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Abstract. Recent advances in meta-learning are providing the foundations to construct meta-learning assistants
and task-adaptive learners. The goal of this special issue is to foster an interest in meta-learning by compiling
representative work in the field. The contributions to this special issue provide strong insights into the construction
of future meta-learning tools. In this introduction we present a common frame of reference to address work in
meta-learning through the concept of meta-knowledge. We show how meta-learning can be simply defined as the
process of exploiting knowledge about learning that enables us to understand and improve the performance of
learning algorithms.
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1. Introduction

The application of Machine Learning (ML) and Data Mining (DM) tools to classification and
regression tasks has expanded outside the boundaries of research into the realm of applied
research, industry, commerce, and government. Two key aspects play an important role in the
successful application of these tools. One is the selection of a suitable predictive model (or
combination of models) where expertise is seldom available a priori; users of commercial
ML and DM tools must either resort to trial-and-error or expert advice. Clearly, neither
solution is completely satisfactory for the end user who wishes to access the technology
more directly and cost-effectively. The effectiveness of this process can be enhanced by
meta-learning. Meta-learning assistants can provide automatic and systematic user guidance
on model selection and method combination.

A second important aspect is how to profit from the repetitive use of a predictive model
over similar tasks. The successful application of models in real-world scenarios requires
a continuous adaptation to new needs. If a model fails to perform efficiently, one would
expect the learning mechanism itself to re-learn, taking into account previous experience.
Thus, learning can take place not only at the example (i.e., base) level, but also across tasks
(Thrun, 1998; Pratt & Thrun, 1997; Caruana, 1997; Vilalta & Drissi, 2002). Meta-learning
capabilities are again needed to control the process of exploiting cumulative expertise gained
in the past.
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The goal of this special issue is to collect representative work in the field. Recent advances
in meta-learning are increasingly filling the gaps in the construction of practical meta-
learning assistants and task-adaptive learners, as well as in the development of a solid
conceptual framework. Our attempt to systematize the underlying notions in meta-learning
has helped us obtain a deeper understanding of this area, including the interaction between
the mechanism of learning and the concrete contexts in which meta-learning is applicable.
By learning or explaining what causes a learning algorithm to be successful or not on a
particular task or domain, we go beyond the (engineering) goal of producing more accurate
learners to the (scientific) goal of understanding learning behavior.

Despite the promising direction offered by meta-learning and important recent advances,
much work remains to be done. We hope this issue will help convince others in the ML
and DM community of the need to invest more effort into this relatively new, interesting
subfield of research. There are still new concepts waiting to be discovered which we believe
will prove extremely useful in answering both theoretical questions, such as those lying
at the heart of statistical learning, and practical questions, related to particular algorithm
implementations.

The rest of this introduction to the special issue is organized as follows. In the next
section we discuss the topic of meta-learning and meta-knowledge in more detail and their
role in different types of learning systems. In Section 3 we review briefly the individual
contributions and show how they fit in the scheme suggested earlier. Section 4 presents a
short summary and conclusions.

2. Exploiting meta-knowledge in different types of systems

Meta-learning is tightly linked to the process of acquiring and exploiting meta-knowledge.
Meta-knowledge can take many different forms and can be defined as any type of knowledge
that can be derived in the course of employing a given learning system. Advances in the
field of meta-learning hinge around one specific question: how can we acquire and exploit
knowledge about learning systems (i.e., meta-knowledge) to understand and improve their
performance? To answer this question we need to explain what is meant by a learning
system. For our purposes, a learning system can be either (1) a single learning algorithm; or
(2) a set of different learning algorithms, all employed on the same task. In the following
we analyze each case in more detail. Our aim will be to try to examine the particular role
of meta-knowledge on different types of learning systems.

2.1. Exploiting meta-knowledge within a single learning algorithm

As we have pointed out earlier, it is important that learning algorithms are able to profit
from their repetitive use over similar tasks. Ideally, the models should continuously adapt to
new needs. This is usually done by re-learning. Meta-knowledge can capture the cumulative
expertise gained on different tasks. The process of re-learning either maintains the learning
algorithm unchanged (as in incremental learning), or else enables modifications. Meta-
knowledge can be used to control these modifications, which can be either rather simple,
such as opting for a particular parameter setting or a particular strategy for parameter
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optimization; or more complex, such as is the case with architectures that evolve through
experience.

As an example, meta-knowledge can play a role in the process of dynamic selection of
inductive bias (Baltes & MacDonald, 1992; Rendell, Seshu, & Tcheng, 1987a, 1987b). A
learning algorithm can use meta-knowledge to modify the strength and size of the hypothesis
space (DesJardins & Gordon, 1995; Gordon, 1990; Utgoff, 1986). On-line detection of
concept drift can help identify contextual clues that allow a learning algorithm to be more
selective with respect to training instances for prediction (Widmer & Kubat, 1996; Widmer,
1997).

Also, in the field of inductive transfer and learning-to-learn, meta-knowledge appears in
the form of patterns across domains. The general understanding of the nature of patterns
across domains is that of invariant transformations. For example, image recognition of
a target object is simplified if the object is invariant under rotation, translation, scaling,
etc. Hence, learning-to-learn studies how to improve learning by detecting, extracting, and
exploiting meta-knowledge in the form of invariant transformation across domains (Thrun
& Mitchell, 1995).

2.2. Exploiting meta-knowledge with a set of learning algorithms

Given a set of learning algorithms, we can ask the following: (1) which algorithm is best
suited for a given task or application domain? or (2) which is the preferred ordering of the
given algorithms? or (3) what is the form of the composite classifier to be employed in the
new task?

It has been shown that to answer questions (1) and (2) we need to gather meta-knowledge
concerning algorithm performance. The idea is to define a set of domain characteristics
or meta-features that are relevant for predicting the performance of the given learning
algorithms (Aha, 1992; Michie, Spiegelhalter, & Taylor, 1994; Gama & Brazdil, 1995;
Brazdil, 1998; Keller, Paterson, & Berrer, 2000; Brazdil, Soares, & Pinto da Costa, 2003).
Meta-features may include information concerning error rates of base-learners, so called
landmarkers (Bensusan, & Giraud-Carrier 2000; Pfahringer, Bensusan, & Giraud-Carrier
2000) or the structure of induced decision trees (Bensusan, 1998; Peng et al., 2002). A
number of research projects have produced tangible results in this area; prominent examples
include the ESPRIT Statlog (1991–1994) and METAL (1998–2001) projects.

The aim may alternatively be to select the best learning algorithm not for the whole
dataset, but rather for subareas of the problem domain (Brodley, 1995) or for individual
examples (Merz, 1995; Todorovski & Dzeroski, 2003).

There is also ample work on composite classifiers. The process of building a meta-learner
from base-learners is known as stacked generalization (Wolpert, 1992). Meta-knowledge
is made present through the predictions of level-i generalizers, which are then used to
produce higher-level generalizers (Chan & Stolfo, 1998). Here we take the predictions of
learning algorithms as relevant information in an attempt to improve the original example
representation. Alternatively, one may induce referees which capture the area of expertise
of each base learner and arbitrate among them by selecting the most reliable base learner
for the examples in each subdomain (Ortega, Koppel, & Argamon, 2001).
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In conclusion, the relevance of meta-knowledge as a unifying point demands further work
in the characterization of its nature and different manifestations. A clearer picture of the
role of meta-knowledge can elucidate the path to building practical meta-learning tools.
In the next section we describe the contributions comprised by this special issue using the
concept of meta-knowledge as a common frame of reference.

3. Contributions to the special issue

The first contribution to this issue (Soares, Brazdil, & Kuba, 2004) is a meta-learning
approach to parameter setting (Section 2.1). The work focuses on Support Vector Machines
and the goal is to set the width σ of the Gaussian kernel. The methodology exploits in-
formation about past performance of different settings. All past cases (i.e. datasets) are
characterized by a set of meta-features —a form of meta-knowledge. The value of σ for a
new dataset is estimated by aggregating the observed best values of σ for the nearest datasets
(using a metric over the space of meta-feature values). The output is a ranked sequence of
recommended values. The authors show that the method can select a setting with lower
error than the default or other comparative approaches.

The second contribution to this issue (Schmidhuber, 2004) is an example of an algo-
rithm that re-learns through experience. It makes use of self-delimiting binary programs
to propose an optimal ordered problem solver. The idea is to explore the space of pro-
grams that provide a solution to a target problem; new programs are generated either anew,
or by re-using previously generated candidate programs. Such search embeds a trade-off
between exploration (search for new programs) and exploitation (search for variant solu-
tions). The rationale is that exploiting experience collected in previous search can solve
the target problem much faster. Programs are partial solutions to the problem and not com-
posite learners (Section 2.1). Meta-knowledge is stored in the form of candidate program
solutions. Exploiting this information is akin to exploiting knowledge for incremental self
improvement.

The third contribution to this issue (Dzeroski & Zenko, 2004) is a study within the area
of multiple classifiers (Section 2.2), in particular, within the learning paradigm known as
stacking. We mentioned before that stacked generalization can be considered a form of
meta-learning because the transformation of the training set conveys information about the
predictions of the base-learners (i.e., conveys meta-knowledge). In this paper, the authors
show the benefits of using new meta-features that capture the confidence on the class
posterior probabilities output by a set of base learners. Improved performance is reported
when a multi-response linear regression tree is used as the meta-learner. This improvement
can be attributed to a change of representation in the original attribute space that appears to
simplify the task of the meta-classifier.

The fourth and last contribution to this issue (Kalousis, Gama, & Hilario, 2004) is another
example of a learning system comprising multiple classifiers; the problem is to match
domain properties with learning performance (Section 2.2). The authors use clustering
techniques to characterize relations between datasets and learning algorithms. They find
patterns among learners, by clustering the similarity of error correlation distributions of
pairs of algorithms across many datasets. In a similar way they find clusters of datasets
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having similar patterns of correlations among algorithms. These patterns—a form of meta-
knowledge— can bear multiple benefits. One may use them to select a pool of heterogeneous
base learners for stacking, or to characterize groups of datasets pointing to a strong dominion
of certain learning algorithms, etc. The patterns are derived from an initial characterization
of datasets through meta-features (e.g., class entropy, log of the number of examples, ratio
of examples to attributes, etc.).

4. Discussion and conclusions

Our goal in this introduction has been to clarify the role meta-knowledge plays in different
learning systems. The analysis and understanding of all types of knowledge amenable to
extraction from the learning process (i.e. meta-knowledge) is key to the advancement of the
field. Under such view, multiple directions are open for future research. For instance, an
overview of recent work in meta-learning, including the contributions to this issue, clearly
indicates a need for further work in the characterization of datasets (or learning tasks and/or
contexts, in general). A proper characterization of datasets is key to the accurate prediction
of meta-learning assistants. This holds whether it refers to selecting a good predictive model,
estimating model parameters, looking for heterogeneous models, etc.

In addition, further work is necessary to characterize learning algorithms (or strategies in
general). Together with a proper characterization of datasets, this would enable us to match
learning algorithms with input-output distributions. This implies going beyond a measure
of the capacity of the learning machine and its effects on the bias-variance dilemma in
statistical inference (Geman, Bienenstock, & Doursat, 1991; Hastie et al., 2001), to a broader
understanding of learning strategies and their effect under different dataset characteristics.

Another promising avenue of research lies on exploiting pieces of code in the construc-
tion of learning algorithms. Besides the work by Schmidhuber (2004), a similar idea can be
pursued using techniques from evolutionary programming. From a meta-learning perspec-
tive, however, an interesting approach would be to decompose current learning algorithms
to pinpoint specific reasons for their performance according to the example distribution
under analysis; we need meta-knowledge indicating how pieces of code can be combined
into new learning strategies. Meta-knowledge could be useful to select, combine, or adapt
individual constituents to specific tasks, and to reconfigure learning architectures in light
of past experience.

Finally, our characterization of learning systems could be expanded to cover complex
system made of sets of algorithms employed on different but related tasks. For instance,
on a text extraction system, one algorithm may be oriented towards POS tagging, another
towards morphosyntactic analysis, yet another towards word sense disambiguation, and so
on. The idea is somewhat related to layered learning (Stone & Veloso, 2000; Utgoff &
Stracuzzi, 2003), except tasks need not build on top of each other but simply interact with
each other. Recent advances in this area indicate that many of those tasks can be acquired
through learning. First, meta-knowledge can be used to adapt individual algorithms to
specific tasks. In addition, it can be used to control the assignment of algorithms to different
tasks, should a choice arise to reconfigure the architecture in light of past experience. In our
view, this will prove a critical functionality in future meta-learning tools.
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