution is made analytic

through the substitution

s → se−iπ/2. (6.185)

The two constants Codd and μodd are fitted to the data. At

high energies, the odd eikonal vanishes like 1/
√

s, since this

is the term which accounts for the difference between pp and

p̄ p interactions, and at high energies such a difference should

vanish. We show in Fig. 84 predictions for LHC14TeV and

comparison of the model with the Tevatron data [142,145].

We note that the predicted curve for LHC has a dip for −t ≃
0.5 GeV2 and second (slight) dip (more like a wiggle) around

1.8 GeV2. Presently, data up to −t = 2.5 GeV2 at LHC7

show no other structure but the dip at −t = 0.53 GeV2.

The Aspen model has been the inspiration for the Dynam-

ical Gluon Mass model [353] in which an energy depen-

s ( GeV )

in
e
l(
m

b
)

pp ALICE, 1208.4968
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Fig. 85 Data for inelastic scattering in different kinematic regions,

with model expectations (blue dot) from Block and Halzen (BH) [259]

and from the soft kt -resummation model [41]. Figure is courtesy of

Olga Shekhovtsova

dent mass m0(s) for the gluon is introduced to regulate

the low-pt divergence in the mini-jet like eikonal functions.

Recently, the group from Campinas has been concerned with

the slope and the total and elastic cross sections [285,301].

The ratio Rel = σelastic/σtotal is discussed as it can give

information as regards different models and their asymp-

totic behavior. The question whether B(s) is growing lin-

early with log s as expected in Regge-Pomeron descriptions,

or whether it would grow as log2 s [61] is addressed. This

would be relevant in cosmic ray physics, where the ratio

σtotal/B for proton–proton scattering defines the nucleon–

nucleon impact parameter amplitude (profile function), and

measurements of the p-air cross section are thus related to

this ratio.

6.6 Models including the diffractive contribution to the

scattering amplitude

Diffractive processes contribute to the total cross section.

They are inelastic processes with spatial correlations to the

incoming particles, and their experimental definition depends

on the type of experiments as well as on the cuts imposed on

the final state. Theoretically the description of diffraction is

rendered difficult because no exact theorems exist about its

energy dependence. We show in Fig. 85 a compilation of data

for the inelastic cross section, from lower to very high ener-

gies, including some results from LHC experiments in differ-

ent rapidity regions, and, in some cases, including extrapola-
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tions into the diffractive region. The spread of results at LHC7

reflects different experimental cuts and different extrapola-

tions into the low-mass region. The blue band gives the results

from the soft kt -resummation model, described in [41]. The

blue circle at 14 TeV gives the Block and Halzen (BH) pre-

diction [259].

Discussion of diffraction as distinct from both inelastic

and elastic processes has a long history. Models for diffrac-

tion are present in the literature since early observations of

final state particles appearing in configurations clearly corre-

lated along the incoming projectile. As we shall discuss in the

following, some of these models use a quantum mechanics

formalism, inspired by Good and Walker decomposition of

diffractive scattering [74], while the QCD approaches, such

as those by the Durham [221] and Tel Aviv [354] group,

use, in addition, a triple Regge formalism, to account for

high mass as distinct from low-mass diffraction. Recently a

contribution by Gustafson to clarify the connection between

some of these approaches has appeared [355].

In the following we shall summarise some representative

works concerned with the description of diffraction. We shall

describe in some detail the contributions by Pumplin and

Miettinen, started with some early work [57,356] and then

followed by Pumplin with Miettinen [357] and by Mietti-

nen and Thomas [71]. A clear description of this approach

can be found in [72]. We shall also summarise the appli-

cation of some of these ideas to mini-jet models by Lipari

and Lusignoli [52]. The Regge–Pomeron analysis of diffrac-

tion performed by two groups, Durham (KMR) and Tel

Aviv (GLM), will follow. A digression to the string theory

Pomeron description by the Brown University group [262]

will be included, as it is central to the Tel Aviv model. Many

phenomenological analyses exist in the literature, for a recent

analysis up to Tevatron data, a good summary can be found

in the work by Dino Goulianos [358].

6.6.1 The Pumplin limit for diffractive processes

We now discuss the generalisation of the break-up of the total

cross section into elastic, diffractive [356,357] and inelastic

components and how to obtain the so-called Pumplin limit

[57], i.e.,

Rel+diff(s) =
[

σel+di f f (s)

σtot(s)

]

≤ 1

2
(6.186)

to be used instead of the black-disk limit

Rel(s) =
[

σel(s)

σtot(s)

]

≤ 1

2
. (6.187)

Let the “b-wave” unitary S(s, b) matrix be decomposed as

S†S = (1 − 2iT †)(1 + 2iT ) = 1; ℑmT = T †T . (6.188)

If we define twice the imaginary part of the elastic amplitude

by M̃(s, b) = 2ℑmTi i (s, b), Eq. (6.188) leads to the relation

2M̃(s, b) − M̃2 = 4
∑

n �=1

|Tni |2 ≡ G in(s, b), (6.189)

valid for large s if we neglect the small real part of the elastic

amplitude.

The inelastic scattering sum in G in due to multi-particle

production may be written as

G in(s, b) =
∑

n

d2σ (n)

d2b
. (6.190)

If one assumes a statistically independent production of par-

ticles, one is led to the Poisson distribution

d2σ (n)

d2b
=
(

Q(s, b)n

n!

)

e−Q(s,b). (6.191)

Then Eq. (6.189) leads to the well known eikonal form for

the imaginary part of the elastic amplitude

M̃(s, b) = 1 − e−(Q/2) ≡ 1 − e−Ω(s,b), (6.192)

with 2Ω(s, b) = Q(s, b) = 〈n(s, b)〉 denoting the mean

number of collisions occurring at a given s and b.

It is well to note that Eq. (6.189) has two solutions for M̃ :

M̃(s, b) = 1 ± e−(Q/2) ≡ 1 ± e−Ω(s,b). (6.193)

The solution chosen in Eq. (6.192) is the smaller one which

corresponds to M̃ → 0 as the mean number of collisions

goes to zero. Hence,

0 ≤ M̃(s, b) ≤ 1. (6.194)

We note in passing that this choice reduces the Martin–

Froissart bound by a factor of 2. It also leads to one of our

asymptotic sum rules [293,294]

M̃(s, b = 0) → 1 as s → ∞. (6.195)

Using a phenomenological model such as the Phillips and

Barger (PB) model of Ref. [295] for the elastic amplitude, one

can see that experimental data at 7 TeV by the TOTEM group

at the LHC support Eq. (6.195). The value is 0.95 ± 0.01

[295] at 7 TeV corresponding to G in(s, b = 0) → 1. The

other mathematically allowed possibility G in(s, b = 0) → 0

as s → ∞ that leads to M̃(s, 0) → 2 is ruled out by data at

present LHC energies.

The result of Eq. (6.193), however, is incomplete. As dis-

cussed at the beginning of this section, if the eikonal func-

tion Ω(s, b) is constructed through a randomly distributed

Poisson sum of incoherent scatterings, then the elastic ratio

Rel(s) turns out to be larger than its experimental value at

LHC, which is still ≃1/4, hence quite far from the black disk

limit of Eq. (6.187). The reason behind this generic fact is that
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there is a non-negligible fraction of the inelastic cross sec-

tion, called diffractive which is not truly random but which

maintains quite a bit of coherence with the scattered particles.

One type of contribution to single diffractive events occurs

when one of the two scattering particles ends up in a state with

the same internal quantum numbers with a close by mass but

perhaps with a spin-flip (e.g., p → p∗) [72], while simul-

taneous break-up of both scattering particles into diffractive

states as defined above contributes to double diffraction. Even

at high energies, such as at LHC7 for example, the contri-

bution of the summed diffractive cross section to the total is

(10 ÷ 15)% and hence it needs to be properly understood

and formulated [302,357]. References to other work on this

subject can be found in [52,72]. The analysis below follows

these references in outline. Other references can be found in

the Durham and Tel Aviv analyses, which include contribu-

tions coming from high-mass diffraction.

The underlying essential physics of diffraction can be

incorporated by supposing that the incident particles are in a

superposition of “diffractive eigenstates” defined as

|A〉 =
∑

k

Ck(A)|ψk〉, (6.196)

with Pk(A) =
∑

k |Ck(A)|2 giving the probability of find-

ing the diffractive eigenstate k in A and
∑

k Pk(A) = 1.

The interaction with the other particle produces a mixture of

diffractive and non-diffractive states

T |A〉 =
∑

k

Ck(A)Tk |Ψk〉 + non diffractive states. (6.197)

Hence with the breakup of only one particle A of the initial

state, the elastic amplitude becomes

〈A|T |A〉 =
∑

k

|Ck(A)|2Tk =
∑

k

Pk(A)Tk ≡ 〈T 〉,

(6.198)

where the average 〈.〉 denotes an average over the diffractive

state probabilities. As before neglecting the real part of the

diffractive amplitudes, we would have the following expres-

sions:

A : ST (s, b) ≡ d2σtot

d2b
= 4ℑm〈A|T |A〉

= 2
∑

k

Pk(A)M̃(s, b) = 2〈M̃(s, b)〉

(6.199)

and

B : Sel(s, b) ≡ d2σel

d2b
= 4|〈A|T |A〉|2

= 4|
∑

k

Pk(A)Tk |2 = |〈M̃(s, b)〉|2. (6.200)

The sum of the elastic and diffractive differential cross sec-

tion (in b-space) reads

C : d2σel+diff

d2b
= 4

∑

k

|〈Ψk |T |A〉|2

= 〈M̃(s, b)2〉. (6.201)

The basic result for the diffractive part of the differential

cross section in impact-parameter space is obtained through

Eqs. (6.200) and (6.201)

D : Sdiff ≡ d2σdiff

d2b
= 〈M̃(s, b)2〉 − 〈M̃(s, b)〉2. (6.202)

In words, Sdiff is given by the dispersion 〈(ΔM̃)2〉 in the

absorption probabilities and hence it would vanish identically

were all components of the initial state absorbed equally. If

averages are taken over both incident particles, dσdiff would

include both single and double diffraction dissociation.

Now let us see how to obtain the Pumplin upper bound on

Sdiff . Since, by virtue of Eq. (6.194), the absorption proba-

bilities 0 ≤ M̃k ≤ 1, and M̃2
k ≤ M̃k , we have also that

〈M̃(s, b)〉 =
∑

k

Pk Mk ≤ 1;

and 〈M̃2(s, b)〉 ≤ 〈M̃(s, b)〉. (6.203)

This leads to the Pumplin inequality

Sdiff(s, b) ≤
[

1

2
ST (s, b) − Sel(s, b)

]

. (6.204)

and the integrated version of Eq. (6.204) leads to Eq. (6.186)

for the ratio of the elastic + diffractive cross section to the total

cross section. For pp scattering at ISR,σdiff ≈ (8.5 ±1.5)mb

which is over a half of the limit ≈14 mb, predicted by the

above Eq. (6.204). Presently, even at the highest energies, the

limiting value of 1/2, as given by Rel+diff(s) in Eq. (6.186)

is closer to the experimental results than the black-disk limit

(1/2) for Rel(s) in Eq. (6.187), as we have seen from Fig. 59.

Pumplin [72] further observed that while s-channel helic-

ity conservation is a good approximation for the elastic ampli-

tude such is not the case for diffraction dissociation.

To proceed, one needs to formulate a model for the proba-

bility distribution for diffraction dissociation at high energies,

which must respect several requirements:

– (i) for diffraction dissociation into a continuous mass

spectrum, an analytic dependence on mass;

– (ii) the constraints that all M̃(s, b) < 1;

– (iii) M̃(s, b) → 1 as b → 0 (asymptotic constraint);

– (iv) M̃(s, b) → 0 as b → ∞ (asymptotic constraint).

As discussed next, a simple probability distribution meeting

these requirements, which is amenable to an analytic treat-

ment, is given by [71,72]
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dP

dz
= zλ−1

Γ (λ)
e−z (6.205)

with 0 ≤ z ≤ ∞ and the dispersion 〈(Δz)2〉 = 〈z〉 = λ.

6.6.2 Specific models with a continuous distribution

In 1979 Miettinen and Thomas [71] discussed how to modify

the Glauber eikonal formalism to include diffraction within

a picture in which quarks and gluons are – with different spa-

tial distributions – the constituents of a nucleon or a hadron.

Since earlier analyses, in particular Good and Walker [74], it

had been known that if the different components of a compos-

ite system have different distributions (absorption strengths),

then inelastic states are excited and the elastic formula for

the amplitude needs to be modified. The aim in [71] was to

show that, taking into account fluctuations in the wave func-

tion, one can find the matter distribution. This is analogous

to the distinction between a “charge distribution” extracted

from pp elastic scattering and the proton charge distribu-

tion obtained through the proton electromagnetic form factor,

extracted from ep scattering.

Their first step is to substitute the expression for the elas-

tic amplitude between two hadrons A and B scattering at a

distance b

T AB
el = 1 − e−〈Ω(b)〉AB (6.206)

with a different amplitude, corresponding to the different

possible configurations i and j in which the two hadrons

find each other at the point of collisions„ i.e.

t i j (b) = 1 − e−Ωi j (b). (6.207)

Calling pi the probability that the hadron is in a given con-

figuration i , the complete amplitude is obtained by averaging

over all the possible configurations

t AB
el (b) =

∑

i j

pA
i pB

j t AB
i j = 1 − 〈e−Ω(b)〉AB . (6.208)

The connection between the simple eikonal of Eq. (6.206)

and this description can be seen by writing Eq. (6.208) as

t AB
el (b) = 1 − e−〈Ω(b)〉AB HAB(b) (6.209)

with the corrections to the simple eikonal embedded into the

moments μAB
k (b) of the eikonal spectrum, i.e.

HAB =
∑

k=0

(−1)k

k! μAB
k (b), (6.210)

μAB
k (b) = 〈(Ω(b) − 〈Ω(b)AB〉)k〉AB . (6.211)

The connection to matter distribution in b-space enters the

eikonal function 〈Ω(b, s)〉AB from the overlap of the aver-

age matter densities of the incident particles, i.e. the s-

dependence is factorised into a constant K AB and

〈Ω(b, s)〉 = K AB

∫

d2b′ρ(b′)ρ(b − b′). (6.212)

To exemplify this model, Eq. (6.208) is written as

t AB
el (b) =

∫ ∞

0

dΩPAB(Ω, b)(1 − e−Ω ) (6.213)

with the function PAB(Ω, b) defined by the probabilities

pA
i , pB

j . Now, the model becomes easy to solve under the

hypothesis that the b-dependence of PAB(b) is only a func-

tion of the scaling variable z = Ω(b, s)/〈Ω(b, s)〉. A simple

function in the variable z is considered, namely

PAB(z) = N zae−λz, (6.214)

which obeys the constraints
∫

dz PAB(z) = 1;
∫

zdz PAB = 1, (6.215)

as required by normalisation and the first moment condition.

One has

N = λλ/Γ (λ); and a = (λ − 1). (6.216)

The integration is then done immediately, and the differential

cross sections in b-space now become

1

2
ST (s, b) = 〈M̃(s, b)〉 =

∫

dP(z)[1 − e−zΩ(s,b)/λ]

= 1 − [1 + Ω(s, b)/λ]−λ; (6.217)

Sel(s, b) = 1 − 2[1 + Ω(s, b)/λ]−λ + [1 + Ω(s, b)/λ]−2λ;
(6.218)

and

Sdiff(s, b) = [1 + 2Ω(s, b)/λ]−λ − [1 + Ω(s, b)/λ]−2λ.

(6.219)

A few observations about this model are in order:

– (i) As λ → ∞, the earlier eikonal limits are reached since

Sdiff → 0.

– (ii) For λ = 1, Eq. (6.217) reduces to a “Fermi” distribu-

tion

1

2
ST (s, b) = 〈M̃(s, b)〉 → 1

Ω(s, b)−1 + 1
; [λ = 1].

(6.220)

Further extensions of this model can be found in the work by

Lipari and Lusignoli [52], who use the mini-jet formalism

to study the contributions to the inelastic cross section from

different hadronic configurations participating to the scatter-

ing. The authors start with a careful discussion of the relation

between σjet, the cross section for producing a mini-jet pair,

and σinel, the total inelastic cross section. Many authors have

had difficulty in understanding why σjet can be larger than
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σinel: this is simply a reflection of the fact that the inelastic

cross section measures the probability of inelastic interac-

tions between hadrons, whereas σjet measures the probabil-

ity of parton–parton collisions, so that, since σinel includes at

least one parton–parton collision, the ratio σjet/σinel in fact

describes the average number of mini-jet pairs produced in

one inelastic collision and this can be quite large.

The authors next consider the average number of collisions

〈njet(b, s, pmin
⊥ )〉, taking place at impact parameter b,

〈njet(b, s, pmin
⊥ )〉 =

∫

d2b1

∫

d2b2 Pint(b − b1 + b2)

×
∫

d p⊥

∫

dx1dx2

∑

j,k, j ′,k′
F

h1

j (x1, b1, μ
2)F

h2

j (x2, b2, μ
2)

×
dσ̂ jk→ j ′k′

d p⊥
(6.221)

obtained from the relevant x and b-space distributions for

each colliding parton, j going into a hadron h, Fh
j (x, b, μ2),

where μ is a hard scale defining the applicability of the mini-

jet perturbative description. Since partons have a spatial dis-

tribution, this number depends on the probability Pint(b) that

two partons, separated by a distance b, interact with each

other, a standard practice in mini-jet models.

Defining parton configurations in the colliding hadrons

as C1 and C2, the average number of mini-jet collisions is

obtained by summing over all possible configurations, i.e.

∫

dC1

∫

dC2 Ph1(C1)Ph2(C2)njet(b,C1,C2)

= 〈njet(b, s)〉.
(6.222)

Upon assumption of the factorisation hypothesis

njet(b,C1,C2) = 〈njet(b, s)〉α(C1,C2) (6.223)

with α(C1,C2) a constant, real parameter independent of

energy, the final result will be obtained by integrating over

all values of the parameter α, i.e. over all possible config-

urations, with a distribution given by a probability function

P(α) which must satisfy the two conditions

∫

dα P(α) = 1, (6.224)

∫

dα α P(α) = 1 (6.225)

where the second condition follows from Eq. (6.222). In this

generalised Good and Walker structure the proposed final

expression for the elastic amplitude is

Fel(q, s) =
∫

d2b

2π
eiq·b

∫

dα p(α)
[

1 − e− 〈n(b,s)〉α
2

]

(6.226)

with the simple eikonal case corresponding to p(α) →
δ(α − 1). One can see that in such case the elastic cross sec-

tion includes both elastic and diffractive processes, so that in

the simple eikonal case the inelastic diffraction contribution

vanishes. The cross sections in momentum space can now be

explicitly written as

dσel

dt
= π

[∫

db b J0(b
√

−t)

∫

dα p(α) (6.227)

×
(

1 − exp

[

−〈n(b, s)〉α
2

])2

. (6.228)

The differential cross section inclusive of elastic and diffrac-

tion processes is calculated to be

dσdiff+el

dt
= π

∫

dα p(α)

[∫

db b J0(b
√

−t)

×
(

1 − exp

[

−〈n(b, s)〉α
2

)]2

. (6.229)

An explicit model is built, with the probability function p(α)

such as to satisfy the two conditions given by Eqs. (6.224)

and (6.225), and chosen to be

p(α) = 1

wΓ ( 1
w
)

( α

w

)
1
w

−1
exp

[

− α

w

]

(6.230)

as in [71]. The model depends upon the parameter w =
〈α2〉 − 1. Upon performing the integrations in α, one now

has

d2σdiff

d2b
= (1 + 〈n(b, s)〉w)−1/w (6.231)

−
(

1 + 〈n(b, s)〉w
2

)−2/w

, (6.232)

d2σtotal

d2b
= 2 − 2

(

1 + 〈n(b, s)〉w
2

)−1/w

, (6.233)

d2σelastic

d2b
=
(

1 −
(

1 + 〈n(b, s)〉w
2

)−1/w
)2

. (6.234)

The authors apply a parametrisation of the mini-jet model to

evaluate and predict the diffraction cross section as a function

of energy. Using the approximation

σT D

σel
≡ σB D

σel
≃ σDD

σT D

≡ σDD

σB D

(6.235)

where T/B refers to Target or Beam Diffraction (D) and DD

stands for double diffraction, one obtains

σdiff = σSD + σDD ≃ σSD

(

1 + σSD

4σel

)

. (6.236)

The last term in Eq. (6.236) includes an extra factor of 2

at the denominator, which corrects Eq. (85) of Ref. [52].7

The results, for two different choices of the model mini-jet

7 Private communication by the authors.
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Fig. 86 Inelastic diffraction cross section evaluated in an eikonal mini-

jet model within a generalised Good and Walker mechanism, and dif-

ferent mini-jet cross section parametrisations. The experimental results

correspond to single diffraction only. Reprinted figure with permission

from [52], ©(2009) by the American Physical Society

parametrisations, are shown in Fig. 86 in comparison with

experimental data, then available, for single diffraction.

6.6.3 The Durham model by Khoze, Martin and Ryskin

The Durham model by Valery Khoze, Alan Martin and Misha

Ryskin (KMR) offers a unified description of both soft and

semi-hard interactions. This model, developed and continu-

ously refined over many years, also with other collaborators,

presents a QCD based Pomeron and parton phenomenology.

Recent papers by the Durham group [222,223,225,359]

describe data on multiparticle production and present differ-

ential cross section analyses. The most recent version of the

model uses a two- and three-channel eikonal formalism and

multipomeron exchange diagrams, incorporating both unitar-

ity and Regge behaviour. In [359], the authors compared their

original predictions, for the total cross section and diffractive

quantities, with TOTEM results. Adjustments of their earlier

parameters appears in [223].

The essential ingredients in their model can be sum-

marised as follows:

– Input Pomeron trajectory for soft and hard processes

– Eikonalisation of the amplitudes

– Inclusion of diffractive processes

– Pion-loop corrections to the Pomeron trajectory and

small |t | slope of the elastic differential cross section.

We shall briefly describe each of the first three items and

then present their most recent phenomenology for the elastic

differential cross section. The inclusion of pion-loop correc-

tions will be treated separately in Sect. 6.6.4.

– KMR1: Pomeron trajectory

This approach uses Reggeon Field Theory with a phe-

nomenological soft Pomeron, while for hard interactions

a QCD partonic approach is employed [224]. In the hard

domain, where perturbative QCD and the standard partonic

approach can be used, their Pomeron is associated with the

BFKL singularity. In this perturbative domain, there is a sin-

gle hard Pomeron exchanged with

αbare
P (t) = (1 + Δ) + tα

′bare; Δ = 0.3;
α

′bare � 0.05 GeV−2. (6.237)

It is noted that, although the BFKL equation should be writ-

ten for gluons away from the infrared region, after resum-

mation and stabilisation, the intercept of the BFKL Pomeron

depends only weakly on the scale for reasonably small scales.

We reproduce in Fig. 42 their description of the connection

between the intercept of the BFKL Pomeron and the value for

αs . The figure shows how the intercept Δ goes to a smooth

almost constant behaviour as αs increases.

It is useful to note here that in mini-jet pictures, the value

of Δ = 0.3 corresponds with the mini-jet cross section

growing as ≃s0.3. Thus, the bare KMR Pomeron plays a

role similar to that of parton–parton scattering folded in with

parton densities and summed over all parton momenta in

the mini-jet model. Also, the bare slope is interpreted by

KMR to be associated with the size of the Pomeron: α′bare ∼
0.05 GeV−2 ∝ 1/〈k2

t 〉. It is related to a hard scale, of the

order of a few GeV, which can find its counterpart in pt min

of the mini-jet models. However, a precise correspondence

still needs to be worked out.

On the other hand, the transition from the hard to the soft

domain in KMR requires multi-pomeron exchanges through

re-summation of soft kt -processes, thus lowering the scale of

〈k2
t 〉 from the earlier hard to a soft scale. As a result, the BFKL

Pomeron (i) bare intercept decreases and at the same time (ii)

the slope increases by a factor ∼5 from its bare value. Hence,

one has an effective linear Pomeron trajectory such as the one

given by the Donnachie and Landshoff parametrisation, i.e.

αeff
P (t) ≃ 1.08 + 0.25t. (6.238)

KMR found empirical evidence for the above trajectory also

in virtual photo-production of vector mesons at HERA.

Once again, we may find a correspondence of the change in

the effective slope with the mini-jet model parameter pt min ∼
1.1 GeV through the observation that (pt min/Λ)2 ∼ 5 with

Λ ∼ 500 MeV.

We add here some further details regarding the “BFKL

multi-Pomeron” approach. In the Durham model, the semi-

hard particle production due to a single BFKL Pomeron is

shown in the left plot of Fig. 87 from [360]. In this figure,

Y is the rapidity interval. In (a), the kt of the partons are
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Fig. 87 Graphical description of mechanism of semi-hard interactions

in pp collisions from [360]. Reprinted with permission from [360],

©(2011) by IOP

not ordered. The multiplicity of partons grows as x−Δ with

Δ ≡ αP (0)− 1, and partons drift to lower kt values because

of the running of the strong coupling constant. Notice the

imposition of a cut-off k0, below which the cascade is for-

bidden to develop. In the central figure, (b), the structure

of standard DGLAP-based MonteCarlo cascade is strongly

ordered in kt : there is a driving process, in the central rapidity

region, with the highest parton momentum and then, from

the initial parton a cascade ordered from larger to smaller

momenta. In this description, because of the singularity of the

hard parton–parton cross section ∼1/k4
t , an energy depen-

dent cut-off kmin, called an infrared cut-off, needs to be intro-

duced, as can be seen in PYTHIA 8.1 [361]. This cut-off is

applied to the hard matrix elements, not to the parton cas-

cade, which is stopped when kt = k0. This cut-off depends

on the chosen PDF set. The multiple interaction possibil-

ity is included through eikonalisation, both for the DGLAP

and BFKL description. Finally, the third figure, (c), includes

absorption of low kt partons. An effective “infrared” cut-

off’, ksat (x) limits the low-kt partons. This parameter which

depends on x , hence on the energy, is dynamically generated

by the enhanced multi-Pomeron diagrams. Notice that the

variable conjugate to impact parameter b is the momentum

transfer exchanged through the Pomeron ladder, while the

variable kt is the transverse momentum of the intermediate

parton.

We observe that this description follows from the classic

GLR paper [218], where all gluons, those involved in hard

scattering as well as the soft ones from radiation before the

scattering, are considered on the same footing and described

through evolution equations. This differs from an approach

such as the soft-kt resummation model (BN mini-jet model),

where soft gluons are treated as a separate factorised term

from the hard mini-jet cross section and resummed through

a semi-classical procedure a’ la Bloch and Nordsieck (thus

the name BN) [170].

– KMR2: Eikonalisation of the scattering amplitude

A simplified description of the model can be found in

Appendix A of [221]. Starting with the usual expressions

for the total and elastic cross section in impact-parameter

space

σtotal = 2

∫

d2bt Ael(bt ), (6.239)

σelastic =
∫

d2bt |Ael(bt )|2 (6.240)

the scattering amplitude Ael is approximated as to be com-

pletely imaginary,. i.e. there is no real part.

With an effective (for illustration) Pomeron trajectory

written as αP (t) = αP (0) + α′
P t = 1 + Δ + α′

P t and ver-

tex with exponential t-dependence βp exp(B0t), the starting

point is

ℑm Ael(s, t) = β2
P (t)

(

s

s0

)αP (t)−1

, (6.241)

= β2
P (t)

(

s

s0

)αP (0)−1

e
α′

P t log s
s0 . (6.242)

Writing the amplitude in b-space as the Fourier transform

of Eq. (6.242) with t = −q2

F[A(s, t)] = 1

(2π)2

∫

d2qeib·q A(s, t), (6.243)

=
(

s

s0

)Δ

e
(B0/2+α′

P log s
s0

)b2)/4
, (6.244)

this will be the input for the successive eikonalisation proce-

dure. In the case of a single channel the amplitude is written

in terms of the opacity function Ω(b), i.e.

ℑm Ael = [1 − e−Ω(b)/2] (6.245)

and then eikonalising it, one obtains

σtotal = 4πℑm A(s, 0) = 2

∫

d2b[1 − e−Ω(b,s)/2)] (6.246)

with the opacity

Ω(b, s) =
β2

P (s/s0)
αP (0)−1

4π BP

e−b2/4BP , (6.247)

BP = 1

2
B0 + α′

P log(s/s0). (6.248)

A Good and Walker model to include low-mass diffractive

dissociation is then developed as we shall now describe.

– KMR3: Inclusion of diffractive processes

The KMR approach to diffraction has evolved through the

years, as more precise and higher energy data allowed fur-

ther understanding. We summarise here some of the main

ingredients of this model, whose most recent application to

LHC data can be found in [224]. The authors begin with

s-channel unitarity,

2ℑmTel(s, b) = |Tel(s, b)|2 + G inel(s, b), (6.249)
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Fig. 88 Graphical description of low-mass proton dissociation (a) and

high-mass dissociation (b) through triple Pomeron and multi-Pomeron

corrections, from [362]. Reprinted with permission from [362], ©(2010)

by Springer

which, for Ω real, is satisfied by

Tel(s, b) = i(1 − e−Ω/2). (6.250)

One then writes the total elastic and inelastic cross sections

in impact-parameter space as

d2σinel

d2b
= d2σtotal

d2b
− d2σelastic

d2b
= 2ℑmTel − |Tel|2, (6.251)

which coincides with 1 − e−ℑmΩ and brings the interpreta-

tion of e−Ω as the probability for inelastic interactions. One

notices that this interpretation is valid also in case of a non-

negligible real part of Ω .

Diffraction is defined as elastic scattering and low-mass

proton dissociation, to distinguish it from high-mass dissoci-

ation, the two types of processes being graphically described

in Fig. 88 from [362]. Apparently the multi-Pomeron vertex

controls both the saturation scale and high-mass dissociation.

The elastic differential cross section is written as

dσel

dt
= 1

4π

∣

∣

∣

∣

∣

∣

∫

d2beiqt ·b
∑

i,k

|ai |2|ak |2(1 − e−Ωik (b)/2)

∣

∣

∣

∣

∣

∣

2

.

(6.252)

In [363] a three-channel formalism is used to describe the

diffractive final states. Here we shall describe their two-

channel formalism. In [221], the GW formalism is applied

to the states pp, pN∗, N∗N∗, and the relative processes

are introduced through a parameter γ which describes

the effective coupling of the proton to the excited state

N∗, which will then decay into the observed low-mass

diffractive products. This is done by modifying the one

channel description into a two channel one, i.e. by the

substitution

βp →
(

β(p → p) β(p → N∗)
β(N∗ → p) β(N∗ → N∗)

)

, (6.253)

≃ β(p → p)

(

1 γ

γ 1

)

. (6.254)

The expression for the elastic amplitude thus modified to take

into account the other channels, is now

ℑm Ael(bt ) = 1 − 1

4
e−(1+γ )2Ω(bt )/2

−1

2
e−(1−γ 2)Ω(bt )/2 − 1

4
e−(1−γ )2Ω(bt )/2], (6.255)

ℑm A(pp → N∗ p)(bt )

= 1

4
[e−(1−γ )2Ω(bt )/2 − e−(1+γ )2Ω(bt )/2], (6.256)

ℑm A(pp → N∗N∗)(bt ) = 1

4
[−e−(1−γ )2Ω(bt )/2

+2e−(1−γ 2)Ω(bt )/2 − e−(1+γ )2Ω(bt )/2]. (6.257)

In this model the opacity function is real and the amplitude

acquires a real part through

ℜeA

ℑm A
= tan

(

πλ

2

)

(6.258)

where

λ = ∂ log(Im A)

∂ log s
. (6.259)

The elastic proton-Pomeron vertex is parametrised as

V p → P = βp

(1 − t/a1)(1 − t/a − 2)
(6.260)

with β2
p to be obtained from pp total cross section.

– KMR high-mass diffractive dissociation

The previously described decomposition of elastic scatter-

ing into GW type states cannot be applied to other types of

inelastic processes where the final state has a continuous mass

distribution, and does not have the same quantum numbers

as the initial proton. As we shall also see in the case of the

Tel Aviv model, triple-Pomeron exchanges are invoked for

this type of events, with the cross sections written as [221]

M2dσSD

dtdM2
= 1

16π2
g3P(t)β(0)β

2(t)

( s

M2

)2α(t)−2
(

M2

s0

)α(0)−1

, (6.261)

M2dσDD

dtdy1dy2
= 1

16π3
g2

3P(t)β
2(0)

× exp[(1 + αP(0) − 2αP(t))Δy]
(

M2

s0

)α(0)−1

(6.262)

where β(t) is the coupling of the Pomeron to the proton and

g3P(t) is the triple Pomeron vertex, obtained from a fit to

low-energy ISR data in [363]. M and y are the diffractive

mass and the rapidity regions for double diffractive dissoci-

ation. To avoid these contributions to grow too rapidly and

violate unitarity, saturation and screening must be imposed

and survival probability factors are introduced, as described

for instance in [221].
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Table 12 Values for various

total cross section components,

in two different models: at left,

in the original KMR model,

prior to the LHC data [225], at

right in the KMR 3-channel

eikonal from [222], inclusive of

LHC TOTEM data at√
s = 7 TeV

KMR pre-LHC7 3-channel KMR post-LHC7

Energy σtotal σel σ SD
lowM σ DD

lowM σtotal σel Bel σ DD
lowM σ DD

lowM

TeV mb mb mb mb mb mb GeV−2 mb mb

1.8 72.7 16.6 4.8 0.4 79.3 17.9 18.0 5.9 0.7

7 87.9 21.8 6.1 0.6 97.4 23.8 20.3 7.3 0.9

14 96.5 24.7 7.8 0.8 107.5 27.2 21.6 8.1 1.1

100 122.3 33.3 9.0 1.3 138.8 38.1 25.8 10.4 1.6

– KMR5 Recent phenomenology

After the general overview of the model, let us see how

KMR apply it to elastic scattering at LHC. The basic build-

ing blocks of this model are now the three-channel eikonal

formalism and multipomeron exchange diagrams, incorpo-

rating both unitarity and Regge behaviour. These physical

requirements are parametrised through the following proce-

dure:

– the s-dependent bare Pomeron intercept Δ = αP (0) − 1

– the bare Pomeron slope α′ ≃ 0

– a parameter d, which controls the BFKL diffusion in kt

– the strength of the triple-Pomeron vertex

– the relative weight of the diffractive states γi , determined

by low-mass diffractive dissociation

– the absolute value N of the initial gluon density.

In [359], the authors compare their original predictions,

for the total cross section and diffractive quantities, with

the TOTEM results, and, as stated earlier, they find the

need to do new adjustments of the parameters, acknowledg-

ing 7 lessons, among which (i) the fact that Totem result,

σinel = σtotal − σel = 73.5 mb, is higher than the others,

CMS and ATLAS extrapolated -KMR believe it is due to

low mass diffraction being higher than expected- and that

(ii) the ratio σel/σtotal ≃ 1/4 according to TOTEM and it

cannot grow further. It is also acknowledged that to describe

both the forward peak and the dip in dσel/dt the Durham

model would need to introduce more parameters.

Adjustment of the parameters leads to new results, which

we present in Table 12 from [223]. In this table, some KMR

results for total cross sections both prior to and including

recent LHC data are shown. This adjustment does ameliorate

the situation, bringing their prediction quite close to most

recent TOTEM result (at this writing) of σtotal = 98.58 ±
2.23 mb [344].

Finally, recent descriptions of the elastic differential cross

section in the small |t | range in this model is shown in Fig. 89

from [258], where a good description of how the various

choices of formalism and parameters lead to the final results.

Fig. 89 The elastic differential cross section for pp or p p̄ using a two

channel eikonal model, which includes the pion loop contribution to the

pomeron trajectory, from [258]. Reprinted with permission from [258],

©(2014) by IOP

6.6.4 Very small t behaviour

As already seen when discussing early measurements at ISR,

various experiments reported an increase in the effective

slope as −t approached zero. Such an effect is also seen

when comparing LHC7 data with a phenomenological appli-

cation such as the PB model revisited in [295,303]. In this

application, the two exponential model with a constant phase

describes very well the region 0.2 < |t | < 2.5 GeV2, but

misses the optical point by some 10%, signalling that the

slope has a more complicated t-dependence than that given

by two exponentials. In general, attempts to describe the elas-

tic differential cross section near the optical point as well as

the region past the dip encounter difficulty in describing the

very small t behavior. Presently, for LHC, a complete descrip-

tion is still lacking. From the theoretical point of view, it can
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be argued that this region should have contributions from the

nearby thresholds in the unphysical region. The presence of

this behavior at very small t was advocated long time ago by

Anselm and Gribov [320] as well as by Cohen-Tannoudji,

Ilyin and Jenkovszky [335] and has been discussed by the

Durham [221] and the Cosenza group [203]. In the follow-

ing, we shall describe two attempts to include such effects,

the one in the Durham model, and then a model proposed by

Pumplin.

In the KMR model [221], the Pomeron trajectory of

Eq. (6.237) is modified so as to include a very small |t |
effect. It is then called a two component Pomeron, consist-

ing of three terms: the first two correspond to the usual linear

trajectory describing the large scale, small impact-parameter

space bt , while the third term corresponds to pion-loop inser-

tions and contributes a correction to the small t-behaviour of

the local slope. Such improvement over the linear Pomeron

trajectory consists in introducing the pion-loop corrections

as prescribed by Anselm and Gribov [320]. The underlying

physical idea is that pions being the lightest hadrons and

the massless pion limit expected to be neither divergent nor

negligible may provide observable corrections to the high

energy slope of the elastic differential cross section in the

low-momentum transfer limit. The expression proposed in

[221] for the modified Pomeron trajectory is

αP(t) = α(0) + α′t − β2
πm2

π

32π3
h(τ );

[

τ = 4m2
π

|t |

]

, (6.263)

where

h(τ ) = 4

τ
F2
π (t)[2τ − (1 + τ)3/2 log

(√
1 + τ + 1√
1 + τ − 1

)

+ log
m2

m2
π

] (6.264)

with m = 1 GeV a semi-hard scale. The coefficient β2
π spec-

ifies the Pomeron residue to the ππ total cross section and

Fπ (t) = 1

1 − t/a2
. (6.265)

The above modification should then explain the very small-t

dependence of the effective slope of the differential elastic

cross section in the KMR model.

Reflecting the same type of singularity in low-t elastic

scattering, a model was constructed by Pumplin for the elastic

amplitude in impact-parameter space [73] which has the

virtue that its Bessel transform, i.e., the elastic amplitude as

a function of the momentum transfer t = −q2, has branch

points at the “right thresholds”: t = μ2; (2μ)2; (3μ)2, . . ..

Or, it can be modeled as the two-gluon exchanges with a

threshold at t = 4m2
0, where m0 is the effective gluon mass.

Defining the elastic amplitude as

σtotal(s) = 4πℑm F(s, t = 0), (6.266)

with

F(s, t) = i

∫ ∞

o

bdbJo(qb)F̃(s, b) (6.267)

and

F̃(s, b) = 1 − e−Ω(s,b) (6.268)

in the limit of a purely imaginary amplitude, which is a good

approximation at large s and small t , Pumplin models the

b-dependence of the real Ω , as follows

Ωo(s, b) = η(s)eμ[bo(s)−
√

(b2+bo(s)2)]. (6.269)

Using the decomposition

e−[k
√

q2+μ2]
√

q2 + μ2
=
∫ ∞

o

bdbJo(qb)
e−[μ

√
k2+b2]

√
k2 + b2

, (6.270)

it is possible to invert Eq. (6.267) as a convergent power series

given by

Fo(s, t) = ibo(s)
2η(s)

∑

n=1

(−η)n−1

n!

[

yo(1 + y)

y3

]

eyo−y,

(6.271)

where yo = nμbo(s) and y =
√

y2
o − tb2

o(s).

The series expansion for the elastic amplitude obtained

in Eq. (6.271) converges rapidly and hence was proposed as

quite useful for numerical computations. Also, the resulting

slopes and curvature as a function of the momentum transfer

are quite smooth. Remaining always in the small t range, the

model provides clear insights into the intricacies involved

in obtaining accurate estimates of the slopes and curvatures

as a function of t . Let B(0) and C(0) = B ′(0)/2 be the

forward slope and the forward curvature, respectively. Below

we quote their numerical values at
√

s = 19.4 and 546 GeV

obtained in this model.

√
s = 19.4GeV : B(0) = 12.44GeV−2; C(0) = 7.72GeV−4

√
s = 546GeV : B(0) = 16.82GeV−2; C(0) = 13.65GeV−4.

(6.272)

However, the sizeable forward curvature cautions against

accepting forward slopes obtained through single expo-

nential fits. Another important point is that the curvature

decreases strongly as a function of t and changes sign at

larger values of t [73,295].

6.6.5 Elastic diffraction in AdS/CFT

A strong emphasis on the embodiment of N = 4 Super Yang

Mills (SYM) physics [364] is part of the work by the Tel

Aviv group, Gotsman, Levin and Maor (GLM). Because of

this as well as of the intrinsic interest of the results, we now

briefly discuss the approach to this problem in the context
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of the string/gauge theory developed in a series of papers by

the Brown University group [262,365,366]. In these papers

string/gauge duality has been employed to obtain interesting

results for the Pomeron and the physics of elastic amplitudes

for small t .

A brief summary of results can be found in [367]. We

cannot give here a detailed description of the elegant formal-

ism developed in [262,365,366], but present below results

regarding the Pomeron intercept and a modified eikonal

expression derived from Ad S5. In their string/gauge the-

ory, a scalar kernel K(s, t, z, z′) as a function of the four-

dimensional invariants (s, t) and two bulk coordinates (z, z′)
from the fifth dimension, describes the Green’s function for

the Pomeron. At t = 0 its imaginary part reads

ℑmK(s, t = 0, z, z′) ≈ s jo

√
πD ln(s)

eln2(z/z′)/D ln(s),

(6.273)

where the Pomeron intercept jo and D are given by

jo = 2 − 2/
√
λ; D = 2/

√
λ, (6.274)

with λ denoting the (large) ’t Hooft coupling constant. Three-

loop universal anomalous dimension of the Wilson operators

in N=4 SUSY Yang–Mills model were first obtained in [368].

The expression for the imaginary part of the Pomeron

propagator in Eq. (6.273) is similar to its corresponding form

(in the weak limit) with its BFKL expression

ℑmK(s, t = 0, p⊥, p′
⊥) ≈ s jo

√
πD ln(s)

eln2(p⊥/p′
⊥)/D ln(s),

(6.275)

where jo = 1 + αN (
4 ln(2)

π
), α = g2

Y M/4π is the SU (N )

coupling constant for N colours and D = (14ζ(3)/π)αN .

The above allows one to identify the correspondence between

diffusion in the gluon mass virtuality given by ln(p2
⊥) in

Eq. (6.275) with diffusion in the radial coordinate ln(z2) in

the dual Ad S5 given by Eq. (6.273).

A reduction from Ad S5 to the needed Ad S3 propagator is

then made. The latter depends on the Ad S3 chordal distance

v = (x⊥ − x ′
⊥)2 + (z − z′)2

2zz′ (6.276)

and a dimension Δ+( j)− 1 obtained for the physical spin j

operators occurring in BFKL/DGLAP:

Δ+( j) = 2 +
√

4 + 2
√
λ( j − 2) = 2 +

√

2
√
λ( j − jo),

(6.277)

where Eq. (6.274) has been used to obtain the last part of the

above equation. Rewriting Eq. (6.277) as

j (Δ) = 2 + (Δ − 2)2

2
√
λ

= j (4 − Δ), (6.278)

Fig. 90 Schematic curve from [262] showing spin j versus dimension

Δ as given in Eq. (6.278) both for λ ≪ 1 and λ ≫ 1. All curves

pass through the points j = 2;Δ = 0 and j = 2,Δ = 4 where the

anomalous dimension vanishes. The dashed lines show λ = 0 DGLAP

branch (slope 1); BFKL branch (slope 0) and inverted DGLAP branch

(slope −1). Reprinted from [262], ©(2007) by Springer

one sees the symmetryΔ ⇔ (4−Δ). Hence, the functionΔ+
interpolates correctly (i) the value j = jo atΔ = 2 giving the

BFKL exponent as well as (ii) j = 2 at Δ = 4 corresponding

to the energy–momentum tensor, the first DGLAP operator. A

schematic representation of the relationship between j andΔ

is shown in Fig. 90. In the eikonal limit – for its domain of

validity see [365] – the amplitude for scattering 1+2 → 3+4

is written as

− 2is

∫

(d2b)(dzdz′)P13(z)P24(z
′)eib⊥·q⊥[eiχ − 1],

(6.279)

where P13(z), P24(z
′) are wave functions in the bulk coor-

dinates and for Pomeron exchange, the generalised eikonal

χ which is a function of (s, b, z, z′) is given in terms of the

Pomeron kernel by

χ(s, b, z, z′) = g2
o R4

2(zz′)2s
K(s, b, z, z′). (6.280)

In the limit where Pomeron exchange dominates, for s → ∞
and λ fixed, the eikonal reads

χ ∼ eiπ(1− jo/2)(zz′s) jo−1

√
v(2 + v)

. (6.281)

We may pause here to note the similarity and differences

between this approach [for jo > 1 and moderate values of

z, z′] and the mini-jet model for total hadronic cross sections.

Also in the mini-jet model, the eikonal is proportional to sǫ

with ǫ ∼ 0.3, a power of the total energy. However, in the

mini-jet model, there is an exponential suppression for large b

which softens the power-law growth in energy of the eikonal

to powers in logarithms of energy of the elastic amplitude.

Equation (6.281) by contrast shows that the eikonal decreases

only as a power of v (or b) for large v.
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6.6.6 Gotsman, Levin and Maor: the Tel Aviv model

Recent descriptions of the model, which embody both

Reggeon field theory and features from N = 4 SYM gauge

theory, can be found in [354] and in [369] where the diffrac-

tive peak at LHC and a summary of experimental and various

model results are presented. High energy predictions for the

mass distribution for both low- and high-mass diffraction can

be found in [370].

For what concerns the elastic differential cross section,

from the optical point to past the dip, this model, similarly

to KMR, describes the diffraction peak region where non-

perturbative effects are dominant, and is not yet extended to

the dip region.

To describe elastic scattering and include the different

components of diffraction, single (SD), double (DD), and

central (CD), low-mass and high-mass diffraction, GLM

introduce both a Good and Walker (GW) formalism with

GW diffractive states, as well as non-GW processes.

In previous papers, whose reference can be found in [371],

GLM had obtained a good description of the total and the

elastic differential cross section in the small −t region, with a

given choice of the parameters defining the model. However,

TOTEM data, in particular the rather high total cross section

value, were seen to require some changes in the parametrisa-

tion [354]. Only one parameter seems however to be in need

of a change, namely the Pomeron intercept ΔP. Other param-

eters need not to be changed, at least for a good description of

high energy data, namely
√

s � 500 GeV, where the present

interest lies for this model. Before giving some more details

on this model, we note the following input elements:

– both GW states and non-GW states contribute to diffrac-

tion

– GW states contribute to both low- and high-mass diffrac-

tion, non-GW states only to high-mass diffraction

– the amplitude in the eikonal is purely imaginary (the

model is basically applied to the low t-region)

– dipole form factors inspired by the proton form factors

give the factorisable impact parameter dependence in the

eikonal functions

– the s-dependence of the amplitudes comes from a single

Pomeron with α′
P

= 0 and intercept ΔP = 0.23

– multi-Pomeron interactions described by enhanced and

semi enhanced diagrams contribute to both GW and non-

GW states.

From the above one notices once more that the s-dependence

of this model is the same as in mini-jet models, with a term

sǫ , which is not associated with any explicit t-dependence.

To take into account the whole spectrum of diffraction,

GLM starts with a simple Good and Walker model with two

eigenwave functions ψ1 and ψ2. Upon diagonalisation of the

interaction matrix, the wave functions of the two observed

states, a hadron and a diffractive state, the latter with mass

small compared to the energy of the process, respectively ψh

and ψD , are written as

ψh = αψ1 + βψ2, ψD = −βψ1 + αψ2 (6.282)

with α2 + β2 = 1. One then constructs the scattering ampli-

tude Ai,k(s, b) in impact-parameter space b, with i = h, D

by solving the unitarity condition

2ℑm Ai,k(s, b) = |Ai,k(s, b)|2 + Gi,k(s, b) (6.283)

i.e.

Ai,k(s, b) = i(1 − e−Ωi,k (s,b)/2). (6.284)

The eikonal function Ωi,k is the imaginary part of the scat-

tering amplitude for a single Pomeron exchange, i.e.

Ωi,k = gi (b)gk(b)P(s) = gi (b)gk(b)s
Δ (6.285)

where the Pomeron-proton vertex gi (b) = gi Si (b) and Si (b)

is the Fourier transform of the proton-like form factor, a

dipole with a scale mi . The zero value for the Pomeron slope,

i.e. α′ = 0 in GLM is understood to be in agreement with the

results from N = 4 SY as described previously, and is cru-

cial as it allows for resummation of all pomeron interactions

One sees that the impact space dependence in each eikonal

Ωi,k depends on four parameters, the scales mi and mk in

the form factors and the proportionality factors gi , gk . The

amplitude in Eq. (6.284) gives the multipomeron exchange

contribution to the elastic and GW diffractive states.

The contribution of GW states is obtained using the for-

mulae

ael(b) = i(α4 A1,1 + 2α2β2 A1,2 + β4 A2,2), (6.286)

aGW
sd = i{αβ{−α2 A1,1 + (α2 − β2)A1,2 + β2 A2,2},

(6.287)

aGW
dd = iα2β2{A1,1 − 2A1,2 + A2,2} (6.288)

with the corresponding cross sections

σtot = 2

∫

d2b ael(s, b), (6.289)

σi =
∫

d2b |ai (s, b)|2 i = el, sd, dd. (6.290)

To these contributions, one needs to add non-GW terms,

which are produced by Pomeron interactions, in this model

only considering triple Pomeron interactions. These contri-

butions involve the triple Pomeron coupling G3P. For single

diffraction into a mass M , with Y = log(M2/s) the authors

obtain

Asd
i;k,l =

∫

d2b 2Δ

(

G3P

γ

1

γ 2

)

, (6.291)

×gi (b − b′,mi )gl(b
′,ml)gk(b

′,mk), (6.292)
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×Q(gi ,mi ,b − b′,Ym), (6.293)

×Q(gk,mk,b′,Y − Ym), (6.294)

×Q(gl ,ml ,b′,Y − Ym) (6.295)

where G3P is the triple Pomeron vertex proportional to α2
s

and

Q(g,m,b,Y ) = GP(Y )

1 + G3P/γ )gGP(Y )S(b,m)
, (6.296)

GP(Y ) = 1 − exp

[

1

T (Y )

]

1

T (Y )
Γ

(

0,
1

T (Y )

)

, (6.297)

T (Y ) = γ eΔPY , (6.298)

γ 2 =
∫

d2kt

4π2
G2

3P
. (6.299)

Similarly, one can obtain the amplitudes Ãdd
i,k for double

diffraction in terms of the functions Q written above, details

can be found in [354]. The final result is that the integrated

cross section for single diffraction is the sum of two terms,

the GW and non-GW, likewise for double diffraction. To

obtain the integrated cross sections however, a further step

is required, i.e. the amplitudes Asd
i; j,k

and Add
j,k are multiplied

by the survival probability factors e−Ω j,k .

The model cannot be solved from first principles, and

needs phenomenological inputs such as the Pomeron inter-

cept, the interaction vertices between the Pomeron with the

two GW states, the low-energy amplitude of dipole-target

interactions and one constant, for the GW states, β.

The connection with N = 4 SY M is considered in [364]

where the model is discussed in light of satisfaction of two

ingredients: (i) the need to deal with a large coupling con-

stant, and (ii) the requirement to match with high energy

QCD. Thus, the Pomeron intercept can be large, but the slope

of the Pomeron trajectory is very small. These results, already

introduced in the previous papers, match with the fact that,

in the strong coupling limit, N = 4 SY M theory has a soft

Pomeron, i.e. the reggeised graviton with a large intercept,

αP = 2 − 2/
√
λ with λ = 4πNcα

Y M
s , αY M

s , the QCD cou-

pling constant. The other important ingredient of the GLM

model is the natural matching with perturbative QCD, where

the only vertex that contributes is the Pomeron vertex: this is

also understood in N = 4 SYM since the Pomerons (gravi-

tons) interact by means of the triple Pomeron vertex, which

infact is small, at least ∝ 2/
√
λ. Another matching result

between GLM and N = 4 SY M is that at large λ, only pro-

cesses from diffraction dissociation contribute to the scatter-

ing amplitude. In GLM model, diffraction indeed plays also

a large role, as discussed before.

The main ideas of this model can be summarised as fol-

lows:

– a double face Pomeron, with

1. a large intercept, αP(0) − 1, a direct consequence of

Δ = 1 − 2/
√
λ when λ becomes large

2. a short distance behavior, indicated by a small slope

α′
P

≃ 0, as a QCD matching prescription

– Good Walker mechanism and triple Pomeron vertex

To the above, one needs to add an important crucial com-

ponent of GLM description of diffraction, i.e. the survival

probabilities for large rapidity gaps. From the eikonal for-

mulation, the survival probabilities are obtained from the

quantities

P S
ik = exp[−Ωik(s, b)], (6.300)

which represent the probability that the initial state |i, k >

does not break up after the scattering.

After the publication of the TOTEM actual data for the

differential cross section and confirmation of earlier results

for total elastic and inelastic, GLM were able to consoli-

date their parameters, and present definite expectations for

this model [354]. The detailed results for all the quantities

of interest appear in the paper. These include σtot, σel and

σinel at
√

s = 1.8, 7, 8, 57 TeV in addition to σsd , σdd , for

which the separate values obtained for the GW and non-GW

contributions are also listed.

We reproduce in Fig. 91 the fit to data in the small t-range

for different energies up to LHC14. Since the model is only

to be applied at vary small −t values, as one approaches the

dip the model starts not to reproduce well the data.

Because of the importance of diffraction in this model, a

warning is pronounced about the black-disk limit in [371].

The model results indicate a very slow approach of the elas-

tic amplitude to saturation of this limit, in good qualitative

Fig. 91 Description of low-t elastic scattering in GLM from [354].

Reprinted from [354], ©(2012) with permission by Elsevier
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agreement with what we have noted elsewhere in this review,

namely that the AUGER results for the inelastic cross sec-

tion indicates σel(57 GeV) �= 0.5σtotal. To summarise, it is

observed that present Reggeon models all introduce at least

two different mechanisms for diffraction. In GLM, these two

mechanisms are: (i) the GW production of diffractive states

with unspecified finite mass, independent of energy, and (ii)

diffraction due to Pomeron interactions, with a dependence

on the Pomeron parameter ΔP. In other models, there are dis-

tinctions between low-mass and high-mass diffraction, and

central diffraction. A discussion of this point can be found at

the end of Ref. [354].

We note that a model along very similar lines to GLM (and

KMR) has also been developed by Ostapchenko [75]. This

model is compared with GLM and other similar models for

diffraction in [369]. Reference [369] presents a good recent

comparative discussion of diffraction amplitudes up to LHC7

energies.

6.6.7 A comment about soft gluons and diffraction

Before ending this brief review of selected contributions

present in the literature, we shall comment on the possible

interpretation of diffraction in terms of soft-gluon emission.

In the BN model of [93,94], the contribution to diffraction is

not present. What drives the increase of the cross section is

the result of parton–parton scattering (mini-jets) dressed with

soft gluon emission from the initial valence quarks. Eikonal-

isation then re-sums multiple interactions, each one of them

coming with its own cloud of soft gluons. The present version

of this model does not explicitly include soft-gluon emission

from the spectator quarks. However, diffraction along the

initial state protons in such a view should include both emis-

sion from the quarks participating to the scattering, but also

from the so-called spectator quarks. When the proton is hit

by the other hadron, quarks also undergo intra-beam scatter-

ing. Such emission is along the colliding particles. This is in

agreement with the original view of diffraction a’ la Good and

Walker where the target and/or the projectile dissociates into

a state with no change of quantum numbers: the only gluon

emission process which, by definition, does not change the

proton quantum numbers is resummed soft-gluon emission.

This is the dynamical picture which should be addressed. If

nothing else but diffraction a’ la Good and Walker is present,

then this emission could be accompanied by a factor inhibit-

ing parton–parton scattering, namely a survival probability

factor.

6.7 One-channel mini-jet model for total, elastic and

inelastic cross sections

As just discussed in Sect. 6.6.7, our BN mini-jet model has

not yet dealt with diffraction, being so far a one-channel

eikonal model. However, this model can provide interesting

insight in the distinction between correlated and uncorrelated

inelastic processes, and what in included in σelastic in one-

channel eikonal models.

Here we shall discuss the mini-jet contribution to total,

elastic and inelastic cross sections, using a one-channel

eikonal formulation as described in greater detail in [56].

To construct the total cross section, mini-jets are embedded

into the eikonal formulation. Starting with

σtotal = 2

∫

d2b[1 − ℜe(eiχ(b,s))] (6.301)

and neglecting the real part in the eikonal at very high energy,

the above expression further simplifies into

σtotal = 2

∫

d2b[1 − e−χI (b,s)] (6.302)

where χI (b, s) = ℑmχ(b, s). Notice that ℜeχ(b, s) ≃ 0

is a reasonable approximation for the scattering amplitude

in b-space at t = 0, where very large values of the impact

parameter dominate and phenomenologically the ratio of the

real to the imaginary part of the forward scattering amplitude

ρ(s) ≪ 1. By properly choosing a function χI (b, s), all total

hadronic cross sections, pp, p p̄, πp, etc., can be described

up to currently available data [149]. In the vast majority of

models, new data have often required an adjustment of the

parameters which give χI (b, s).

In previous publications, we had proposed a band whose

upper border gave a good prediction for LHC results. By

updating the model and anchoring the parameter set to LHC

results, one can now proceed to refine our predictions for

higher energies, LHC13 and beyond to the cosmic rays

region.

The eikonal function of the mini-jet model of [93,94] is

given by

2χI (b, s) = n
pp
soft(b, s) + n

pp
jet (b, s)

= AF F (b)σ
pp

soft(s) + A
pp

B N (p, P DF; b, s)

×σjet(P DF, pt min; s). (6.303)

The first term includes collision with pt ≤ pt min ∼ (1 ÷
1.5) GeV, the second is obtained from the mini-jet cross

section. The term n
pp
soft(b, s) is not predicted by our model

so far and we parametrise it here with σ
pp

soft(s), obtained with

a constant and one or more decreasing terms, and AF F , the

impact-parameter distribution in the non-perturbative term,

obtained through a convolution of two proton form factors.

As expected, the second term in Eq. (6.303) is numerically

negligible at energies
√

s � 10 GeV. The perturbative, mini-

jet, part discussed previously is defined with p
parton
t ≥ pt min

and is determined through a set of perturbative parameters

for the jet cross section, namely a choice of PDFs and the

appropriate pt min. Since soft-gluon resummation includes
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Table 13 Total cross section values in mb, from the mini-jet model

with two different PDFs sets
√

s GeV σG RV
total mb σ M ST W

total mb

5 39.9 39.2

10 38.2 38.6

50 41.9 42.2

500 63.2 62.0

1800 79.5 77.5

2760 85.4 83.6

7000 98.9 98.3

8000 100.9 101.3

13000 108.3 111.7

14000 109.3 113.7

57000 131.1 149.2

all order terms in soft-gluon emission, our model uses LO,

library distributed, PDFs.

The results of the LHC updated analysis of the one-

channel BN model have been presented in Fig. 51, where,

as mentioned before, the p̄ p points are shown, but have not

been used for the phenomenological fit, and values for pp

extracted from cosmic ray experiments have not been used

either. In this figure both “old” densities such as GRV [96] and

“newer” ones such as MSTW [95] have been included and

compared with other models [259] and one-channel model

predictions such as in [258,260]. Table 13 contains the points

corresponding to our model results for both GRV and MSTW

densities.8 Results for MRST densities can be found in [92],

together with details of different parameter sets used for the

different PDFs.

We notice that our model is able to describe very well

all the total cross section accelerator data, and gives good

agreement with cosmic ray data. The AUGER point falls

within the two different parametrisations we are using, full

line for MSTW and dashes for GRV. By construction, both

parameterisations remain very close up to LHC7 and LHC8

energies, and start diverging as the energy increases, as a

consequence of the uncertainty on the very low-x behavior

of the densities.

To summarise in the model we have proposed, past ISR

energies, mini-jets appear as hard gluon–gluon collisions

accompanied by soft gluon emission kt -resummed down into

the infrared region. In this language, we have a dressed hard

scattering process, with the mini-jet cross section giving the

same energy behavior as the hard Pomeron, and soft-gluon

resummation providing the dressing, in which the hard inter-

action is embedded. The eikonal formulation then transforms

this dressed hard gluon interaction into a unitary ladder. The

8 An error in the arXiv posted paper [56] in the table for MSTW

predictions at 13 and 57 TeV has now been corrected.

main difference with other mini-jet models such for instance

in [372], is the taming mechanism ascribed to soft-gluon

resummation in the infrared region.

We now turn to discuss the inelastic cross section. The

inelastic total cross section is defined by subtraction from the

total and the elastic cross sections. However, experimentally,

it is usually defined only in specific phase space regions,

and eventually extrapolated via MC simulation programs,

which also include parameters and choice of models in the

diffractive region. One exception is TOTEM which covers a

large rapidity range.

Here, we shall focus on one, theoretically well defined,

part of the inelastic cross section, what we define as uncorre-

lated, which is appropriately described in the mini-jet context

and through the one-channel mode. In the following we shall

see how.

Since our study [41] on the inelastic cross section at LHC,

soon followed by the first experimental results [373], data

related to measurements in different kinematic regions have

appeared. Extensive and detailed measurements have been

obtained for the inelastic proton–proton cross section by

CMS [374], ATLAS [373], TOTEM [256,279], ALICE [375]

and LHCb [376] Collaborations. These measurements cover

different regions, central and mid-rapidity, large rapidity,

high- and low-mass diffractive states. Extensive QCD mod-

elling, including mini-jets [88,97,377,378], goes in describ-

ing the different regions.

Here, we concentrate on the implication of any given one-

channel eikonal model. Thus, we repeat the argument about

the relation between the Poisson distribution of indepen-

dent collisions and diffractive processes given in [41], where

we stressed that the inelastic cross section in a one-channel

eikonal model coincides with the sum of independently (Pois-

son) distributed collisions in b-space. Namely, with

σtotal = σelastic + σinel, (6.304)

then, in a one-channel (one-ch) mode,

σ one-ch
inel ≡ σtot − σ one-ch

elastic =
∫

d2b[1 − e−2χI (b,s)]. (6.305)

But since

∞
∑

1

(n̄)ne−n̄(b,s)

n! = 1 − e−n̄(b,s) (6.306)

one can identify the integrand at the right-hand side of

Eq. (6.305) with a sum of totally independent collisions, with

2χI (b, s) = n̄(b, s). We suggest that this means that in so

doing one excludes diffraction and other quasi-elastic pro-

cesses from the integration in Eq. (6.305). Hence, the simple

splitting of the total cross section as in Eq. (6.304) needs to

be better qualified when a one-channel eikonal is used. In

such a case, the “elastic” cross section
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Fig. 92 In these plots, the bands correspond to uncertainties related to

the very low-x behavior of the PDFs used in the calculation of the total

and inelastic cross sections. At left, data for the inelastic cross section

are compared with GRV and MSTW densities in the eikonalised QCD

mini-jet with the soft-gluon resummation model, called the BN model in

the text and discussed therein. The inelastic-uncorrelated cross section

is compared with inelastic processes for M2
X/s > 5×10−6 as measured

by ATLAS [373], CMS [374] and ALICE [375]. We also show compari-

son with Bloch and Halzen (BH) results [379]. In the right panel, results

for our BN-model are shown for pp total cross section together with

the inelastic-uncorrelated part of the inelastic cross section, obtained

from the one-channel mini-jet model. Accelerator data at LHC include

TOTEM [103,256] and ATLAS measurements [257]. Panels are Fig.

(4) and Fig. (5) reprinted from [56] ©(2015) by the American Physical

Society

σ one-ch
elastic =

∫

d2b|1 − e−χI (b,s)|2 (6.307)

must be including part of the inelastic contribution, i.e.

σ one-ch
elastic = σelastic

+ diffractive or otherwise correlated processes (6.308)

and σ one-ch
inel is only the non-diffractive part. Within this

approach, we can compare Eq. (6.305) with data.

This comparison is shown in the left-hand panel of Fig. 92,

from [56] where inelastic cross section data up to AUGER

energies [86] are plotted. The blue band corresponds to the

expectations from Eq. (6.305) where the same eikonal func-

tion χI (b, s) which gives the total cross section as seen

in the right-hand plot of Fig. 92 is used. Having anchored

the eikonal χI (b, s) to the LHC total cross section, the

band indicates the spread of predictions due to the different

asymptotic low-x behavior of the employed densities, as the

energy increases beyond LHC8. The top curve corresponds

to MSTW, the lower one to GRV.

The comparison with experimental data is very interesting.

While the present LHC inelastic cross section data span a

range of values corresponding to different kinematic regions,

Eq. (6.305) identifies the region where uncorrelated events

described by mini-jet collisions, parton–parton collision with

pt > pt min, play the main role. From the comparison with

data, we can identify it with the region ξ = M2
X/s ≥ 5 ×

10−6 where three LHC experiments, ATLAS [373], CMS

[374] and ALICE [375], agree to a common value within a

small error. This measurement is in the high-mass region (for

instance, at LHC7 the lower bound gives MX = 15.7 GeV).

LHCb results correspond to a lower cross section, but they

do not cover the same region of phase space.

The above results are summarised in Fig. 92 where the

bands correspond to different PDFs used in the calculation

of mini-jets and to their different extrapolation to very low-x

at the cosmic ray energies.

The dashed yellow band is the one-channel inelastic

cross section that only includes Poisson-distributed inde-

pendent scatterings. That is, once the parameters of the

eikonal χI (b, s) are chosen to give an optimal reproduction

of the total cross section, the computed inelastic cross section

immediately gives the uncorrelated part of the total inelas-

tic cross section. The importance of this fact for cosmic ray

deduced pp cross sections has been noticed in [92] and dis-

cussed in Sect. 3.7.2.

6.7.1 A phenomenological proposal for isolating the

diffractive component

The total cross section, which our BN model successfully

describes, includes different components, but only one of

them is well defined experimentally as well as theoretically,

that is the elastic cross section. It is well known that one-
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Fig. 93 At left, we show the elastic pp cross section from the one-

channel model given by the top curve, with choice of MSTW PDF as

in the upper curve of the right-hand plot of Fig. 92. The green curve

corresponds to the empirical parametrisation of all differential elastic

pp data [303] up to
√

s = 7 TeV. Comparison is done with both pp

and p p̄ data. The right-hand panel shows diffraction data from E710

[381], UA5 [382,383], UA4 [384], ISR [385], CDF [386], CMS [387],

TOTEM [256] and ALICE [375] compared with the parametrisation

given by Eq. (6.309) mentioned in the text. Reprinted Fig. (6) with

permission from [56] ©(2015) by the American Physical Society

channel eikonal models fail to simultaneously describe the

total and the elastic cross section through the entire avail-

able CM energy range, with the same parameter set. In

the last sub-section, we have delineated this shortcoming

through the observation [56] that once mini-jets become

operative past the soft edge identified by Block et al. in

[380], the computed elastic cross section includes corre-

lated inelastic collisions and the computed inelastic lacks

the same (i.e., its correlated inelastic part). We now dis-

cuss this matter in detail so as to make these statements

quantitative. We shall do so through the one-channel mini-

jet model with a suitable parametrisation of diffractive

data.

In one-channel eikonal models, with the inelastic part

given by Eq. (6.305), the elastic part of the total cross section

is given by Eq. (6.307). Notice that whereas Eq. (6.305) is

exact, in Eq. (6.307) the real part of the eikonal function has

been neglected, as in Eq. (6.301).

Equation (6.307) reproduces with a good approximation

the elastic cross section data up to the onset of mini-jets, devi-

ating significantly from the data already at energies around

100 GeV. In particular, at the Tevatron, Eq. (6.307) gives

an elastic cross section roughly 30% higher than the data.

This is shown in the left-hand plot of Fig. 93, where the

one-channel result from Eq. (6.307) is plotted together with

elastic scattering data and an empirical parametrisation of all

elastic differential cross section pp data from ISR to LHC7

[303].

The analysis of [303] is based on the Phillips and

Barger model for the elastic differential cross section [317],

described in Sect. 6.3.1, implemented by a form factor term

to fully reproduce the optical point, and hence the total cross

section, as well as the forward slope. Through suitable pre-

dictions for the high energy behavior of the parameters, the

parameterisation of [303] provides a model independent pre-

diction both for elastic and total cross sections at very high

energies, and hence can be used as a good test of different

models in the high energy region beyond present accelerator

data.

The left-hand plot of Fig. 93 from [56] shows that at low

energies, before the onset of mini-jets, one-channel models

may be used to describe both elastic and total cross sec-

tions. However, past ISR energies the threshold of pertur-

bative QCD, reflected in the appearance of the soft edge, is

crossed, and one-channel models fail. One-channel models

are also unable to reproduce the behaviour of the differential

elastic cross section, and multichannel models with added

parameters are then needed to describe diffraction. The diffi-

culty with proper descriptions of diffraction is that at different

energies, different parts of the phase space are accessed by

different experimental set-ups, as we show in the right-hand

plot of Fig. 93.

For the argument to follow, we consider an estimate of

σDiff given by Eq. (36) of [76], which provides a good inter-

polation of Single Diffractive (SD) data, from ISR to the

LHC results from ALICE, CMS and TOTEM, as we show in

Fig. 93. i.e.

σDiff(s) =
[

(0.5 mb) s

s + (10 GeV)2

]

log

(

103s

GeV2

)

. (6.309)

We have adopted this parameterisation for the full diffractive

component at high energy. This is an approximation, justified
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Fig. 94 The total elastic cross section obtained by subtracting Single

Diffractive contributions, indicated asσdiff , from the one-channel model

result. The resulting curve is compared with pp and p p̄ data and the

empirical parametrisation of [303] which is seen to fall within the two

model predictions. Reprinted left-hand plot of Fig. (7) with permission

from [56], ©(2015) by the American Physical Society

at very high energy by the TOTEM result for Double Diffrac-

tion(DD) [388], namely σDD ≃ 0.1 mb, although this result

was obtained in a narrow range of pseudo-rapidity and more

data are needed to conclude that DD does not play a signif-

icant role at LHC energies. At lower energy the definitions

vary, as we show in this figure.

We shall now show how the one-channel mini-jet model

presented here can be used to predict the full inelastic cross

section at higher energies.

We start with the elastic cross section, and we consider

now the difference

σ one-ch
elastic = σtot − σ one-ch

inel , (6.310)

which includes diffractive (stated otherwise, correlated in-

elastic) contribution, as also discussed in general terms in

[68], among others. If

σinel = σ one-ch
inel + σDiff , (6.311)

then we should be able to obtain the measured elastic cross

section from

σelastic = σ one-ch
elastic − σDiff . (6.312)

We compare the procedure outlined through Eqs. (6.309)

and (6.312) with experimental data and with the empirical

parametrisation for the elastic cross section data of [303].

This is shown in Fig. 94 from [56]. We see that such a pro-
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Fig. 95 The inelastic cross section: at high energies, adding diffraction

brings the one-channel result in agreement to data. Reprinted right-hand

plot of Fig. (7) with permission from [56], ©(2015) by the American

Physical Society

Table 14 Mini-jet model predictions for the inelastic cross section at√
s = 13 TeV. Predictions of σinel in the full phase-space were obtained

by adding σdiff (13 TeV) = 12.9 mb to σ uncorr
inel ≡ σ one-ch

inel

P DF σ uncorr
inel (mb) σinel (mb)

G RV 64.3 77.2

M ST W 66.9 79.8

cedure gives a good description of the elastic cross section

at high energy, basically past the CERN Sp p̄S.

Likewise, from Eq. (6.311), we can see that by adding the

diffractive part, parametrised as in Eq. (6.309), to the predic-

tion from the one-channel model, it is possible to obtain a

good description of the high energy behavior of the inelastic

cross section. This is shown in Fig. 95. It must be noticed that

this procedure shows agreement with data only past ISR ener-

gies (in fact from Sp p̄S onwards) and that a model describing

both the low and the high energy will have to go beyond the

one-channel exercise described here. In Table 14, we show

the predictions from this model for the inelastic cross section

at LHC13,
√

s = 13 TeV.9

The result of this subsection confirms the interpretation

that at high energies, past the beginning of the rise and the

onset of mini-jets, the one-channel inelastic cross section is

devoid of most of the diffractive contribution. We have shown

9 In the published PRD version of [56], this table had an error in the

MSTW predictions at
√

s = 13 TeV.It has now been corrected in the

arXiv version.
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Fig. 96 Left panel A compilation of various models for the elastic dif-

ferential cross section at LHC14, prepared in 2007, before the LHC

started, from [340]. Right panel A compilation of model predictions

for the elastic differential cross section at
√

s = 7 TeV and first com-

parison with TOTEM data, from K. Eggert’s talk at Hadron Collider

Physics Symposium, November 2011, Paris, France. Reproduced with

permission of the authors

that the onset and rise of the mini-jet cross section provide

the dynamical mechanism behind the appearance of a soft-

edge [380], i.e., a threshold in the total cross section around√
s ≃ (10÷20) GeV. Thus, our model for the total pp cross

section that utilizes mini-jets with soft-gluon re-summation

has a built-in soft-edge. It has been updated with recent PDFs

for LHC at
√

s = 7, 8 TeV and predictions made for higher

energy LHC data and cosmic rays.

We have also discussed in detail the reasons behind fail-

ures to obtain correct values for the elastic cross sections

from a one-channel eikonal that obtains the total cross section

correctly. It has been shown, through the use of phenomeno-

logical descriptions of diffractive (otherwise said, correlated

inelastic) cross sections, that one-channel elastic cross sec-

tion is indeed a sum of the true elastic plus correlated inelastic

cross sections. An application of this fact to cosmic ray data

analysis for the extraction of pp uncorrelated-inelastic cross

sections shall be presented elsewhere.

6.8 Conclusions

As we have seen, the description of the fundamental dynam-

ics of hadronic scattering is still proceeding along differ-

ent lines, a Regge–Pomeron interpretation, a microscopic

description of the scattering, or analytical constraints and

asymptotic theorems. These different ways are not incom-

patible, and may ultimately come together. We conclude

this section with two comments, one on the differential

elastic cross section, and one on the integrated total cross

sections.

6.8.1 The differential elastic cross section before and soon

after the LHC started

A comparison of the state-of-the-art of theoretical predic-

tions before and soon after the LHC started operating, can be

glimpsed from Fig. 96. In the left panel, we show a com-

pilation of different model predictions at
√

s = 14 TeV

from [340], done in 2007, and at right we see how pre-

dictions at
√

s = 7 TeV compared with actual LHC data,

as shown from K. Eggert’s talk at Hadron Collider Physics

Symposium, November 2011, Paris, France. As new results

from LHC appeared at
√

s = 7 TeV the parameters of

some models had to be updated, and agreement with the

new data was easily obtained. This, however, is not a sat-

isfactory situation, since the parameters should remain sta-

ble or at least have a predictable energy dependence lead-

ing to further understanding of the dynamics. It is to be

hoped that with the new results from LHC which will appear

at
√

s = 13 and 14 TeV such understanding may become

closer.

6.8.2 A fit to the future imposing Froissart limit and the

black disk picture

As a commentary to this and previous sections, we present in

Fig. 97 a recent analysis by Block, Durand, Ha and Halzen

[389], in which the high energy behavior of all three cross sec-

tions, σtotal, σinel, σelastic has been constrained by the Frois-

sart limit, σtotal ∼ [ln s]2, and the black disk behavior,

σelastic/σtotal → 1/2, 8π B/σtotal → 1.

123



150 Page 142 of 178 Eur. Phys. J. C (2017) 77 :150

Fig. 97 Total pp and p p̄ cross sections from Fig. 1 of [389], where the

curve is a fit to the data, with high energy constraints from the Froissart

bound and the black disk limit. Reprinted with permission from [389],

Fig.(1), ©(2015) by the American Physical Society

7 Photon processes

Measurements of the total hadronic cross section are made

with different projectiles and targets involving altogether dif-

ferent techniques. The list includes:

– heavy ion collisions, most recently LHC experiments for

p A scattering,

– collisions between primary particles in cosmic rays with

the nuclei of the atmosphere, which have been discussed

in the section on cosmic ray measurements, Sect. 3,

– photon processes, which include real and virtual photon

scattering on nucleons or nuclei, both in motion, as in

HERA, or with fixed target, or photons against photons

as in electron–positron collisions.

As of 2015, LHC plans to measure γ p and γ γ collisions

but no results are yet available for what concerns total cross

sections. LHC can also study πp and ππ cross section, as

we describe in the next section.

This section will draw from the extensive set of measure-

ments at HERA, performed by the two experiments ZEUS

[390] and H1 [391], which have measured the total cross sec-

tion σ
γ p
tot at

√
sγ p ≡ W = 209 and 200 GeV, respectively.

Recently, the ZEUS Collaboration has presented measure-

ments of the energy variation of the cross section in the

range 194 GeV ≤ W ≤ 296 GeV [392]. Total cross sec-

tions at HERA have been measured also with virtual pho-

tons, in a wide range of the virtual photon squared momen-

tum Q2, including the transition from γ ∗ p to γ p with the

ZEUS Beam Pipe Calorimeter [393–395]. The HERA mea-

surements include vector meson production and are of inter-

est for QCD studies, adding an important kinematic variable

to the cross section modelling.

We shall review some representative models for photon

initiated processes and discuss the transition from virtual

p

q

p’

P

P’

X

t

Q2

Fig. 98 Electron/positron–proton scattering

to real photons. We touch upon an extensive theoretical lit-

erature on the subject through Sakurai’s VMD model; the

Gribov picture; Haidt’s phenomenology; applications of the

Balitsky–Kovchegov (BK) equation in its various formula-

tions; saturation and geometric scaling; the mini-jet models

and factorisation schemes. Various items of interest can be

found in the next subsections as follows:

– kinematics is defined in Sect. 7.1,

– Vector Meson Dominance Model proposals are presented

in Sect. 7.2,

– the BK evolution equations are introduced in Sect. 7.3,

– the transition from virtual to real photons and analyses

by Haidt et al. can be found in Sect. 7.4,

– specific models for γ p scattering are in Sect. 7.5,

– vector meson production from real and virtual photon

scattering is discussed in Sects. 7.6 and 7.7,

– the total γ ∗ p cross section can be found in Sect. 7.8,

– data and some models for real and virtual photon-photon

scattering are presented in Sects. 7.9 and 7.10.

7.1 Data and kinematics for ep → eX

The standard process to be studied,

e + p → e′ + X, (7.1)

is shown in Fig. 98.

For this process one defines the following kinematic vari-

ables:

q = p − p′, (7.2)

Q2 = −q2, (7.3)

W 2 = (q + P)2, (7.4)

y = P · q

P · p
, (7.5)

t = (P − P ′)2, (7.6)
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Table 15 Results of measurements of σ
γ p
tot at HERA

Experiment
√

s σtotal

(GeV) (μb)

ZEUS [390] 209 174 ±1 (DSYS = 13)

H1 [391] 200 165.3 ± 2 .3 (DSYS = 10.9 )

ZEUS [398] 167 ÷ 194 143 ± 4 (DSYS = 17)

H1 [396] 〈195〉 159 ± 7 (DSYS = 20)

ZEUS [397] 〈210〉 154 ± 16 (DSYS = 32)

s = (p + P)2 =
(

Q2

xy

)

+ M2 − m2
e (7.7)

where q, p, p′, P, P ′ are four-momenta. These measure-

ments probe a vast kinematic region for the scattering of

photons, which can be generally divided as:

– Photoproduction (PHP) with real photons, with q2 ≈ 0

– Deep Inelastic Scattering (DIS) with virtual photons

Q2 = −q2 ≈ (10 ÷ 105) GeV2/c2

– The transition region of quasi-real photons, Q2 ∼ m2
ρ

Both the PHP and the DIS have been studied extensively and

are reasonably well described by various theoretical mod-

els. The third region has received less attention, but its kine-

matic range provides valuable γ p measurements in a con-

tinuous range of values for σ
γ p
tot in the HERA energy region

[393]. We shall discuss these measurements in a separate

subsection.

The hadronic cross section for photons on protons is

obtained from electron or positron scattering on protons.

The protons can be at rest, as in the early measurements,

or in motion as in the measurements taken with HERA at

DESY. The leptons in the incoming beam were electrons

in the early measurements, positrons at HERA. From 1992

until 2007, at HERA, the lepton energy was Ee = 27.6 GeV

and the proton energy ranged from E p = 460 GeV

to E p = 920 GeV

In Table 15, we reproduce the data on σ
γ p
tot from HERA.

Notice that the earlier experiments [396,397] spanned

through a γ p c.m. energy range, and what is reproduced in

the table is the average value as given in HEPDATA Reaction

Database: http://www.slac.stanford.edu/cgi-hepdata/.

Also, ZEUS indicates that, because of various improve-

ments, their latest value [390] for σ
γ p
tot supersedes the first

ones [397,398]. All these measurements correspond to a pho-

ton 4-momentum squared Q2 < (0.01 ÷ 0.02) GeV2.

In Table 16, we also reproduce total cross section mea-

surements by the ZEUS experiment as a function of the γ p

invariant mass W and virtual photon polarisation, EPS in

the table, obtained using an extrapolation of General Vector

Table 16 γ + p → X

W(GEV) EPS σtotal(μb)

104 0.99 156.2 ± 5.3 (DSYS = 16.1)

134 0.98 166.1 ± 5.2 (DSYS = 11.0)

153 0.96 174.7 ± 4.9 (DSYS = 12.9)

173 0.92 175.5 ± 5.0 (DSYS = 11.7)

190 0.88 181.8 ± 4.7 (DSYS = 12.8)

212 0.80 186.8 ± 4.8 (DSYS = 13.5)

233 0.69 192.5 ± 4.7 (DSYS = 13.3)

251 0.55 204.8 ± 5.6 (DSYS = 17.0)

Meson Dominance (GVMD) and the assumption σL = 0,

from [399], where details of the extrapolation can be found.

7.1.1 Kinematics for photoproduction

Let us now set the kinematics and the relevant definitions for

photoproduction processes, i.e. when Q2 ≈ 0. The γ p cross

section is extracted from the process shown in Fig. 98. In the

forward direction, the kinematic variables are related to the

measurable quantities, energy and lepton scattering angle in

the laboratory frame, through

Q2 = 2Ee E ′
e(1 − cos θe) ≈ Ee E ′

eθ
2
e , (7.8)

y = 1 − E ′
e

2Ee

(1 + cos θe) ≈ 1 − E ′
e

Ee

. (7.9)

The relation between ep and γ p cross sections can then be

expressed through

dσ ep(y)

dy
= σ

γ p
tot

×α

π

[

1 + (1 − y)2

y
ln

Q2
max

Q2
min

− 2
1 − y

y

(

1 − Q2
min

Q2
max

)]

= σ
γ p
tot × F (7.10)

where Q2
min = m2

e y2

1−y
. The γ p cross section can be extracted

after integrating the above expression in the variable y with

the integration limits

ymin /max = 1 −
E ′

e max /min

Ee

. (7.11)

Equation (7.11) defines the flux F whose determination

depends upon the experimental resolution on the incoming

and outgoing positrons ΔEe and ΔE ′
e.

7.1.2 Parton model variables

The quantities measured in e − p scattering can be related to

the parton model underlying the scattering process. By proper
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Fig. 99 Kinematic variables for parton scattering through ep collisions

choice of the scattering frame and in the very large momen-

tum limit, the variables relating the parton model description

to the process shown in Fig. 99 in Deep Inelastic Scattering

can be related to measurable quantities [400].

Following here Ref. [393], with

– x the fraction of proton momentum carried by the struck

quark

– y the relative energy transfer from the electron to the

proton in the proton rest frame

– W the c.m. energy of the photon and proton system

one has

y = Q2

sx
, W 2 = m2

p + Q2

(

1

x
− 1

)

. (7.12)

If we neglect the proton mass, W 2 ≈ sy(1 − x). For small

Q2 being discussed here, x ≪ 1, and we have W 2 ≈ sy.

Various kinematic regions of interest can now be dis-

cussed. For total cross section measurements in photopro-

duction σ ep one has

0.4 < y < 0.6 ZEUS Experiment, (7.13)

0.3 < y < 0.7 H1 Experiment (7.14)

and Q2
min ∼ 10−8 GeV2.

In terms of the longitudinal and transversely polarized

photon cross section, and neglecting terms of order m2
p/s,

the electron–proton cross section is given by

d2σep

dydQ2
= α

2π

1 − x

Q2

[(

1 + (1 − y)2

y
− 2(1 − y)

y

Q2
min

Q2

)

σT

+2(1 − y)

y
σL

]

=
(

x

y

)

d2σep

dxdQ2
, (7.15)

where

Q2
min ≈ m2

e

y2

1 − y
. (7.16)

In DIS, where Q2 > 0, in the region of interest in the

variable y, the Q2
min can be neglected and the expression for

the DIS cross section , in the parton variable x , becomes

d2σep

dxdQ2
= α

2π

1 − x

x Q2
(1 + (1 − y)2)

(

σT + 2(1 − y)

1 + (1 − y)2
σL

)

. (7.17)

The longitudinal and transverse cross sections are related to

the structure functions F2 as

F2 = Q2

4π2α
(1 − x)(σT + σL) (7.18)

and F2 is seen to represent the sum over quark and antiquark

densities in the proton.

Now one can relate the total cross section for scattering

of a virtual photon on a proton to this sum, i.e.

σ tot
γ ∗p(x, W ) ≈ 4π2α

Q2
F2(x, Q2), (7.19)

and since x is proportional to the cm energy in the photon-

proton system, one can thus obtain the total cross section for

a range of energies.

On the other hand, in photo-production, σL ≪ σT and one

obtains for the total photo-production cross section

dσep

dy
= α

2π

1 + (1 − y)2

y

×
[

ln

(

Q2
max

Q2
min

)

− 2(1 − y)

1 + (1 − y)2

(

1 − Q2
min

Q2
max

)]

σ
γ p
tot (Wγ p).

(7.20)

In this review we are basically interested in models for

total cross section. Before discussing the models currently

used, since most models do use Vector Meson Dominance in

some fashion, it is useful to recall how it was first proposed.

7.2 Photons and vector meson dominance

Gribov, in his description of the interaction of quanta with

nuclei, which will be summarised in Sect. 7.2.2, refers to

the idea proposed by Bell [401] that, at high energy, Vector

Meson Dominance could result in the amplitude for π −
nucleus to be proportional to surface terms rather than to

volume terms.

The idea arose when Bell recalls Adler’s study of neutrino

scattering on nuclei,

ν + α → l + α∗ (7.21)

where α∗ is a group of strongly interacting particles.

Adler noticed that, using Partially Conserved Axial Cur-

rent (PCAC) and Conserved Vector Current (CVC), incident

virtual pions can actually describe the interactions of neutri-
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nos on nuclei by obtaining for the cross section of process

(7.21)

∂2σ

∂q2∂W 2
∝ σ(W,−q2) (7.22)

where q2 is the momentum transfer between the incoming

neutrino and the outgoing lepton l and W is the mass of the

hadronic system α∗, and σ(W,m2
π ) would be the total cross

section for the reaction πα → α∗. This result was something

of a paradox, because neutrino’s should be sensitive to the

entire nucleus, in his language the nucleus should be transpar-

ent to the neutrino, and not just to the surface, which is what

happens to pions. Following this line of reasoning, Stodolsky

[402] produced what at the time appeared as a similar para-

dox for photo-reactions, by using the ρ-photon analogy. The

discussion as to how the cross section for photon-nucleus is

not proportional to the atomic number A, but is more similar

to surface effects, is interesting and we shall reproduce here

the main ingredients of Stodolsky’s argument.

The usual result that the cross section for γ − A should

be proportional to A, follows from the optical theorem. Tak-

ing only the first scattering of the photon, order α, the scat-

tered waves are summed up for all the nucleons and then

from ℑm Fnucleus = Aℑm fnucleon, the optical theorem gives

σγ A = Aσγ -nucleon. But things are complicated by the fact

that quasi-elastic channels may only apparently contribute to

the elastic amplitude, and they really should be included as

multiple scattering processes. For instance, in πd scattering,

such quasi-elastic processes are π− + p → π0 +n followed

by π0 + n → π− p. This process should be considered at

the same level as π− + p → π− + p followed by a sec-

ond scattering π− + n → π− + n. Thus Stodolsky is led

to consider that the photon and the ρ-meson have the same

quantum numbers and that one can consider ρ -production

as a quasi-elastic process, in such a way that the photon will

fluctuate into a ρ-meson with amplitude proportional to e,

and then reconvert into a photon, and this process will give a

contribution of order e2 to the cross section. We are repeat-

ing this here since it shows once more that when dealing with

complex systems, a straightforward application of the optical

theorem may not work.

7.2.1 Sakurai’s VMD

In 1969 Sakurai [403] proposed the Vector Meson Domi-

nance (VMD) for high energy electron–proton inelastic scat-

tering. Following the conjecture [402,404] that the total

photo-absorption hadronic cross section could be calculated

from diffractive production of ρ, ω and φ mesons, Sakurai

went on to show that, when both longitudinal and transversely

polarized photon contributions are included in the calcula-

tion of the total ep cross section, then the VMD model and

experimental results are fully compatible.

In this paper, the following kinematics is defined: q =
(q, ν) is as usual the momentum transfer between electrons,√

s the missing hadronic mass. Also notice that he uses a

metric such that q2 > 0 corresponds to space-like photons.

The inelastic differential ep-cross section is written in terms

of the transverse and longitudinal cross section’s σT and σL

as

d2σ

dq2
= E ′

E

4πα2

q4

[

W2(q
2, ν) cos2 θ

2
+ 2W1(q

2, ν) sin2 θ

2

]

,

(7.23)

W2 = K

4π2α

q2

q2 + ν2
(σT + σS), W1 = K

4π2α
σT , (7.24)

K = ν − q2

2m p

=
s − m2

p

2m p

. (7.25)

σT and σS are obtained from the transverse and longitudi-

nal components of the electromagnetic current. The VMD

hypothesis then relates the electromagnetic matrix element

〈A| jμ|p〉 between a given final hadronic state |A〉 to the vec-

tor meson dominated one as

〈A| jμ|p〉 =
m2

ρ

fρ

1

q2 + m2
ρ

〈A| jρμ |p〉 (7.26)

where j
ρ
μ stands for the source density of the neutralρ-meson

field and Eq. (7.26) defines the coupling between the pho-

ton and the ρ-meson. The transverse and longitudinal cross

sections are then given by

σT =
(

e

fρ

)2

F2(q2)σ⊥
ρp(K ), (7.27)

σS =
(

e

fρ

)2

F2(q2)
q2

m2
ρ

(

K

ν

)2

ξ(K )σ⊥
ρp(K ) (7.28)

with

F2(q2) =
(

m2
ρ

q2 + m2
ρ

)2

, (7.29)

ξ = σ
‖
ρp

σ⊥
ρp

. (7.30)

Accordingly Sakurai obtains for the structure function W2

νW2(q
2, ν) =

m2
ρ

4π2α

K

ν

1

1 + m2
ρ/q2

F (7.31)

with

F =
[

1

1 + m2
ρ/q2

]2

ξ(K )

(

K

ν

)2

+
m2

ρ

q2
σγ p(K ). (7.32)

νW2(q
2, ν) is then shown to become a universal function of

ν/q2 in the Bjorken limit q2 → ∞ and fixed q2/ν [400].
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Adding the other vector mesons is easily done by consid-

ering their isospin properties so that the overall contribution

can be written by the simple substitution

1

fρ
→ 1

fρ

[

1 + 1√
2

+ 1

3

]

(7.33)

where one can make the approximation m2
ρ ≈ m2

ω ≈ m2
φ .

Sakurai derives from VMD, a relationship between the

Bjorken scaling function F2(x) and asymptotic σγ p

F2(x) →
[

ξ(∞)m2
ρ

4π2α

]

(1 − x)2σγ p(∞). (7.34)

7.2.2 Gribov’s model

We shall now summarise the model in which Gribov first

described the interactions of photons with matter. In [405],

Gribov advances the idea that the character of the interac-

tion of photons with nuclei and the development of surface

effects [A2/3-dependence] at high energies have no connec-

tions with ρ-mesons or π -mesons, but are solely determined

by distances which are significant in those interactions. In the

above paper, Gribov is referring to the idea proposed by Bell

[401] about Vector Meson Dominance which was discussed

in Sect. 7.2.

In fact, the expression proposed by Gribov for the cross

section of photons on nuclei, which includes only hadronic

processes, is

σγ = 2π R2(1 − Z3) (7.35)

where R is the nuclear radius, and Z3 is the charge renor-

malisation constant due to hadrons, which can be written in

terms of the cross section for electron–positron annihilation

into hadrons,

1 − Z3 = e2

π

∫

ρ(x2)
dx2

x2
. (7.36)

Gribov’s explanation of Eq. (7.35) is that 2π R2 is the geomet-

rical cross section for the interaction of hadrons with nuclei

and the other factor is related to the length of time that the

photons spend in the hadron state. To estimate this time, one

first needs to establish the region of validity of Eq. (7.35).

This is obtained by first considering a photon of momentum

P in the Laboratory frame, and write the relevant longitudi-

nal scale as δ = P/μ2, where μ is some characteristic mass.

Now, let l be the mean free path length of a hadron in the

nucleus, the condition of applicability is that δ2 ≫ Rl. If one

takes the characteristic mass to be that of the ρ-meson and

the path length as defined by the interaction, with l ∼ 1/mπ ,

then Gribov claims that surface effects will start appearing

at energies exceeding 10 GeV, which would correspond to a

few GeV.

His picture of what happens is as follows: first the photon

virtually decays into hadrons (we would now say partons),

and then the hadrons start interacting with the nucleons in the

nucleus. What matters here is the length of this fluctuation

into hadrons, which he takes to last for a time δ. He considers

the two possibilities, δ ≤ l and of course δ ≥ l. Consider the

first case and let σγ be proportional to:

1. the probability of the photon to hit the nucleus ∼ π R2

2. the probability that fluctuations take place inside the

nucleus ∝ αR
δ

3. the probability that the hadrons forming will have time

to complete an interaction with a nucleon in the nucleus,

∝ δ/ l.

Hence σγ ∼ π R2 × αR
δ

× δ/l ∼ απ R3/ l ∝ A∗σγ N . But

actually as the energy of the photon increases, the duration

of the fluctuation will also increase and the probability of

interaction will increase with energy. When the time length

of the fluctuation into hadrons exceeds the interaction length,

the relevant probability is one and, one gets σγ ∼ π R2 × αR
δ

and will decrease as the energy increases. A further effect is

due to Bell’s [401] observation about the probability that the

interaction takes place outside the nucleus is ∝ l/δ so that one

gets σγ ∼ απ R3l/δ2. When δ becomes much larger than the

interaction length, as the energy increases further, the photon

will fluctuate into a hadron outside the nucleus and the hadron

which are thus formed will interact with a cross section π R2.

The argument is not full proof, and it appears more as an

a posteriori justification, but the gist of the matter seems

to be that the cross section is actually proportional to the

nuclear surface and not to the volume. According to Gribov,

it is also easy to understand the presence of the factor 1 −
Z3. To understand it, he then looks at the forward scattering

amplitude, visualized in a figure like Fig. 100, which we

reproduce from [406].

In the figure, F is the amplitude for scattering of a beam

of hadrons on a nucleus of radius R, with momentum transfer

q. But in the forward direction, Fig. 101, it is the diagram

defining charge renormalisation.

Fig. 100 Cartoon of the forward scattering amplitude from [406]

Fig. 101 Charge renormalisation, from [406]
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Fig. 102 Interaction of electrons with nuclei from [406]

For the interaction of electrons with nuclei depicted by

Gribov as in Fig. 102, one has a similar picture, except that

instead of 1 − Z3 the cross section will be determined by the

polarisation operator from Fig. 102.

7.3 QCD evolution equations for photon processes, BK

equation

We now turn to the QCD description of photon processes in

terms of evolution equations, addressing the transition from

the linear BFKL rate equation to the non-linear Balitsky–

Kovchegov (BK) equation [407,408] and what saturation

means. The underlying phase transition is also exhibited. We

shall then return to models, including the transition from

(γ ∗ p) to real photon (γ p) processes and models for (“geo-

metrical”) scaling in the small Q2 region.

7.3.1 Introduction

The BFKL “rate” equation for the density of gluons is linear

and is expected to break down as the density becomes large

[e.g., as in γ ∗ p at low x or in hadron-nucleus scattering].

A more appropriate equation valid for large densities is pro-

vided by the BK equation [407,408] that is non-linear and

incorporates saturation i.e., a maximum steady-state value

for the density. Similar problems occur in a variety of fields

of physics, chemistry, biology, logistics, etc. In the follow-

ing, we shall illustrate the problem and its resolution for the

important practical case of the photon number for lasers.

7.3.2 Dynamics behind some simple non-linear rate

equations for photons

Here we shall discuss a simple non-linear rate equation and

dynamical reasons behind leading to it. The linear rate equa-

tion, where the rate is proportional to the number itself, of

course leads to an exponential growth or exponential decay

as

dI (t)

dt
= +ν I (t); I (t) = I (0)eνt , (7.37)

depending upon the sign of ν. But in all practical systems,

some non-linearity is bound to be present, giving rise to non-

exponential behavior in time.

The best studied (and very practical) example is that of

the laser. If the rate equation for the mean photon number

were linear (as above in Eq. (7.47)), the number of laser

photons would increase exponentially. Of course, that cannot

be, otherwise we would need an infinite source of energy,

hence there must be some dynamical mechanism to saturate

the number. The solution to this problem for lasers was first

given by Lamb. The famous Lamb equation for the light

intensity I (t) may be written as [409]

dI (t)

dt
= +ν[a − I (t)]I (t). (7.38)

The second term on the right-hand side of Eq. (7.38) arises

dynamically through the creation and annihilation of two-

photons at a time, just as the first term is related to the creation

and annihilation of single photons. The parameter a is called

the pump parameter and its sign is crucial in determining the

steady-state value of I . We note here parenthetically that the

analog of Eq. (7.38) written in an entirely different context of

population and called the logistics equation was first written

down by Verhulst [410,411].

If a ≤ 0, the steady-state value of I [determined by the

vanishing of the left side of Eq. (7.38)], is ISS → 0. Physi-

cally, for negative pump parameter, there is no laser activity.

On the other hand, for a > 0, ISS → a and hence the laser

intensity increases linearly with a.

The innocent looking Eq. (7.38) has buried in it a (second

order) phase transition wherein a acts as the order parameter.

This is easily seen by considering ISS as a function of a. ISS

is continuous at a = 0 but its derivative is not.

A simple model for a plethora of physical processes such

as the mean photon number, intensity, mass growth, magneti-

sation etc. is provided by analogues of Eq. (7.38) where the

parameters ν and a have different physical significance and

their signs play a crucial role in determining the fate of that

physical system.

A partial understanding of the genesis of the quadratic

term on the right in Eq. (7.38) can be obtained through a

consideration of the frequency of a photon mode in a cavity.

The frequency of a mode in a cavity is inversely proportional

to the length of the cavity L . Thus, if the geometry of the

cavity fluctuates via the length scale L , then the frequency of

the photon oscillator will be modulated. Because of such a

modulation, the cell cavity will emit or absorb two (or more)

photons at a time, thus leading to the above rate equation if

one truncates to two photons.

Similar rate equations must exist for any system [depend-

ing upon its size for example] where growth may be rapid

but the growth must cease eventually resulting in a limiting

value [such as the maximum size]. In the following section,

we shall discuss the relevant case of the gluon density in

QCD where the non-linear direct coupling gg → g (absent

in QED) automatically provides such a non-linear term.
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But before going on to discuss the case of QCD, let us

consider the special case a = 0 in Eq. (7.38) for the number

N (t) of photons.

dN (t)

dt
= −νN 2(t); N (t) = N (0)

(1 + νt)
. (7.39)

The above decay pattern ∼(1/t) for large t is called a hyper-

bolic decay law and it has been observed in certain cases

of bio-luminescence. In fact, there are many simple phys-

ical systems which display hyperbolic decay laws. Typical

examples are those which involve the excitation of pairs in

the medium, which then recombine to emit light. This nat-

urally gives decay laws which one would expect classically

to obey d N/dt = −νN 2. Note that this is a purely classi-

cal result and does not require coherent effects between the

excited states, which would also be expected to give the same

decay law.

The important point to remember is that exponential or

hyperbolic behavior cannot be theoretically correct for the

whole phase space even though they may provide good

approximations in restricted regions of phase space. Such is

the case in QCD both in hadronic as well as in deep inelastic

scatterings.

7.3.3 Non-linear BK equations in QCD

Let us consider the Balitsky approach [407] to the scattering

of a virtual photon γ ∗(q) on a hadron of momentum p as

summarised by E. de Oliveira [412]. For the limit of xB =
[Q2/2(q.p)] small where Q2 gives a hard scale and s ≫
Q2, a dipole picture emerges naturally in the limit of infinite

colour Nc → ∞ when planar diagrams become dominant.

The photon does not directly interact with the target hadron

but only through an “onium” made up of a quark of a given

colour accompanied by an anti-quark of opposite colour to

preserve the colour singlet nature of the photon. The onium

must then exchange two gluons with the hadron to preserve

the colour singlet nature of the target hadron.

Thus, the photon does not interact directly with the target

hadron but through a “gas” of non-interacting dipoles. Single

dipole scattering with the target hadron leads to BFKL evolu-

tion equation and multiple dipole scatterings to the BK equa-

tions. To proceed with the dynamics, Balitsky [413] invokes

the general notion that a fast particle in a high energy scat-

tering moves along its classical trajectory and the quantum

effect consists in the acquisition of an eikonal phase along its

prescribed (classical) path. In QCD, for a fast parton (quark

or glue), the eikonal phase is given by the Wilson line that is

link-ordered along the straight line collinear to the 4-velocity

nμ of the parton. The Wilson line operator may be written

as

Uη(x⊥) = P exp

{

ig

∫ ∞

−∞
du nμ Aμ(un + x⊥),

}

(7.40)

where Aμ(x) is the gluon field of the target, x⊥ is the

transverse position of the target. In high energy scattering

within QCD, Wilson line operators form convenient effec-

tive degrees of freedom as partons with different rapidities

(η) “feel” each other through matrix elements of these oper-

ators. In the colour dipole model of the photon then the

propagation of a quark–antiquark pair takes place through

the propagation of the colour dipole via the two Wilson

lines ordered collinear to the quark’s velocity. Thus the

structure function of the hadron becomes proportional to a

matrix element of the colour dipole operator which is given

by

Ũη(x⊥; y⊥) = 1 − 1

Nc

T r{Ũη(x⊥)Ũη(y⊥)}, (7.41)

taken between the states of the target hadron. The gluon den-

sity is then given approximately by

xB G(xB;μ2 = Q2) ≈ 〈p|Ũη(x⊥; 0)|p〉|x2
⊥=1/Q2 . (7.42)

The energy dependence of the structure function is thus

reduced to the dependence of the colour dipoles on the

slope of the Wilson lines as determined by the rapidity

η. A whole hierarchy found by Balitsky emerges as given

by equations of the type [valid in LLA for αs ≪ 1 and

αs(ln xB) ∼ 1]:

d

dη
〈Txy〉 = ᾱs

2π

∫

(d2z)M(x, y; z)

×[〈Txz〉 + 〈Tyz〉 − 〈Txy〉 − 〈TxzTyz〉];

ᾱs = αs Nc

π
. (7.43)

Once the mean-field approximation (i.e., the factorisation)

〈TxzTyz〉 = 〈Txz〉〈Tyz〉 is made, the above becomes a non-

linear, but closed, set of BK evolution equations. In particular,

for the Wilson line operators it becomes

d

dη
〈Ũη

xy〉 = ᾱs

2π

∫

(d2z)
(x − y)2

(x − z)2(y − z)2

×[〈Ũη
xz〉 + 〈Ũη

yz〉 − 〈Ũη
xy〉 − 〈Ũη

xz〉〈Ũη
yz〉].

(7.44)

The last (non-linear) term on the right-hand side of the BK

equation for color dipoles is due to multiple scattering. This

Balitsky–Kovchegov evolution equation is usually written

for the dipole hadron cross section in impact-parameter space

as

σdipole(x01; Y ) = 2

∫

(d2b01)N (b01; x01; Y )

x01 = (x0 − x1); b01 = x0 + x1

2
, (7.45)

where N (b01; x01; Y ) is the quark–antiquark propagator

through the hadron, related to the forward scattering ampli-
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tude of the dipole with the hadron. The BK equation in “coor-

dinate” space reads

d

dY
N (b01; x01; Y ) = ᾱs

2π

∫

(d2x2)
x2

01

x2
02x2

12

×
[

N (b01 + x12

2
; x02; Y ) + N

(

b01 + x02

2
; x01; Y

)

−N (b01; x01; Y ) − N

(

b01 + x12

2
; x02; Y

)

× N (b01 + x02

2
; x12; Y )

]

. (7.46)

The “time” here is the rapidity Y ≈ 1/xB and the equa-

tion has four other variables [two from x01 and two from

b01]. The BK equation resums all powers of (αsY ). If the last

quadratic term is dropped, then it reduces to the linear BFKL

equation

d

dY
N (b01; x01; Y ) = ᾱs

2π

∫

(d2x2)
x2

01

x2
02x2

12

×
[

N

(

b01 + x12

2
; x02; Y

)

+ N

(

b01 + x02

2
; x01; Y

)

−N (b01; x01; Y )] . (7.47)

Given the complexity of Eq. (7.46), it is useful to consider

special cases to obtain some familiarity with it.

7.3.4 Space-independent BK equation in (0 + 1)

dimensions

If one assumes that N (b01; x01; Y ) is spatially independent

(i.e., independent both of the impact parameter b01 and the

dipole “size” x01), then the BK equation reduces to the pre-

viously discussed logistics equation [see Sect. 7.3.2]:

d

dY
N (Y ) = ω[N (Y ) − N

2(Y )]; ω > 0. (7.48)

As discussed previously, it has two steady-state solutions (or

fixed points): an unstable solution N = 0 and the other the

stable solution N = 1. It should also be clear that the lin-

earized BFKL blow up for large Y has been softened to a

maximum value of 1, i.e., a saturation for small xB , indepen-

dent of the initial condition.

7.3.5 Impact-parameter independent BK equation in

(1 + 1) dim

If we drop only the impact parameter dependence but keep

the dipole size, we have N (b; x; Y ) → N (r; Y ) and the BK

equation in (1 + 1) dimension reads

d

dY
N (|x01|; Y ) = ᾱs

2π

∫

(d2x2)
x2

01

x2
02x2

12

×[N (|x02|; Y ) + N (|x12|; Y ) − N (|x01|; Y )

−N (|x02|; Y )N (|x12|; Y )]. (7.49)

Physically, of course, b-independence implies an infinite

homogeneous hadronic surface but where the scattering ker-

nel does depend upon the size of the dipole. Numerical com-

putations verify general trends already seen in (0+1) dimen-

sions [412]:

– saturation occurs [in contrast to BFKL blowup] for large

Y ;

– saturation for large Y is independent of the initial condi-

tion [that is, independent of the dipole size];

– for small Y , N (r; Y ) is smaller for smaller dipole size;

– for small r , non-linear corrections are by and large neg-

ligible;

– for large r , non-linear corrections are important and

N (r; Y ) ≈ 1

– saturation scale Qs(Y ):

r <
1

Qs(Y )
; N ≪ 1;

r >
1

Qs(Y )
; N ≈ 1. (7.50)

7.3.6 Geometrical scaling in DIS

The approach to saturation is also discussed in a paper by

Stasto, Golec-Biernat and Kwiecinski through a discussion

of a geometric scaling [414] in the low-x region, observed

at HERA for Deep Inelastic Scattering, γ ∗ p scattering. But

the result claimed here is not the same as the usual geometric

scaling observed or expected in hadron–hadron scattering.

In the purely hadronic case geometric scaling refers to the

fact that the scattering amplitude in impact-parameter space

G(s, b) is only a function of the ratio β = b2/R2(s), where

R(s) is the interaction radius. To avoid confusion, one should

notice that the interaction radius R(s) in the hadronic case

increases with energy, whereas the one in DIS decreases with

energy, or with x → 0.

Such a behavior is understood to represent a unitarity

bound, which reflects the fact that the growth with x (as

x → 0) of the structure functions is tamed by saturation

effects. This is also a version of the Black Disk model.

More precisely, the HERA data on the total γ ∗ p scattering

cross section, suggest a geometrical scaling of the following

form [414]

σ γ ∗p(Q,Y ) = σ γ ∗p(τ ); τ = Q2

Q2
s (Y )

. (7.51)

This translates for the scattering amplitude into

N (r; Y ) → N (r Qs(Y )); for large Y. (7.52)

Using the form Qs(Y ) = QoeᾱsλY , the scaling form given

in Eq. (7.52) reduces to
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N (r; Y ) → N (Qoe(ln r+ᾱsλY )). (7.53)

Equation (7.53) has been interpreted as a traveling wave with

Y as time, (ᾱsλ) as the speed vs of the wave and (ln r ) as

the spatial coordinate. Such a wave picture emerges rather

naturally through a momentum space description as shown

next.

In [415], a detailed analysis of “extended” geometrical

scaling has been made and its (not at all obvious) connection

with the BK equation investigated. These authors conclude

through a numerical analysis of the BK equation in momen-

tum space that the BK results are qualitatively different from

that of the phenomenological dipole models. In particular,

they find that geometrical scaling around the saturation point

is only obtained for asymptotic rapidities.

7.3.7 Momentum space BK equation

Let us consider the momentum space amplitude defined

through the Fourier transform [416–418]

N̄ (k; Y ) =
∫ (

d2r

2πr2

)

eik·r
N (r; Y ). (7.54)

Then the BK equation in momentum space reads

dN̄ (k; Y )

dY
= ᾱs

∫ (

dk′

k′

)

K(k, k′)N̄ (k′; Y ) − ᾱsN̄
2(k; Y ).

(7.55)

In [419], it is shown that in the saddle point approximation,

the BK equation can be mapped into the FKPP equation [420,

421] of the form

∂t u(ζ, t) = ∂2
ζ u(ζ, t) + u(ζ, t) − u2(ζ, t), (7.56)

with the dictionary above: t is time, and ζ is the coordinate.

The crucial point is that FKPP equation does have traveling

wave solutions of the form (ζ − vt), in agreement with the

geometrical scaling solutions given in Eq. (7.53) with t = Y ,

ζ = ln(r) and v = ᾱsλ. This correspondence does provide a

window of comfort in the phase space for geometrical scal-

ing.

So far, we have considered a fixed αs . For a discussion of

the results of BK evolution as one changes to running αs , we

refer the reader to some recent analyses in [422,423].

7.3.8 Dense hadronic systems

For dense hadronic systems, new phenomena in QCD occur

and some have been investigated in detail for heavy ions. For

large A nuclei scatterings at high energies, colour glass con-

densates and colour transparency have been found through

an effective field theory constructed from QCD. It will take

us far outside the realm of this review but we refer the inter-

Fig. 103 Pomeron-loop graphs absent in BK, from [412]

ested reader to excellent expositions by McLerran [424,425],

Venugopalan [426] and Mueller [427].

7.3.9 Beyond BK, fluctuations, Pomeron loops

That the BK equation does not include fluctuations in the

gluon (dipole) number has been particularly emphasised by

Bartels et al. [428]. Thus, if the Pomeron is considered as a

manifestation of the propagation and exchange of two-gluon

singlets, then what is missing in BK becomes the lack of a

Pomeron hierarchy as shown in Fig. 103.

Work in the past two decades have shown that a Langevin

equation can be formulated to include three Pomeron vertices

and we just quote some results. It is claimed [429] that a BK

equation with white noise of the following form – called

the stochastic FKPP or s F K P P – can mimic the Pomeron

hierarchy.

∂t u(ζ, t) = ∂2
ζ u(ζ, t) + u(ζ, t) − u2(ζ, t)

+ ν(ζ, t)

√

(

2

Nc

)

u(ζ, t)(u(ζ, t) − 1), (7.57)

where white noise ν(ζ, t) is defined as

〈ν(ζ, t)〉 = 0; 〈ν(ζ, t)ν(ζ ′, t ′)〉 = δ(ζ − ζ ′)δ(t − t ′).

(7.58)

Strong fluctuations are also discussed in [430]. For further

theoretical work on this subject we refer the reader to the

literature.

7.4 Transition from σ(γ ∗ p) to real σ(γ p): models and

phenomenology for low-x physics

After the great successes of Bjorken scaling and the verifi-

cation of its perturbative QCD calculable violations in deep

inelastic total cross section σ(γ ∗ p) for large Q2, came the

arduous task of understanding the physics for small Q2 pho-

ton masses and eventually to bridging the gap to its contin-

uation to real σ(γ p) process as Q2 → 0. Excellent quality

data exist in this kinematic region by the H1 and Zeus groups

from HERA demanding a theoretical and phenomenological

explanation.
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Explicitly, the object is to formulate the usual proton EM

structure function F2(W ; Q2) defined as in Eq. (7.19) so

that it interpolates smoothly to the real photon cross section

σ γ p(W 2). It should be mentioned that real photon, σ γ p(W 2),

cross sections are obtained through the HERA data in Q2 =
(0.01 ÷ 0.02)GeV2 region. While such a region lies beyond

the realm of perturbative QCD, it does offer the possibility

of extension as well as a challenge to hadronic total cross

section models for its description.

7.4.1 Phenomenological analyses by Haidt et al.

Data from HERA on the structure function F2(x, Q2) at

small (and medium) values of x have been analyzed in set of

papers by D. Haidt [431–433] and compared with theoretical

expectations. In [431], it was shown that the observed rise

at small x = (Q2/2q · p) is consistent with a doubly loga-

rithmic increase: a logarithmic increase in 1/x along with a

logarithmic growth also with Q2, i.e.

F2(x, Q2) = a + b
[

ln
( xo

x

)]

[

ln

(

Q2

Q2
o

)]

, (7.59)

where a, b, xo, Q2
o are constants, and the above expression is

valid in the perturbative phase space region at x < 0.001. A

stronger increase, which may be incompatible with unitarity

when extrapolated to asymptotically small values of x, could

not be inferred from the data then available.

A few years later, in [432,433], the HERA data for small

values of the Bjorken variable x = (Q2/2q · p) ≤ 0.01, were

described phenomenologically through the expression

F2(x; Q2) = m
[

ln
( xo

x

)]

ln

(

1 + Q2

Q2
o

)

, (7.60)

m ≈ 0.4; xo ≈ 0.04; Q2
o ≈ 0.5GeV2. (7.61)

The extension from ln(Q2/Q2
o) to ln(1 + Q2/Q2

o) allows

one to describe both the perturbative and the nonperturbative

regime as long as x is below 0.001. This implies for F2 a

behaviour proportional to Q2 for Q2 < Q2
o and a logarithmic

behaviour above.The strategy adopted by Haidt for a smooth

continuation of σ γ ∗ p(W 2; Q2) to very small values of Q2

consisted in defining a variable q = ln(1 + Q2/Q2
o) and

rewriting Eq. (7.60) as

σ γ ∗ p(W 2; Q2) =
(

4π2

Q2
o

)[

q

(Q2/Q2
o)

] [

F2(W, Q2)

q

]

.

(7.62)

A virtue of q is that it interpolates smoothly from small Q2

to ln Q2 ( for large Q2): since q → Q2/Q2
o as Q2 → 0,

a transition from σ γ ∗ p(W 2; Q2) to σ γ p becomes amenable.

In the region x < 0.01, W 2 ∼ Q2/x and thus a behavior of

F2/q ∼ [ln(1/x)] implies F2/q ∼ [ln(W 2)]. The q depen-

dence of the HERA data were then analyzed through a linear

form in ln(W 2):

F2(W
2; q)

q
= uo(q) + u1(q) ln(W 2/W 2

o ). (7.63)

An almost constant value for the slope u1(q) ≈ 0.4 was

found for large values of q. Inclusion of real γ p data at

W = 200 GeV showed that the transition from the γ ∗ p

data available until the lowest value of Q2 = 0.05 GeV2, to

real photons in γ p seemed to work well.

As Haidt pointed out, for smaller values of q – outside

the measured region – Eq. (7.62) needs to be revised since

(F2/q) is a function of x alone whereas σ γ p is a function of

W 2 alone. The suggested replacement to reach real Compton

scattering – so that the Q2 → 0 limit is reached smoothly –

is

( xo

x

)

→
[

xo

x

(

Q2

Q2 + Q2
w

)]

, (7.64)

where for consistency 0 ≤ Q2
w ≤ Q2

o. Satisfactory agree-

ment with the HERA data were found for Q2
w = 0.05 GeV2.

An attentive reader would note that Haidt’s variable q =
ln(1+ Q2/Q2

o) that becomes linear in Q2 for small Q2, has a

parallel in Richardson’s proposal of replacing the asymptotic

freedom formula for the QCD coupling constant αAF (Q2) to

αR(Q2) so as to obtain a linearly confining potential [434]:

αR(Q2) = 1

b ln[1 + Q2/Λ2] ; (7.65)

αR(Q2) →
[

Λ2

b Q2

]

for Q2 → 0; (7.66)

αR(Q2) → αAF (Q2) = 1

b ln[Q2/Λ2] for Q2 → ∞.

(7.67)

Further discussion and details about singular, confining

αs(Q2) can be found in Sect. 5 of the present review.

7.4.2 Dipole model and geometrical scaling

As described in Sect. 7.3.6, the phenomenon of saturation and

a geometrical scaling for low-x γ ∗ p processes have been

obtained from the QCD dipole model. Here we present its

essential formulation and phenomenology.

In this model, the scattering takes place in two steps. First,

a virtual (transverse T or longitudinal L) photon of four-

momentum Q splits into a qq̄ dipole of transverse size r that

is described through a probability distribution |Ψ (r, z, Q2)|2,

where z is the fraction of longitudinal momentum of a quark

of mass m f . Then a subsequent scattering of the produced

dipole occurs with the proton that is modeled through a

dipole-proton cross section σ̃ (r, x). Explicitly,
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σT,L(x; Q2) =
∫

(d2r)

∫ 1

o

(dz)|ΨT,L(r, z; Q2)|2σ̃ (x; r).

(7.68)

The splitting wave functions for the photon Ψ for a quark of

flavour f and charge e f are given by

|ΨT |2 =
[

3α

2π2

]

∑

f

e2
f {[z2 + (1 − z)2](Q̄ f K1(Q̄ f r))2

+ (m f Ko(Q̄ f r))2}

|ΨL |2 =
[

3α

2π2

]

∑

f

e2
f [2z(1 − z)Q̄ f Ko(Q̄ f r)]2, (7.69)

where K0,1 are Macdonald functions and

Q̄2
f = z(1 − z)Q2 + m2

f . (7.70)

It is important to note that the above incorporates the change

in the dynamics as Q2 varies from large to very small values

in two ways. Kinematically, as Q2 goes to zero, the effective

quark masses m f begin to set the scale for the process. The

important ranges of integration in Eq. (7.68) changes with the

size of the dipoles in two essential ways. The K -functions

decrease exponentially for large r dipoles whereas for small

size dipoles they provide (inverse) power-law dependence.

Also, the dipole cross sections are assumed to “saturate” as

follows.

σ̃ (r, x) = σog(r̂); r̂ =
[

r

Ro(x)

]

, (7.71)

where σo is taken as a constant (phenomenologically σo ∼
23 μb) and the function g saturates to 1 as r̂ → ∞:

g(r̂) = [1 − e−(r̂2/4)]. (7.72)

The above tames the small x blow up present in the structure

functions in DGLAP and BFKL, as required by unitarity.

Geometrical scaling resides in Eq. (7.71) through the fact

that σ(r̂) depends on the dimensionless variable r̂ and thus

the saturation radius Ro(x) controls the energy behaviour

of the cross section. Hence, in the region of small but non-

vanishing x , after integration Eq. (7.68) depends only on one

dimensionless variable τ :

σ γ ∗ p(x, Q2) = σo h(τ ); τ = Q2 R2
o(x). (7.73)

Qualitatively, the results – modulo logarithmic corrections –

may be summarised as follows.

σ γ ∗ p(x, Q2) → σo for τ → 0

σ γ ∗ p(x, Q2) →
[σo

τ

]

for τ ≫ 1. (7.74)

A phenomenological form for the saturation radius

Ro(x) =
(

1

Qo

)(

x

xo

)λ/2

;

Qo = 1 GeV; xo = 3 × 10−4; λ = 0.29, (7.75)

Fig. 104 σ γ ∗ p(τ ) vs. τ , the scaling variable from [414]. Reprinted

with permission, Fig.(1) from [414], ©(2001) by the American Physical

Society

seems to work quite well and exhibits scaling for x < 10−2

[414,435] as shown in the Fig. 104 from [414].

For a smooth limit to Q2 → 0, the Bjorken variable is

shifted to

x → x̃ = x

[

1 +
4m2

f

Q2

]

, (7.76)

and the parameter

ζ =
(

x

xo

)λ (
Q2

Q2
o

)

(7.77)

is defined that delineates the “soft-x” regime (ζ < 1) from the

“hard-x” regime where ζ > 1. A useful interpolation formula

that approximately covers both regions has also been given

[435] as

σ γ ∗ p(x, Q2) = σo

{

ln

(

1 + 1

ζ

)

+ 1

ζ
ln(1 + ζ )

}

. (7.78)

As previously discussed in the definition of the parameter q

in Eq. (7.62) proposed by Haidt, a factor 1 has been added to

the argument of the logarithms for a smooth limit Q2 → 0.

The above expressions reproduce the change in the slope of

the high W 2 cross section data as Q2 is varied.
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7.5 Models for γ p cross section

The approaches to the phenomenological or theoretical

description of photon-proton total cross sections can be

roughly divided into some general categories:

– factorisation models, including the universal Pomeron

exchange model by Donnachie and Landshoff descrip-

tion, which extends very simply from pp scattering to

photon processes and can then be extended, again very

simply, to photon-photon processes

– the Reggeon-calculus approach which follows Gribov’s

picture of the interaction, including the Dual Parton

model descriptions

– QCD mini-jet models with photon structure functions

– QCD-inspired parametrisations.

We shall start with Donnachie and Landshoff model, which

we have already described in the previous sections.

In 1992, Donnachie and Landshoff [60] proposed a uni-

versal form for all total cross sections, based on Regge pole

behaviour. Their expression, based on a simple and eco-

nomical parametrisation of the total cross section behaviour,

describes the high energy behavior of all total cross section

with a universal power law. The universality of the slope is

not always observed, as we have discussed in [147]. How-

ever the DL expression, with slightly different slopes, offers

a good description in the energy range presently reached by

accelerators, and is still an object of investigation, both the-

oretically and experimentally.

We show in Fig. 105 the results from an analysis by the

ZEUS Collaboration from HERA. The focus of this analysis

Fig. 105 The energy behavior of the photo production cross section by

the ZEUS Collaboration as shown in Fig. (5) from [392]. Reprinted with

permission from the ZEUS Collaboration from [392]. OPEN ACCESS

is the slope of σ
γ p
tot [392] as a function of the cm energy W,

in the energy range spanned by HERA. Parametrising σ
γ p
tot

with W 2ǫ gives ǫ = 0.111 ± 0.009(stat) ± 0.036(sys).

It must be stressed that while a power-law behavior is a

good parametrisation of the energy dependence in the HERA

region, this is clearly not sustainable at higher energies, as

dictated by the Froissart bound. The behavior to be expected

at the high end of cosmic ray energies cannot be gauged from

this analysis.

7.5.1 The Tel Aviv group

The work [436,437] by the Tel Aviv group of Gostman, Levin

and Maor (GLM) presents a unified description of DIS total

cross section and photo-production. This work follows Gri-

bov’s idea that the scattering of photons on hadrons can be

visualized in, the by now standard, two stages, i.e.

1. the virtual photon fluctuates into a qq̄ pair (hadron in

Gribov’s language)

2. the qq̄ interacts with the hadronic matter

In this model one calculates the total cross section for a

generic Q2, and the final expression is written with a contri-

bution from the transverse (T) cross section as well as one for

the longitudinal (L) part. For large Q2, an expression for con-

tribution from fluctuations of the photon into a heavy quark

pair is also given.

Following Gribov, the starting expression for the cross

section, for a photon of mass Q2 scattering off a proton, is

written through a dispersion relation in the initial and final

hadronic masses as

σ
γ ∗p
tot = α

3π

∫

Γ (M2)dM2

M2 + Q2
σ(M2, M ′2, s)

Γ (M ′2)dM ′2

M ′2 + Q2

(7.79)

with

Γ 2(M2) = R(M2) = σ(e+e− → hadrons)

σ (e+e− → μ+μ−)
. (7.80)

For large masses Γ (M2) × Γ (M ′2) → R(M2) = 2. To

describe the hadronic cross section σ(M2, M ′2), the scat-

tering is first divided according to an energy scale, M0,

which separates the hard scattering regime where pQCD

can be used and the soft region. In the soft region, a sec-

ond scale is needed, because of the difference between gluon

and quark sizes. To be more specific, in the soft region, i.e.

for M, M ′ < M0 the following expression is used:

σ(M2, M ′2) = σ soft
N (M2, s)M2δ(M2 − M ′2)

= [σq N + σq̄ N ]M2δ(M2 − M ′2) (7.81)
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and for M, M ′ < M0, Gribov’s formula is simplified to read

σ(γ ∗N ) = α

3π

∫

R(M2)M2dM2

(Q2 + M2)2
σN (M2, s). (7.82)

For the soft regime, a Donnachie-Landshoff type expres-

sion is used so as to arrive at

σ soft
T = α

3π

∫ M2
0

4m2
π

R(M2)M2dM2

(Q2 + M2)2

×
{

A(
s

M2
)αP−1 + B

( s

M2

)αR−1
}

(7.83)

with A and B obtained so as to make the result agree with

those from ρ-proton interactions. In [436], the constants A

and B were obtained from DL type fits to π± p. Since the

cross section thus calculated seems to be higher than the

data, some corrections are introduced. The calculation for

the hard part is done using published PDF’s for the gluon

distributions inside the proton, and is given by

σ hard
T = 2πα

3

∫ ∞

M2
0

R(M2)dM2

Q2 + M2

×
∫ ∞

0

d M̃2

M̃4
αs

(

M̃2

4

)

xG

(

x,
M̃2

4

)

I(M2, M̃2, Q2)

(7.84)

with

I(M2, M̃2, Q2)

= M2 − Q2

M2 + Q2
+ Q2 + M̃2 − M2

√

(Q2 + M2 + M̃2)2 − 4M2 M̃2

.

(7.85)

Notice the lower cutoff for the integration in M2.

Equations (7.83) and (7.85) need to be implemented by

the contribution of heavy quark pairs. This is obtained from

Eq. (7.84) by the substitutions

4M2 M̃2 → 4(M2 − 4m2
Q)M̃2, R(Q2) → RQ Q(M2).

(7.86)

In both the above equations, x = x(M2) = (Q2 + M2)/W 2,

where W is the energy in the photon–nucleon center of mass

system. No soft contribution is of course present for the heavy

quark term.

An expression similar to the above is also used to describe

a longitudinal component to add to the transverse one. For

the soft contribution, the authors note that a priori it should

be straightforward to replace the factor M2 with Q2, except

they find that, in so doing, the contribution from the soft part

overestimates the experimental data and needs to be reduced.

The strategy adopted is to reduce the value of the parameter

M0. For the hard component, the additional degrees of free-

dom result in an expression proportional to Q2 (hence going

Fig. 106 From [437]. Data in the low-energy range come from fixed

target experiments, while cross section values for W 2 > 104 GeV2 are

from [399]. Reprinted with permission from [437] ©(1999) by Springer

to zero for real photons). For details, see [437]. The overall

expression is thus

σ(γ ∗ p) = σ soft
T + σ hard

T + σ hard
T,Q Q + σ soft

L + σ hard
L . (7.87)

The resulting fit for the γ p cross section is shown in

Fig. 106.

Concerning the pQCD part of this calculation, there are a

few points to notice:

– at low energy, the soft part does use some type of vector

meson dominance, being parametrised following π± p,

but it needs some adjustments,

– the overall result depends on the gluon densities used

for the calculation of the hard part, with MRST [438]

densities for the gluon giving a better description than

GRV, both GRV94 [439] or GRV98 [96],

– a difficulty in the calculation is related to the low values

of M2 integration, where the strategy adopted has been

to use

xG(x, l2 < μ2) = l2

μ2
xG(x, μ2) (7.88)

and for Q2 < μ2 to keep fixed the strong coupling con-

stant.

123



Eur. Phys. J. C (2017) 77 :150 Page 155 of 178 150

In our own QCD calculation of the mini-jet cross section, the

gluon densities have also been extended to very low x values

of the gluon fractional momenta, as discussed in Sect. 5.9.4,

and the lower cutoff is given by a phenomenologically deter-

mined value pmin ≃ 1 GeV.

7.5.2 Eikonal mini-jet models for γ p scattering

We shall now describe how the eikonal mini-jet model was

extended to photon processes [440–442], and subsequently

modified by Block et al. [146] in the QCD inspired model of

[166].

In the GLMN approach [437], the pQCD contribution to

the total cross section was calculated using gluon–gluon scat-

tering for the probability of finding a gluon in a proton. For

the probability of finding a gluon in a photon, the calculation

did not use parton densities, but wave functions and various

integrations. A different line of approach to the partonic con-

tent of the photon had instead been developed by Drees and

Godbole [443] who argued that the hadronic content of the

photon consists of quarks and gluons, in a way analogous to

the partonic content of the proton or the pion. Thus, one could

measure and define photon structure functions, which would

submit to DGLAP evolution just like the hadrons. Such pho-

ton densities could be inserted into a QCD calculation as

in the proton–proton case. This idea would then allow the

calculation of jet cross sections and that, for production of

mini-jets, namely jets with pt ≥≈ 1 GeV. To cure the result-

ing too large number of mini-jets, a saturation mechanism

was invoked in [444], where the VMD model was suggested

to be used within the eikonal formalism, in complete analogy

with proton–proton scattering, as discussed in the previous

section.

A formulation of the calculation of the total γ p cross sec-

tion was proposed by Fletcher et al. [441], following the

eikonal mini-jet model for hadronic cross sections devel-

oped earlier by Durand et al. [45,59] and extended to pho-

ton processes [440]. The issues involved, at the time, in

correctly extending the model to photon-hadron scattering

included how to incorporate the photon-hadron coupling into

the eikonalisation procedure, use of appropriate photon struc-

ture functions, and gluon shadowing at small x .

In the mini-jet approach, one distinguishes the following

steps:

– the photon interacts with other hadrons “as a hadron”,

namely as an ensemble of quarks and gluons, with a prob-

ability Phad which is proportional to αQED,

– once the photon has fluctuated into such a hadronic state,

one can apply hadronic models for calculation of total

or inelastic cross sections, such as eikonal models with

QCD mini-jets to drive the rise,

– the mini-jet cross section will be calculated using parton–

parton cross sections and photon densities, following

standard parametrisations such as GRV [96], GRS [445],

CJKL [446], or using QCD-inspired parametrisations, or

gluon mass models, etc.

The proposed expression is

σ
γ p
inel = Phad

∫

d2b[1 − e−n(b,s)] (7.89)

where

n(b, s) = n0(b, s) + A(b)
σparton

Phad
. (7.90)

In Eq. (7.90), the first term represents the non-perturbative

contribution to the average number of collisions, the second is

the one which should be calculated perturbatively and which

gives the high energy rise of the cross section, through the

low-x gluons present in the hadronic content of the photon.

n0(b, s) is of order of magnitude of a similar term present in

hadronic interactions, and its estimate depends on the low-

energy modelling of the photons in the hadronic state. The

second term has to be calculated using the standard parton–

parton cross sections folded in with the photon PDFs. In

many models [147] the soft term n0(b, s) is obtained using

the Additive Parton Model (ADM) together with VMD, by

putting

n0(b, s) = AV M D

2

3
σ nn

soft(s) (7.91)

where σ
pp

soft(s) would be the same soft cross section entering

the eikonal mini-jet model for proton–proton and/or proton–

antiproton scattering. We shall return to this point later.

The eikonal formulation for this model requires an expres-

sion for the impact-parameter distribution in the photon. In

[441] VMD and the form-factor hypothesis are used, and the

result is that AV M D is obtained as the Fourier transform of

the convolution of two form factors, the proton form factor

and the “photon” form factor. The latter is taken to be the

pion form factor, following again a model in which the num-

ber of quarks controls the b-distribution during the collision.

For protons, the dipole expression is used, for the pion the

monopole expression, so that

AV M D(b) = ν2

2π

μ2

μ2 − ν2

×
[

μ2

μ2 − ν2
[K0(νb) − K0(μb)] − μb

2
K1(μb)

]

.

(7.92)

In most applications of this model, the same expression for

A(b) is used for both the mini-jet term and the soft part.

However in general, there is no reason to assume that the

parton distribution in b-space is the same at very high energy
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and at low energy. In fact, in the model to be described next,

the so called Aspen model [146], this not so.

Before proceeding, let us examine the quantity Phad which

plays a basic role in all the extensions of hadronic models to

photon total cross sections.

If the photon, in its interactions with matter, is to be con-

sidered just like a hadron, then any model for hadron–hadron

scattering should be considered extensible to photon-hadron

scattering. The factor Phad represents the probability for a

photon to interact like a hadron and was introduced to apply

vector meson dominance ideas to the eikonalisation proce-

dure. In principle, Phad may very well have an energy depen-

dence. A possible definition follows the general VMD state-

ment that the wave function of the photon in its interaction

with hadrons can be expressed as [447]

|γ 〉 = Z3|γB〉 +
∑

V =ρ,ω,φ

e

fV

|V 〉 + e

fqq̄

|qq̄〉 (7.93)

where the first term corresponds to the bare photon, i.e. in its

purely electromagnetic interactions, while the second consid-

ers the non-perturbative component, pictured through VMD,

and the last gives the contribution to the pQCD behaviour at

high energy from quarks and gluons.

Given the general theoretical uncertainty in total cross

section models, a phenomenological strategy is to ignore this

energy dependence and use a VMD model for Phad, or even

to use it as a free parameter determined by the normalisation

of the total σ
γ p
tot cross section at low energy.

The Aspen model for photons [146] to be described next,

is a generalisation of the Block et al. [166] model for pro-

tons with some differences. The Block model is based on a

QCD-inspired parametrisation and uses the eikonal formal-

ism, which guarantees unitarity, namely one starts with

σtotal = 2

∫

d2b[1 − eχI (b,s) cos(χR(b, s))]. (7.94)

In the proton case, χ(b, s) is a complex function, whose

even component χeven receives contributions from parton–

parton interaction through the three separate terms

χeven = χqq(b, s) + χqg(b, s) + χgg(b, s)

= i
[

σqq(s)W (b;μqq) + σqg(s)W (b;√
μqqμggt)

+ σgg(s)W (b;μgg)
]

. (7.95)

The extension to γ p is done as in [441] through

σ
γ p
tot (s) = Phad

∫

d2b
[

1 − e−χ
γ p
I (b,s) cosχ

γ p

R (b, s)
]

.

(7.96)

In this model the value Phad = 1/240 is used. This value is

obtained by fitting the low-energy data and is very close to

the expected VMD value. For the cross sections, σi j (s), and

the impact-parameter distribution functions for photons, to

Fig. 107 The total cross section σ
γ p
tot in mb vs.

√
s in GeV, from [146].

This is Fig. (7) from [146], reprinted with permission, ©(1999) by the

American Physical Society

be used in Eq. (7.96), the following substitutions are made

in Eq. (7.95):

σ
pp

i j → σ
γ p

i j = 2

3
σ

pp
i j , (7.97)

μ
pp
i → μ

γ p

i =
√

3

2
μ

pp
i (7.98)

where the two substitutions are done in the spirit of the Addi-

tive Quark Model. We can anticipate that the same model will

be applied also to γ γ processes with

σ
γ γ

i j = 4

9
σ

pp
i j , (7.99)

μ
γ γ

i = 3

2
μ

pp
i . (7.100)

The predicted total cross section in this model is shown in

Fig. 107.

Following the QCD-inspired model outlined above, Luna

and collaborators [448] have also extended their dynamical

gluon model to photon-proton scattering.

More recently, Block has proposed an analytical ampli-

tude model and has applied it to both photon and neutrino

scattering on protons [449].

7.5.3 The BN model: eikonal mini-jet model with soft-gluon

resummation

In this section we describe our extension of the Eikonal mini-

jet model with kt -resummation in the infrared region, labeled

BN model, as it is inspired by the Bloch and Nordsieck (BN)

description of the Infrared catastrophe [170]. As described

in the previous section, our aim with this model is to intro-

duce, together with the mini-jet cross section, a saturation

effect which arises from soft-gluon emission, down into the
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infrared region, as discussed in the section about the total

cross section.

The model is so far relatively simple, with a limited num-

ber of parameters, and thus it can, to a certain extent, be

considered almost a model for testing confinement through a

singular quark-gluon coupling below the perturbative QCD

expression.

We start with the simplified expression from [441], namely

σ
γ p
tot = 2Phad

∫

d2b[1 − e−nγ p(b,s)/2] (7.101)

with

nγ p(b, s) = n
γ p
soft(b, s) + n

γ p
hard(b, s)

= n
γ p
soft(b, s) + A(b, s)σ

γ p
jet (s)/Phad (7.102)

with nhard including all outgoing parton processes with pt >

pt min. We differ from other mini-jet models in approximat-

ing the eikonal with just the imaginary part [146], in using

a different impact parameter distribution for the soft and the

hard part [441], but mostly in our expression and origin of the

impact parameter distribution for photons. In Eq. (7.102) the

impact parameter dependence has been factored out, averag-

ing over densities in a manner similar to what was done for the

case of the proton in [148]. Because the jet cross sections are

calculated using actual photon densities, which themselves

give the probability of finding a given quark or gluon in a

photon, Phad needs to be canceled out in nhard. We choose its

value, by normalizing the eikonalised cross section to the data

in the low energy region, and we use Phad = 1/240 ≈ PV M D .

For the average number of hard collisions, we use mini-jets

and soft gluon resummation with nhard given by:

nhard(b, s) =
AAB

B N (b, s)σjet

Phad
(7.103)

with the impact distribution function obtained exactly as in

the proton–proton case, namely

AAB
B N (b, s) = N

∫

d2K⊥
d2 P(K⊥)

d2K⊥
e−iK⊥·b

= e−h(b,qmax)

∫

d2be−h(b,qmax)

≡ AAB
B N (b, qmax(s)), (7.104)

except for the fact that qmax the upper limit of integration

in the function h(b, qmax) is to be calculated using proton

and photon densities. h(b, qmax) describes the exponentiated,

infrared safe, number of single soft gluons of all allowed

momenta and is given by

h(b, qmax(s)) = 16

3

∫ qmax(s)

0

dkt

kt

αs(k
2
t )

π

×
(

log
2qmax(s)

kt

)

[1 − J0(kt b)] . (7.105)
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Fig. 108 The maximum single gluon momentum allowed for soft

gluon integration, qmax in GeV, vs.
√

s in GeV for γ p scattering, from

[147]. Reprinted with permission from [147], ©(2008) by Springer
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Fig. 109 The total cross section σ
γ p
tot in mb vs.

√
s in GeV, from [147].

Reprinted from [147], ©(2008) by Springer

We show typical values taken by qmax for different sets of

quark densities in Fig. 108. In our model, the expression for

A(b, s) for the hard term in hadron–hadron or hadron-photon

scattering remains the same, unlike models that use form

factors for instance, where the photon needs to be modeled

as a meson and then parametrised.

We show the result of our model in Fig. 109 from [147].

In this figure, the high energy parameter set of this descrip-

tion, consisting of the LO PDFs and pt min value used for the

mini-jet cross section calculation, together with the satura-

tion (singularity) parameter p, were limited to GRV densities
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Fig. 110 The total cross section σ
γ p
tot in mb vs.

√
s in GeV, from [450].

This is Fig.(2) from [450], ©(2015) by the American Physical Society

for the protons, while two sets of photon PDFs were used.

A comparison was made with predictions from some avail-

able models, such as indicated in the figure and discussed in

[147].

An updated description of γ p, is shown in Fig. 110. In

this figure, we compare the BN-model results obtained with

MRST and GRV densities for the proton, GRS for the photon,

with the recent analysis by Block et al. [449]. The band in

Fig. 110 correspond to GRV or MRST densities for the pro-

ton. The difference with the previous analysis is not large,

it depends, as mentioned by now many times, on the small-

x behavior of the densities used. From a comparison with

accelerator data, we can say only that both curves can be

used for cosmic ray extrapolations.

7.6 σtotal(γ p), and exclusive vector meson production

σ(γ p → V p)

In addition to the total γ p and γ ∗ p cross section (which will

be discussed in some detail in the next subsection) HERA

has provided interesting data on vector meson exclusive pro-

duction.

A compendium of total and exclusive vector meson photo-

production data are shown as a function of W in Fig. 111 from

Levy’s review of HERA experimental results [451]. Recently,

this figure appears in updated versions, as in [452,453] and is

of interest for proposals for future electron–positron colliders

[452]. There is only one variable here, the c.m. energy W, and

the fits are made as a power law σ(W ) ∼ W δ . The parameter

δ rises from 0.16 for the σtotal(γ p), with the mass of the pro-

Fig. 111 Total and exclusive vector meson photoproduction data, from

[451]. Reprinted with permission from [451]. OPEN ACCESS

duced vector meson to about 1.2 for σ(γ p → Υ (1S)p). In

Regge language, hadron–hadron total cross section at a CM

energy W = √
s should grow as W 2ǫ , where ǫ = (αP (0)−1)

and αP (0) is the intercept of the Pomeron at momentum

transfer t = 0. For photo-production, the value for ǫ fol-

lows the original Donnachie–Landshoff power-law analy-

sis, discussed at length earlier, [60], i.e. ǫ = 0.0808. In

[454], the value ǫ ≈ 0.096 was shown to reproduce well

pp scattering, while the ZEUS data for γ p can be fitted with

ǫ = 0.111 in the HERA energy range, as seen in Fig. 105.

Thus, δ = 2ǫ ∼ 0.192, not too far from either the HERA

value of δ ∼ 0.16 for σtotal(γ p) or the ZEUS analysis. At the

same time, these differences point to the fact that power-law

fits, albeit very useful for phenomenological analyses, are

often dependent on the energy range and the type of scatter-

ing process.

While δ = 2ǫ for σtotal(γ p), data show that also the photo-

production of light-mass vector mesons (ρo, ω, φ) are con-

sistent with a soft process. In Levy’s review of the data, it

is stated that here too there is a large configuration for the

photon to fluctuate into a qq̄ pair. On the other hand, as the

mass of the vector meson increases the system is led from

the soft to the hard regime: the heavy quarks squeeze the

photon into a smaller configuration leading to color screen-

ing and the partonic structure of the proton is resolved. In

the hard exclusive regime, the cross section should be pro-

portional to the square of the gluon density and hence there

should be a strong dependence on W . This is clearly man-

ifested by the HERA data, as discussed and summarised in

[451].
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Fig. 112 The cross section for electroproduction of ρ-meson, as mea-

sured by the ZEUS Collaboration in Fig. (13) from [455], as a function

of the c.m. energy W, and for different Q2 values. Reprinted with per-

mission of the ZEUS Collaboration from [455] ©(2007) ZEUS Collab-

oration

7.7 Electro-production of vector mesons, γ ∗ p → V p

Virtuality of photons adds another variable Q2 to W that is

lacking in purely hadronic cross sections. HERA data show

interesting results that can be found in [455–457]. Here we

shall attempt a summary.

7.7.1 Electro-production of ρo meson

In Fig. (13) of [455], reproduced here as Fig. 112, σ(γ ∗ p →
ρo p) is shown as a function of W for different values of

Q2. The data are fitted to a power law δ, which rises from

(0.1 ÷ 0.2) for low Q2, as expected for soft processes, to

about 0.6 for large Q2, consistent with twice the logarithmic

derivative of the gluon density, again as expected of a hard

process.

7.7.2 Electro-production of heavier vector mesons and

γ ∗ p → γ p

While the general trend of an increase in the cross section

with Q2 is similar forφ, J/ψ and for deeply virtual Compton

scattering γ ∗ p → γ p, there is obviously an uncertainty in

how to insert the mass M of the produced vector meson.

Quite often, the variable Q2 + M2 in place of Q2 has been

used. In Fig. (8) of Levy, reproduced here in Fig. 113, a

Fig. 113 The Q2 dependence of the energy slope for γ ∗ p → V p cross

section, including heavy vector mesons electroproduction and Deeply

Virtual Compton Scattering results, from [451] and references therein.

Reprinted with permission from [451], ©(2009) by Science Wise Publ

plot of δ versus Q2 + M2 is shown. There is an approximate

universality showing an increase in δ as the scale increases. δ

is found to be small at low scale, consistent with the intercept

of a soft Pomeron whereas at larger scales it becomes close

to that expected from the square of the gluon density.

Further studies to determine the best scale to use for vec-

tor meson electro-production, led to study the ratio rV =
σ(γ ∗ p → V P)/σtot(γ

∗ p) as a function of W . This ratio

can be parametrised following Regge arguments, in terms of

a Pomeron exchange and of the slope of the differential cross

section dσV /dt as

rV ∼ W λ/b. (7.106)

More details about the scale dependence of the parameter λ

and its connections to the δ parameter can be found in [456].

Notice that this analysis depends on the energy behavior of

σtot(γ ∗ p) to which we turn in the next subsection.

7.8 Total γ ∗ p cross section

At HERA, extensive measurements in the available phase

space have brought a detailed description of the c.m. energy

dependence of the totalγ ∗ p cross section, in a range of values

of Q2. These measurements highlight the transition from real

photon scattering to Deep Inelastic Scattering (DIS) region,

i.e. 0 ≤ Q2 � 10000 GeV2. A comprehensive description,

up to Q2 = 2000 GeV2, can be seen in Fig. 114 from [458].

The high energy data have been obtained at HERA, lower

energies from a number of different experiments, and for
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Fig. 114 The virtual photon-proton total scattering cross section for

different Q2 values of the virtual photon as a function of the squared

c.m. energy W 2, from [458]. Reprinted with permission

which we refer the reader to the cited papers. One can draw

a few conclusions from this figure:

– for real and quasi-real photons, the low energy behavior

of σ(γ ∗ p) exhibits the well known initial decrease with

energy, followed by an apparent minimum and then a

very mild rise. Thus, the cross section would follow a

standard Donnachie–Landshoff parametrisation,

– as Q2 increases beyond 20 GeV2, the minimum disap-

pears and the cross section is everywhere increasing with

energy albeit with different slopes, and the increase with

W 2 is steeper for larger Q2 values,

– the change in curvature before the high energy rise, moves

to higher W 2 values as Q2 increases.

In the figure, two different parametrisations are shown,

one described by a continuous line, and labeled as ALLM97,

which we summarise here, while for the second one, MRSR1,

we refer the reader to Refs. [458,459]. The ALLM [460]

parametrisation (of which ALLM97 represents an update)

describes the proton structure function following the usual

split into a Regge and a Pomeron type term, i.e.

Fig. 115 H1 and ZEUS data for real and virtual photon scattering from

[462]. This is Fig. (11) from [462], ©(2010) by IOP, reprinted with

permission

F2(x, Q2) = Q2

Q2 + m2
0

(FP
2 (x, Q2) + FR

2 (x, Q2))

(7.107)

with F
P,R
2 (x, Q2) a function of a slowly varying variable

defined as

t = ln

⎛

⎝

ln
Q2+Q2

0

Λ2

ln
Q2

0

Λ2

⎞

⎠ . (7.108)

The F2 data were then conveyed to σtot(γ
∗ p) using

σtot(γ
∗ p) = 4π2α

Q2(1 − x)

Q2 + 4M2x2

Q2
F2(W

2, Q2) (7.109)

where M here is the proton mass. The ALLM F2 is based

on 23 parameters, which were updated from pre-Hera data

to the nice description shown in Fig. 114.

The γ ∗ p HERA data have also been studied in terms of

Vector Meson Dominance or Color Dipole Picture, as shown

and discussed in [461].

A more recent analysis of HERA data from [462] is shown

in Fig. 115, with the virtual photon cross section

σ tot
γ ∗ p = 4π2α

Q2(1 − x)
F2(x, Q2), (7.110)

valid for 4m2
px2 ≪ Q2, fitted with F2(x, Q2) from HERA

parametrised according to a power law, i.e.
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log10 F2(x, Q2) = c1 + c2 · log10(x)

+ c3 · log10(x) · log10(Q2/Q2
0)

+ c4 · log10(x) · (log10(Q2/Q2
0))

2.

(7.111)

Before moving to briefly discuss two photon processes,

we point out that the energy range for photo- and electro-

production at HERA is limited to values still far from the

asymptotic regime, where purely hadronic cross sections are

expected to exhibit a logarithmic behavior. Thus, the ques-

tion of a power law vs. a logarithmic behaviour is still open,

where photon processes are involved.

7.9 γ γ scattering

Photon–photon scattering was measured in electron–positron

collisions from the very beginning of storage ring collid-

ers [463]. As the available beam energy increased, data for

γ γ → hadrons became available. A compilation of data

for the cross section into hadrons is shown in Fig. 116 from

[464], starting from
√

sγ γ = 1.4 GeV at SPEAR up to LEP

measurements, reaching
√

s = 189 GeV. The figure indi-

cates that the trend of the data as a function of the two photon

c.m. energy is consistent with a hadronic process, namely it

starts with the usual initial decrease followed by a rise. Such

behavior is easily obtained in factorisation models.

Indeed there are various models which describe photon-

hadron scattering through various forms of factorisation,

which would then allow one to obtain σ
γ γ
tot , through the sim-

ple statement

σ
γ γ
tot = (σ

γ p
tot )

2

σ
pn

tot

(7.112)

Fig. 116 Data for γ γ total cross section from [464] and bibliographic

references therein. Reprinted with permission, ©(2012) INFN Frascati

Physics Series

where σ
pn

tot indicates some combination of pp and p̄ p total

cross sections. This is the case of the model by Soffer and

collaborators [465], which follows from their description of

γ p total cross section effects in [466].

The Bourelly, Soffer and Wu ansatz [466] is that γ p total

cross section can be obtained from πp as

σtot(γ p) = 1

3
α
(

σtot(π
+ p) + σtot(π

− p)
)

. (7.113)

For σtot(π
± p) the authors use an early impact picture pre-

diction where a simple power-law dependence s0.08 was first

given. From this simple model, one could obtain σ
γ γ
tot and

compare it with data for γ γ extracted from LEP. Through

Eq. (7.112) and their earlier fit to proton–proton, the authors

[465] obtain the results shown in Fig. 117.

While straightforward factorisation models can give a gen-

eral good description of data up to LEP most recent mea-

surements, the limited energy range and the large errors

affecting the extrapolation to full phase-space both at lower

and at the highest energies, do not provide enough infor-

mation to distinguish between standard power-law energy

dependence, such as Regge–Pomeron exchanges, mini-jets,

or QCD-driven exchanges. Such distinction, as is also the

case for γ p, is left to future colliders or perhaps to LHC.

A 2003 compilation of a selection of models is shown in

Fig. 118 from [467], where the bibliographic references can

Fig. 117 Description, and comparison with data, of the γ γ total cross

section in the model by Bourrely, Soffer and Wu, Fig. 1 of [465].

Predictions are also shown, and compared with then existing data, for

pp/ p̄ p and γ p. Reprinted with permission from [465] ©(1999) by

World Scientific
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Fig. 118 Data and models for γ γ → hadrons from [467]. Reprinted

from [467] ©(2003) by Springer

Fig. 119 Data and power-law type fits to LEP data for γ γ total cross

section from [467]. In fit 1, all the parameters of Eq. (7.114) are free,

in fit 2, ǫ = 0.093, in fit 3 a second Pomeron type term is added

to Eq. (7.114) with ǫ1 = 0.418. Reprinted from [467] ©(2003) with

permission by SISSA

be found. Details of models can be found in [468]. A general

fit to the LEP data alone, i.e.

σγ γ = Asǫγ γ + Bs−η
γ γ (7.114)

was done in [467] and is shown in Fig. 119.

7.10 γ ∗γ ∗ → hadrons

At LEP, through the measurements of e−e+ → e−e+ +
hadrons, σ(γ ∗γ ∗ → hadrons) have been measured by the

Fig. 120 Kinematics of e+e− → γ ∗γ ∗e+e−, as from Fig. (1) of

[470], OPAL Collaboration. Reprinted with permission ©(2001) by

SPRINGER

L3 [469] and OPAL Collaborations [470]. The kinematics of

such processes is shown in Fig. 120, (fig. (1) from OPAL).

Measurements for the above process for one untagged elec-

tron were made by the ALEPH Collaboration [471], who

extracted the so-called photon structure functions F
γ

2,L . In

this case one photon is almost real, and the process is studied

as a function of a single Q2 value, extracted from the tagged

electron.

For the determination of γ ∗γ ∗ cross section, both scat-

tered e− and e+ have to be tagged at sufficiently large polar

angles θi , to be observed in the detector. The kinematical

variables for the process are as follows.

– the e−e+ CM energy squared is se−e+ = (p1 + p2)
2

– the virtualities of the scattered photons are given by Q2
i =

(pi − p′
i )

2;

– the usual variables of deep inelastic scattering are defined

as

y1 =
(

q1 · q2

p1 · q2

)

; y2 =
(

q1 · q2

p2 · q1

)

;

x1 =
(

Q2
1

2q1 · q2

)

; x2 =
(

Q2
2

2q1 · q2

)

; (7.115)

– the hadronic invariant mass squared is W 2 = (q1 +q2)
2;

– the Bjorken variables xi are related to Q2
i and W 2 as

xi =
Q2

i

[Q2
1 + Q2

2 + W 2]
. (7.116)

For comparison with models, an additional variable which

incorporates the W 2 and Q2
i dependence, is defined, i.e.

Ȳ = ln

⎛

⎝

W 2

√

Q2
1 Q2

2

⎞

⎠ . (7.117)
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Fig. 121 The above Figs. 8a and 8b from [470]) of the OPAL Collabo-

ration show the cross section for γ ∗γ ∗ → hadrons for an average value

of the photon’s squared momentum 〈Q2〉 = 17.9 GeV2. Reprinted with

permission from [470] ©(2001) by Springer

Of course, given three helicities for each virtual photon

with different Q2
i , there are a plethora of physical quanti-

ties (six in number) that can be measured (4 cross sections

σT T ; σT L ; σLT ; σL L ) and two interference terms (τT T ; τT L ),

where T, L stand for transverse or longitudinal. Detailed

expressions for these quantities and discussions can be found

in two Phys. Rep. [472,473].

Here, we shall just comment upon salient aspects of

the two determinations at LEP of the total σ(γ ∗γ ∗ →
hadrons), the “cleanest” quantity that can be measured and

compared to models. Both OPAL and L3 data were taken

at
√

seē = (189 ÷ 209) GeV, with similar hadronic mass

W > 5 GeV and mean 〈Q2〉 ∼ 18 GeV2 ranges. Figure 121

shows the OPAL extracted σ γ ∗γ ∗
as a function of the virtual

photon c.m. energy W, compared with predictions from PHO-

JET (solid lines) and a Quark Parton Model (QPM) (green

dotted lines). The Dual Parton Model (DPM) [67] is beneath

the PHOJET [474,475] event generator (PHOJET1.10) used

to simulate double-tagged events and obtain the total lumi-

nosity LT T , through which the two LEP measurements con-

struct σ(γ ∗γ ∗ → hadrons). DPM contains both hard and

soft processes. Hard processes are incorporated via LO QCD,

and soft processes are included through a phenomenological

analysis of γ p, pp, p p̄ data assuming Regge factorisation.

The comparison with QCD models can be seen from the

analysis by the L3 Collaboration, which we show in Fig. 122

from [469]. This figure shows that lowest order BFKL pre-

dictions for σ(γ ∗γ ∗ → hadrons) were rather large by a

factor of about 20 or more. Subsequent phenomenological

results from Next-to-Leading Order (NLO) have reduced

this discrepancy by an order of magnitude. It appears that

with theoretical improvements suggested in [476–480], the

BFKL formalism can be reconciled with the two LEP mea-

surements. However, no definite assessment can be given at

present, short of higher energy data becoming available, as

also discussed in [481], where further contributions from sec-

ondary Reggeon exchanges in QCD have been considered.

An interested reader can find further description in the pre-

vious references.

Fig. 122 The above (Fig. 6 from [469]) shows the cross section mea-

sured by the L3 Collaboration for γ ∗γ ∗ → hadrons as a function of the

variable Y , for two different
√

see values, with corresponding average

photon squared momentum, as indicated in the original figure caption.

Reprinted from [469], ©(1999) with permission by Elsevier

7.11 Conclusions

Models for photon scattering probe yet another aspect of the

total hadronic cross section, but the absence of data at very

high energy, for instance
√

s ≥ 200 GeV into the TeV region,

does not allow for precise tests of model predictions at high

energies, such as those probed for instance in cosmic ray

experiments. The transition from real to virtual photons and

from photons to hadrons are still rather model dependent.

Planned future measurements, perhaps at LHC, or at future

ep or e+e− colliders, would shed further light on these tran-

sitions in the future.

8 LHC program for near forward physics

In this section, we describe the total and small angle cross

section measurements that were programmed to be done at

LHC.

Our presentation of the measurements at LHC follows the

extensive documentation prepared before the start of LHC

[482–487]. Since then the LHC has started functioning and

a wealth of results has appeared and updates of the LHC

program are planned. An early comprehensive update about

various planned experiments can be found in the proceedings

123



150 Page 164 of 178 Eur. Phys. J. C (2017) 77 :150

of the Blois Workshop, held at CERN in June 2009 [488],

as well as in presentations at DIFF2010 at Trento Workshop,

ECT*. A recent review of measurements by TOTEM and

ATLAS experiment can be found in [489]. For updates as of

September 2016, an extensive set of presentations was done

at the ECT* 2016 Workshop entitled Forward physics WG:

diffraction and heavy ions, with slides available at: https://

indico.cern.ch/event/568781/timetable/#al.

The experiment dedicated from the outset to measure the

total cross section is the TOTEM experiment [482], but other

measurements relevant to physics in the forward region have

been and will continue to be performed by all the LHC exper-

iments: ALICE [483], ATLAS [484], CMS [485], LHC-b

[486] and LHCf [487]. In addition, these experiments have

been providing data about the inelastic cross section, a com-

ponent of σtotal crucial for a full understanding of the dynam-

ics entering both pp and cosmic ray data. Recent results con-

cerning the inelastic total cross section at the present LHC

energy of
√

s = 13 TeV, can be found in [490] for CMS and

in [491] for ATLAS.

Various experiments study particle flows and diffractive

physics through a number of detectors placed at various

distances along the beam directions, with different physics

goals. We show in Fig. 123 a schematic drawing of the posi-

tions of the main experiments around the LHC ring at various

Interaction Points (IPs).

At LHC the phase space range extends to 11 units in rapid-

ity, since in the variable ymax = ln
√

s
m

≈ 9.6. In the variable

pseudo-rapidity, η = − ln tan θ
2

, where θ is the scattering

angle of the detected particles, the coverage goes up to 12 or

13 units. The main CMS and ATLAS calorimeters measure

energy deposited in the rapidity range |η| < 5, with particle

detection and identification to be performed by the electro-

magnetic and hadronic calorimeters for 0 < |η| < 3, and

the hadronic forward (HF for CMS and FCal for ATLAS)

CMS

ATLAS

ALICE LHC-B

Fig. 123 Schematic description of location of major experimental sites

around the LHC ring, ATLAS is at IP1 and CMS at IP5

calorimeters for 3 < |η| < 5.2. In this region, data can also

be collected by ALICE and LHC-B. For forward physics

at LHC-B, see D’Enterria [492]. The forward calorimeters,

however, cover only part of the forward region. With most

of the energy deposited in the region 8 < |η| < 9, other

calorimeters are needed and placed near the beam. In this

region, there is the LHCf experiment measuring particle

flows, and the Zero Degree Calorimeters (ZDC) measuring

neutral particles, while the extreme rapidity region, beyond

|η| = 9 will be covered by Roman Pots (RP), with TOTEM

in CMS and ALFA in ATLAS.

Let us now look in more detail at particle detection in the

forward region and to the system of detectors covering the

rapidity region |η| ≃ 3 ÷ 7. Up to a distance from the Inter-

action point (IP) of (10 ÷ 20) m, as we show schematically

in Fig. 124 the strategy is to surround the beam pipe with

tracking calorimeters, as follows:

ATLAS with MBTS, Minimum Bias Trigger Scintillator,

at 3.6 m from the interaction point, a Hadronic Forward

(FCal) calorimeter covering the region 3.1 < |η| < 4.9

and LUCID, Luminosity Cerenkov Integrating Detector,

a luminosity monitor at 17 m;

CMS with the Hadronic Forward (HF) calorimeter placed

at 11.2 m from the interaction point, covering the rapidity

region |η| < 5.2 (inner part for the region 4.5 < |η| <
5.0), followed by CASTOR, Centauro And STrange

Objects Research, which detects energy flows and is a

Cerenkov calorimeter surrounding the beam pipe (15 ÷
16.5) m from the interaction point, covering the range

5.2 < |η| < 6.6 and dedicated to the observation of

cascade developments;

TOTEM with the two tracking detectors T1 and T2 which

cover the region (3.1 ≤ |η| ≤ 6.5).

10~20 m

IP

Fig. 124 Forward tracking at LHC through calorimeters placed at a

distance of (∼10 ÷ 20) m from the interaction Point (IP)
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These detectors are placed in such a way that it is easy

to miss particles scattered in the very forward direction

and they are implemented by dedicated set ups like Zero

Degree Calorimeters and Roman Pots (RP). The Zero Degree

calorimeters are placed at 140 meters from the interaction

point and cover the rapidity range |η| ≥ 8.3. The ZDC’s are

for the detection of neutral particles such as neutrons, photons

andπ0 and are especially designed for heavy ions and diffrac-

tive physics. At a distance of 240 m from the IP3, there is

ALFA, Absolute Luminosity For ATLAS, with Roman Pots,

to be placed at an angle from the beam pipe of 3 µrad. In IP5,

in the CMS region, after T1, T2, CASTOR and ZDC, there

is TOTEM with the Roman Pots. At even longer distances,

the High Precision Spectrometers at 420 m [493] dedicated

to forward Higgs studies [494,495].

8.1 The CMS region and cross section measurements

In Fig. 125 we show a schematic view of the layout of various

forward physics detectors in and around CMS. A similar

layout is found also in the ATLAS region.

We also show a pictorial view of the full set up of forward

physics detectors in the CMS region in Fig. 126.

In the following we shall describe in more detail the for-

ward physics and experimental layout of interest for total

ZDC in

CMS

147 m

180 m

220 m 

RPs in 

TOTEM

IP5

Fig. 125 Schematic view of forward physics detectors in CMS, with

T1 and T2 from the TOTEM experiment

cross section and other forward physics measurements. We

shall focus on TOTEM and ZDC, the two experiments and

detectors in the CMS region where very forward scattering

angles can be measured and total cross sections extracted.

8.1.1 TOTEM

As stated earlier, TOTEM is the experiment dedicated to the

measurement of the total cross section [482]. It is based on the

luminosity independent method, which uses both the mea-

surement of the elastic scattering rate at the optical point,

t = 0, or as close as possible to it, as well as a measurement

of the entire elastic and inelastic events rate through the two

equations

Lσ 2
total = 16π

1 + ρ2

dNel

d|t | |t=0, (8.1)

Lσtotal = Nel + Ninel, (8.2)

which lead to

σtotal = 16π

1 + ρ2

dNel/d|t | |t=0

Nel + Ninel
. (8.3)

The measurement of the elastic and inelastic rate is to be

done through two detectors, named T1 and T2, placed sym-

metrically with respect to the CMS experiments. T1 and

T2 are trackers embedded into the forward region of the

CMS calorimeter, within a distance of 10.5 and 14 m from

IP5 interaction point of the LHC. These detectors provide

the reconstruction of charged tracks and cover a rapidity

interval 3.1 ≤ |η| ≤ 6.5, with T 1 covering the interval

3.1 < |η| < 4.7 and T2 the interval 5.3 < |η| < 6.5.

While the measurement of the inelastic rate Ninel does

not require special machine conditions, measurements in the

very forward region do. The measurement of the differential

elastic cross section near the optical point is done through the

detection of very forward protons, with a technique known

as Roman Pots (RPs) and used for the first time at the ISR

[23]. The RPs are placed on the beam pipe of the outgoing

beam at distances between 147 and 220 m from IP5 and host

silicon detectors to be moved very close to the beam, inside

the vacuum chamber of the accelerator.

Fig. 126 Interplay between

forward detectors between CMS

ZDC and TOTEM Roman Pots.

Shown are distances in metres
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p

p

p

p

Fig. 127 A cartoon depicting the meaning of the quantity β∗ and the

relationship between beam size and beam divergence

The measurement at the optical point requires special LHC

optics, in order to reach the lowest possible value for the

momentum transfer t . For this one needs the beam divergence

to be small compared with the scattering angle. We show in

Fig. 127 a schematic description of the relation between beam

size and beam divergence, where σx and σθ are functions of

the beam emittance ǫ and the beam divergence, i.e.

σx =
√

ǫβ∗
x , (8.4)

σθ =
√

ǫ

β∗
x

. (8.5)

Physically, β∗ is that distance from the focal point where

the beam is twice as wide as at the focal point. The beam

is “squeezed” or narrower if β∗ is low, whereas the beam is

“wide” and straight for large β∗.

Thus, the beam divergence ∼1/
√
β∗ is measured by the

parameter β∗, which needs to be as large as possible. This

requires a special value for the parameter β∗ = 1540 m.

Since such a large value needs a special injection scheme,

in the early stages of LHC operation (circa 2010), a less

demanding option was planned with β∗ = 90 m. At that

time, the TOTEM Collaboration expected to be able to pro-

vide a measurement of the total cross section with a 5% error

within the next 3 years, with values of the differential elas-

tic cross section down to values of |t | > 10−2 GeV2. This

measurement was to be based on the early optics conditions,

β∗ = 90 m and a luminosity of 1029 ÷ 1030 cm−2 s−1.

Under these conditions, TOTEM Collaboration estimated

that about 65% of forward protons would be detected. Later

withβ∗ = 1540 m, one will be able to reach |t | > 10−3 GeV2

and, with about 90% of the diffractive protons seen in the

detector, with an aim to obtain a measurement at the level of

1%.

Fig. 128 Fits by the COMPETE Collaboration [287] show the wide

range of expected results at LHC, due to the tension between data from

various experiments at the Tevatron (and at S p̄ pS as well). The figure is

from [496], with total cross section data compared with various options

for the high energy dependence. Figure is reproduced from [496], cour-

tesy from J. Kaspar, TOTEM Collaboration

Fig. 129 The charge exchange mechanisms proposed in [498] to mea-

sure the total πp cross sectionat LHC

As for the value of ρ = ℑm f (t = 0)/ℜe f (t = 0), which

we have discussed in earlier sections, it was taken to be

ρ = 0.14 following various predictions. This was consid-

ered adequate, since only the squared value for ρ enters in

the equation. From the analysis of the COMPETE Collabo-

ration [287], we show a compilation of data and best fits as

indicated in Fig. 128.

8.1.2 ZDC

Tuning at zero angle on neutrons, and detecting them with the

zero degree calorimeter [497] at CMS, in addition to a num-

ber of diffractive physics measurements, there has also been

the hope to measureπ+ p andπ+π+ total cross sections in an

energy range inaccessible so far, namely in and around 1 TeV

[498]. Information on diverse initial state particles and their

relative rise with energy of σtotal is crucial for understand-

ing the mechanisms behind the rise of the total cross section,

whether or not there is a universal rise, and connections to

perturbative QCD. Presently, data for πp total cross section

are only available in an energy range up to 25 GeV [263].

The situation for ππ is even less favourable. The mechanism

proposed to measure these cross sections in the high energy

range is shown in Figs. 129 and 130, namely through detec-

tion of neutrons in the very forward direction and production

of pions through the charge exchange reaction.
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Fig. 130 The charge exchange mechanisms proposed in [498] to mea-

sure the total ππ cross sectionat LHC

Fig. 131 π+ p total cross section from [498], with both direct and

extracted data points extracted with two parametrisations [60] (solid)

and [263] (dashes). Reprinted with permission from [498] ©(2009) by

Springer

As proof of the feasibility of such experiments, Petrov et

al. [498] have extracted data for π+ p cross section up to

50 ÷ 70 GeV using neutron and photon spectra at previous

experiments. The results are shown in Fig. 131 from [498],

where extracted data points are compared with existing data

from the Particle Data Group compilation (PDG) [263]. Also

shown are two parametrisations, with full line by Donnachie

and Landshoff [60] and dashes to indicate the fit by COM-

PETE also from [263].

We also show in Fig. 132 a comparison in this energy

range between our model [149] and data, and fits from [498]

as seen in Fig. 131, as well as comparison with fits by Block

and Halzen [69]. The interest of such a measurement can

be seen by going to very high energies, where the models

differ substantially, as induced in Fig. 133. In the compila-

tion shown in Figs. 132 and 133 (which differ in the energy

range) we have plotted, together with the existing data, four

predictions for π+ p total cross section as follows:

– a Regge–Pomeron fit from Donnachie and Landshoff [60]

σπ+ p(mb) = 13.63s0.0808 + 27.56s−0.4525 (8.6)

– the fit from the COMPETE Collaboration [263] given as

σπ+ p = Zπp + B ln2

(

s

s0

)

+ Y
π+ p
1

( s1

s

)η1

−Y
π+ p
2

( s1

s

)η2

(8.7)

σ
to

t(
m

b
)
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Fig. 132 π+ p total cross section data with both direct and extracted

data points from [498], compared with parametrisations from DL [60],

COMPETE [263] (full), BH [69] and from our model, as indicated.

Figure is reprinted from [149], ©(2010) with permission by Elsevier
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Fig. 133 Predictions for π+ p total cross section in the LHC energy

range from different models, as described in the text, and compari-

son with data on π+ p total cross section. DL (dots) is from [60], BH

(dashes) from [69], PDG COMPETE (full) [263] and PRS (stars) indi-

cates extracted data from [498]. Figure is reprinted from [149], ©(2010)

with permission by Elsevier

– a fit by Halzen and Block [69] of similar functional

expression as the one from PDG, with an additional ln s

term, i.e.

σ ab = c0 + c1 ln (ν/mπ ) + c2 ln2 (ν/mπ )

+β(ν/mπ )
η1 + δ(ν/mπ )

η2 (8.8)

with numerical coefficients given by c0 = 20.11 mb,

c1 = −0.921 mb, c2 = 0.1767 mb, β = 54.4 mb, δ =
−4.51 mb, η1 = −0.5, η2 = −0.34
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– the eikonal mini-jet model with initial state soft-gluon

kt resummation described in previous section, with GRV

density functions for pion and proton and other param-

eters close to the values used for σ
pp

tot , namely pt min =
(1.15÷1.3)GeV, p = 0.75 andΛ = 100 MeV in the soft

resummation integral; in this model the low-energy data

have been independently parametrised with the expres-

sion

σπ+ p = A0 + A1

[

1 GeV

E

]α1

− A2

[

1 GeV

E

]α2

(8.9)

with parameters A0 = 31.49 mb, A1 = 58.56 mb, A2 =
40.52 mb, α1 = 0.498, α2 = 0.297.

8.2 The ATLAS region and forward physics

8.2.1 LHCf

LHCf is the smallest of the LHC experiments and is a detector

placed at the ATLAS interaction point, with an independent

acquisition system, very easy to correlate with ATLAS. The

experimental set-up covers a very forward kinematics, η >

8.4, with angle from beam axis θ < 450 µrad, with detection

of very forward γ ′s. Because of radiation problems, LHCf

can, however, take data only at low machine luminosity and

needs to be taken out in high luminosity running conditions.

The LHCf [499] experiment will measure the properties

of neutral particles produced in the very forward region and

compare them with expectations from the MonteCarlo simu-

lation programs used in Cosmic Ray Physics. The experiment

will use these forward particles from the collision to simulate

cosmic rays of similar energies in laboratory conditions with

particle energies at LHC, at
√

s = 14 TeV, corresponding to

laboratory energies of 1017 eV. The aim of this experiment is

to clarify some phenomenological problems encountered in

extracting physics from cosmic rays, among them a precise

determination of the energy, nature and origin of the parti-

cles which initiated the Extensive Air Showers observed in

cosmic ray experiments. By observing the energy deposition

of controlled particles, like neutrons, π0’s and γ ’s, and com-

paring their properties with the two most used MonteCarlo

simulation programs, SYBILL [64,500] and QGSJET [501],

one can hope to resolve some outstanding questions in high

energy cosmic ray physics [502,503]. In cosmic ray physics,

presently of great interest is to study the cosmic ray spectra in

and around the GZK [504,505] cut-off, expected to take place

at Elab ≈ 1019.5 eV . Quite a long time ago, Greisen, Zat-

sepin and Kuzmin (GZK) predicted that at such energies the

flux of cosmic rays could become too small to be observed.

This effect corresponds to a reduction in the flux of primary

cosmic ray protons once they reach an energy high enough to

interact with the photons from the Cosmic Microwave Back-

Fig. 134 Results from measurement of the Ultra High Energy Cosmic

Ray flux in the region of the GZK cut-off, from [508]. Reprinted from

[508], ©(2010) with permission by Elsevier

IP1 Beam 1

Beam 2

17 m

140 m

237 m

LUCID

ALFA
ZDC

Fig. 135 The positioning of ATLAS detectors for forward physics

ground (CMB) and produce the Δ(1232)-resonance, through

p+γ C M B → Δ → πp. Were the cut-off not to be observed,

the possibility of exotic sources could not be ruled out. While

earlier measurements in the GZK cut-off region had not seen

the cut-off, recently the observation of the cut-off has been

reported by two experiments, Auger [506] and HiRes [507].

They both observe a decrease of the flux and a change in

slope. Some contradictions still exist, as one can see from

Fig. 134 from [508]. This figure shows that, even though

both HiRES and Auger report the expected GZK flux reduc-

tion, there is still a difference in normalisation between their

data.

8.2.2 ATLAS forward detectors

The positioning of ATLAS forward detectors is shown in

Fig. 135, where ALFA indicates the detectors for Absolute

Luminosity measurement, ZDC is the Zero Degree Calorime-

ter for ATLAS, LUCID is the LUminosity Cerenkov Integrat-

ing Detector. Not shown is MBTS, the minimum Bias Trigger

Scintillator, closest to the IP.

One distinguishes the coverage of pseudo-rapidity in cen-

tral and forward detectors regions. For ATLAS, in the central
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region, |η| coverage is up to 2.5 for the inner tracker, 3.2

for the electromagnetic calorimeters, 4.9 for the hadronic

calorimeters, and 2.7 for the muon spectrometer. The for-

ward detectors cover rapidity intervals up to |η| < 13.5 as

follows:

MBTS 2.1 < |η| < 3.8, is the Minimum bias trigger

dedicated to diffractive physics measurements

LUCID covering 5.6 < |η| < 5.9, is the luminosity mon-

itor, designed to measure luminosity up to 1033 cm−2 s−1,

with a 3 ÷ 5% precision, is sensitive to charged particles

pointing to the primary pp collision, and is needed to

provide the minimum bias trigger at high values of pseu-

dorapidity,

ZDC a Zero Degree Detector, |η| > 8.3, will measure

production of neutral particles, n, γ, π0, in the forward

direction and study both heavy ions and pp collisions,

ALFA 10.6 < |η| < 13.5 will measure the absolute

luminosity and hadronic physics forward parameters.

The main method designed to measure the luminosity in

ATLAS uses Roman Pots to make a reference measurement

at low luminosity. This measurement will then be used to

calibrate a monitor when luminosity is too high for use of

the RPs. LUCID, the Beam Condition Monitor (BCM) and

MBTS are the three detector systems for luminosity moni-

toring.

The very forward region in ATLAS is covered by Roman

Pots (RP) which measure elastic pp scattering at the very

small angles needed to extrapolate the differential elastic

cross section to t = 0, the optical point for total cross section

measurements. As mentioned, this measurement requires

special beam optics (high β∗) and low luminosity, L =
1027 cm−2 s−1.

8.2.3 Roman POTS and the ALFA detector

The technique by which one measures the very forward

scattering events to extract the differential elastic cross sec-

tion in the very small t-region and thus the total cross sec-

tion through the optical method, makes use of the so called

Roman Pots. Roman Pots do not really look like pots from

ancient Rome, where containers were of round “amphora-

like” shape,10 and thus quite different from the cylindrical

shape of the actual RPs. They get their name having been

used by the Rome-Cern group at the ISR in the early 1970s

and by their function. The actual detectors are cylindrical

containers which are connected to the vacuum chamber of

the accelerator through bellows. While the beam intensity is

building up during injection, the RPs are retracted and do

10 Comment courtesy of G. Matthiae.

During beam build-up
Position

For data taking

Fig. 136 A schematic view of the operation of RPs before and during

data taking

not enter the vacuum chamber. After the beams have sta-

bilised and the collider has reached stable conditions, then

the bellows are compressed and the detectors are pushed for-

ward up to a distance of 1 mm from the beam. We show

in Fig. 136 a schematic view of how the detectors will be

placed near the beam so as to detect protons scattered at

|t | ≈ 6.5 × 10−4 GeV2.

For such small values of t one has the following relation

between scattering angle and beam parameters:

|tmin| = p2

γ
n2

d

ǫN

β∗ (8.10)

where nd is the distance from the beam in units of beam size,

ǫN is the normalised emittance. ALFA will be used to get

an absolute measure of the luminosity by detecting protons

in the Coulomb region with a sought for precision of 3%, an

important improvement above the precision obtainable using

machine parameters, which is not expected to be better than

20%. Such high precision is needed for precise determination

of Higgs parameters and branching ratios.

The absolute measurement of the luminosity L is extracted

from the differential event rate. Up to |t | ≈ 1 GeV2, the

differential rate for elastic scattering, to first order in α, can

be written as

dN

dt
= L

[

4πα2

|t |2 + αρσtotale
−Bt2/2

|t | + σ 2
total(1 + ρ2)e−B|t |

16π

]

.

(8.11)

By measuring this rate in the Coulomb region, i.e. below

|t | < 10−3 GeV2, and after radiative corrections (see Sect. 4)

the absolute luminosity can be extracted. In Fig. 137, we

show a cartoon representation of the three regions, Coulomb,

interference and purely hadronic, which can give information

on various hadronic physics quantities of interest.
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Fig. 137 A cartoon sketching the differential elastic cross section as

a function of the momentum transfer |t |, showing how different t

regions will give information on elastic and total scattering parameters.

After presentation by A. Pilkington at Trento Workshop on Diffractive

Physics, 4–8 January 2010, ECT*, Italy. Please notice that this figure is

purely indicative and it is not in scale

8.3 Updates about LHC forward physics programs

In addition to what already mentioned at the beginning

of this section, the interested reader can find descriptions

of updates for LHC forward physics presented by various

groups, such as a Workshop on High Energy Scattering at

Zero Degree held in March 2013 at Nagoya University in

Japan. The slides of all the talks at Nagoya as well as pre-

sentations at Marseille and Paris in France; at Trento and

Reggio Calabria in Italy; CERN, Switzerland; Barcelona,

Spain; and at Eilat, Israel, and more, can all be found at:

totem.web.cern.ch/Totem/conferences/conf_tab2013.html, et

sim. for 2014, 2015, 2016. By comparing these reports with

what we have presented here, and which follow the plan as of

2008, one can see the great progress of these years and expect

with confidence that future measurements will further reduce

errors and clarify many issues.

Indeed considerable progress has been made in the beam

optics and proper functioning of various detectors so much

so that now we have rather precise data on total, elastic and

inelastic cross sections, elastic differential cross sections and

various diffractive results in different regions of phase space.

Many of these results have been used and discussed through-

out this review. For example, using dedicated beam optics

and the Roman Pots, at
√

s = 8 TeV, TOTEM at the end of

2012 gives the following values [103]:

σtot(8 TeV) = (101.7 ± 2.9) mb;
σel(8 TeV) = (27.1 ± 1.4) mb;
σin(8 TeV) = (74.7 ± 1.7) mb. (8.12)

Thus, the total cross section has been measured with less than

3% error better than the estimated error, after a 3 year run, of

5%. An overview of all the measurements of total, inelastic,
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Fig. 138 A compilation of LHC data on the total, inelastic, elastic and

diffractive cross sections, as of September 2016. Superimposed curves

correspond to the BN model described in Sect. 6.7 for the total and

non-diffractive inelastic cross section, and in Sect. 6.3.1 for the elastic

cross section, as in the updated version from [303]. A band has been

drawn to drive the eye for the Single and Double Diffraction data. This

figure is courtesy of D. Fagundes, A. Grau and Olga Shekhovtsova

elastic and diffractive cross sections inclusive of data up to

2016 is presented in Fig. 138.

9 Conclusions

Huge progress has been made over the past several decades,

both experimentally and theoretically, on the subject of high

energy total and differential cross sections. In this review

we have attempted to outline these developments from early

accelerator measurements in the 1950s with fixed target

experiments up to proton–proton scattering at the CERN

Large Hadron Collider, and beyond, where cosmic ray inter-

actions reach energies as high as 100 TeV in the proton–

proton center of mass.

In proton–proton scattering, two milestones stand out, the

first of them concerning the energy dependence of the total

cross section. The increase with energy of the total cross

section is now fully confirmed, and ascribable to the appear-

ance of parton–parton scattering, although questions regard-

ing asymptotia and whether the Froissart bound is saturated,

are still under debate. The second milestone is the LHC con-

firmation of the dip in the differential proton–proton elastic

cross section, which had not been observed since the CERN

Intersecting Storage Ring experiments in the early 1970s.

Experiments at the CERN S p̄ pS and at the Tevatron in Fer-

miLab have given hints that the presence of the dip in proton–

antiproton scattering may be revealed as higher and higher

energies are reached, but confirmation of the dip in this chan-

nel needs higher energy experiments which are not presently
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planned. During the same decades, a large set of measure-

ments were performed at HERA in DESY, using both real

and virtual photons on nucleons and nuclei to obtain total

and production cross sections for γ p, γ ∗ p, and through e+e−

machine at LEP for γ γ ∗ and γ ∗γ ∗ final states. These results

are mostly complementary to those from purely hadronic

machines and have led to remarkable theoretical develop-

ments such as Bjorken scaling, the parton model and various

dynamical evolution equations.

From the theoretical point of view, our review spans from

Heisenberg’s model to the rich descriptions which have been

developed in more than 60 years in terms of QCD, Reggeon

field theory, mini-jets, among others. The amount of mate-

rial on the subject is so huge, that some selection was indis-

pensable. Hence, we are aware that we could not always

acknowledge or survey all the work done during the past 50–

60 years in a quest of understanding the dynamics underlying

the hadronic cross sections.

We have gathered and presented the material which we

could relate to and understand. Hence, we apologise to those

scientists whose work we may not have recognised ade-

quately. Many excellent reviews on the subject have been

written during the past decades that are complementary to

our largely historical perspective.

All together, we hope that our work may shed light on

the fascination that the subject has held for so many scien-

tists for so many years and that shall continue to fascinate in

the future through further results from LHC and cosmic ray

experiments.
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