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It is now 30 years since John Holland presented the first implementation of his learning

classifier system (LCS) framework (Holland and Reitman 1978). This ‘‘Cognitive System

Level 1’’ used a genetic algorithm (Holland 1975) to learn appropriate rules of behaviour in

one-dimensional, dual-objective maze navigation tasks with a form of reinforcement

learning assigning utility to the rules. Holland later revised the algorithm to define what

would become the standard system (Holland 1980, 1986). However, Holland’s full system

was somewhat complex and practical experience found it difficult to realize the envisaged

behaviour/performance (e.g., Wilson and Goldberg 1989) and interest waned. Some years

later, Wilson presented the ‘‘zeroth-level’’ classifier system, ZCS (Wilson 1994) which

‘‘keeps much of Holland’s original framework but simplifies it to increase understand-

ability and performance’’ (ibid.). But ZCS did not reach optimality in the most common

reinforcement learning sense. Accordingly, Wilson introduced a form of LCS which

altered the way in which rule fitness is calculated—XCS (Wilson 1995). XCS also makes

the connection between LCS and temporal difference learning (Watkins 1989) explicit

with, in its standard form, its ability to represent the state-action value map in a rule form

thereby enabling compaction through generalization.

Shortly after Holland had formulated the general framework, Stephen Smith (1980)

presented a modification wherein a traditional genetic algorithm was used to design a

complete set of rules. That is, Smith’s poker playing ‘‘Learning System 1’’ avoided the

need to assign utility to individual rules.

The subsequent years have seen a resurgence of LCSs as XCS in particular has been

found able to reach optimality in a number of difficult benchmark problems. Perhaps more

importantly, XCS has also begun to be applied to a number of hard real-world problems

such as data mining, simulation modeling, robotics, and adaptive control (see Bull 2004 for

an overview)—where excellent performance has often been achieved. A theoretical basis
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for LCS is also beginning to emerge so as to provide the foundations to a principled

approach to classifier system design (see Bull and Kovas 2005 for an overview).

This special issue brings together work using both versions of Holland’s general

framework which clearly demonstrate this new-found potential of the approach. The

interested reader is referred to the proceedings of the annual International Workshop on

LCSs (e.g., Kovacs et al. 2007), in particular.

The guest editors wish to thank the Editor of Natural Computing for the opportunity of

publishing this special issue on LCSs, and the referees who helped in the reviewing

process.
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