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Introduction to the Web-method and its applications
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The Web-method is a meshless finite element technique which uses weighted extended
B-splines (Web-splines) on a tensor product grid as basis functions. It combines the compu-
tational advantages of B-splines and standard mesh-based elements. In particular, degree and
smoothness can be chosen arbitrarily without substantially increasing the dimension. Hence,
accurate approximations are obtained with relatively few parameters. Moreover, the regular
grid is well suited for hierarchical refinement and multigrid techniques. This article should
serve as an introduction to finite element approximation with B-splines. We first review the
construction of Web-bases and discuss their basic properties. Then we illustrate the perfor-
mance of Ritz–Galerkin schemes for a model problem and applications in linear elasticity.
Finally, we discuss several implementation aspects.
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1. Introduction

The finite element method has become the method of choice for solving many
types of partial differential equations in engineering and physical sciences. Important
applications include structural mechanics, fluid flow, thermodynamics, and electromag-
netic fields [25]. The basic idea is very elegant and dates back to the classical work of
Rayleigh, Ritz, and Galerkin almost a century ago. Guided by physical principles, an
elliptic boundary value problem is stated in variational form:

Q(u) = 1

2
a(u, u) − λ(u) → min, u ∈ H. (1)

Usually, the quadratic functional Q represents the total energy in the underlying model.
The symmetric bilinear form a and the linear form λ correspond to contributions from
internal and applied forces, and H is a Hilbert space which incorporates the boundary
conditions. A classical example is the analysis of elastic deformations, which has been
the starting point of finite element analysis [1,24].
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The Ritz–Galerkin method restricts the minimization of (1) to a finite-dimensional
subspace

Vh = span
i

Bi ⊂ H.

Under mild assumptions, the resulting approximation

uh =
∑

i

uiBi ≈ u,

defined by

Q(uh) = min
vh∈Vh

Q(vh),

will converge to u as the discretization parameter h (typically a grid width) tends to 0.
A crucial requirement is that the bilinear form is elliptic. In the symmetric case this
means that a induces an equivalent norm on H and implies

‖u − uh‖H � const(a) inf
vh∈Vh

‖u − vh‖H . (2)

This fundamental inequality, due to Céa, follows directly from the characterization of uh

as the best approximation to u in the a-norm [23].
The numerical computation of uh is relatively straightforward; the minimization of

positive definite quadratic functionals is well understood. Primarily for very large sys-
tems or time-dependent problems more sophisticated techniques, which take advantage
of the special structure of finite element equations, have to be applied.

Standard finite element subspaces Vh consist of continuous piecewise polynomials
on a partition of the simulation region D into polygonal cells (triangles or quadrilaterals
in two, and tetrahedra or hexahedra in three dimensions). Conceptually, this approach
is quite simple. However, constructing good meshes can be rather time-consuming.
In particular, in three dimensions automatic grid generation is often a bottleneck in
finite element simulations. Moreover, on unstructured meshes, the lack of smooth-
ness leads to a dramatic increase in the dimension of Vh for higher degree approxi-
mations. Finally, the accuracy near the boundary is poor unless isoparametric elements
are used.

The inherent difficulties in using piecewise polynomials on irregular meshes moti-
vated intensive research on meshless methods (cf., e.g., [2,3,21] for an overview). Most
of the new concepts, such as least squares methods or Lagrange multiplier techniques,
circumvent the direct discretization of boundary conditions. Hence, they do not require
meshes which conform to the boundary. The price paid is often a more elaborate theory.
For example, error estimates cannot be as easily derived and stability problems have to
be dealt with.

In contrast, the Web-method, introduced in [12,13,15], is a meshless finite element
approximation which stays within the standard Ritz–Galerkin framework, proposing a
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new type of finite element subspace Vh. The basis functions Bi are weighted extended
B-splines (Web-splines) on a tensor product grid and meet all basic finite element re-
quirements. More precisely,

Bi = w
∑

k

ei,kbk, (3)

where w is a positive weight function and the sum is a linear combination of few neigh-
boring B-splines bk, k ≈ i. Choosing w appropriately, homogeneous boundary con-
ditions can be matched while keeping the simplicity of the tensor product spline space.
The extension coefficients ei,k are needed to stabilize the basis. With the simple choice
Bi = wbi , the support of basis functions near the boundary can become very small,
causing severe numerical problems.

Figure 1 shows a two-dimensional example for a uniform grid and Dirichlet bound-
ary conditions. In this case w vanishes on the entire boundary ∂D. As is typical, Bi ≈ bi

for B-splines in the interior of the domain; the effect of the weight function is hardly vis-
ible. Also, the linear combinations with coefficients ei,k, which are formed near the
boundary, do not have significantly larger support. Hence, the weight function and the
extensions do not affect the qualitative structure of a standard spline space. Except for
positivity (cf. the right Web-spline in the figure), all properties of B-splines are pre-
served.

The details of the construction of Web-splines are described in section 2. We then
show in section 3 that the Web-basis possesses the familiar approximation properties.
In section 4 we consider Laplace’s equation in order to illustrate the Web-method in a
simple setting and to compare the performance with standard techniques. Then we dis-
cuss in sections 5 and 6 problems in linear elasticity as typical engineering applications.
Finally, section 7 is devoted to implementation aspects.

Figure 1. Biquadratic Web-splines Bi for homogeneous Dirichlet boundary conditions, marked at the lower
left corners (i1, i2)h of the supports of the B-splines bi .
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Notation. Throughout the paper we will use the following notational conventions.

For a bounded Lipschitz domain D we denote by H�, � ∈ N0, the Sobolev space
of functions with square integrable derivatives up to order �, equipped with the norm

‖u‖� =
( ∑

|α|≤�

∫

D

∣∣∂αu
∣∣2

)1/2

, ∂α = ∂
α1
1 . . . ∂αm

m

(cf. [4]). Moreover, H�
0 is the closure of smooth functions with compact support in D

with respect to the Sobolev norm.
In estimates, the dependence of constants on parameters pν is indicated in the

form const(p1, p2, . . .). If the dependence is clear from the context, or not particularly
relevant, we use the symbols �, 	 and 
. For example,

dist(x, ∂D) 	 h

characterizes all points x with distance � const h from the boundary of D.
Finally, ‖ · ‖ denotes the 2-norm of vectors and matrices.

2. Web-basis

Web-splines are modified B-splines which are adapted to standard finite element
requirements. The formal definition (3) in the introduction involves a weight function w

and extension coefficients ei,k. We discuss each of these components in turn after re-
viewing some basic definitions.

We denote by

bk, k = (k1, . . . , km) ∈ Z
m,

the m-variate tensor product B-spline of coordinate degree n and support

kh + [0, n + 1]mh,

normalized, so that
∑

k bk = 1 (cf. figure 2). As is well known, the B-splines are linearly
independent and the basis is uniformly stable with respect to the grid width h [8,20].

For a bounded domain D,

Bh = span
k∈K

bk

denotes the linear span of all B-splines which have some support in D. This spline
space provides in the usual way optimal order approximations for smooth functions.
To incorporate homogeneous boundary conditions on a subset � ⊂ ∂D, we follow an
old suggestion of Kantorovich and Krylow [16], which has been extensively studied by
Rvachev and his co-authors (cf., e.g., the survey [19]). We multiply the B-splines bk by
a positive weight function w, which vanishes on � and denote the corresponding spline
space by

wBh.



K. Höllig et al. / Web method 219

Figure 2. Tensor product grid and bivariate cubic B-spline bk (m = 2, n = 3), marked at the lower left
corner kh of its support.

Figure 3. R-function (left) and blended distance function (right).

This is a very flexible approach. It does not only eliminate the need of boundary con-
forming elements but also allows us to utilize a priori knowledge about the qualitative
behavior of the approximated functions. Clearly, if w ≈ u, the numerical solution will
be very accurate already for a moderate grid width.

There are several different techniques for constructing weight functions. Two ex-
amples are shown in figure 3.

Rvachev’s R-function method provides weight functions for domains which are de-
fined via Boolean operations from simple primitives. The left side of the figure illustrates
this for � = ∂D and the domain

D = (D0 ∩ D1) ∪ D2, Di = {x: wi > 0},

with

w0 = 1 − x2
1 − x2

2 , w1 = x2, w2 = 1 − 2x2
1 − x2

2 .
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The set operations ∩, ∪ are translated into algebraic expressions via so-called
R-functions r∩, r∪:

w0,1 = r∩(w0, w1) = w0 + w1 −
√

w2
0 + w2

1,

w = r∪(w0,1, w2) = w0,1 + w2 +
√

w2
0,1 + w2

2

(cf. [19] for details). This algorithmic approach combines particularly well with simu-
lations for constructive solid geometry models, hence covers many typical engineering
applications.

The right side of the figure shows a numerically constructed weight function w for
a domain with a free-form boundary. In this example, � is a proper subset of ∂D (the
outer boundary) and w is defined by blending the distance function with a plateau of
height 1 in a δ-neighborhood of � via

w(x) = 1 − max

(
0, 1 − dist(x, �)

δ

)γ

.

The parameter δ must be chosen smaller than the minimal radius of curvature to avoid
singularities of dist(·, �), and γ controls the smoothness of the blend.

Both types of weight functions can be evaluated efficiently. Moreover, several
variants of the two basic methods are also available. For example, one can localize the
construction of w with the aid of a B-spline blending technique (cf. [10] for details).

We now turn to the discussion of the stabilization procedure. It is intuitively clear
that the B-splines

bj , j ∈ J ⊂ K,

which do not have at least one grid cell of their support in D, can cause stability prob-
lems. This difficulty is overcome by suitably adjoining these so-called outer B-splines
to the inner B-splines

bi, i ∈ I = K\J,

which constitute the stable part of the basis. Of course, the approximation power of the
spline space must be retained. Equivalently, the coefficients ei,k in definition (3) have to
be chosen so that all weighted polynomials

wp, degree p � n,

can be written as linear combinations of the Web-splines Bi . We state without proof the
proper formula, which was derived in [12]. We select for each outer index j an array

I (j) = �(j) + {0, . . . , n}m ⊂ I
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Figure 4. Inner and outer B-splines, marked with dots and circles, for a biquadratic spline space and an
array I (j) (enclosed by a dashed square) corresponding to an outer index j .

of inner indices closest to j (cf. figure 4) and set

ei,k = γi






m∏

ν=1

n∏

µ=0
�ν+µ 
=iν

kν − �ν − µ

iν − �ν − µ
for k = j ∈ J, i ∈ I (j);

1 for k = i ∈ I ;

0 otherwise,

(4)

where γi > 0 is a suitable normalization constant which ensures that

max
x

∣∣Bi(x)
∣∣ 
 1.

For example, we may take γi = 1/w(xi) with xi the center of a grid cell Qi ⊂ D in the
support of bi .

With the above definitions, we restate definition (3) more precisely as follows.

Definition 1 (Web-splines). The Web-splines for a bounded domain D, a positive
weight function w, and extension coefficients ei,k are defined as

Bi = w
∑

k

ei,kbk, i ∈ I,

and form a basis for the Web-space w e
Bh.



222 K. Höllig et al. / Web method

Figure 5. Extension coefficients ei,j /γi , i ∈ I (j), for m = n = 2 and several relative positions of j and
I (j).

It is clear from the definition of the index arrays I (j) that B-splines with support
outside of a small boundary strip are not extended:

Bi = γiwbi, dist(ih, �) � const(D, m, n)h.

Hence, the percentage of nontrivial linear combinations is small. Moreover, from defin-
ition (4) we see that, up to normalization, the extension coefficients only depend on the
relative position of the array I (j) with respect to the outer index j . Typically, only a
limited number of configurations occur, so that tabulated values can be used to generate
the extension matrices E.

Figure 5 shows a few coefficient arrays for a biquadratic Web-space. The large
number of zeros is typical. All coefficients ei,j , i ∈ I (j), are nonzero only if

jν /∈ �ν + {0, . . . , n} ∀ν = 1, . . . , m.

Therefore, the linear combinations in the definition of Bi involve usually only very
few terms. This is also apparent from figure 1, which shows that the support of a
Web-spline Bi is generally not significantly larger than the support of the associated
B-spline bi . Hence, the percentage of off-diagonal entries in E is quite small.

3. Approximation with Web-splines

As is to be expected, Web-splines inherit all basic properties of B-splines. How-
ever, some mild assumptions on the weight function are necessary. With our primary
applications in mind, we will consider weight functions of order γ ∈ N, i.e.,

w(x) 
 dist(x, �)γ , x ∈ D,

for a sufficiently regular subset � of ∂D with positive (m − 1)-dimensional measure.
Moreover, we require that w is �-regular for some � > 0, i.e., the partial derivatives up
to order � are bounded and

∣∣∂αw(x)
∣∣ � const(w) dist(x, �)γ−|α|, |α| � min(γ, �).
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A standard case is � = ∂D, γ = 1, and � = 1 which corresponds to Dirichlet boundary
conditions and minimal regularity. Also needed later on for the plate problem is γ = 2.
In this case, the weight function vanishes together with its normal derivative on �.

With the above assumptions, we can show that the Web-basis is well conditioned,
uniformly with respect to the grid width h.

Theorem 1 (Stability). For an �-regular weight function of order γ

hν‖uh‖ν � ‖uh‖0 
 hm/2‖U‖, ν � � � n,

for uh = ∑
i∈I uiBi and U = {ui}i∈I . In particular, ‖Bi‖� � hm/2h−�.

The proof is somewhat technical, but routine. The main tool are dual functions 	i

which vanish outside the support of Bi and satisfy
∫

	iBi′ = δi,i′, ‖	i‖0 
 h−m/2.

For their construction we observe that none of the outer B-splines bj have support on the
grid cell Qi ⊂ D ∩ supp bi with center xi . Hence,

Bi(x) = γiw(x)bi(x), x ∈ Qi,

so that, with appropriate modifications, dual functions λi for the standard B-splines can
be used. We define

	i = 1

γiw
λi,

where the support of λi has to be chosen in a subcell of Qi so that w is nonzero. Details
of the arguments can be found in [10].

With the aid of the dual functions we define a canonical projector

Phu =
∑

i

(∫
	iu

)
Bi (5)

onto the Web-space w e
Bh. While not of any practical relevance, it is a convenient

operator for deriving error estimates. Since Ph(wp) = wp for any polynomial p of
coordinate degree � n and the coefficients (

∫
	iu) are computed from local information,

it follows that Web-splines approximate with optimal order.

Theorem 2 (Approximation order). For an �-regular weight function (� � n) of order γ ,

‖u − Phu‖� � const(u, D, w, n)hn+1−�,

if v = u/w is smooth on D.

Proof. This estimate is proved by analyzing the error separately on each grid cell Q.
To this end we denote by Q′ a smallest m-dimensional cube containing the support of
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all Web-splines which are nonzero on Q. Moreover, we write u = wv and let v′ be a
smooth extension of v to R

m as described in [22].
The key argument relates the error u − Phu on D ∩ Q to

e = w(v′ − p)

where p is the best polynomial approximation of coordinate degree � n to v′ on Q′ with
respect to the norm ‖ · ‖�. Since Ph is exact for the weighted polynomial wp and uses
only information from within the domain D, where v = v′,

u − Phu = wv′ − wp + Ph(wp) − Ph(wv′) = e − Phe

on D. We estimate each term in turn. Since w has bounded partial derivatives up to
order �,

‖e‖�,Q∩D � ‖v′ − p‖�,Q′ . (6)

To bound the norm of the projection Phe = ∑
i(

∫
	ie)Bi , we note that on Q ∩ D only

� 1 summands are nonzero. Referring to the corresponding indices with i ∼ Q, we
have

supp	i ⊂ Q′ ∩ D, i ∼ Q,

and it follows that

‖Phe‖�,Q∩D � max
i∼Q

‖	i‖0 ‖e‖0,Q′∩D ‖Bi‖�

� h−m/2‖v′ − p‖0,Q′hm/2h−�, (7)

where we have used the boundedness of w and theorem 1 for the second inequality.
Hence, it remains to estimate the error v′−p of the polynomial approximation. Invoking
the Bramble–Hilbert lemma, we obtain

‖v′ − p‖ν,Q′ � hn+1−ν‖v′‖n+1,Q′ .

We apply this estimate with ν = �, 0 to (6) and (7) and obtain

‖u − Phu‖2
�,Q∩D � h2(n+1−�)‖v′‖2

n+1,Q′ .

Summing this inequality over all grid cells Q and noting that the corresponding
m-cubes Q′ overlap only � 1 times completes the proof. �

Theorem 2 assumes that u/w is smooth. Estimates with minimal regularity are
much harder to derive. Since wv ∈ Hn+1 does not imply that v ∈ Hn+1, even if w is
smooth, a subtle analysis of the quotient u/w is necessary. For smooth weight functions
of order 1 it was shown in [10,12] that

‖u − Phu‖� � const(D, w, n)hk−�‖u‖k, � < k � n + 1, u ∈ Hn+1 ∩ H 1
0 ,

and it is likely that this result extends to weight functions of higher order.
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In view of Céa’s inequality (2), theorem 2 implies a corresponding result for the er-
ror of Ritz–Galerkin approximations with Vh = w e

Bh. Since for typical elliptic bound-
ary value problems, the norm on the Hilbert space H can be bounded in terms of a
Sobolev norm ‖ · ‖� (� = 1 for second order problems),

‖u − uh‖H � hn+1−� (8)

for smooth solutions u.
We emphasize that regularity of solutions, as assumed in the above estimate, does

not follow from the variational approach, but requires more subtle techniques. However,
from a numerical point of view it is legitimate to focus entirely on the finite element
approximation, based on the given properties of u.

It should also be noted that the optimal rate is not always attained. For solutions u

with singularities, caused, e.g., by corners and edges of the domain, the approximation
order can deteriorate substantially. Here, adaptive refinement with hierarchical B-splines
or special basis functions with singular weights is needed to avoid a significant loss of
accuracy. Obviously, both techniques combine well with the Web-method.

4. Model problem

As a first illustration of the Web-method, we consider an elementary heat conduc-
tion problem. This application exhibits already some essential features of more general
elliptic systems and serves as a test case for various error estimates.

As is depicted in figure 6, two pipes with radius r , distance 2r , and constant tem-
perature u0 are enclosed in a cylindrical insulation with cross section

Dc:
x2

1

16
+ x2

2

9
< r2.

Figure 6. Part of the temperature distribution in a cylindrical insulation of two pipes for r = 1, u0 = 0,
u1 = −1, and γ = 1.
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Assuming that the insulation material is homogeneous, the temperature distribution u

satisfies


u = 0 in D = Dc ∩ {x: xν > 0},
u = u0 on �,

∂⊥u = −γ (u − u1) on �o,

∂⊥u = 0 on �a,

where ∂⊥ denotes the normal derivative, u0 and u1 are the temperatures of the pipes and
the surrounding medium, respectively, and γ is a material constant. The last equation is
an artificial boundary condition, reflecting the symmetry of the solution, which needs to
be computed only in a quarter of the cross section Dc.

The concrete values of the parameters are not particularly relevant since we can
translate and scale the solution u as well as the variables x. A convenient choice is given
in the figure. For these data

H 1
� = {

u ∈ H 1: u|� = 0
}

is the appropriate Hilbert space H for the variational formulation, noting that the essen-
tial boundary conditions are homogeneous.

The weak form of the differential equation is obtained in the usual way. Multiply-
ing by v ∈ H 1

� and integrating by parts,

0 = −
∫

D


u v =
∫

D

gradu gradv −
∫

�o∪�a

∂⊥u v.

Eliminating ∂⊥u with the aid of the natural boundary conditions, we see that

a(u, v) =
∫

D

gradu gradv +
∫

�o

u v, λ(v) = −
∫

�o

v

are the bilinear and the linear form for the energy functional (1). The ellipticity of a

follows from the Poincaré–Friedrichs inequality which yields the lower bound of the
norm equivalence

‖u‖2
1 
 a(u, u), u ∈ H 1

�.

The continuity of λ is a consequence of the trace theorem, asserting the boundedness of
the restriction u �→ u|�: H 1(D) → L2(�). Hence, the error estimate (8) is valid with
� = 1.

We computed finite element approximations uh with the standard hat-function ba-
sis and Web-splines of degree n = 1, . . . , 5. Figure 7 compares the two types of dis-
cretizations. Despite its simplicity, the domain does not permit a regular triangulation.
In contrast, the Web-method takes advantage of the elementary boundary curves. We
can choose

w(x) = (x1 − 2r)2 + x2
2 − r2

as weight function for the finite element subspace w e
Bh ⊂ H 1

� . The figure also illus-
trates that only in a neighborhood of the curved boundaries inner B-splines bi have to
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Figure 7. Triangulation for standard mesh-based elements (left) and discretization with bilinear Web-splines
(right).

Figure 8. Relative errors for hat-functions (�) and Web-spline approximations of degree n = 1, 2, 3, 4, 5
(markers ∗, ◦, �,�, �) as a function of the dimension d.

be extended (marked with squares). For B-splines in the interior of D or adjacent to the
straight boundaries, the coefficients ei,k in definition 1 with k 
= i are zero. Hence, as h

becomes small, the Web-space is almost a standard weighted spline space.
Figure 8 confirms the typical error behavior

‖u − uh‖0 � hn+1, ‖u − uh‖1 � hn,

noting that d 
 h−2. Since the solution is smooth, the second estimate follows from (8),
recalling that ‖ · ‖1 is a norm on H 1

� . The additional factor h for the L2-norm is obtained
via the Aubin–Nitsche duality principle (cf., e.g., [4]). The numerical results show that
using higher degree pays off. For the discretizations shown in figure 7, the L2-error of
Web-approximations of degree 3 is by a factor 100 smaller than the error for standard fi-
nite elements, although less basis functions are used. Moreover, the accuracy of standard
mesh-based approximations is limited by the required size of the linear systems.

Figure 9 shows further error statistics. Unlike for standard continuous finite el-
ements, we can compute the pointwise residual of the differential equation for Web-
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Figure 9. Residual er = maxx∈D |
uh(x)| (left) and boundary error eb = maxx∈�a
|∂⊥uh(x)| (right).

approximations of degree n > 1. Even though we used the stronger maximum norm, the
numerical results indicate optimal rates:

er � hn−1.

This is also the case for the artificial boundary condition. We have

eb � hn

in accordance with the error of spline quasi-interpolants. Both of the above max-norm
estimates are not covered by standard finite element theory. More research on the Web-
method is required to fully understand the precise error behavior in norms which are not
directly related to the variational approach.

5. Linear elasticity

Numerical continuum mechanics has been the starting point for the development
of finite element methods. In this application, finite elements can be interpreted as small
building blocks of the elastic material. The basic physical model is illustrated in fig-
ure 10. An elastic solid, fixed at a portion � of its boundary, is deformed under volume
and surface forces with densities (f1, f2, f3) and (g1, g2, g3), respectively. The resulting
displacement

u(x1, x2, x3) = (
u1(x), u2(x), u3(x)

)
, x ∈ D,

is typically very small. Large distortions indicate excessive forces which cannot be
adequately computed with a linear model.

The variational formulation follows directly from physical principles [17]. The
stationary displacement u minimizes the total energy

Q(u) = 1

2

∫

D

σ(u) ε(u)

︸ ︷︷ ︸
a(u,u)

−
(∫

D

f u +
∫

∂D\�
gu

︸ ︷︷ ︸
λ(u)

)
(9)
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Figure 10. Deformation of an elastic solid under internal and boundary forces.

(σ ε = ∑
k,� σk,�εk,�). In the first integral, ε denotes the strain and σ the stress tensor,

defined by

εk,�(u) = 1

2

(
∂ku

� + ∂�u
k
)

(10)

and Hooke’s law

σk,�(u) = λ trace ε(u)δk,� + 2µεk,�(u). (11)

The constants λ and µ are the Lamé constants, which describe the elastic properties of
the material.

As for the much simpler case of Laplace’s equation, considered in the last section,
the quadratic energy functional involves only first order partial derivatives. However, the
admissible displacements are vector valued functions

u = (
u1, u2, u3

) ∈ (
H 1

�

)3
.

Accordingly, the Web-approximation is of the form

uh =
∑

i

(
u1

i , u
2
i , u

3
i

)
Bi ∈ (

w e
Bh

)3
,

with a weight function w which vanishes on �.
It is easily seen that a and λ are continuous:

∣∣a(u, v)
∣∣ � �u�1 �v�1,

∣∣λ(u)
∣∣ � �u�1,

where � · �1 denotes the product norm on (H 1
�)3. The lower bound for a, required for

ellipticity, is much harder to prove. It involves Korn’s inequality

�u�2
0 +

∫

D

ε(u)ε(u) 	 �u�2
1

(cf. [18] for a rigorous derivation).
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Figure 11. Grid of Web-spline approximation (left) and principal stress (right) of a table deformed under
its weight.

Table 1
Statistics of the cell types and Web-basis for different grid widths h

(rt denotes the radius of the tabletop).

h/rt inner cells bnd cells inner spl outer spl unextended

0.08 338 1930 998 3986 6
0.04 5596 7634 13070 9258 1037
0.02 52497 30290 82435 33538 20493

Figure 11 shows an example. A stone table (λ = 1.1 × 106 N/cm2, µ =
2.7 × 106 N/cm2) is fixed at the bottom � and subjected to its own weight (f =
2.4 × 10−2 N/cm3). As is to be expected, the principal stress

σp = ‖σ‖
is largest in the middle of the tabletop.

In this example,

� = {
x: x2

1 + x2
2 � r2, x3 = 0

}
, w(x) = x3.

Such a trivial choice of the weight function is typical for many applications in elasticity.
While the objects may have a complicated shape, the fixed portion � of the boundary is
often planar or permits at least a simple analytic description.

The numerical solution was computed with cubic Web-splines, and a few statistics
of the approximation are listed in table 1. Since the domain D is relatively thin, the per-
centage of boundary cells is initially quite large. Hence, the majority of inner B-splines
have to be extended. However, as will be shown in section 7, the linear combinations∑

k ei,kbk can be efficiently generated during the assembly of the Ritz–Galerkin matrix.

6. Thin plates

For many important applications, the linear elasticity model admits a dimension
reduction. An example is Kirchhoff’s theory of thin plates of uniform thickness d which
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is small compared to the horizontal dimensions (cf., e.g., [17]). Here, it is assumed that
for a transversal force the vertical displacement is independent of x3:

u3(x) = u(x1, x2), (x1, x2, x3) ∈ D ×
[

− d

2
,
d

2

]
.

Moreover, the third components of the stress tensor are neglected: σ3,1 = σ3,2 = σ3,3

= 0. By Hooke’s law (11), this implies

u1(x) = −x3∂1u, u2(x) = −x3∂2u, ε3,3 = − λ

λ + 2µ
(ε1,1 + ε2,2).

Writing out the remaining horizontal components of the stress/strain relation in detail,
(

σ1,1

σ2,2

σ1,2

)
= E

1 − ν2

( 1 ν 0
ν 1 0
0 0 1 − ν

) (
ε1,1

ε2,2

ε1,2

)
,

where E = µ(3λ + 2µ)/(λ + µ) is the Young modulus and ν = λ/(2(λ + µ)) the Pois-
son ratio. With the aid of these identities, all quantities in the first integral of the energy
functional (9) can be expressed in terms of second derivatives of the vertical displace-
ment u. Integrating over x3 ∈ [−d/2, d/2], a lengthy but straightforward computation
yields

Q(u) = γ

2

∫

D

(
u)2 + 2(1 − ν)
[
(∂1∂2u)2 − (

∂2
1u∂2

2u
)] −

∫

D

f u

with γ = Ed3/(12(1 − ν2)) and f the density of a force normal to the plate (combining
the contributions from external and internal forces in (9)).

The variational formulation becomes particularly simple for a clamped plate, cor-
responding to the boundary conditions

u
∣∣
∂D

= ∂⊥u
∣∣
∂D

= 0.

In this case, integration by parts shows that the term in brackets disappears, and the
bilinear form equals

a(u, v) = γ

∫

D


u
v,

which is elliptic on H 2
0 (D).

For a conforming Ritz–Galerkin approximation, Web-splines of degree �2 are
needed. The weight function must vanish to second order at the boundary,

w(x) 
 dist(x, ∂D)2,

and is constructed simply by squaring the standard weight functions, described in sec-
tion 2.

Figure 12 visualizes the numerical solution for a plate, clamped along a free-form
boundary and subjected to gravitation. The left graphic shows the resulting deformation,
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Figure 12. Displacement (left) and von Mises stress (right) for a clamped plate.

Figure 13. Condition of the Ritz–Galerkin system (left) and number of pcg-iterations (right) versus the
dimension d of the Web-space for degree n = 2, . . . , 5 (markers ◦, �, �, �).

and on the right side we see the distribution of the von Mises stress σm, which is defined
as

σm =
√

σ̄ 2
1 + σ̄ 2

2 − σ̄1σ̄2,

where σ̄1, σ̄2 are the eigenvalues of the two-dimensional stress tensor σ . We notice that
σm is largest near the concave portion of the boundary at the bottom.

For fourth order problems the stabilization of the B-splines via the extension pro-
cedure is of even greater importance. As is well known, standard conforming finite
element subspaces for the plate problem have

condGh 
 h−4. (12)

Hence, keeping outer B-splines with very small support in D in the basis leads to exces-
sively ill-conditioned Ritz–Galerkin systems. For the stabilized Web-splines, the stan-
dard estimate (12) remains valid and iterative solvers perform reasonably well.

Figure 13 shows a few statistics for the example of figure 12. The condition num-
bers on the left side are in good agreement with the predicted rate O(h−4) 
 d2, shown
as a dashed line. It is perhaps somewhat surprising that condGh does not grow substan-
tially with the degree n. For the smallest grid width, the values differ by less than a
factor 50. The robustness of the Web-method with respect to the chosen degree is also
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apparent from the number of pcg-iterations. Moreover, given the large condition of the
Ritz–Galerkin matrix, the computing times, shown on the right side of the figure, remain
acceptable. To solve the system with a relative accuracy of 10−8, roughly d/10 iterations
are required.

The plate problem can be viewed as a simple test case for modeling elastic
shells [5]. Here, Koiter’s classical model, which requires continuously differentiable
elements, can be effectively implemented using Web-splines. Unlike for conforming
mesh-based elements, increasing smoothness does not present any problems. It is con-
ceivable that the Web-method provides a good alternative to modern non-conforming
techniques, similarly as the new subdivision methods proposed in [6].

7. Implementation

In this section we comment briefly on several implementation aspects. Concep-
tually, the Web-method is similar to standard finite element techniques – we just use a
different type of basis functions. However, as is to be expected, the tensor product grid
offers a number of computational advantages. We discuss each of the basic algorithmic
components in turn (cf. [10] for details).

Matrix assembly. We first note that the extension procedure can be conveniently com-
bined with the assembly of the Ritz–Galerkin matrix. By linearity,

a(Bi′, Bi) =
∑

k′

∑

k

ei′,k′a(wbk′, wbk)ei,k.

Hence, the stabilization amounts to two sparse matrix multiplications (the matrix E has
few off-diagonal entries).

As is common practice, the entries

a(wbk′, wbk) =
∑

Q

∫

Q∩D

ϕ(w, bk′, bk, . . .)

are computed by adding the contributions from each grid cell Q. This involves Gauß
quadrature of functions ϕ which depend on values and derivatives of the weight func-
tion, B-splines, and coefficients of the differential equation. Of course, B-splines can
be handled very efficiently. This is also the case for the different types of weight func-
tions. Rvachev’s R-functions can be evaluated with the aid of automatic differentiation,
which is ideally suited for the recursive algorithmic definition of w. Numerical weight
functions are constructed in terms of distance functions. While Newton’s method must
be used, this does require only few iterations. Since we are processing neighboring
quadrature points, very good starting guesses are available. Furthermore, we note that
the normal derivative of dist(·, ∂D) equals 1 which facilitates the computation of gradi-
ents.

To avoid a loss of accuracy (as would be the case when using polygonal approxi-
mations), integrals over boundary grid cells require a special treatment. The integration
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techniques are similar to methods for isoparametric elements. Based on the intersection
pattern of ∂D with ∂Q, we subdivide each set Q∩D into subcells which can be mapped
smoothly to standard domains (squares or cubes, triangles or tetrahedra, etc.). The nu-
merical transformations serve to determine the appropriate location of the Gauß points.
They only need to be as accurate as required by the selected approximation order. Fig-
ure 14 gives two examples. While two-dimensional subdivision is straightforward, cell
subdivision in three dimensions requires more sophisticated algorithms. Fortunately, the
portion of more complicated cases, like corners and edges within the grid cell, is as-
ymptotically small (by two orders of magnitude with respect to 1/h). Hence, the overall
computational complexity is not significantly affected by the necessary subdivision pro-
cedures.

Multigrid solvers. Given the high accuracy of the Web-method, the Ritz–Galerkin sys-
tems are relatively small and thus can be solved effectively with preconditioned con-
jugate gradient iterations. Even for ill-conditioned fourth order problems, solving the
linear systems is not too time-consuming (cf. figure 13 of the last section). Hence, for
Web-splines multigrid solvers are primarily important for large scale three-dimensional
applications and time-dependent problems.

Of course, a regular grid is ideally suited for multilevel schemes since subdivision
provides a natural grid transfer operator. We can express a B-spline b′

� on a coarse grid
with width 2h as a linear combination

b′
� =

∑

k

s2k−�bk sα = 2−nm

m∏

ν=1

(
n + 1
αν

)

(cf., e.g., [7]). Hence, for weighted splines on consecutive grid levels,
∑

k′∈K ′
u′

k′(wb′
k′) =

∑

k∈K

uk(wbk), U = SU ′,

Figure 14. Partition of boundary grid cells and Gauß points for numerical integration.



K. Höllig et al. / Web method 235

Figure 15. Adaptive refinement for bilinear weighted B-splines wbk (marked with circles at the lower left
corner of their support) near corners of a two-dimensional domain.

with a sparse matrix S. As is well known, the grid transfer matrix S is all that is needed
for implementing a standard finite element multigrid scheme.

Programming the iteration step for the Web-spaces w e
Bh is slightly more difficult

since these spaces are not nested. We resolve this problem with the aid of the canonical
projector (5), i.e., we use PhB

′
i as fine grid approximation of coarse grid Web-splines B ′

i .
This provides again a sparse grid transfer matrix with simple explicitly defined entries.

Because of the stability of the Web-basis, the standard multigrid theory can be
applied. For example, it can be shown without too much effort that the w-cycle converges
with a grid independent rate, even though the Web-spaces are not nested [14].

Adaptive refinement. Web-splines can be defined more generally for arbitrary knot se-
quences [11]. However, unlike in one dimension, knot refinement has a global effect.
For truly local subdivision, hierarchical spline spaces should be used.

The natural concept of nested B-spline bases is illustrated in figure 15 for the
weighted spline spaces wBh. In a critical portion of the region D, where large errors
are to be expected, we replace the B-splines bk by the B-splines with grid width h/2.
This procedure is applied recursively, i.e., the resulting space is spanned by weighted
B-splines on a sequence of grids with widths h, h/2, h/4, . . . . Some care is required in
order to maintain linear independence, which does not, however, lead to any significant
geometric restrictions [10].

There are a number of variants of hierarchical spline spaces, in particular in com-
puter graphics and scattered data fitting. Most recently, the technique has been very
successfully applied in the finite element simulation of elastic shells [6]. Compared to
wavelets, the implementation is relatively straightforward, which often outweighs the
slight lack of stability with respect to many grid levels.

8. Concluding remarks

The applications discussed in this paper show that Web-splines can provide a good
alternative to standard finite element approximations. In particular, the following fea-
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tures of the Web-method should be noted:

• No mesh generation is required.

• Boundary conditions are represented exactly.

• Accurate numerical solutions are possible with relatively low-dimensional subspaces.

• Smoothness and approximation order can be chosen arbitrarily.

• Regardless of the degree, each grid point corresponds to one basis function.

• Hierarchical bases permit adaptive refinement und multigrid algorithms.

In effect, Web-splines combine the advantages of B-splines and standard mesh-
based elements. Hence, they bridge the gap between geometric modeling and numerical
simulation, two fields which are very closely linked in many engineering applications.
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