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SUMMARY

We present an introduction to the spectral element method, which provides an

innovative numerical approach to the calculation of synthetic seismograms in 3-D

earth models. The method combines the £exibility of a ¢nite element method with the

accuracy of a spectral method. One uses a weak formulation of the equations of motion,

which are solved on a mesh of hexahedral elements that is adapted to the free surface

and to the main internal discontinuities of the model. The wave¢eld on the elements is

discretized using high-degree Lagrange interpolants, and integration over an element

is accomplished based upon the Gauss^Lobatto^Legendre integration rule. This com-

bination of discretization and integration results in a diagonal mass matrix, which

greatly simpli¢es the algorithm. We illustrate the great potential of the method by

comparing it to a discrete wavenumber/re£ectivity method for layer-cake models. Both

body and surface waves are accurately represented, and the method can handle point

force as well as moment tensor sources. For a model with very steep surface topography

we successfully benchmark the method against an approximate boundary technique.

For a homogeneous medium with strong attenuation we obtain excellent agreement

with the analytical solution for a point force.

Key words: attenuation, ¢nite element methods, numerical techniques, seismic

modelling, seismic wave propagation, topography.

1 INTRODUCTION

In both regional and global seismology, the accurate calculation

of seismograms in realistic 3-D earth models has become a

necessity. A large collection of numerical techniques is available

for this purpose. Among them, the most widely used approach

is probably the ¢nite di¡erence method (e.g. Kelly et al. 1976;
Virieux 1986). This approach has been used to calculate the

wave¢eld in 3-D local and regional models (e.g. Olsen &

Archuleta 1996; Graves 1996; Ohminato & Chouet 1997).

Unfortunately, signi¢cant di¤culties arise in the presence of

surface topography (Robertsson 1996) and when anisotropy

needs to be incorporated (Igel et al. 1995). Pseudospectral

methods have become popular for regional (Carcione 1994;

Tessmer & Koslo¡ 1994) and global (Tessmer et al. 1992;

Furumura et al. 1998) problems, but are restricted to models

with smooth variations. Because of the problems associated with

the implementation of the free-surface boundary condition,

the accurate representation of surface waves in both ¢nite

di¡erence (FD) and pseudospectral methods is a di¤cult

problem and an active area of research (Robertsson 1996;

Graves 1996; Komatitsch et al. 1996). Boundary integral

methods provide an elegant approach for incorporating topo-

graphic variations, but are restricted to a ¢nite number of

homogeneous regions. In three dimensions, the numerical

cost is high and approximations need to be made that lead to

artefacts in the solution (Bouchon et al. 1996). Classical ¢nite
element methods have been successfully applied to the study of

wave propagation in 3-D sedimentary basins (Bao et al. 1998).
These techniques surmount some of the previously mentioned

di¤culties, but come with a high computational cost due

to the fact that large linear systems need to be solved. The

implementation of such algorithms on parallel computers with

distributed memory complicates matters further (Bao et al.
1998). A promising new approach that combines aspects of FD,

¢nite element and discrete wavenumber modelling has been

proposed to reduce signi¢cantly the cost of the simulations

(Moczo et al. 1997). Another approach is the direct solution

method developed by Geller & Ohminato (1994) speci¢cally

for problems in global seismology. As usual in a Galerkin

method, it involves the manipulation of large matrices and an

approximate treatment of boundary undulations.

The spectral element method discussed in this article has

been used for more than 15 years in computational £uid

dynamics (Patera 1984). It has recently gained interest for

problems related to 2-D (Seriani et al. 1992; Cohen et al. 1993;
Priolo et al. 1994) and 3-D (Komatitsch 1997; Faccioli et al.
1997; Komatitsch & Vilotte 1998; Seriani 1998; Komatitsch
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et al. 1999c; Paolucci et al. 1999) seismic wave propagation.

The method easily incorporates free-surface topography and

accurately represents the propagation of surface waves. The

e¡ects of anisotropy (Seriani et al. 1995; Komatitsch et al.
1999b) and £uid^solid boundaries (Komatitsch et al. 1999a)
can also be accommodated. The method lends itself well to

parallel computation with distributed memory (Fischer &

RÖnquist 1994; Seriani 1997; Komatitsch & Vilotte 1998).

The purpose of this article is to give a detailed introduction

to the spectral element method in the context of seismic wave

propagation. We demonstrate the accuracy of the method for

both body and surface waves by comparing its results against

those of a discrete wavenumber/re£ectivity method (Bouchon

1981; Mu« ller 1985) for simple layer-cake models. Simulations

for a full moment tensor source are compared against results

based upon a frequency^wavenumber and an FD method

(Graves 1996) for a dip-slip source in a half-space. We also

demonstrate that the method can handle steep topography by

analysing the e¡ects of a hemispherical crater embedded in

a half-space on an incident plane compressional wave, and

comparing the results to those obtained with an approximate

boundary method (Sänchez-Sesma 1983). Finally, we show that

strong attenuation can be taken into account by simulating a

2-D homogeneous medium with QP^30 and QS^20 and

comparing the results to the analytical solution for a point

source force derived by Carcione et al. (1988).

2 EQUATIONS OF MOTION

We seek to determine the displacement ¢eld produced by an

earthquake in a ¢nite earth model with volume ), as shown in

Fig. 1. The boundaries of this volume include a stress-free

surface L), as well as an absorbing boundary !. Seismic waves

are re£ected by the free surface L); ideally, they are completely

absorbed by the arti¢cial boundary !. The unit outward

normal to the boundary L)z! is denoted by nª . The earth

model may have any number of internal discontinuities; the

unit upward normal to such discontinuities is also denoted by nª .

Locations within the model are denoted by the position vector

x~(x, y, z). For brevity, a component of the position vector will

sometimes be denoted using index notation: xi, i~1, 2, 3,

where x1~x, x2~y, and x3~z. Unit vectors in the directions of

increasing xi are denoted by xª i, and partial derivatives with

respect to xi are denoted by Li.

The equations of motion that govern the propagation of

seismic waves in an elastic or anelastic solid may be solved

based upon either a strong or a weak formulation of the

problem. In the strong formulation one works directly with

the equations of motion and associated boundary conditions

written in di¡erential form; this approach is used, for instance,

in FD or global pseudospectral modelling techniques. In the

weak formulation one uses an integral form of the equations

of motion, as in ¢nite element (FEM) and direct solution

methods. The spectral element method (SEM) discussed in

this article is based upon a weak formulation of the equations

of motion. We shall ignore the e¡ects of £uid regions and

associated £uid^solid boundaries, although the SEM can be

used to solve such problems (Komatitsch et al. 1999a).

2.1 Strong form

The displacement ¢eld s produced by an earthquake is governed

by the momentum equation,

o L2t s~=
.Tzf . (1)

The distribution of density is denoted by o. The stress tensor T

is linearly related to the displacement gradient =s by Hooke's

law, which in an elastic, anisotropic solid may be written in the

form

T~c5=s . (2)

The elastic properties of the earth model are determined by

the fourth-order elastic tensor c, which has 21 independent

components in the case of general anisotropy. Modelling

wave propagation in fully anisotropic media with classical

techniques such as the FDmethod is di¤cult because of the use

of staggered grids (Igel et al. 1995). The SEM, on the other

hand, can accurately model the e¡ects of any anisotropy on

elastic waves (Komatitsch et al. 1999b).
In an attenuating medium, Hooke's law (2) needs to be

modi¢ed such that the stress is determined by the entire strain

history:

T(t)~
�

?

{?

Ltc(t{t0)5=s(t0) dt0 . (3)

In seismology, the quality factor Q is observed to be constant

over a wide range of frequencies. Such an absorption-band solid
may be mimicked by a series of L standard linear solids (Liu

et al. 1976). In practice, two or three linear solids usually su¤ce

to obtain an almost constant Q (Emmerich & Korn 1987). The

components of the anelastic tensor for such a series may be

written in the form

cijkl(t)~cRijkl 1{
X

L

`~1

(1{q�`ijkl/q
p`) e{t=qp`

" #

H(t) , (4)

where cRijkl denotes the relaxed modulus and H(t) is the

Heaviside function. The stress relaxation times qp` are chosen

to be the same for all components of the anelastic tensor,

whereas the strain relaxation times q�`ijkl are unique to each

individual component. In practice, attenuation in the earth is

mainly controlled by the shear quality factor, such that only

the time dependence of the isotropic shear modulus need be

accommodated.

Figure 1. Finite earth model with volume ) and free surface L). An

arti¢cial absorbing boundary ! is introduced, and nª denotes the unit

outward normal to all boundaries. The model can be fully hetero-

geneous or composed of any number of layers. The source xs can be

placed anywhere inside ).
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Using the absorption-band anelastic tensor (4), the

constitutive relation (3) may be rewritten in the form

T~cU5=s{
X

L

`~1

R` , (5)

where for each standard linear solid

LtR
`
~{R`/qp`zäc`5=s/qp` . (6)

The components of the unrelaxed modulus cUijkl are given by

cUijkl~cRijkl 1{
X

L

`~1

(1{q�`ijkl/q
p`)

" #

, (7)

and the modulus defect äc` associated with each individual

standard linear solid is determined by

dc`ijkl~{cRijkl(1{q�`ijkl/q
p`) . (8)

The earthquake source is represented by the point force f,

which may be written in terms of a moment tensor M as

f~{M .=d(x{xs)S(t) . (9)

The location of the point source is denoted by xs, d(x{xs)

denotes the Dirac delta distribution located at xs, and the

source time function is given by S(t). A ¢nite source may be

simulated by using a number of point sources, each with its

own time history.

The momentum equation (1) must be solved subject to a

stress-free boundary condition at the earth's surface L):

T . nª ~0 . (10)

In FD and global pseudospectral applications, the imple-

mentation of the free-surface condition (10), especially in the

presence of surface topography, is a di¤cult problem and an

active area of research (e.g. Carcione 1994; Tessmer & Koslo¡

1994; Komatitsch et al. 1996; Moczo et al. 1997; Ohminato &

Chouet 1997).

At every internal boundary, both the displacement s and

the traction T . nª need to be continuous. At the arti¢cial model

boundary !, waves travelling out of the volume ) need to be

absorbed. The implementation of an e¤cient absorbing

boundary is not an easy problem (Clayton & Engquist 1977;

Quarteroni et al. 1998; Komatitsch et al. 1999c). The approxi-
mate absorbing boundary condition we shall use relates

traction to velocity,

T . nª ~o[on(nª . Lts)nª zo1( tê 1 . Lts) tê 1zo2( tê 2 . Lts) tê 2] , (11)

where tê 1 and tê 2 are orthogonal unit vectors tangential to the

absorbing boundary ! with unit outward normal nª , on is the

quasi-P wave speed of waves travelling in the nª direction, o1 is

the quasi-S wave speed of waves polarized in the tê 1 direction,

and o2 is the quasi-S wave speed of waves polarized in the tê 2
direction. The absorbing boundary condition (11) is based upon

a one-way treatment that perfectly absorbs waves impinging at

right angles to the boundary, but that is less e¡ective for waves

that graze the boundary (Clayton & Engquist 1977). It is valid

for transversely isotropic media with a horizontal or vertical

symmetry axis; more general anisotropy can be accommodated

by tapering it such that the medium becomes transversely iso-

tropic on the absorbing boundary !. Note that one can use

attenuation close to the arti¢cial absorbing boundary of the

model to increase the e¤ciency of the approximate absorbing

condition (11).

2.2 Weak form

Rather than using the equations of motion and associated

boundary conditions directly, one can use an integrated form.

This is accomplished by dotting the momentum equation (1)

with an arbitrary test vector w, integrating by parts over

the model volume ), and imposing the stress-free boundary

condition (10) and the absorbing boundary condition expressed

in terms of traction (11). This gives
�

)

ow . L2t s d
3x

~{

�

)

=w5T d3xzM5=w(xs)S(t)

z

�

!

o[on(nª . Lts)nª zo1( tê 1 . Lts) tê 1zo2( tê 2 . Lts) tê 2] .w d2x ,

(12)

where the stress tensor T is determined in terms of the dis-

placement gradient =s by Hooke's law (2). The source term,
�

)
f .w d3x, has been explicitly integrated using the properties

of the Dirac delta distribution. Slip on a ¢nite fault plane may

be simulated by making the substitution

M5=w(xs)S(t)?
�

Ss

m(xs, t)5=w(xs) d
2xs , (13)

where Ss denotes the fault surface and m(xs, t) denotes the

moment density tensor.

Mathematically, the strong and the weak formulations are

equivalent because (12) holds for any test vector w. However,

one of the nice features of the weak formulation is that the

stress-free surface boundary condition (10) is naturally satis-

¢ed; that is, it does not have to be imposed explicitly. The

incorporation of free-surface topography is therefore straight-

forward, and surface waves are more accurately simulated than

in methods based upon the strong form (Komatitsch & Vilotte

1998; Komatitsch et al. 1999c).
The weak form of the equations of motion (12) remains

valid in an anelastic earth model, except that the stress tensor T

is in this case determined by the absorption-band constitutive

relation (5), and that memory in the system is accounted for by

eq. (6). This approach has been used in the context of ¢nite

element simulations by Moczo et al. (1997) and Kay & Krebes

(1999), and is more satisfactory than the use of a simple

damping matrix (Bao et al. 1998; Faccioli et al. 1997), which
results in a Q that strongly depends on frequency. The main

drawback of the approach, however, is the additional computer

memory requirement resulting from the use of several memory

variables per gridpoint. Spreading the memory variables over

neighbouring gridpoints has been suggested to reduce this

requirement (Zeng 1996; Day 1998).

3 DEFINITION OF THE MESH

As in a classical FEM, the model volume ) is subdivided into

a number of non-overlapping elements )e, e~1, . . . , ne, such
that )~|ne

e )e, as shown in Fig. 2. As a result of this sub-

division, the absorbing boundary ! is similarly represented

by a number of surface elements !b, b~1, . . . , nb, such that

!~|
nb
b !b. In a FEM, a variety of elements such as tetrahedra
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or hexahedra can be used (e.g. Dhatt & Touzot 1984), but

a SEM is restricted to hexahedral volume elements )e.

Consequently, the absorbing boundary ! is subdivided in

terms of quadrilateral surface elements !b.

In the next two sections we brie£y describe how boundary

and volume elements are parametrized. In what follows the

reader should keep in mind that by `boundary elements' we

simply mean the sides of some of the volume elements. The

results in this section may be found in any ¢nite element text

book (Zienkiewicz 1977; Hughes 1987). We include them here

in an e¡ort to provide a more complete overview of the SEM.

3.1 Boundary elements

Each quadrilateral boundary element is isomorphous to the

square, hence there exists a unique mapping from the square to

each surface element !b, b~1, . . . , nb. The reference square

is de¢ned in terms of greek coordinates (m, g), {1¦m¦1,

{1¦g¦1, which are sometimes referred to as the natural
coordinates. Each quadrilateral element !b is de¢ned in terms

of a set of na control points or anchors xa~x(ma, ga),

a~1, . . . , na, and a set of na shape functions Na(m, g). Its four

corners are always used as anchors, but its side centres and its

centre may be used as additional anchors. For simple boundary

elements with straight edges, four control points su¤ce,

whereas for curved boundary elements nine control points may

be needed to describe their shape accurately. Fig. 3 illustrates

quadrilateral elements de¢ned in terms of four and nine control

points. For any given boundary element, the relation between a

point x within the element !b and a point (m, g) in the reference

square " may therefore be written in the form

x(m, g)~
X

na

a~1

Na(m, g)xa . (14)

The shape functions Na(m, g) are products of Lagrange poly-

nomials of degrees 1 or 2. The n`z1 Lagrange polynomials

of degree n` are de¢ned in terms of n`z1 control points

{1¦ma¦1, a~0, . . . , n`, by

`n`a (m)~
(m{m0) � � � (m{ma{1)(m{maz1) � � � (m{mn` )

(ma{m0) � � � (ma{ma{1)(ma{maz1) � � � (ma{mn` )
. (15)

Notice from this de¢nition that when the Lagrange poly-

nomials are evaluated at a control point mb they return a value

of either 0 or 1:

`n`a (mb)~dab , (16)

where d denotes the Kronecker delta. The two Lagrange

polynomials of degree 1 with two control points, m~{1 and

m~1, are `10(m)~(1{m)/2 and `11(m)~(1zm)/2, and the three

Lagrange polynomials of degree 2 with three control points,

m~{1, m~0 and m~1, are `20(m)~m(m{1)/2, `21(m)~1{m2 and

`22(m)~m(mz1)/2. As an example, the four shape functions

associated with the four-anchor quadrilateral element shown in

Fig. 3 are products of degree 1 Lagrange polynomials:

N1(m, g)~`10(m)`
1
0(g), N2(m, g)~`11(m)`

1
0(g), N3(m, g)~`11(m)`

1
1(g)

and N4(m, g)~`10(m)`
1
1(g). Similarly, the shape functions of

nine-anchor quadrilateral elements are products of degree 2

Lagrange polynomials.

The orientation of the reference square " is chosen such that

the unit outward normal nª to boundary element !b is given by

nª ~
1

Jb

Lx

Lm
|

Lx

Lg
, (17)

where Jb denotes the Jacobian of the transformation

Jb~
Lx

Lm
|

Lx

Lg

















. (18)

The boundary elements should be de¢ned in such a way that

the Jacobian Jb never vanishes. As in a classical FEM, this

places important constraints on the mesh generation process

(Hughes 1987), which are further discussed later. To calculate

the Jacobian Jb and the unit outward normal nª one needs to

determine the six partial derivatives Lx/Lm and Lx/Lg. This is

accomplished by di¡erentiating the mapping (14):

Lmx(m, g)~
X

na

a~1

LmNa(m, g)xa ,

Lgx(m, g)~
X

na

a~1

LgNa(m, g)xa .

(19)

Partial derivatives of the shape functions, LmNa and LgNa, are

analytically determined in terms of Lagrange polynomials of

degrees 1 or 2 and their derivatives.

3.2 Volume elements

Similarly, each hexahedral volume element )e can be mapped

to a reference cube. Points within this reference cube are

denoted by the vector î~(m, g, f), where{1¦m¦1,{1¦g¦1

and{1¦f¦1. The components of the vector î will sometimes

be denoted using index notation: mi, i~1, 2, 3, where m1~m,

Figure 2. For the purpose of computations, the earth model )

shown in Fig. 1 is subdivided into curved elements (quadrangles in 2-D,

hexahedra in 3-D) whose shapes are adapted to the edges of the model

L) and !, as well as to the main geological interfaces.

Figure 3. The geometry of each of the curved surface quadrangles can

be de¢ned by either four control nodes (left) or nine control nodes

(right).
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m2~g, m3~f. Analogous to the boundary elements discussed

in the previous section, each volume element is de¢ned in

terms of na anchors xa~x(ma, ga, fa), a~1, . . . , na, and shape

functions Na(î). At least eight corner nodes are needed to

de¢ne a hexahedral volume element; by adding mid-side and

centre nodes the number of anchors can become as large as 27.

Fig. 4 illustrates eight-node and 27-node hexahedral elements.

The mapping between points within the hexahedral element

and the reference cube may be written in the form

x(î)~
X

na

a~1

Na(î)xa . (20)

Shape functions of eight-node hexahedral elements are triple

products of degree 1 Lagrange polynomials, and those of

27-node hexahedral elements are triple products of degree 2

Lagrange polynomials. Frequently one uses a reduced 20-node

element (Dhatt & Touzot 1984), which is obtained by eliminating

seven centre nodes from the 27-node element, as illustrated in

Fig. 4.

An element of volume dx dy dz within a given element )e

is related to an element of volume dm dg df in the reference

cube by

dx dy dz~Je dm dg df , (21)

where the volumetric Jacobian Je is given by

Je~
L(x, y, z)
L(m, g, f)

�

�

�

�

�

�

�

�

. (22)

To calculate the Jacobian Je, we need the partial derivative

matrix Lx/Lî, which is obtained by di¡erentiating the

mapping (20):

Lx

Lî
~

X

na

a~1

LNa

Lî
xa . (23)

Partial derivatives of the shape functions are determined

analytically in terms of Lagrange polynomials of degree 1 or 2

and their derivatives. The elements should be constructed in

such a way that the Jacobian Je never vanishes, which again

poses strong constraints on the mesh generation process. This

ensures that the mapping from the reference cube to the

element, x(î), is unique and invertible, that is, î(x) is well

de¢ned.

4 REPRESENTATION OF FUNCTIONS ON

THE ELEMENTS

To solve the weak form of the equations of motion (12),

integrations over the volume ) and the absorbing boundary !

are subdivided in terms of smaller integrals over the volume

and surface elements )e and !b, respectively. This section is

concerned with the representation of functions on the elements,

and with the integration of functions over an element.

We have seen in the previous section that the shape of the

boundary and volume elements can be de¢ned in terms of

low-degree Lagrange polynomials. In a traditional FEM, low-

degree polynomials are also used as basis functions for the

representation of ¢elds on the elements. In a SEM, on the other

hand, a higher-degree Lagrange interpolant is used to express

functions on the elements. Of course, one could use the same

high-degree polynomial representation to de¢ne the geo-

metrical mapping on each element, but in practice such high

precision is unnecessary, provided the variations in element

geometry are smooth enough.

For reasons discussed in Sections 5 and 6, the control points

ma, a~0, . . . , n`, needed in the de¢nition (15) of the Lagrange

polynomials of degree n` are chosen to be the n`z1 Gauss^

Lobatto^Legendre points, which are the roots of

(1{m2)P0
n` (m)~0 , (24)

where P0
n` denotes the derivative of the Legendre polynomial

of degree n`. These points can be computed by numerical

resolution of (24) (Canuto et al. 1988, p. 61). Note that the

Gauss^Lobatto^Legendre points always include z1 and {1;

therefore in a SEM some points always lie exactly on the

boundaries of the elements. As an example, Fig. 5 illustrates

the nine Lagrange polynomials of degree 8 based upon the nine

Gauss^Lobatto^Legendre control points de¢ned by (24).

4.1 Polynomial representation on elements

On boundary elements !b, a function f is interpolated by

products of Lagrange polynomials of degree n` as

f (x(m, g))&
X

n`

a,b~0

f ab`a(m)`b(g) . (25)

For convenience, the polynomial degree n` has been omitted as

a superscript on the Lagrange polynomials. As a result of the

de¢nition (16) of the Lagrange polynomials, the coe¤cients

f ab are the functional values of f at the interpolation points

x(ma, gb):

f ab~f (x(ma, gb)) . (26)

In a SEM for wave propagation problems one typically uses a

polynomial degree n` between 5 and 10 to represent a function

on the element (Seriani & Priolo 1994; Komatitsch & Vilotte

1998). Similarly, on each volume element )e a function f is

interpolated by triple products of Lagrange polynomials of

degree n` as

f (x(m, g, f))&
X

n`

a,b,c~0

f abc`a(m)`b(g)`c(f),

Figure 4. The geometry of each of the curved volume hexahedra can

be de¢ned by either eight control nodes (left) or 27 control nodes

(right). In the case of the 27-node brick, the empty squares indicate

the six nodes that lie in the middle of the sides of the element, and the

triangle indicates the node that lies at the centre of the element. By

ignoring these nodes, one obtains the classical 20-node element that

can also be used to de¢ne the geometry.
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where

f abc~f (x(ma, gb, fc)) . (27)

Using this polynomial representation, the gradient of a

function, =f , may be written in the form

=f (x(m, g, f))&
X

3

i~1

xª iLi f (x(m, g, f))

~

X

3

i~1

xª i

X

n`

a,b,c~0

f abc[`0a(m)`b(g)`c(f)Lim

z`a(m)`
0
b(g�`c�f)Ligz`a(m)`b(g)`

0
c(f)Lif] , (28)

where a prime denotes di¡erentiation. When evaluated at

any of the Gauss^Lobatto^Legendre points x(ma0 , gb0 , fc0 ), this

expression reduces to

=f (x(m, g, f))&
X

3

i~1

xª i

�

X

n`

a~0

f ab
0c0`0a(ma0 )Limz

X

n`

b~0

f a
0bc0`0b(gb0 )Lig

z

X

n`

c~0

f a
0b0c`0c(fc0 )Lif

�

. (29)

Notice that in (29), which is based upon the chain rule,

one needs the inverse Jacobian matrix Lî/Lx. This matrix

is obtained by inverting the Jacobian matrix Lx/Lî, which is

determined in terms of the shape functions by (23). This inverse

exists provided the Jacobian Je is non-singular, which is a

requirement for the proper design of the mesh, as mentioned

previously.

4.2 Integration over elements

At this stage, integrations over surface elements !b may be

approximated using the Gauss^Lobatto^Legendre integration

rule,

�

!b

f (x) d2x~

�1

{1

�1

{1

f (x(m, g)) Jb(m, g) dm dg

&

X

n`

a,b~0

uaub f
abJab

b , (30)

where ua, a~0, . . . , n`, denote the weights associated

with the Gauss^Lobatto^Legendre points of integration, and

Jab
b ~Jb(ma, gb). These weights are computed numerically

(Canuto et al. 1988, p. 61).
Similarly, integrations over volume elements )e may be

approximated as

�

)e

f (x) d3x~

�1

{1

�1

{1

�1

{1

f (x(m, g, f)) Je(m, g, f) dm dg df

&

X

n`

a,b,c~0

uaubuc f
abcJabc

e , (31)

where Jabc
e ~Je(ma, gb, fc). To facilitate the integration of

functions and their partial derivatives over the elements, the

values of the inverse Jacobian matrix Lî/Lx need to be deter-

mined at the (n`z1)3 Gauss^Lobatto^Legendre integration

points for each element.

5 GLOBAL SYSTEM AND TIME

MARCHING

We have seen that in a SEM the model is subdivided in terms of

a number of hexahedral elements. On each individual element,

functions are sampled at the Gauss^Lobatto^Legendre points

of integration. Gridpoints that lie on the sides, edges or corners

of an element are shared amongst neighbouring elements, as

illustrated in Fig. 6. Therefore, the need arises to distinguish

between the gridpoints that de¢ne an element, the local mesh,
and all the gridpoints in the model, many of which are shared

Figure 5. Lagrange interpolants of degree N~8 at the Gauss^Lobatto^Legendre points on the reference segment [{1, 1]. The Nz1~9

Gauss^Lobatto^Legendre points can be distinguished along the horizontal axis. All Lagrange polynomials are, by de¢nition, equal to 1 or 0 at each

of these points.
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amongst several spectral elements, the global mesh. One needs

to determine a mapping between gridpoints in the local mesh

and gridpoints in the global mesh; e¤cient routines are avail-

able for this purpose from ¢nite element modelling. Before the

system can be marched forward in time, the contributions from

all the elements that share a common global gridpoint need

to be summed. In a traditional FEM this is referred to as

the assembly of the system. Computationally, this assembly

stage is a costly part of the calculation on parallel computers

because information from individual elements needs to be

shared with neighbouring elements, an operation that involves

communication between distinct CPUs.

Let U denote the displacement vector of the global system;

that is, U contains the displacement vector at all the gridpoints

in the global mesh, classically referred to as the global degrees
of freedom of the system. The ordinary di¡erential equation

that governs the time dependence of the global system may be

written in the form

M �UzC _UzKU~F , (32)

where M denotes the global mass matrix, C the global

absorbing boundary matrix, K the global sti¡ness matrix

and F the source term. Explicit expressions for the local con-

tributions to the sti¡ness matrix, the source and the absorbing

boundaries are given in the Appendix. Further details on the

construction of the global mass and sti¡ness matrices from

their elemental forms may be found in Komatitsch & Vilotte

(1998).

A highly desirable property of a SEM, which allows for a

very signi¢cant reduction in the complexity and cost of the

algorithm, is the fact that the mass matrix M is diagonal by

construction. Therefore, no costly linear system resolution

algorithm is needed to march the system in time. At the

elemental level, the mass matrix is given by the ¢rst term in

the weak formulation of the equations of motion (12):
�

)e

ow . L2t s d
3x

~

�1

{1

�1

{1

�1

{1

o(x(î))w(x(î)) . L2t s(x(î), t) J(î) d
3î . (33)

The displacement s is expanded on an element as

s(x(m, g, f), t)&
X

3

j~1

xª j

X

n`

p,q,l~0

spqlj (t)`p(m)`q(g)`l(f) . (34)

Similarly, we choose test functions of the form

w(x(m, g, f))~
X

3

i~1

xª i

X

n`

a,b,c~0

wabc
i `a(m)`b(g)`c(f) . (35)

Upon substituting (35) and (34) into (33), and introducing the

Gauss^Lobatto^Legendre numerical integration, we ¢nd that
�

)e

ow . L2t s d
3x

&

X

a0,b0,c0

ua0ub0uc0J
a0b0c0

e oa
0b0c0

X

3

i, j~1

xª i . xª j

|

X

a,b,c

wabc
i `a(ma0 )`b(gb0 )`c(fc0 )

X

p,q,l

�s pqlj (t)`p(ma0 )`q(gb0 )`l(fc0 )

~

X

a0,b0,c0

ua0ub0uc0J
a0b0c0

e oa
0b0c0

X

3

i, j~1

dij
X

a,b,c

wabc
i daa0dbb0dcc0

|

X

p,q,l

�s pqli (t)dpa0dqb0dlc0

~

X

a,b,c

uaubucJ
abc
e oabc

X

3

i~1

wabc
i �s abci (t) , (36)

where oabc~o(x(ma, gb, fc)), and where a dot denotes di¡er-

entiation with respect to time. It is important to realize

that the weak form of the equations of motion holds for

any test vector w. Therefore, the global system (32) is built

by independently setting factors of wabc
1 , wabc

2 and wabc
3 equal

to zero. What is remarkable about the result (36) is the fact

that the value of acceleration at each point, �s abci (t), is simply

multiplied by the factor uaubuco
abcJabc

e ; that is, the elemental

mass matrix is diagonal. This property also holds true for

the global mass matrix after assembly of the system. It is this

desirable property that has motivated the use of Lagrange

interpolants for the representation of functions on the elements,

in conjunction with the use of the Gauss^Lobatto^Legendre

integration rule. Note that density o need not be constant over

an element, but may vary from one gridpoint to another.

Therefore, the SEM is able to handle fully heterogeneous

media.

Figure 6. Illustration of the local and global meshes for a four-

element 2-D spectral element discretization with polynomial degree

N~4. Each spectral element contains (Nz1)2~25 Gauss^Lobatto^

Legendre points, which constitute the local mesh for each element.

These points are non-evenly spaced, but have been drawn evenly

spaced here for simplicity. In the global mesh, points lying on edges or

corners (as well as on faces in three dimensions) are shared between

elements. The contributions to the global system of degrees of freedom,

computed separately on each element, have to be summed at these

common points represented by black dots. Exactly two elements share

points inside an edge in two dimensions, while corners can be shared by

any number of elements depending on the topology of the mesh, which

can be non-structured.
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In this study, time discretization of the second-order ordinary

di¡erential equation (32) is achieved based upon a classical

explicit second-order FD scheme, moving the sti¡ness and

absorbing terms to the right-hand side. Such a scheme is con-

ditionally stable, and the Courant stability condition is

governed by the minimum value of the ratio between the size

of the grid cells and the P-wave velocity. In some cases, for

instance when very small cells are needed in high wave-speed

regions, the Courant stability condition may be too restrictive

for an explicit scheme. In that case a Newmark scheme, written

in prediction^multicorrection format, can be used instead

(Komatitsch 1997; Komatitsch et al. 1999a). For anelastic

media, we separately march the strong form of the memory

variable eq. (6) in time, regarding the term in =s as a source,

as proposed by Robertsson et al. (1994). These ¢rst-order

equations in time are integrated based upon a fourth-order

Runge^Kutta scheme that is known to be e¤cient for this

problem (Carcione 1994).

6 ACCURACY OF THE METHOD

6.1 Selection of the polynomial degree

In a SEM, spatial resolution is controlled by two parameters:

the typical size of an element, *h, and the polynomial degree

used to represent functions on an element, n`, each element

thus containing n`z1 points in each direction. In this respect,

SEMs are related to FEMs based upon a high polynomial

degree, the so-called h-p version of FEM (Guo & Babus̄ka

1986). In practice, if the polynomial degree n` is too small, e.g.

less than typically 4, a SEM exhibits the same inaccuracies that

are observed in a standard FEM applied to wave propagation

problems (Marfurt 1984). On the other hand, if the polynomial

degree is very large, e.g. greater than 15, the method is spatially

very accurate, but the computational requirements become

prohibitive. The reason for this is that the evaluation of the

sti¡ness matrix at the elemental level has a cost of O(n4` ) in
three dimensions due to the matrix multiplications involved.

Typically, polynomial degrees between 5 and 10 are therefore

optimal for a SEM applied to wave propagation problems,

because this provides the best trade-o¡ between accuracy and

cost (Seriani & Priolo 1994). In order to obtain accurate

results, *h has to be chosen such that the average number

of points per minimum wavelength jmin in an element,

jmin~(n`z1)/*h, is roughly equal to 5 for the optimal range of

polynomial degrees mentioned above (Seriani & Priolo 1994;

Faccioli et al. 1997). Therefore, a SEM compares favourably

with a high-order FD method in terms of the required number

of points per wavelength.

6.2 Mesh design

In a SEM, as in any method based upon a mesh of elements, the

design of the mesh is a critical and di¤cult step. The use of

hexahedral elements required in a SEMöno tetrahedra are

allowedöcomplicates matters further. Some expertise in mesh

design or pre-processing of the model is required to ensure that

the resolution provided by the mesh, in particular the number

of gridpoints per wavelength, will be su¤cient for the problem.

For example, densi¢cation of the mesh is usually needed near

the free surface, in areas of slow wave speed or strong contrasts

in wave speed, in regions of steep topography, or near faults. In

practice, one generally designs the mesh such that it honours

the free surface and the main geological boundaries within the

model. As in a traditional FEM, the curvature of the elements

should be modest, such that the Jacobian of the mapping to the

reference domain varies smoothly across any given element

and never vanishes (Hughes 1987).

Because seismic wave speed generally increases with depth,

one often needs to coarsen the grid in the deeper parts of the

model to retain a similar number of gridpoints per wavelength.

A simple way of accomplishing this in two stages consists

of doubling the grid ¢rst in one horizontal dimension and,

subsequently, at a greater depth, in the second horizontal

dimension, as illustrated in Fig. 7. This mesh design will prove

useful for studying a layer-cake model with low wave speeds

near the surface in Section 7.1. However, this simple con-

forming mesh is not optimal because it contains 450 angles, and

therefore high local variations in the size and shape of the

spectral elements. In this respect, an area of active research

involves the use of non-conforming meshes in which two or

more elements share the same edge with another, larger

element, or the combination of spectral element algorithms

with other techniques such as classical FEMs (Bernardi et al.
1990; Lahaye et al. 1997; Chaljub & Vilotte 1998). These

approaches simplify the coarsening of a mesh considerably, but

are signi¢cantly more di¤cult to implement.

6.3 Accuracy of the integration

We have seen in Section 5 that the use of Lagrange inter-

polants for the representation of functions on an element,

in conjunction with the use of a Gauss^Lobatto^Legendre

numerical integration, results in a diagonal mass matrix, which

in turn leads to a simple time integration scheme. This has

been accomplished based upon the Gauss^Lobatto^Legendre

integration rule, rather than the more classical Gauss rule that

Figure 7. Non-structured brick used to de¢ne a mesh with smaller

elements at the top of the structure, where velocities are usually

smaller, and with bigger elements at the bottom, where velocities are

usually larger. We apply a geometrical grid doubling ¢rst in one of the

horizontal directions and then in the other. Here this coarsening in

depth has been applied twice; therefore, the elements at the bottom are

four times bigger in the horizontal direction than the surface elements.
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is used in a FEM. However, even on a square with homo-

geneous elastic properties, the Gauss^Lobatto^Legendre

rule is exact only for polynomials of degree 2n`{1. Each

integration on the reference element involves the product of

two polynomials of degree n`: the displacement and the test

function. The integration of the resulting polynomial of degree

2n` is never exact, even in this simple case. For deformed

elements there are additional errors related to curvature

(Maday & RÖnquist 1990); the same is true for elements with

heterogeneous material properties. Thus, a diagonal mass

matrix has been obtained by a process of subintegration. In this

respect, the SEM is related to FEMs in which mass lumping is

used to avoid the costly resolution of the non-diagonal system

resulting from the use of Gauss quadrature (Cohen et al. 1993).
It is interesting to note that even though a SEM exhibits high

spatial accuracy, the time marching scheme we use to solve the

resulting ordinary di¡erential equation in time (32) is a simple

second-order FD scheme. Therefore, in the long run the overall

accuracy of the simulation is often mainly governed by the time

scheme, and in this respect the use of more accurate, higher-

order schemes, as suggested for instance by Tarnow & Simo

(1994), could be of interest.

7 NUMERICAL RESULTS

In order to validate the method, we consider ¢ve numerical

tests. In the ¢rst two tests, we study the response of two

1-D layer-cake models for both a shallow and a deep source.

Solutions based upon a combined discrete wavenumber/

re£ectivity method are used for comparison. In the third test

we study a dip-slip source in a homogeneous half-space in

order to check the accuracy of the moment tensor source

representation. Results based upon frequency^wavenumber

and FD techniques are available for comparison. In the fourth

test, we consider a hemispherical crater embedded in a homo-

geneous half-space in order to demonstrate the accuracy of the

free-surface boundary condition in the presence of very steep

topography. Results based upon an approximate boundary

method are used as a reference. These ¢rst four tests are for

purely elastic media. In the ¢fth and ¢nal test, we study strong

attenuation in a 2-D homogeneous medium and compare the

results to the analytical solution of the problem.

7.1 Layer-cake models

To demonstrate that the non-structured mesh described in

Section 6.2 and represented in Fig. 7 is e¤cient for typical

layered geological structures, we ¢rst study a simple model con-

sisting of a layer over a half-space, as shown in Fig. 8 (left). The

horizontal size of the block used is 134 km|134 km, and the

block extends to a depth of 60 km. Absorbing conditions are

used on all sides of the model except the free surface. The non-

structured mesh, whose coarsening in depth is implemented

as shown in Fig. 7, is composed of 68 208 elements, using a

polynomial degree N~5, which results in a global grid com-

posed of 8 743 801 points. In the ¢rst simulation, the source is

a vertical force located in the half-space, in the middle of the

grid at a depth of 25.05 km. Therefore, the solution will include

strong multiples in addition to the direct P and S waves. The

time variation of the source is a Ricker wavelet, that is, the

second derivative of a Gaussian, with a dominant frequency

f0~0:4 Hz, and therefore a maximum frequency of the order

of 1 Hz. The onset time of the source is t0~2:6 s. The time step

used is *t~6:5 ms, and we propagate the signal for 6150 time

steps (i.e. 40 s). A line of receivers is placed at the surface along

the y-axis at x~xmax/2~67 km. The receivers record the three

components of displacement.

Traces recorded at two receivers along the receiver line are

shown in Fig. 9 for two of the components of the displacement

vector, the third (tangential) component being zero by sym-

metry. The ¢rst receiver is located at a horizontal distance of

2.39 km from the source, the second at 31.11 km. The strong

direct P and S waves can be clearly observed, as well as

strong multiples generated by the layer. To check the accuracy

of the simulation, we compare the SEM results to those based

upon a discrete wavenumber method (Bouchon 1981) used

in conjunction with a re£ectivity method (Mu« ller 1985). The

agreement between the two results is very good, both for the

direct waves and for the numerous multiples. Small parasitic

phases re£ected from the approximate absorbing conditions

in our simulation probably explain the small discrepancies

observed in the later arrivals between t~30 and t~35 s.

For the same model, we now place the source inside the

layer, close to the surface, at a depth of 536.1 m. Thus the

response includes a very signi¢cant surface wave contribution,

Figure 8. 3-D models with 1-D velocity structure used to assess the e¤ciency of the non-structured brick of Fig. 7.We study a model consisting of a

layer over a half-space (left) as well as a three-layer model over a half-space (right). In both cases the horizontal size of the block is 134 km|134 km,

and it extends to a depth of 60 km.
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whose accuracy will again be checked against the discrete

wavenumber/re£ectivity method. Apart from the depth of the

source, all parameters remain the same as in the ¢rst simu-

lation. Traces recorded at the surface at two receivers located,

respectively, at horizontal distances of 2.39 and 23.93 km from

the source are shown in Fig. 10. The main phase is a strong

surface wave, whose amplitude is much larger than that of the

direct P and S waves. Signi¢cant surface wave dispersion can

be observed due to the presence of the low-velocity layer over

the faster half-space. The SEM solution is again in very good

agreement with the discrete wavenumber/re£ectivity reference.

In a second simulation, we study the more complex model

consisting of three layers over a half-space illustrated in Fig. 8

(right). The non-structured mesh, which is based on the brick

represented in Fig. 7, honours the three interfaces of the model

at depths of 3, 12 and 25 km respectively. The grid doubling

is applied twice in the layer situated between 3 and 12 km.

Apart from the number of layers and their properties, all other

parameters remain the same as before. We ¢rst study the

displacement recorded at the surface in the case of vertically

incident plane P or S waves coming from the bottom of the

model. This test is interesting because, since the velocity model

is 1-D and the incidence is vertical, no mode conversions occur,

and therefore the solution is a superposition of pure P or

pure S waves, which allows us to validate them separately.

Furthermore, for normal incidence the absorbing condition

(11) used at the bottom of the grid is exact, therefore in this

test we have no spurious re£ections o¡ the boundaries. On the

vertical edges of the grid we use periodic boundary conditions.

We compute a very precise reference solution using a 1-D FD

code with several hundred points per minimum wavelength.

Fig. 11 shows the comparison at the surface for an incident

plane P wave and for an incident plane S wave. Numerous

multiples can be observed after the ¢rst arrival. The agreement

with the FD solution is excellent. The ampli¢cation at the

surface is very signi¢cant: the maximum displacement recorded

is roughly 3.8 in both cases, for an incident value of 1.

We use the same three-layer model with a vertical force in

the middle of the block at a depth of 20.16 km. Traces recorded

at two receivers, located, respectively, at horizontal distances

of 2.39 and 31.11 km from the source, are shown in Fig. 12,

as well as a comparison with results obtained based upon

the discrete wavenumber/re£ectivity method. The agreement is

again very good, even for this di¤cult structure, except for

some small artefacts re£ected o¡ the absorbing boundaries in

the SEM results between t~30 and t~35 s.

The above tests demonstrate that a SEM is capable of

accurately simulating wave propagation in 3-D models at a

reasonable cost. We implemented the parallel algorithm based

upon OpenMP directives on shared memory architectures and

the Message-Passing Interface (MPI) on distributed memory

architectures. The total CPU time of each of these simulations

using the MPI implementation on an eight-node Dec Alpha

was roughly 8 hr. We obtained a total sustained performance

of 1.3 Giga£ops, a parallel speedup of 7.3, and a parallel

e¤ciency of 91 per cent. The total memory needed was roughly

1 Gbytes. The MPI code was also successfully run on a

network of PCs under Linux (a so-called Beowulf machine).

Figure 9. Traces recorded at the surface along the y-axis at x~67 km for the model composed of a layer over a half-space (Fig. 8, left). The source is

a vertical force located in the middle of the block at a depth of 25.05 km. The two receivers are located at horizontal distances of 2.39 km (top) and

31.11 km (bottom) from the source. The vertical (left) and radial (right) components of displacement are compared to the solution computed using a

discrete wavenumber method used in conjunction with the re£ectivity method. The third (tangential) component is zero by symmetry. The direct

P wave can be mainly observed on the vertical component, while the direct S wave has signi¢cant amplitude on both. Numerous strong multiples are

clearly visible.
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7.2 Moment tensor source

As discussed in the Appendix, a moment tensor source can

be naturally introduced in a SEM. To check the accuracy of

the approach, we use a homogeneous half-space with P-wave
velocity cp~4000 m s{1, S-wave velocity cs~2300 m s{1 and

density o~1800 kg m{3. The source is placed at a depth

of 2.5 km, and receivers are placed exactly at the surface,

at a horizontal distance of 10 km. We use a pure dip-slip

source (strike 900, dip 900, rake 900) with scalar moment

M0~1016 N m, and record the vertical and radial components

of velocity at an azimuth of 00 and the tangential component

at an azimuth of 900. This problem has been studied pre-

viously by Graves (1996) using both an FD technique and a

frequency^wavenumber (FK) technique; his results are used as

a reference. The SEMmesh is a structured block of 42|42|22

elements, with a polynomial degreeN~5 used in each element.

Therefore, the global grid is composed of 4 941 831 gridpoints.

Themesh represents a block of size 42 km|42 km|22 km.The

time step used is *t~5 ms, and we propagate the signal for

2400 time steps (i.e. 12 s). The time dependence of the velocity

source is a triangle with base width tb~1 s and onset time

t0~0:55 s. Results are low-pass ¢ltered at a cut-o¡ frequency

of f0~1 Hz using a Butterworth ¢lter, as in Graves (1996). In

Fig. 13, we show the components of velocity obtained based

upon the three techniques, without any normalization of the

amplitude. The overall agreement is good, which validates the

implementation of the moment tensor source in the SEM.

Figure 10. Traces recorded at the surface along the y-axis at x~67 km for the model composed of a layer over a half-space (Fig. 8, left). The source

is a vertical force located in the sedimentary layer in the middle of the block at a depth of 536.1 m. The two receivers are located at horizontal

distances of 2.39 km (top) and 23.93 km (bottom) from the source. The main event is a strong dispersive surface wave whose amplitude is several times

bigger than that of the direct P and S waves. The vertical (left) and radial (right) components of displacement are compared to the solution computed

using a discrete wavenumber method used in conjunction with the re£ectivity method. The third (tangential) component is zero by symmetry.

Figure 11. Response recorded at the surface of the model composed of three layers over a half-space (Fig. 8, right) due to plane P (left) and S (right)

waves incident perpendicularly from below. A highly accurate 1-D FD solution is shown for comparison. The absorbing bottom boundary condition

is exact in this case; periodic boundary conditions are applied at the four sides of the block. The incident plane wave has an amplitude of 1 and is

ampli¢ed by a factor of roughly 3.8 near the surface.
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Some non-causal oscillations are present in the FK reference,

in particular on the tangential component, which may explain

the small discrepancies observed in the amplitude. These

oscillations could perhaps be reduced by using a discrete wave-

number method to compute the reference. The FD results are

slightly less accurate, mainly for the radial component, and show

some parasitic later arrivals around t~8 s that are probably

due to spurious re£ections o¡ the absorbing boundaries.

7.3 Hemispherical crater

Sänchez-Sesma (1983) studied the response of a hemispherical

crater in a homogeneous half-space to a vertically incident

plane P wave based upon an approximate boundary method.

He presented the amplitude of the displacement recorded at

the surface of the crater for di¡erent normalized frequencies

g~2a/jP, where a denotes the radius of the crater and jP the

wavelength of the incident P wave. His results have been used

as a reference in several subsequent studies (Mossessian &

Dravinski 1989; Luzön et al. 1997).
Mesh generation based upon conforming hexahedra is non-

trivial for a sphere or a hemisphere. Fortunately, an elegant

analytical mesh called the `cubed sphere' has recently been

developed (Ronchi et al. 1996). Such a mesh was ¢rst used

by Chaljub & Vilotte (1998) for global wave propagation

problems. We use the ¢ve sides of half a cubed sphere to mesh

the hemisphere, as shown in Fig. 14. The global mesh is there-

fore composed of ¢ve structured blocks. A desirable property

of such a mesh is that it takes into account the vertical edges of

the crater at the free surface and is naturally re¢ned in the

vicinity of the crater, where a high degree of accuracy is needed

to describe the geometry and to resolve ampli¢cation and

mode conversions correctly. We compute the amplitude of the

displacement at the surface along a pro¢le for two values of

the normalized frequency, g~0:25 and g~0:50, as a function

of the normalized horizontal coordinate x/a between 0 and 2,

starting at the centre of the crater. Poisson's ratio is equal to

0.25. The wavelengths considered are of the order of the radius

of the crater. Therefore, the main concern in this simulation

is not the resolution of the computations, that is, number

of points per wavelength, but the correct description of the

geometry of the hemisphere. In particular, this has a signi¢-

cant in£uence on the correct modelling of the surface waves

generated by the incident P wave, travelling back and forth

along the crater. We can therefore use very big elements in the

half-space, but need to use small enough curved elements close

to the crater to describe its shape correctly. To avoid artefacts

related to arti¢cial boundaries, considering a crater with a

radius of a~1 km, we extend the model to a horizontal size of

32 km|32 km, and a depth of 16 km. The mesh is composed

of 1800 elements, with a polynomial degree N~4 in each

element; the global mesh contains 120 089 gridpoints. Such

a small value is again due to the fact that we have used a

small number of big elements in this simulation. Periodic con-

ditions are used on the four vertical sides of the global grid.

Considering a P-wave velocity of cp~1732 m s{1 and an S-wave
velocity of cs~1000 m s{1, the time step used is *t~5 ms, and

the signal is propagated for 3200 time steps (i.e. 16 s). The

density is 1000 kg m{3. The source is an incident plane P wave,

which is a Ricker wavelet in time with dominant frequency

f0~
���

3
p

/4 Hz. It is introduced in the SEM as initial displace-

ment and velocity ¢elds in the time scheme. Seismograms are

then converted to the frequency domain for comparison with

Sänchez-Sesma (1983).

Figure 12. Traces recorded at the surface along the y-axis at x~67 km for the model composed of three layers over a half-space (Fig. 8, right). The

source is a vertical force located in the middle of the block at a depth of 20.16 km. The two receivers are located at horizontal distances of 2.39 km

(top) and 31.11 km (bottom) from the source. The vertical (left) and radial (right) components of displacement are compared to the solution computed

using a discrete wavenumber method in conjunction with the re£ectivity method. The third (tangential) component is zero by symmetry.
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Fig. 15 shows a comparison between the two methods for

g~0:25 and g~0:50. The agreement is excellent. In particular,

the strong ampli¢cation close to the edges of the crater

is reproduced well. Note that the ampli¢cation level of the

vertical component reaches a very high value (^3.2) in

the centre for g~0:50. The horizontal component is zero in the

centre by symmetry. Close to the edge, the horizontal com-

ponent reaches 60 per cent of the amplitude of the incident

wave for g~0:50. The small discrepancy that can be observed

between x/a~1 and x/a~1:5 km for g~0:50 may be due to an

underestimation in Sänchez-Sesma (1983) because subsequent

studies of Mossessian & Dravinski (1989) and Luzön et al.
(1997) also predict higher values in this region.

7.4 Homogeneous model with strong attenuation

In order to validate the way in which we have introduced

attenuation in the SEM, we consider a 2-D homogeneous

medium of size 2000 m|2000 m. Strong attenuation repre-

sented by a constant QP^30 and a constant QS^20 is

introduced. The relaxed (elastic) velocities of the medium are

cp~3000 m s{1 for the P wave and cs~2000 m s{1 for the

S wave. The density is 2000 kg m{3. In light of the strong

attenuation, we expect very signi¢cant physical velocity dis-

persion. Carcione et al. (1988) studied this problem with

a Fourier method for a point force source, and also derived

the analytical solution using the correspondence principle to

compute the Green's function in the frequency domain. Their

analytical results are used here for comparison. The source is a

vertical force placed exactly in the middle of the model, at

xs~zs~1000 m. The time variation of the source is a Ricker

wavelet with dominant frequency f0~18 Hz and onset time

t0~0.06 s. The source we use has the same frequency content

as that used by Carcione et al. (1988), that is, it has signi¢cant
energy up to roughly 50 Hz. We do not use exactly the same

source in order to avoid energy at zero frequency, and thus

circumvent a potential problem in the computation of the

analytical solution in the frequency domain (Carcione et al.
1988, Appendix B). The constant values QP^30 and QS^20

are mimicked using two standard linear solids; we use the

optimal relaxation times computed by Carcione et al. (1988)
for these two mechanisms.

The medium is discretized using 44|44 spectral elements,

with a polynomial degree N~5. Therefore, the global grid

comprises 221|221~48 841 points. As mentioned previously,

we use an explicit second-order FD time scheme to march the

weak form of the momentum equation, and a fourth-order

Runge^Kutta scheme to march the strong form of the memory

variable equations. Both schemes use the same time step

Figure 13. Spectral element (solid line), FK (dashed line) and FD

(dotted line) results obtained at the surface of a homogeneous half-

space in the case of a pure dip-slip moment tensor source situated at a

depth of 2.5 km. The receivers are located at a horizontal distance of

10 km. The vertical (top) and radial (middle) components of velocity are

recorded at an azimuth of 00, while the tangential component (bottom)

is recorded at an azimuth of 900. The source is a triangular velocity

pulse in time, and the results are low-pass ¢ltered at a cut-o¡ frequency

of 1 Hz. The FK and FD results are taken from Graves (1996).

Figure 14. Close-up of the non-structured mesh based upon half a

`cubed sphere' used to de¢ne the grid for a hemispherical crater in

a homogeneous half-space. The mesh is composed of ¢ve structured

blocks. It is naturally adapted to the sharp edges of the crater and is

densi¢ed in its vicinity. One can see the very big aspect ratio of the

elements close to the crater, because in this simulation the main con-

cern is the correct description of the geometry of the crater, not the

number of points per wavelength, due to the low frequencies con-

sidered. For display purposes, one of the structured blocks has been

removed.
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*t~0:75 ms.We propagate the signal for 0.75 s, i.e. 1000 time

steps. In Fig. 16 we present both the SEM solution and the

analytical solution for a receiver located at xr~zr~1500 m,

that is, at a distance of 707.1 m from the source. The agreement

is very good, which validates the approach used to incorporate

attenuation. To show how strong the attenuation and associated

velocity dispersion are, we also plot the SEM solution com-

puted for an elastic medium with the same relaxed material

properties (that is, the medium obtained whenQ??). One can

see, for instance, that the amplitude of the S wave is reduced by

a factor of more than two.

8 CONCLUSIONS

We have presented a detailed introduction to the spectral

element method for 3-D seismic wave propagation. The method

incorporates surface topography, attenuation and anisotropy,

and accurately represents surface waves. We have bench-

marked the method against a discrete wavenumber/re£ectivity

method for layer-cake models. Even in the presence of very sharp

discontinuities, for example, a factor of 3 increase in P-wave

velocity, the method accurately models the propagation of both

body and surface waves for shallow as well as deep sources.

The technique accommodates point force and moment tensor

sources, and can easily be extended to include ¢nite sources.

The accuracy of the free-surface implementation was demon-

strated for the problem of a hemispherical crater embedded in a

homogeneous half-space, for which an approximate boundary

method was used as a reference. The e¡ects of attenuation were

incorporated based upon an absorption-band model. For a

highly attenuating model with associated strong dispersion the

accuracy of the method was demonstrated by comparison with

an analytical solution.

In order to model wave propagation in realistic 3-D earth

models, for instance to determine seismic risk associated

with potential earthquakes in metropolitan areas such as Los

Angeles, Tokyo or Mexico City, several di¤cult problems need

to be addressed. First, we need to show that the SEM is capable

of dealing with highly heterogeneous 3-D structures, including

regions with high Poisson's ratio. This problem has been

partially addressed in Komatitsch (1997) and Komatitsch &

Vilotte (1998), but it remains to be shown that the method can

Figure 15. Amplitudes of the two components of displacement

recorded along the crater, from x/a~0 (centre of the crater) to

x/a~2 km. The vertical and radial components are displayed. The

third (tangential) component is zero by symmetry. The results are

shown for two normalized frequencies, g~0:25 (top) and g~0:50

(bottom). The symbols are used to show the SEM results. The solid and

dashed lines are the results of Sänchez-Sesma (1983) obtained based

upon an approximate boundary method.

Figure 16. Amplitude of the horizontal (top) and vertical (bottom)

components of displacement recorded in a 2-D homogeneous medium

of size 2000 m| 2000 m with constant QP^30 and QS^20. The

source is a vertical force placed exactly in the middle of the model.

The constant Q values are mimicked using two standard linear solids.

We present both the spectral element solution (solid line) and the

analytical solution derived by Carcione et al. (1988) (dashed line) for a

receiver located at xr~zr~1500 m, that is, at a distance of 707.1 m

from the source. The very strong e¡ect of attenuation can be observed

by comparing these results to the SEM solution computed for an elastic

medium with the same relaxed material properties (dotted line).
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also deal with more realistic models. Second, detailed 3-D

models of such basins, constructed based upon geological,

well-log and seismic re£ection and refraction data, need to be

constructed, and for larger earthquakes the details of the

rupture also have to be determined; several studies have been

dedicated to these problems in recent years (e.g. Wald 1996;

Olsen & Archuleta 1996; Pitarka et al. 1998; Wald & Graves

1998).

As underlined in the innovative work of Chaljub & Vilotte

(1998), in the context of global seismology several obstacles need

to be overcome. At long periods, self-gravitation is important

and needs to be accommodated in the weak formulation of the

equations of motion. To maintain a relatively constant number

of gridpoints per wavelength, the mesh has to be coarsened

several times as a function of depth. Finally, the core^mantle

boundary is an extremely sharp £uid^solid interface that

needs to be incorporated accurately. Even though the spectral

element method has been successfully applied for problems

involving a homogeneous £uid (Komatitsch et al. 1999a), it has
to be extended to include inhomogeneous £uids.
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Garc|̈a, J.M., Mart|̈n, J., Romacho, M.D. & Navarro, M.,

1997. Di¡raction of P, S and Rayleigh waves by three-dimensional

topographies, Geophys. J. Int., 129, 571^578.
Maday, Y. & RÖnquist, E.M., 1990. Optimal error analysis of spectral

methods with emphasis on non-constant coe¤cients and deformed

geometries, Comp. Meth. appl. Mech. Eng., 80, 91^115.
Marfurt, K.J., 1984. Accuracy of ¢nite-di¡erence and ¢nite-element

modeling of the scalar wave equation, Geophysics, 49, 533^549.
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APPENDIX A: DETAILED DESCRIPTION

OF THE WEAK FORMULATION

In this Appendix we present detailed expressions for each

of the terms in the weak formulation of the equations of

motion (12), suitable for numerical evaluation at the elemental

level. The expression for the left-hand side of (12), the mass

matrix, was discussed in Section 5. The remaining three terms

on the right-hand side are presented here.

The ¢rst integral that needs to be evaluated at the elemental

level is

�

)e

=w5T d3x . (A1)

This integral is often referred to as the elemental sti¡ness
matrix. The ¢rst step is to calculate the nine elements of the

displacement gradient =s on the element )e. This gives

Lisj(x(ma, gb, fc), t)~
X

n`

p~0

spbcj (t)`0p(ma)

" #

Lim(ma, gb, fc)

z

X

n`

p~0

sapcj (t)`0p(gb)

" #

Lig(ma, gb, fc)

z

X

n`

p~0

sabpj (t)`0p(fc)

" #

Lif(ma, gb, fc) . (A2)

This calculation requires knowledge of the nine elements of the

inverse Jacobian matrix Lî/Lx. Next, one calculates the six

elements of the symmetric stress tensor T on the element:

T(x(ma, gb, fc), t)~c(x(ma, gb, fc))5=s(x(ma, gb, fc), t) . (A3)

This requires knowledge of the previously calculated dis-

placement gradient (A2) and of the elastic tensor c at the

Gauss^Lobatto^Legendre integration points. The formulation

is not limited to isotropic media, or to anisotropic media with

a high degree of symmetry, as is often the case for other

numerical methods. The earth model may be fully hetero-

geneous, that is, c need not be constant inside an element. The
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integrand =w5T may be written in the form

=w5T~
X

3

i, j~1

Tij Ljwi~
X

3

i,k~1

X

3

j~1

Tij Ljmk

 !

Lwi

Lmk

~

X

3

i,k~1

Fik
Lwi

Lmk
, (A4)

where

Fik~
X

3

j~1

Tij Ljmk . (A5)

The next step is to calculate the nine matrix elements

Fik on the Gauss^Lobatto^Legendre integration points:

Fpql
ik ~Fik(x(mp, gq, fl)); this requires knowledge of the stress

tensor T computed in (A3) and of the inverse Jacobian

matrix Lî/Lx. The integral (A1) may now be rewritten in the

form

X

3

i,k~1

�

)e

Fik
Lwi

Lmk
d3x~

X

3

i,k~1

�1

{1

�1

{1

�1

{1

Fik
Lwi

Lmk
Je dm dg df .

(A6)

Upon substituting the test vector (35) in (A6) and introducing

the Gauss^Lobatto^Legendre integration rule, we ¢nd that

�

)e

=w5T d3x&
X

3

i~1

wabc
i

�

ubuc

X

n`

a0~0

ua0J
a0bc
e F a0bc

i1 `0a(ma0 )

zuauc

X
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b0~0

ub0J
ab0c
e F ab0c

i2 `0b(gb0 )

zuaub

X

n`

c0~0

uc0J
abc0

e F abc0

i3 `0c(fc0 )

�

. (A7)

The source term M5=w may be rewritten as

M5=w~
X

3

i, j~1

Mij Ljwi~
X

3

i,k~1

X

3

j~1

Mij Ljmk

 !

Lwi

Lmk

~

X

3

i,k~1

Gik
Lwi

Lmk
, (A8)

where

Gik~
X

3

j~1

Mij Ljmk . (A9)

Upon de¢ning, as per usual, Gpql
ik ~Gik(x(mp, gq, fl)) and using

the test vector (35),

M5=w(xs)&
X

3

i~1

wabc
i

�

X

n`

p,q,l~0

`p(mas )`q(gbs )`l(fcs )
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i3 `a(mas )`b(gbs )`

0
c(fcs )]

�

, (A10)

where x(mas , gbs , fcs )~xs. If the source location xs coincides

with one of the Gauss^Lobatto^Legendre points, (A10)

reduces to

M5=w(xs)&
X

3

i~1

wabc
i [Gasbscs

i1 `0a(mas )dbbsdccs

zGasbscs
i2 daas`

0
b(gbs )dccszGasbscs

i3 daasdbbs`
0
c(fcs )] .

(A11)

In the case of a ¢nite fault plane the mesh should be designed

such that the fault coincides with the side of an element, that

is, the fault is represented by a ¢nite number of `boundary

elements'. In that case we have
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where

gik~
X

3

j~1

mij Ljmk (A13)

and mij denotes the elements of the moment density tensor.

Gridpoints within the fault plane are denoted by mas and gbs ,

and gridpoints perpendicular to the fault plane are denoted

by fcs.

Finally, the absorbing boundary integral in (12) may be

approximated at the elemental level as
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Here ma and gb denote gridpoints within the absorbing boundary,

and fc denotes gridpoints perpendicular to the boundary. Note

that, like the mass matrix, the absorbing boundary term is

diagonal.

In an anelastic medium, the sti¡ness matrix is still given

by (A1), except that the stress tensor (A3) needs to be replaced

by

T(x(ma, gb, fc), t)~c(x(ma, gb, fc))5=s(x(ma, gb, fc), t)

{

X

L

`~1

R`(x(ma, gb, fc), t) , (A15)

in accordance with (5). The implication is that the six linearly

independent components of the symmetric memory tensor R`

need to be stored on the grid. For this reason, the memory

requirements for an anelastic simulation increase substantially

over those for a purely elastic simulation, and it may in this

respect be of interest to spread the memory variables across an

element to obtain the expected behaviour (Day 1998).
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