
Chapter 2
Introduction to the Physics of Ultrasound

Pascal Laugier and Guillaume Haı̈at

Abstract From an acoustical point of view, bone is a complex medium as it is
heterogeneous, anisotropic and viscoelastic. This chapter reviews the basic notions
of physical acoustics which are necessary to tackle the problem of the ultrasonic
propagation in bone, in the perspective of the application of quantitative ultrasound
(QUS) techniques to bone characterization. The first section introduces the basic
phenomena related to the field of medical ultrasound. Basic description of wave
propagation is introduced. Mechanical bases are necessary to understand the elas-
todynamic nature of the interaction between bone and ultrasound. The physical
determinants of the speed of sound of the different types of waves corresponding
to the propagation in a liquid and in a solid are considered. The effects of bound-
ary conditions (guided waves) are also detailed. The second section describes the
physical interaction between an ultrasonic wave and bone tissue, by introducing
reflection/refraction, attenuation and scattering phenomena.
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2.1 Fundamentals of Ultrasound

In analogy to visible and ultraviolet light, the terms sound and ultrasound are used
to describe the propagation of a mechanical perturbation in different frequency
ranges. Ultrasound corresponds to a mechanical wave propagating at frequencies
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above the range of human hearing (conventionally 20 kHz). Ultrasound and sound
waves propagate in fluids (gases and liquids) and solids. The mechanical perturba-
tion provokes tiny disturbances of the medium particles from their resting position.
These disturbances induce a displacement of these particles and are transmitted step
by step to other parts of the medium. The interaction between the particles can be
schematically described using a mechanical spring analogy. In particular the wave
propagation depends on the intrinsic elastic properties of the medium as well as on
its mass density. For tiny perturbations (linear propagation regime), no mass is trans-
ported as the wave propagates from point to point: the medium as a whole remains
stationary. In depth analysis of some aspects of non-linear propagation regimes will
be provided in Chap. 15.

Perfect fluids (i.e. non viscous) support bulk compression waves only, which
are characterized by density changes of the medium in which the particles oscil-
late in the longitudinal direction or the direction of wave propagation. Thus, bulk
compression waves correspond to longitudinal waves. Moreover, bulk compression
elastic waves can also propagate in solids. However, in solids unlike in fluids, a
shearing strain produced at some point can be transmitted to adjacent layers by the
strong binding between particles. This mechanism generates transverse waves also
called bulk shear waves, for which the particle motion is perpendicular to the direc-
tion of propagation in the case of isotropic solids (refer to subsection 1.5.3 for the
anisotropic case).

Biological soft tissues are viscoelastic solids, where both bulk compression and
shear waves can propagate. However, typically, in soft tissues, ultrasound bulk shear
waves are usually neglected because shear waves are highly attenuated at ultrasonic
frequencies. However, in hard tissues like bone, both compression and shear waves
must be considered.

The reader will find in what follows basic descriptions of elementary aspects
of the physics of ultrasound. However, the aim of the authors only consists in in-
troducing the basic description of fundamental phenomena involved in ultrasonic
characterization of bone. Readers interested in deeper and more complete descrip-
tion of the acoustics of wave are referred to dedicated books [1–4].

2.1.1 Frequency–Period–Wavelength

As known from basic physics the characteristic variables describing the propaga-
tion of a monochromatic wave in time and space are frequency f or period T and
wavelength λ given by:

λ =
c
f

= cT, (2.1)

where c is the wave propagation velocity (also termed sound velocity or speed of
sound). Typical diagnostic ultrasound devices employ frequencies in the range of
2–15 MHz. In contrast, due to the frequency dependence of ultrasound attenuation
and to high attenuation values in bone, lower frequencies in the range of 250 kHz to
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1.25 MHz are used in bone clinical devices, although higher frequencies have been
tested experimentally, for example to investigate cancellous bone micro-structure
[5] or to measure microelastic properties of cortical bone [6].

In cortical bone a typical sound velocity of 4000 m ·s−1 results in a wavelength of
16 mm at 250 kHz and of 4 mm at 1.0 MHz. A representative value of sound velocity
in cancellous bone of the human calcaneus is 1500 m · s−1 resulting in a wavelength
of 3.1 mm at 500 kHz.

2.1.2 Phase Velocity–Group Velocity

Two fundamentally different sound velocities can be distinguished. Phase velocity
corresponds to the propagation velocity of a given phase that is of a single frequency
component of a periodic wave. A propagating medium is said to be dispersive if the
phase velocity is a function of frequency or wavelength, which is the case for ex-
ample in all attenuating media. This means that the different frequencies contained
in the signal do not propagate at a constant velocity, which derive from the linear-
ity and causality principles (see Chap. 12). Group velocity corresponds physically
to the velocity at which energy or information is conveyed along the direction of
propagation. In the case of a dispersive medium, the group velocity may differ from
the phase velocity. It is important to be aware of velocity dispersion because it po-
tentially affects the accuracy of speed of sound measurements [7–10]. Note that
the attenuation coefficient and velocity dispersion are related through the Kramers-
Krönig relationships [11, 12].

2.1.3 Notion of Stress

A stress is defined by a force per unit area applied to a given medium. Any stress
applied to a solid can be expressed as a combination of pure compression and pure
shear stresses [1]. If the solid is anisotropic the combination of compression and
shear stresses can be described in terms of a stress matrix (also called stress tensor).
In contrast, fluids only support pure compression stress, which is called pressure.
A compression wave propagating in fluids or in isotropic solid media produces com-
pressions and expansions, which causes pressure changes. The instantaneous value
of the total pressure minus the ambient pressure is then called acoustic pressure or
simply sound pressure. In contrast, shear wave causes shear stress.

We shall assume that the stress can be expressed in one-dimensional form and
that therefore the waves are either purely longitudinal or purely transversal. This
approach allows for a much simpler (but correct) description of the propagation
phenomena. The description adopted for isotropic media can then be modified to
take into account bone anisotropy (see for example Chap. 8).
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2.1.4 Acoustic Impedance

During the propagation of an acoustic wave in a fluid, the particles of the medium
are subject to displacements around their resting positions. The velocity of these
displacements is called acoustic particle velocity and noted v. Thus, the particle
velocity is the speed of motion of the particles due to the sound wave, it must be
distinguished from the sound velocities defined in Sect. 1.2. For plane waves in a
lossless medium (non-attenuating medium), the sound pressure p and particle ve-
locity v are related to each other following :

p = ρcv = Zv, (2.2)

where ρ is the mass density of the medium at rest, and Z = ρ · c is called specific
acoustic impedance.

2.1.5 Acoustic Intensity

The energy transported in an ultrasound wave is usually characterized by an acous-
tic intensity I defined as the energy transmitted per unit time (usually 1 s) and per
unit area (usually 1cm2) in the direction normal to the considered area. In the field
of medical ultrasound, intensity is measured in W ·cm−2. In the far field of an unfo-
cused transducer where the wave front can be considered as a planar wave or at the
focus of a focused transducer, the intensity of a monochromatic wave is related to
the sound pressure as follows:

I =
p2

2Z
. (2.3)

2.1.6 Determinant of the Speed of Sound

In the linear propagation regime (tiny perturbation or small wave amplitude) speed
of sound is a characteristic of the medium. It is independent from the wave am-
plitude and can be determined from the material and geometrical properties of the
medium. To account for wave type, for example bulk compression, bulk shear, sur-
face, or guided wave specific differences in c, the generalized concept of an effective
elastic modulus Me and an effective mass density ρe can be introduced [13]. The ef-
fective elastic modulus is related to elastic and geometrical characteristics of the
medium, which determine the stiffness with respect to a given type of wave. The ef-
fective mass density is related to the inertia of the propagating medium. Following
this concept c is expressed as:

c =

√
Me

ρe
. (2.4)
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A common correction in realistic systems is that speed of sound can also depend on
the amplitude of the wave, leading to a nonlinear wave propagation (Chap. 15).

2.1.6.1 Case of a Fluid

In fluids, Me is given by the adiabatic bulk modulus of elasticity K, the reciprocal
of the adiabatic compressibility χ . The effective mass density ρe is the mass den-
sity of the fluid. The propagating waves are pure compression waves. K physically
corresponds to the force opposing compression of the fluid. Compressibility is the
relative change in volume when the pressure changes by one unit. A fluid model is
generally adopted to describe waves at ultrasonic frequencies in soft tissue.

Of interest is the temperature dependence of c. Speed of sound in water is
1482m · s−1 at 20◦C. Between 20◦C and 37◦C it increases with a temperature co-
efficient of about 2.5m · s−1 · ◦C−1 [14]. As soft tissues are largely composed of
water, it is not surprising that their speed of sound also increases with temperature.
Fat is the exception. Speed of sound in fat decreases when temperature increases
[15]. The observed temperature dependent decrease of c of trabecular bone mar-
row is also likely due to the influence of fat, an important component of bone
marrow [16].

2.1.6.2 Case of an Infinite Isotropic Homogeneous Elastic Solids

For solids, Me is given by a combination of the elastic properties. In general, this
combination can be expressed using the different components of the elastic stiffness
tensor (or matrix), noted cij and called stiffness coefficients. The stiffness coeffi-
cients are defined by the linear coefficients of proportionality between the different
components of the stress and strain matrixes [17]. An isotropic homogeneous elastic
solid can be equivalently described by:

• Two stiffness coefficients c11 and c12

• The Lamé coefficients λ (bulk modulus, not to be confused with the wavelength)
and μ (shear modulus)

• Two engineering constants such as E (Young’s modulus) and ν (Poisson’s ratio)

The Lamé coefficients (λ ,μ) can be expressed as a function of the stiffness coeffi-
cients (c11,c12) or as a function of the engineering constants (E,ν). Similarly, the
stiffness coefficients are related to the engineering constants. The full derivation of
the wave propagation equation in anisotropic elastic solids is out of the scope of this
chapter. Readers can find a comprehensive description in many classical textbooks,
for example [1,2,17]. We only indicate in the following the principle of derivation of
the wave propagation equation for the case of an isotropic linear elastic solid. Three
equations are necessary to obtain the linear propagation equation in an isotropic
solid. The first equation, corresponding to the constitutive law (Hooke’s law) of the
isotropic material considered, expresses the general relationship existing between
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stress and strain in a perfectly elastic solid:

σ = λ · tr(ε)+ 2με, (2.5)

where σ denotes the stress tensor, ε the strain tensor and tr(ε) is the trace of ε . The
second equation corresponds to the equation of motion and is given by:

ρ
∂ 2u
∂ t2 = div(σ), (2.6)

where ρ denotes the mass density of the solid, u denotes the elementary particle
displacement vector and div the divergence operator (div = ∂

dx + ∂
dy + ∂

dz ).
The last equation relates the strain tensor with the displacement field and is

given by:

ε =
1
2
(grad(u)+T grad(u)), (2.7)

where grad indicates the gradient tensor and T indicates the transpose operation.
By combining Eqs. 2.5–2.7 and considering respectively the case where the particle
displacement is parallel and perpendicular to the direction of propagation, the wave
propagation equations corresponding to the case of a longitudinal and shear wave
mode are obtained and are given respectively by:

ρ
∂ 2u
∂ t2 = (λ + 2μ) ·Δu and ρ

∂ 2u
∂ t2 = μ ·Δu (2.8)

where Δ denotes the Laplacian operator: Δ = ∂ 2

dx2 + ∂ 2

dy2 + ∂ 2

dz2 .
In summary, in an infinite isotropic homogeneous solid body, in which the prop-

agating wave does not interact with the boundary of the medium, the longitudinal
and shear (transversal) propagation velocity cl and csare given by [1]:

cl =

√
λ + 2μ

ρ
=

√
c11

ρ
=

√
E(1−ν)

ρ(1 + ν)(1−2ν)
(2.9)

and

cs =
√

μ
ρ

=
√

c11 − c12

2ρ
=

√
E

ρ(1 + ν)
(2.10)

2.1.6.3 Infinite Anisotropic Homogeneous Elastic Solids

In homogeneous anisotropic media, the elastic properties depend on the direc-
tion of propagation of the acoustical wave. For example, in crystalline materials,
the elastic properties (and thus the sound velocities) depend on the orientation of
the crystalline directions relative to the direction of propagation. In this case, Me
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depends on the direction of propagation, wave polarization (the direction of particle
displacement with respect to propagation direction) and crystal class of symmetry.
For an arbitrary direction in a crystal, three wave types can generally propagate: one
quasi-longitudinal and two quasi-transverse waves. However, there are special direc-
tions called symmetry axes along which pure longitudinal or shear waves propagate.
Details of the relationships between sound velocity and elastic coefficients for infi-
nite anisotropic elastic solids are beyond the scope of this chapter and can be found
in reference books on elastic waves in solids [1–3].

For cortical bone the general degree of anisotropy is that of orthotropic material
symmetry [18], which is characterized by nine independent stiffness coefficients.
A simplified model of a transverse isotropic elastic solid medium, which reduces
the number of independent coefficients of the stiffness matrix to five, has also been
considered [19–23]. The directional dependence of engineering elastic moduli such
as E or σ can then be derived from the stiffness coefficients. These assumptions
about bone symmetry were used successfully in studying in vitro ultrasound propa-
gation along the various symmetry axes of cortical bone specimens [18, 21, 24, 25].

2.1.6.4 Finite Homogeneous Elastic Solids

Equations 2.9 and 2.10 were introduced for unbounded media assuming that the
wavelength λ is much smaller than the smallest sample dimension. In the opposite
case (e.g., when the propagation medium is thin compared to λ ), multiple reflec-
tions, mode conversions and interferences of longitudinal and shear waves from the
sample boundaries occur. These phenomena create a wave guide character of the
sound propagation within boundaries of the considered medium. In this case, sound
perturbations can be represented as superposition of resonant guided wave modes
(so-called eigen modes).

Guided wave modes which exist in plates are known as Lamb waves, which are
complex waves traveling through the entire plate. Different families of Lamb wave
modes can be distinguished including symmetrical modes (in-phase displacements
of opposite plate surfaces) and asymmetrical or flexural modes (anti-phase displace-
ments of opposite plate surfaces), as shown in Fig. 2.1.

Guided wave modes have been described for rods [3] as well as for tubes
[26]. Guided wave modes are always dispersive, which means that their phase
velocities are function of the wavelength (or frequency) and of the layer thickness.

Symmetrical guided wave Antisymmetrical guided wave

Fig. 2.1 Illustration of symmetrical and asymmetrical guided wave modes propagating through
the entire thickness of a plate
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In addition, phase velocity is also function of the elastic properties and density of
the medium [27].

The wave guide character of the sound propagation has been evidenced for cor-
tical bone in the 0.25–2 MHz frequency range. In this case, cortical bone can be
modeled as a plate-like (2-D description) or a tube-like (3-D description) layered
medium [27, 28].

A particular case of guided wave is the extensional or bar wave in a thin rod,
a configuration which has been used to measure the properties of cortical bone.
Under the assumption that the cross-sectional dimensions of the rod (in the case of
a cylindrical rod, its diameter) are much smaller than λ , only a longitudinal stress
component can be considered along the propagation direction of the rod. In this
case, the speed of sound c is given by [13]:

c =

√
E
ρ
⇔ E = ρ c2 (2.11)

For in vivo measurements purposes, guided waves in cortical bone can be excited
from the surrounding soft tissues using an incident beam at a specific angle [28].
If a wave is guided by the bone cortex with a phase velocity greater than that of
the compression wave of the surrounding soft tissues, the energy propagating in the
bone cortex can leak into the soft tissue. Thus, power is continuously radiated into
the soft tissues, the guided wave mode can be detected and its velocity measured
with sensors placed at its surface. A comprehensive review of guided waves used to
investigate cortical bone is given in Chap. 7.

2.1.6.5 Inhomogeneous Elastic Solids

In the sections above, the sound wave propagation was restricted to homogeneous
elastic solids. However, bone is highly heterogeneous at different scales, and can be
described by a composite and poroelastic material. The derivation of Me for com-
posite or poroelastic materials may be rather complex and requires cumbersome
theoretical developments. Moreover, due to the important difference in porosity and
structure between cortical and trabecular bone, the analysis of ultrasound propa-
gation may require different theoretical frameworks for these two types of bone
structures.

As the medium is no longer homogeneous but rather a mixture of several compo-
nents such as collagen fibers, hydroxyapatite crystals, water, non-collagen substance
and marrow, which are all characterized by different elastic coefficients, it remains
difficult to simply determine Me. Replacing the actual material by a homogenized
material is the best we can expect. Me can then be determined assuming that λ is
much larger than d, where d is the characteristic size of the structural heterogeneities
such as, for example, osteons, Haversian canals, osteocytes, lacunae, apatite crys-
tals and collagen fibers. At the scale of the wavelength, the medium can then be
considered homogeneous and therefore Eqs. 2.9 and 2.10 can be applied using the
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homogenized stiffness coefficients. The effective elastic modulus and the effective
mass density can be derived from experiments or theoretical models. Different mul-
tiscale homogenization approaches [20,29–32] have been developed to determine a
homogenized value for Me, which is the only way to practically estimate the material
properties at the scale of λ .

The porosity of human cortical bone is rather low and the pore size (∼50 to
100μm) is smaller than typical wavelengths (>1mm). Therefore, the aforemen-
tioned homogenization theories can be applied and cortical bone can be modeled as
a mono-phase homogeneous medium (rather than a two-phase medium) in regard
to the ultrasonic propagation. Therefore, ultrasound propagation at diagnostic fre-
quencies (around 1 MHz) in cortical bone can be described at first approximation by
the propagation in an anisotropic homogeneous medium (see Chap. 13).

In contrast, such an assumption is not valid for cancellous bone where poros-
ity values are rather high. The pore size (∼500 to 1000 μm) is comparable to the
wavelength (1.5 mm at 500 kHz). The elasticity of such a poroelastic structure then
intrinsically depends on the structure of the bone. Several theoretical concepts con-
sidering poroelasticity such as Biot’s theory [33–39] and Schoenberg’s theory for
multilayered media [40–44] have been applied to describe ultrasound propagation
in cancellous bone. These models will be detailed in Chap. 5.

2.2 Tissue Interaction

2.2.1 Specular Reflection and Refraction

As known from basic physics, reflection and refraction occur at the boundary
between two media with different characteristic acoustic impedances or different
speeds of sound. If the surface is smooth compared to the wavelength, specular
reflections occur whereas for rough surfaces, reflections are diffuse [45]. Specu-
lar reflection forms the basis of pulse-echo ultrasonic imaging (echography) and
contributes to image formation displaying organ boundaries. It is convenient to dis-
tinguish fluid–fluid interfaces such as the discontinuity between two soft tissues,
which is the typical model for diagnostic clinical ultrasound, and fluid-solid in-
terfaces, which represent more realistically the boundary between soft tissue and
cortical bone. The interaction between ultrasound and cancellous bone is more com-
plicated. It can best be described by scattering phenomena, which will be discussed
in Sect. 2.3. In what follows, we shall assume that the incident wave is a plane wave
in the fluid for the sake of simplicity.1

1 Any kind of wave may be decomposed in a sum of planar waves.



38 P. Laugier and G. Haı̈at

2.2.1.1 Fluid–Fluid Interface

If a plane wave impinges on a smooth plane interface (i.e. under the assumption
of specular reflection), a reflected and a transmitted wave will be generated (see
Fig. 2.2a). As only longitudinal waves can exist in a fluid, the refracted and reflected
waves are also longitudinal. According to Snell’s law, (i) the reflection angle θ1 is
equal to the angle of the incident wave and (ii) the transmitted wave is refracted
away from the direction of the incident wave θ1 at a refraction angle θ2 given by:

sin θ2

c2
=

sinθ1

c1
, (2.12)

where and c1 and c2 are the sound velocities of the first and second medium.
For normal incidence (θ1 = 0◦), the reflected and transmitted waves are also

normal to the interface. The ratio of the reflected to the incident acoustic pressure
amplitude is called amplitude reflection coefficient r. The ratio of the transmitted
to the incident acoustic amplitude is called amplitude transmission coefficient t.
Coefficients t and r are given by:

r =
Z1 −Z2

Z1 + Z2
t =

2Z2

Z1 + Z2
. (2.13)

Similarly intensity reflection (R) and transmission coefficients (T) are defined by the
ratio of the reflected to the incident acoustic intensity and the ratio of the transmitted
to the incident acoustic amplitude, respectively:

Fig. 2.2 Reflection and refraction at the boundary (a) between two fluid media and (b) between a
fluid and a solid medium
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Table 2.1 Typical values for sound velocity, characteristic acoustic impedance, and attenuation
(see next section) in different biological tissues for temperatures in the range between 20◦C and
37◦C. These values are only indicative of the order of magnitude, due to dramatic biological
variability

Tissue

Ultrasound
propagation
velocity c (m · s−1)

Characteristic
acoustic impedance
Z (kg · s−1 ·m−2)

Slope of the
attenuation coefficient
(dB · cm−1 ·MHz−1)

Water (20◦C) 1480 1.48×106 a

Cancellous bone 1450–1800 1.54×106 –2.2×106 10–40
Cortical bone 3000–4000 4×106 –8×106 1–10
Fat 1450 1.38×106 0.8
Muscle 1550–1630 1.65×106 –1.74×106 0.5–1.5
Skin 1600 1.7×106 2–4
a The attenuation in water exhibits a quadratic variation with frequency f. Its attenuation coeffi-
cient in dB · cm−1 is α(f) = 0.002f2

R =
(

Z1 −Z2

Z1 + Z2

)2

T =
4Z1Z2

(Z1 + Z2)
2 . (2.14)

where Z1 and Z2 are the characteristic acoustic impedances of the first and sec-
ond medium for longitudinal waves, respectively. One can verify that T + R = 1,
which corresponds to the conservation of energy equation (in the lossless case). The
amount of energy in the reflected wave depends on the impedance discontinuity of
the two media. The greater the difference, the greater is the reflected energy.

Table 2.1 shows the different values of sound velocity, of acoustic impedance,
and of the slope of the attenuation coefficient as a function of frequency for selected
tissues playing a part in bone QUS evaluation. As can be seen, for soft tissues Z
differs only slightly from that of water. In case of small impedance discontinuities
(e.g., such as between two soft tissues), the reflected beam typically carries less than
1% of the incident energy and 99% or more of the incident energy is transmitted
through the interface. Because of relatively small velocity changes in various soft
tissues, refraction is generally not a serious problem.

2.2.1.2 Fluid–Solid Interface

In the case where the second medium is a solid such as cortical bone, Eq. 2.13 rep-
resents the ideal case for normal incidence and serves as guidelines to determine the
reflected and transmitted energies. When ultrasound strikes a cortical bone interface
at normal incidence, approximately 25–50% of the incident energy is transferred to
the reflected wave and only 75–50% to the refracted longitudinal wave.

For oblique incidence the refracted longitudinal plane wave in the solid is par-
tially converted into a shear wave, and two refracted beams exist, as shown in
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Fig. 2.2b. For oblique incidence Snell’s law must be generalized to [1]:

sin(θ1)
c1

=
sin(θ2L)

c2L
=

sin(θ2T )
c2T

, (2.15)

where subscripts 2L and 2T refer respectively to the refracted longitudinal and shear
waves in the solid medium (e.g., bone). As longitudinal waves in solids propagate
most of the time with a greater sound speed than in fluids, the refraction angle θ2L is
larger than the angle of incidence θ1. When θ1 is higher than a certain value θc, total
internal reflection occurs and the longitudinal wave is no longer transmitted into the
solid. The refracted wave is termed evanescent as it travels parallel to the interface
and decays exponentially from the boundary. The corresponding incident angle θc

is termed the first critical angle and is given by:

sin(θc) =
c1

c2L
. (2.16)

The value of longitudinal wave velocity in cortical bone stands in the range
3500–4200 m · s−1 (see Chap. 13), which gives typical values of θc between 20◦
and 25◦.

If the velocity of the shear wave in the solid is also greater than the velocity of
the longitudinal wave in the fluid then analogously there is a second critical an-
gle at which the shear refracted beam propagates along the surface. Actually, the
propagation of sound waves in solids is even more complicated and several critical
angles may exist [1, 17]. The measurement of critical angles is the basis of ultra-
sound critical-angle reflectometry (UCR), which has been used to characterize bone
in vitro as well as in vivo [46–48]. In UCR, the sound velocities of the longitudinal
and the shear waves in cortical bone can directly be determined from θc according
to Snell’s law if the speed of sound of the surrounding fluid (or soft tissue) is known
precisely.

2.2.2 Attenuation

Two main mechanisms contribute to ultrasound attenuation: absorption and scat-
tering. Different mechanisms are responsible for absorption phenomena (thermal
conductance effects, chemical effects, viscous effects, non linearity . . .). So far, the
phenomena responsible for ultrasound absorption in biological tissues have not been
completely understood. In liquids (respectively homogeneous solids), the viscous
(respectively viscoelastic) forces between neighboring particles moving with differ-
ent velocities are major sources of acoustic wave absorption. For example, viscous
losses may explain sound wave absorption in water where attenuation varies with
the square of the frequency. However, this model of viscosity (quadratic dependence
of the attenuation coefficient versus frequency) does not explain experimental mea-
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surements of absorption in soft biological tissues as well as in bone in the diagnostic
frequency range.

Other models hypothesized that a significant fraction of the absorption of longi-
tudinal waves in soft tissues involves a spectrum of relaxation mechanisms at the
macromolecular scale of proteins [49] or potentially thermal transport phenomena
arising from temperature gradients in the medium [50]. In the frequency range where
characteristic relaxation times are close to the wave time period, a quasi-linear vari-
ation of the attenuation coefficient with frequency can be observed.

Attenuation differs substantially between fluid-like soft tissues and porous media
such as bone, in which (i) viscous friction effects due to the relative motion of mar-
row and solid frame, (ii) scattering of the ultrasonic wave by bone heterogeneity and
(iii) longitudinal to shear mode conversion contribute significantly. The mechanisms
of scattering will be presented in the next section. Acoustic attenuation in cancel-
lous bone is usually almost one order of magnitude higher than in cortical bone. This
is likely due to the large bone surface-to-volume ratio, which reinforces scattering,
mode conversion and viscous friction. Recent studies suggest that loss mechanisms
such as mode conversion, that is the transformation of longitudinal waves into shear
waves (and subsequent absorption of these shear waves) occurring at the surface of
the scattering particles, may be a significant contributor to the overall attenuation in
bone in the diagnostic frequency range [51, 52].

Further important factors that contribute to the total wave intensity attenuation as
it propagates through a complex medium such as a limb composed of several layers
of different media (surrounding soft tissues, bone, marrow) are diffraction, reflec-
tion and refraction. Due to diffraction phenomena, the acoustic beam emitted from a
planar (unfocused) transducer will increase its diameter as the wave propagates and
the intensity will decrease with increasing distance from the source. Reflection and
refraction losses at tissue interfaces according to Eq. 2.13 depend on the impedance
mismatch at the interfaces. In general, overall ultrasound attenuation is character-
ized by the following exponential decrease of the pressure amplitude p and of the
amplitude of the acoustic intensity I with the traveling distance z:

p = p0e−αz and I = I0e−2αz (2.17)

where p0 and I0 are the pressure and intensity at z = 0, respectively. The quantity
α (expressed in cm−1) is the pressure frequency-dependent attenuation coefficient.
The factor 2 in the exponential term of the intensity equation results from transform-
ing pressure into intensity, as intensity is proportional to the square of pressure. In
biomedical ultrasonics, the commonly used units for α and for its slope when plot-
ted versus frequency are dB · cm−1 and dB · cm−1 ·MHz−1, respectively. The unit
conversion cm−1 to dB · cm−1 writes [53]:

α[dB · cm−1] =
1
z
·10 ln

I0

I
= 8.686α[cm−1] (2.18)
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Some authors use α as the intensity frequency-dependent attenuation coefficient
(I = I0e−αz). Then, the conversion to dB results in α[dB · cm−1] = 4.343α[cm−1].

2.2.3 Tissue Penetration

It has been shown experimentally that ultrasound attenuation in biological tissues
varies approximately linearly with frequency [54]. The linear dependency has been
documented for soft tissues over a broad frequency range from 1 to 50 MHz and
also for cancellous bone in a limited frequency range of 0.2–2MHz [55–59]. Since
attenuation in tissues increases with frequency, the price paid for using shorter
wavelengths (that is for improving spatial resolution) is an increase in attenuation,
which limits the possible penetration depth due to the sensitivity of the sensor. For
most soft tissues, values of the slope of the attenuation coefficient versus frequency
are approximately comprised in the range 0.5–1.0dB·cm−1 ·MHz−1 (see Table 2.1).
In bone, the slope of the attenuation coefficient is one or two orders of magnitude
higher than in soft tissues. Hence, lower frequencies (around 0.5–1 MHz) are com-
monly used for skeletal investigations.

2.2.4 Scattering

Scattering phenomena result from the interaction between a primary ultrasonic wave
and the boundaries of particles (inhomogeneities) if their physical properties such as
density or elasticity are different from those of the surrounding medium. In this case,
the oscillatory movement of the scatterer is different from that of the surrounding
medium, which leads to the emission of a secondary wave denoted scattered wave.

The scattering regime of a single particle depends on the ratio between its di-
mension and λ . If λ is much smaller than the size of the heterogeneity, specular
reflection obeying the usual laws of reflection occurs (see Eq. 2.13). In contrast, a
scattered wave is created if the dimensions of the heterogeneities are comparable to
or lower than the wavelength. The scattering problem of light and sound by small
scatterers was first solved by Lord Rayleigh [60] and is therefore called Rayleigh
scattering. For scatterers much smaller than the wavelength, the intensity of the
scattered waves is proportional to the fourth power of the frequency of the incident
wave. It is also proportional to the sixth power of the size of the scatterers, i.e.,
to the square of its volume [61]. The case of scatterers with larger sizes or sizes
comparable to the wavelength involves more complicated calculations [61].

The scattered intensity from soft tissue is generally considerably smaller than the
specularly reflected intensity from organ boundaries. However, similar to specular
reflection, such scattering events are of primary importance for image formation
and for assessing micro-structural properties of the medium such as scatterer size of
scatterer number density. In ultrasound images of soft tissues, scattering causes the
grainy aspect or echostructure, also denoted speckle.



2 Introduction to the Physics of Ultrasound 43

In soft tissue, the density and compressibility of scatterers are close to those of
the surrounding medium. Thus the contribution of scattering to overall attenuation
is relatively small. At low MHz frequencies, attenuation by scattering in soft tissue
is typically 10–15% of the total attenuation [62]. In contrast, scattering is likely to
be an important attenuation mechanism in bone. Although scattering from bone has
received less attention than attenuation and sound velocity, its study is important
because it may explain mechanisms responsible for attenuation [51] and for veloc-
ity dispersion [63]. Ultrasonic scattering predominantly occurs in cancellous bone in
comparison to cortical bone. Cancellous bone can be considered as a highly inhomo-
geneous scattering medium: a soft tissue-like medium, i.e. bone marrow, containing
a solid matrix, i.e. mineralized collagen of interconnected trabecular elements with
a mean thickness ranging from 50 to 150μm. Trabeculae are likely candidates for
scattering sites due to the high contrast in acoustic properties between mineralized
tissue and marrow [64]. Various scattering models for trabecular bone have been
proposed and will be extensively presented in Chap. 6.
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