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This special issue comprises papers which were presented at the B’"Waves workshops 2014 in
Bordeaux, France and 2016 in Bergen, Norway. The B’Waves workshop series was conceived as
a vehicle to facilitate further research into breaking of water waves through focussed week-long
meetings featuring a limited number of speakers and with ample time allocated for discussions
between presentations. Some new collaborations were initiated during and after B"'Waves 2014,
and some of the results contained in this special issue are based on these efforts. The third
workshop in the series, B’'Waves 2018 was held in Marseilles, France from May 28th to June
1st.

One of the reasons for initiating this series of dedicated workshops was the observed inad-
equacy of the current state of knowledge about wave breaking. While wave breaking is one
the most ubiquitous and well known phenomena in the worlds oceans and rivers, our current
understanding of why, how and when it happens is still limited. While a fair amount is known
today about possible pathways to breaking through instabilities and various types of forcing,
the breaking process itself remains poorly understood due to its highly turbulent nature.

If you ask any person about wave breaking, the chance is very high that they have a clearly
defined idea about what they understand to be wave breaking, with most people probably
imagining barrel waves at some of the worlds most famous beaches. Other types of wave
breaking which are less spectacular to the casual observer and maybe less well known but
equally important are wave breaking in wave groups in the open ocean, white-capping, mi-
crobreaking and also breaking of internal waves. Over the years, a number of review articles
and monographs have been published on the subject [1, 8, 27, 48, 57, 64, 66, 68], and these
accounts invariably call for more research into nearly every aspect of wave breaking.

Even though wave breaking happens on a small scale and involves fluid motion and pressure
gradients changing on a microscale, it has a major impact on the global energy balance in the
world’s oceans. Indeed, in fully developed seas, wave breaking is thought to be responsible for
as much as 80% of energy dissipation [1]. This link between very small and global scales makes
wave breaking a challenging multi-scale problem.



As wave breaking plays an important role in the wave dynamics in the oceans, it has also
been reviewed in accounts of wave forecasting such as [19] and others. Indeed, wave breaking
has a large impact on a host of oceanic and coastal processes such as energy dissipation, current
and vorticity creation, Lagrangian transport, mixing of the upper ocean and air-sea interaction
[11, 23, 45, 58, 72, 71].

While the present introduction and special issue is mostly concerned with wave breaking
at the surface of the ocean, it should be mentioned that breaking of internal waves is also an
important phenomenon which is connected to global ocean circulation. Indeed, breaking of
internal waves is partially responsible for maintaining the stable density stratification of the
world oceans, and in particular, internal wave breaking is thought to be a major factor in the
thermohaline circulation driving the exchange of warm and arctic waters [87].

Returning to surface waves, it appears that wave breaking usually happens on a very fast
time scale, lasting only a fraction of a wave period [12, 73]. This is very short especially
when compared to the time scale of wind driven waves which grow through wind forcing and
nonlinear interactions over hundreds of kilometer and several hours and days [42, 49]. While all
ocean waves continuously receive energy from the wind via air-sea interaction, it was estimated
in [3] that only about 10% of waves break unless wind forcing is very strong. Nevertheless,
wave breaking provides a very efficient energy dissipation mechanism. Indeed it was shown for
example in [35] that wave breaking features high turbulence levels with dissipation rates up to
four orders of magnitude larger than the average background values in the ocean.

The intermittency and random nature of wave breaking makes it difficult to study in
the laboratory, and even more difficult to detect in the field. Indeed, the study of wave
breaking often incorporates some element of a visual analysis such as for example the combined
visual and data analysis of [39]. Using white-capping as an indicator for breaking can also be
tricky since after a wave has broken, white-capping may persist for a few more wave periods,
complicating even a visual analysis [73]. Given the many factors influencing the occurrence,
and nature of wave breaking and its highly nonlinear and turbulent character, it is clear that
a complete understanding of the breaking process and its many causes and implications is out
of reach at this point.

One of the open issues surrounding wave breaking is its very definition: There is no clear
single criterion that signals the commencement of wave breaking, though most researcher would
probably agree with the following statement by the authors of [8]: “It is generally recognized
that an individual wave breaking event usually starts when water particles near a wave crest
develop a velocity in the wave propagation direction sufficiently large for them to fall down the
front of the wave”.

Partially as a result of this lack of a clearly defined indicator of wave breaking the detection
of wave breaking through various wave breaking criteria has received a lot of attention. As
delineated in [81, 86], there are essentially three classes of breaking criteria. Geometric criteria
are based on the shape and in particular the steepness of the waves close to breaking, such as
reviewed in [2]. Kinematic criteria are based on violation of the kinematic free surface condition,
the most well known criterion being if the particle velocity exceeds the crest velocity, or in
other words if a stagnation point appears on the free surface at the crest, such as in Stokes’s
highest wave.

The kinematic criterion has traditionally been used in conjunction with the phase velocity
or group velocity [76, 86], but recent studies have also focused on the crest velocity. In some
cases, evidence pointed to the necessity of tightening of the criterion [5] while in other cases,
the kinematic criterion has been verified fairly closely [40]. The criterion has also been studied



in the context of internal waves [37].

Dynamic criteria are based on accelerations exceeding some multiple of the gravitational
acceleration [69]. A subclass of the dynamic criteria are the energetic criteria based on an
evaluation of energy flux and density, such as put forward in [9, 75], There is a host of studies
investigating these various criteria, and each one of them has been validated in at least some
cases [2, 9, 5, 40, 81, 76, 86]. While some authors continue the quest for a single criterion
fitting all cases, it also reasonable to surmise that some criteria may work only in certain cases
given the large variety of situations in which breaking may occur.

Water waves breaking on beaches can be classified into a range of different types [34]. The
most common types of breaking are spilling, plunging, collapsing and surging, each appearing
in a certain parameter regime depending on waveheight, initial depth and bottom slope in
an idealized setting [36]. In deep water, wave breaking can be roughly classed into plung-
ing, collapsing and microbreaking. Microbreaking is especially difficult to detect as it is not
accompanied by whitecapping [84].

The evolution of the wave prior to the breaking point may vary significantly from case to
case. In many cases, waves break because of some forcing be it wind forcing [3], wave-current
interaction [74], bottom forcing in coastal regions [98, 16] or a forced discharge [30]. As the
wave approaches the breaking point, capillary effects invariably come to the fore, as shown for
example in [31] and the photographs depicted in [28],

In some cases, waves break as a result of intrinsic hydrodynamic processes. For example it is
well known by now that various instabilities may lead to wave breaking. The dynamics leading
to wave breaking due to such intrinsic instabilities are fairly well understood. In particular,
it is clear that modulational instabilities may lead to wave breaking [55] and the instability
featured in [79, 80] and other types of crest instabilities also lead to wave breaking [46, 56].
Three-dimensional instabilities have also been studied intensively [15, 62, 63, 32] as have the
appearance of three-dimensional structures prior to breaking [4] and after breaking [59, 58, 33].

One issue of importance to the approximate numerical description of oceanic and coastal
dynamics is the incorporation of wave breaking into simulation tools. For coastal areas, the
traditional method is the inclusion of surface rollers such as advocated in [61, 78] or using a
localized eddy viscosity [52, 50]. If hyperbolic equations of shallow-water type are used, then
the energy-dissipative property of shock solutions can be used to dissipate energy lost due to
breaking waves This method has been refined lately in a number of papers [13, 17, 22, 47,
83]. The intermittency of the wave breaking process can be simulated by switching between
dispersive and hyperbolic models with the help of some numerical wave breaking criterion
[14, 5].

For ocean waves, the dissipation due to breaking waves is parameterized into the spectral
energy equation essentially using ideas of [54, 70, 89, 26] and others. While various approaches
exist (see for example the weak turbulence model explained in [90]), the white-capping models
of [43] seems to be the most widely used model for breaking mechanism in wave-forecast models.

Many of the works mentioned above are classical by now as scientific research aimed at an
understanding of wave breaking has spanned many decades. Due to the many open questions
remaining, wave breaking is still a very active area of research, with a large number of groups
using a variety of methods for their investigations. Among the innumerable laboratory studies
and field campaigns, we mention [20, 41, 25, 29, 51, 65, 77, 85]. Numerical simulations have been
carried out using a variety of methods including multi-phase methods [59], levelset methods
[44], volume of fluid (VOF) methods [53] large-eddy-simulations [21, 59], direct numerical
simulations [38, 88|, Reynolds-averaged Navier-Stokes equations [60, 91] and many others.



Many more excellent works exist, and we refer the reader to the references in the articles
included in this special issue. In the following we briefly introduce these contributions.

Contributions in this issue:

In The turbulent airflow over wind generated surface waves [101], Buckley and Véron present
an experimental study of the turbulent structure of the airflow above wind generated surface
waves. The turbulent boundary layer in the air phase is characterized by numerous velocity
sweeps and ejections, accompanied by intense downwind-tilted spanwise shear layers originating
from the surface. The authors are able to estimate the statistical significance of thesse turbulent
events using quadrant analysis. It is shown that these events become phase-locked in the
presence of waves.

The contribution by Filippini, Arpaia, Bonneton and Ricchiuto [97] contains a study of
the formation of river bores detailing the numerical aspects behing the physical results discussed
in [14]. The authors define certain parameters based on the estuary geometry the water depth,
the amplitude and the angular frequency of the tidal wave. The authors study numerically
the estuarine parameter space in order to identify physical conditions that lead to tidal bore
generation. According to the result presented in this paper, bore formation is controlled by
two competing physical processes: the distortion of the tidal wave, with flood dominance and
eventually bore inception and the dissipation of the tidal wave which is unfavorable to bore
formation.

The paper by Gavrilyuk, Liapidevskii and Chesnokov [96] is concerned with a two-layer
model describing the interaction of a shear bubble layer formed by breaking waves and an
underlying potential layer in the shallow-water approximation. A non-hydrostatic formulation
taking into account the entrainment effects in shear flows is proposed. Time and space periodic
solutions are found, and some basic problems concerning the formation of bores and periodic
structures from a uniform flow are numerically approximated.

In the paper by Hur [94], the nonlinear shallow water equations are written in the presence of
a background shear flow. Using Riemann invariants, the equations are restricted to one-way
propagation, and dispersive terms are added to find the Korteweg-de Vries equation and the
fully dispersive Whitham equation over shear flow. The equations are investigated with respect
to derivative blow-up which means that the solution remains bounded but its slope becomes
unbounded in finite time. It is shown that the solution of the vorticity-modified shallow water
equations breaks down if it carries an increase of elevation; the breaking time decreases to zero
as the size of vorticity increases.

The author also proposes a full-dispersion shallow water model, combining the dispersion
relation of water waves and the nonlinear shallow water equations in the constant vorticity
setting. It is shown that small-amplitude and periodic traveling waves are unstable to long
wavelength perturbations if the wave number is greater than a critical value, and stable oth-
erwise, similarly to the Benjamin-Feir instability in the irrotational setting. It is also shown
that vorticity considerably alters the modulational stability and instability in the presence of
surface tension.

In Effects of the wind on the breaking of modulated wave trains [100], Iafrati, De Vita and
Verzicco study the effect of wind on the wave breaking induced by the modulational instability
using the open source software Gerris. The two-phase flow is modelled by the two-dimensional



Navier-Stokes equations for a single incompressible fluid and a Volume of Fluid technique is
employed to capture the air-water interface. The simulation covers the initial development of
the wind profile, the growth of the modulational instability, the breaking and post breaking
phases. Results show the occurrence of air flow separation from the wave crests shortly after
the initial start. It is shown that due to the flow separation there is a favourable pressure
gradient about the wave crests whereas the tangential stresses are generally in favour of the
wave propagation on the back of the wave but are opposed to the propagation along the
forward face and in the wave trough. In agreement with the experiments, the growth rate of
the side-bands is reduced when compared to the corresponding solution without wind.

In Solitary wave impact on a vertical wall [105] Jensen investigates wave impact on a vertical
wall using both a wave tank and a numerical code. Two different impact phenomena are ex-
plored. A flip-through, where the front face of the wave moves rapidly vertically due to a jet
and a case with a very steep wave. In the latter, the front of the wave is almost vertical, and
the pressure at impact was 60 percent higher than the flip-through event. Measurements are
compared with numerical simulations, and good agreement is found. In particular, maximum
pressure excursion is found when a vertical front is violently impacting on a vertical wall. In-
terestingly, a pronounced double pressure peak is observed due to the impact and the rundown
process.

In the paper by Kazolea, Filippini, Ricchiuto, Abadie, Medina, Morichon, Journeau,
Marcer, Pons, Le Roy, Pedreros and Rousseau [92], benchmarks for various stages of
a tsunami event are studied. The authors consider generation, propagation, run-up and inun-
dation using different numerical codes, including models based on depth-averaged Boussinesq
equations and a fully three-dimensional Navier-Stokes solver. The codes are used for a flow fea-
turing propagation, run-up, overtopping and reflection, and compared with experimental data
produced from a set of laboratory experiments carried out at the O.H. Hinsdale Wave Research
Laboratory, Oregon State University. The authors conclude that from an operational point of
view, the Boussinesq codes can be run more efficiently, and provide a similar level of accuracy
as the code based on the full Navier-Stokes equations. Nevertheless, the Navier-Stokes solver
is able to provide more detailed information on finer scales which may be required in the study
of air entrainment and wave-structure interaction.

In the paper by Kirby and Derakhti [98], the effect of local variations of wave energy
dissipation as a generation mechanism for vorticity is discussed. The authors use an LES/VOF
model to examine the evolution of coherent vortex structures, considering a range of vorticity-
generating mechanisms ranging from the generation of patterns of vertical vorticity in 2D,
depth-averaged flows, to a more detailed picture of the vorticity field evolving during a localized
breaking event. They study the persistence of three-dimensionality of these structures and their
contribution to the development of depth-integrated vertical vorticity.

In Transient wave resistance upon a real shear current [95], Li, Smeltzer, and Ellingsen
study the influence of background shear currents on the development of ship waves. In partic-
ular, the authors look at real-world data from the Columbia River in the northwestern United
States, and model ships with dimensions and Froude numbers typical of three classes of vessels
operating in these waters. The authors find that for smaller ships, the wave resistance can
differ drastically from that in quiescent water, and depends strongly on Froude number and
direction of motion.

In the paper Effect of Leading Waves on Velocity Distribution of Undular Bore Traveling



over Sloping Bottom [103], Lin, Kao, Wong, Shao, Fu, Yuan and Raikar provide new
insights into the effect of the leading wave on the velocity distribution of an undular bore. The
complete evolution of the free surface elevation of the bore is measured at various locations.
Based on visualized images and measurements of the velocity field key features of the bore are
explored. In particular, the spatial and temporal variations of the flow field are investigated.
The influence of the leading waves on flow acceleration behind the leading front is elucidated.
The flow reversal zone is studied in detail, and shear layer formation near the sloping bottom
is found. The development of a vortex train in the shear layer near the flow-reversal zone is
observed.

In the contribution by Lubin, Kimmoun, Véron and Glockner [104], the authors study
a varitey of instabilities, such as Rayleigh-Taylor, Kelvin-Helmholtz and other instabilitues
which are responsible for features such as vortex formation, air-entrainment and droplet gen-
eration in breaking waves. Using numerical simulations and new experimental visualizations,
the authods discuss the successive steps of atomization of a plunging liquid jet connected to a
breaking wave.

The contribution of Lucarelli, Lugni, Falchi, Felli and Brocchini [93] focusses on under-
standing the internal flow structure in a sloshing-induced, rapidly-evolving spilling breaker.
The article features an in-depth description of experiments conducted at the Sloshing Lab-
oratory of the CNR-INSEAN (Marine Technology Research Institute), Rome, Italy, and a
comparison with a simplified analytical model based on a three-layer structure of an underly-
ing potential flow, a thin, turbulent single-phase layer in the center, and a turbulent two-phase
layer near the free surface. The authors are able to describe in detail the development of a
boundary layer near the free surface, and the development of vorticity and turbulent flow.

In the paper by Senthilkumar and Kalisch [99], the critical breaking waveheight for long
surface water waves on a flow with constant vorticity in the KdV approximation is found. Given
a background linear shear flow, a KdV equation can be found with coefficients depending on
the strength of the shear flow. The derivation also shows that the velocity field under the wave
can be constructed approximately from the free surface excursion.

A convective breaking criterion is put forward and used to detect incipient wave breaking
in periodic traveling waves and solitary waves. As in the case of vanishing vorticity [10, 18], it
is shown that for both the solitary wave and the cnoidal waves, there are limiting waveheights
where the horizontal component of the particle velocity equals the phase velocity of the wave. It
is found that the strength of the vorticity has a considerable influence on the critical waveheight.

InX-ray measurements of plunging breaking solitary waves, Smith, Kolaas, Jensen and
Sveen examine the characteristics of air cavities generated by breaking solitary waves, utiliz-
ing a novel tomographic X-ray system. Small scale experiments of solitary waves that propagate
on a (1:10) beach are conducted, and images are captured at locations from the surf zone to
the swash zone and at maximum runup. A large air tube is observed right after the plunger
impacts the dry beach, and the void velocity and shape of the large air tube are measured.
The large air tube evolves from a symmetrical shape to an asymmetrical shape. Contrast
enhanced X-ray images reveal that the swash tongue surface is unstable, and that secondary
mixing of air and water occurs. X-ray images from the maximum runup reveal that the air is
still entrapped by the thin swash tongue at times close to maximum runup [102].
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