INTRODUCTION TO The Uniform Geometrical Theory of Diffraction

D.A. McNamara C.W.I. Pistorius J.A.G. Malherbe

University of Pretoria

Artech House Boston • London

CONTENTS

Preface			xiii
Chapter 1 The Nature of High-Frequency Methods			1
1.1	Introdu	ction	1
1.2	A Brief	Historical Overview	2
1.3	High-F	requency Phenomena	5
Referen	ces		6
Chapter 2 Geometrical Optics Fields			7
2.1	Introdu	ction	7
2.2	Ray Or	otical Construction of the High-Frequency Field	8
	2.2.1	Preliminary Remarks	8
	2.2.2	Some Conventional Electromagnetic Theory	8
	2.2.3	The Luneberg-Kline Anticipated Solution (Ansatz)	10
	2.2.4	The Elkonal Equation	11
	2.2.5	The Transport Equations	15
	2.2.6	The Geometrical Optics Terms and Their Interpretation	17
	2.2.7	Ray Paths, Amplitude Functions, and Phase Functions	19
	2.2.8	Sign Conventions and Caustics of the Geometrical Optics	
		Fields	28
	2.2.9	The Geometrical Optics Field and Fermat's Principle	33
2.3	Summary of the Properties of a High-Frequency Field and Some		
	Special	Cases	34
2.4	Specific	Examples of Geometrical Optics Fields	37
	2.4.1	Initial Comments and Some Definitions	37
	2.4.2	Uniform Plane Wave Fields	37
	2.4.3	The Fields of Electric and Magnetic Line Sources	40
	2.4.4	The Fields of a Hertzian Dipole	42
	2.4.5	The Far-Zone Fields of Horn Antennas	43
	2.4.6	The Fields of a Piecewise-Sinusoidal Dipole	- 46

	2.4.7	Sources with Fields That Are Not Geometrical Optics or	
		Ray-Optic Fields	48
	2.4.8	Further Comment	48
2.5	Reduc	tion of Results to Two-Dimensional Ray Tubes	48
2.6	Rays i	n Lossy Media	52
2.7	Conclu	iding Remarks	52
2.8	A Tast	te of Things to Come	53
Problem	IS		57
Referen	ces		58
Chapter	3 Geo	ometrical Optics Reflected Fields	61
3.1	Introd	uction	61
	3.1.1	Initial Remarks	61
	3.1.2	A Stroll in the Sun	61
	3.1.3	A Strategy for This Chapter	63
3.2	The L	aw of Reflection, Polarization Properties, and Phase	
	Functi	ons	66
	3.2.1	The Definition of Certain Geometrical Terms and	
		Coordinate Systems	66
	3.2.2	The Law of Reflection	70
	3.2.3	Trajectories of Reflected Rays	74
	3.2.4	Polarization of Reflected Rays	75
	3.2.5	Phase Continuation along Reflected Rays	77
	3.2.6	Invocation of the Locality Principle	78
	3.2.7	More about Shadowing	78
	3.2.8	Geometrical Optics Surface Currents	81
	3.2.9	An Alternative Interpretation of the Form of R and the	
		Law of Reflection	82
	3.2.10	What More Do We Need?	83
3.3	The E	xpressions for the Geometrical Optics Field Reflected from	
	Smoot	h Conducting Surfaces: Two-Dimensional Problems	84
	3.3.1	When Is a Problem of a Two-Dimensional Nature?	84
	3.3.2	Description of the Two-Dimensional Reflecting Surface	
		Geometry	86
	3.3.3	Simplifications for Two-Dimensional Problems	86
	3.3.4	Simplification of the Polarization Description of	
		Reflected GO Fields for Two-Dimensional Problems	86
	3.3.5	Amplitude Continuation along Two-Dimensional	
		Reflected Ray Tubes	88
	3.3.6	The Classical Geometrical Optics Interpretation	91
	3.3.7	Summary of Reflected Field Expressions for Two-	-
		Dimensional Problems	93
			-

	3.3.8	On the Specular Point Q_r and Its Location	96
	3.3.9	Initial Two-Dimensional Problem Examples	97
	3.3.10	Interpretation in Terms of Fundamental Electromagnetic	
		Theory	116
	3.3.11	Relationship to Physical Optics	117
	3.3.12	Comments on GO Reflected Fields about Shadow	
		Boundaries	120
3.4	Further	Examples of Two-Dimensional Reflected Field Problems	121
3.5	Genera	l Expressions for the Reflected Fields from Three-	
	Dimens	sional Smooth Conducting Surfaces	131
	3.5.1	Introduction	131
	3.5.2	Principal Radii of Curvature of Reflected Ray Tube at	
		Q_r —First Format	134
~	3.5.3	Principal Radii of Curvature of Reflected Ray Tube at	
		Q_r —Second Format	135
	3.5.4	Important Special Cases	136
	3.5.5	Principal Directions of the Reflected Wavefront	138
	3.5.6	Alternative Form for the Reflected GO Field at the	
		Specular Point Q_r	140
	3.5.7	Comments on the Expressions for the Reflected GO	
		Field	142
	3.5.8	Alternative Determination of Principal Radii of	
		Curvature of the Reflected Wavefront	144
3.6	Exampl	es of Three-Dimensional Reflected Field Problems	145
3.7	Conclu	ding Remarks	154
Problems	3	-	156
Reference	es	an she 👔 a she an	157
Chapter	4 Two	Dimensional Wedge Diffraction	159
4.1	Introdu	ction	159
4.2	Diffract	tion by Huygens' Principle	163
4.3	Keller's	Original GTD	165
4.4	The Ur	hiform Theory of Diffraction	174
	4.4.1	Shadow Boundaries	175
	4.4.2	Two-Dimensional UTD Diffraction Coefficients	179
	4.4.3	Enforcing Continuity across the Shadow Boundaries	191
	4.4.4	Transition Regions	197
	4.4.5	Grazing Incidence	203
	4.4.6	Half-Plane and Curved Screen	205
	4.4.7	Continuity across the Shadow Boundary: Grazing	200
		Incidence	206
	4.4.8	Full-Plane	218

4.5	Slope Diffraction	220
4.6	General Two-Dimensional Edge Diffracted Fields	225
4.7	Dielectric and Impedance Wedges	227
Problems	3	228
Reference	ves	231
Chapter	5 Applications of Two-Dimensional Wedge Diffraction	235
5.1	Radiation from a Parallel Plate Waveguide with TEM Mode	
	Propagation, Terminated in an Infinite Ground Plane	235
5.2	Antenna Gain	238
5.3	Radiation from an E-Plane Horn Antenna	240
5.4	Radiation from an H-Plane Horn Antenna	244
5.5	Radar Width of a Two-Dimensional Structure	248
Problems	3	257
Reference	ves	260
Chapter	6 Three-Dimensional Wedge Diffraction and Corner Diffraction	263
6.1	Introduction	263
6.2	Edge-Fixed Coordinate System	265
6.3	Three-Dimensional UTD Diffraction Coefficients	268
6.4	Examples of Three-Dimensional Wedge Diffraction	274
6.5	Corner Diffraction	288
	6.5.1 Corner Diffraction from a Flat Plate	288
	6.5.2 Corner Diffraction from a Vertex in Which Wedges with	
	Arbitrary Wedge Angles Are Terminated	298
6.6	Alternative Forms of the Diffraction Coefficients	300
Problems	S	301
Reference)es	304
Chapter	7 Equivalent Currents	305
7.1	Introduction	305
7.2	Equivalent Currents for Edge Diffraction	306
7.3	Radiation From Equivalent Currents	312
7.4	Reflected Fields Using Equivalent Currents	322
Problems	6	327
Reference	ves	328
Chapter	8 Diffraction at a Smooth Convex Conducting Surface	331
8 1	The Phenomenon of Creening Wayes or Curved Surface	. 551
0.1	Diffraction	331
	8.1.1 Introduction	331
	8.1.2 Asymptotic Evaluation of Eigenfunction Solutions for	551
	Line Source Illumination of a Conducting Circular	
	Cylinder	332
	- ,	

/

.

	8.1.3	Interpretation of the Asymptotic Solution in Terms of Surface Rays	335
	814	Invocation of Locality and the Generalized Fermat	555
	0.1.4	Principle	336
	815	The Significance of the UTD Results for Diffraction by	550
	0.1.5	Smooth Convex Surfaces	341
	8.1.6	Problem Classes for Curved-Surface Diffraction	343
	8.1.7	Differential Geometry for 2D Curved-Surface Diffraction	344
8.2	The Ty	vo-Dimensional Scattering Formulation	344
012	8.2.1	The Scattering Problem Geometry	344
	8.2.2	UTD Scattering Solution in the Lit Region	345
	8.2.3	UTD Scattering Solution in the Shadow Region	350
	8.2.4	Field Continuity at the SSB	356
	8.2.5	UTD Scattering Solution in the Surface-Based Ray	
		Coordinate System	370
8.3	The Ra	adjation Problem for a Source Mounted on a Smooth	
	Convex	Conducting Surface	374
	8.3.1	The Radiation Problem Geometry	374
	8.3.2	Sources of the Radiated Fields	375
	8.3.3	UTD Solution for the Radiation Problem: Observation	
		Point in the Lit Zone	377
	8.3.4	UTD Solution for the Radiation Problem: Observation	
		Point in the Shadow Zone	381
	8.3.5	Noninfinitesimal Sources	385
	8.3.6	Deep Shadow Zone Field Expressions and Their	
		Interpretation	387
8.4	The Tw	vo-Dimensional Convex Conducting Surface Coupling	
	Probler	n	401
	8.4.1	Detailed Geometry for the Coupling Problem	401
	8.4.2	Preliminaries	401
	8.4.3	UTD Coupling Solution for Magnetic Current Sources	402
	8.4.4	UTD Coupling Solution for Electric Current Sources	403
	8.4.5	Special Geometries	403
	8.4.6	A Form of the Coupling Solution in the Deep Shadow	
		Region and Its Interpretation	405
8.5	Bibliog	raphic Remarks	408
Problems	3		409
Referenc	es		410
Appendi	x A U	init Vectors	413
A.1	Cartesi	an Coordinate System	413
A.2	Spheric	cal Coordinate System	413
A.3	Cylindrical Coordinate System		414

xi

Append	ix B Special Functions for the Uniform Geometrical Theory of	
Di	ffraction	417
B.1	Introduction	417
B.2	The Fresnel Integrals and Transition Function	418
B.3	Bessel and Hankel Functions	420
B.4	The Airy Functions	422
B.5	The Fock Scattering Functions	424
B.6	The Fock Radiation Functions	428
B.7	The Fock Coupling Functions	430
B.8	Concluding Remarks	432
Referen	ices	432
Append	lix C Differential Geometry	435
C .1	Curves	435
C.2	Surfaces	440
	C.2.1 Unit Vector Normal to a Surface	440
	C.2.2 Radius of Curvature of a Surface	442
Referen	ices	449
Append	ix D The Method of Stationary Phase	451
D.1	Introduction	451
D.2	The Method of Stationary Phase	452
D.3	Bibliographical Remarks	456
Referen	ices	457
Append	lix E Additional References	459
Append	lix F Computer Subroutine Listings	465
F.1	Fresnel Integrals	465
F.2	Transition Function	465
F.3	Wedge-Diffraction Coefficient	466
F.4	Wedge-Slope–Diffraction Coefficient	466
F.5	Fock Scattering Functions	467
F.6	Universal Fock Radiation Functions	467
F. 7	Fock Coupling Functions	467
Referen	ces	467
Index		469