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Introduction to Very-Long-Baseline Interferometry 

MARSHALL H. COHEN 

Abstract-Lmg-baseline  interferometry  achieves high angular 
resolution by using two or  more  widely  separated  radio telescopes 
and recording video signals on magnetic  tapes,  which  are  later 
brought  together  and  eross-correlated. This paper contains discus- 
sions of the  coherence  and  timing  requirements  and of calibration 
procedures. Applications to measuring  brightness  distributions  and 
to spectroscopy  are  reviewed  briefly.  Some  pertinent  phenomena 
connected  with  radio-wave  scattering in irregular  media  are dis- 
cossed. 

I 
INTRODUCTION 

N T H E  EARLY  and  middle 1960’s radio  astronomers 
developed an  appreciation of compact radio sources, 
usually  associated with  quasars or galactic nuclei. Their 

compactness is measured by  angular size  which is well under 
1’ and  in  some cases less than 10-8’. These  sources  are  small 
but  by no means weak, and  their flux density  is  comparable 
to  that  of the  extended  sources, which may  have 1Olo times as 
much solid angle! Thus  they  are  enormously  brilliant  and 
contain a very high energy  density.  They  are  mysterious 
fascinating  objects  and  remain  the  subject of intense  study. 

A decade ago, angular size measurements were limited  to 
about O.l’, by  the  available  techniques,  and  the  much  smaller 
s u e  of the  compact  sources was  being inferred  on  theoretical 
grounds.  These  grounds  included  the peaked nature of the 
spectrum  and  the  variability of the sources, and were reason- 
ably firm. Thus  there was strong  interest  in  making  measure- 
ments at angular  resolutions of 10-8‘ or  better,  to  check  the 
theuretical  predictions  and  to see what  the  sources  actually 
looked like  on  this scale. 
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Fig. 1. (a) Conventional two-element interferometer  with  a radio link. 

(b) VLB system with  independent atomic  standard  osallators. 

At  that  time high-resolution techniques  included  lunar 
occultations,  interplanetary  scintillations,  and  interferometry. 
The first  two were limited  by  the  scale of the  diffraction  pat- 
terns  to  about 0’.1 but  interferometry was limited  only by 
practical  considerations.  Fig. l(a) shows the  conventional 
radio-link  interferometer  with  the LO and IF  signals  trans- 
mitted  by radio. In  1965 such  interferometers were  being used 
at baselines up  to 120 km.  However,  thousands of kilometers 
were  really required,  and it was  decided to simplify  the  sys- 
tems  and  eliminate  the  real-time  links, as in Fig. l(b).  Two 
developments were  necessary  for this: a means of maintaining 
coherent  independent local oscillators at  the  two telescopes, 
and a means of putting  the video  signals on  magnetic  tape for 
later processing. These  developments were possible, and  very- 
long-baseline (VLB)  observations began in 1967. Baselines 
up  to l(r km  and  wavelengths  down  to 1.35 cm  have now been 
used. However,  the  “later processing” has  turned o u t  to be an  
impediment to large-scale research,  and  the  alternative of 
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real-time cross correlation,  via  some  appropriate  link, is 
beginning to seem  attractive. 

The  history  and  applications of VLB  systems  have been 
discussed in  various  early  papers [1]-[8] and  in  several review 
articles [9]-[13]. Details of the  National  Radio  Astronomy 
Observatory  (NRAO)  Mark  I1  digital  system  are  in  the  article 
by  Clark  [14]  in  this issue. Other  pertinent  articles  in  this 
issue include  applications at meter  wavelengths  by  Clark  and 
Erickson [IS], to  continuum  sources by Kellermann [ l 6 ] ,  to 
spectral-line  sources  by Welch [17], and  to geodesy and 
fundamental  astronomy  by  Counselman [18]. 

INDEPENDENT  LOCAL  OSCILLATORS 
The oscillator stability  required  for  VLB work depends on 

the  nature of the  experiments.  There  must  at  least be co- 
herence for the  minimum  integration  time  set  by  the  signal-to- 
noise ratio.  But for some purposes-especially where  fringe 
phases have  to be compared-long-term stability is required. 
Atmospheric  phase  fluctuations  are  evidently  involved in these 
matters also, but discussion of them  is  to be deferred  until 
later.  Atmospheric effects are  important  mainly at X >  1 m, 
while oscillator  effects are  important  only at  short wave- 
lengths. 

A .  Coherence 
The two  oscillators will have  a  small  frequency offset. 

This merely adds  to  the  natural  fringe  rate (set by  the  earth’s 
rotation)  and is unimportant.  What is important is the  phase 
fluctuations. If 4 is the  phase difference  between the  two LO 
signals,  then  the  coherence  requirement is (42)r1/2 < 1; Le., the 
rms  phase  fluctuation  must be less than 1 rad when averaged 
over  the  coherent  integration  time T, which usually is on the 
order of 1  min.  This  requirement is now routinely  met  with 
atomic  standard oscillators driving  frequency  synthesizers  and 
multipliers. 

Hydrogen maser oscillators  generate  the  best  sine waves. 
Several  large  observatories  (Goldstone, Algonquin Park, 
Haystack,  Green  Bank)  have  these masers and  their use has 
been very successful. At 13 cm they  have allowed coherent 
integration for  periods of up  to a half-hour,  with  little or 
no loss in  signal-to-noise  ratio.  Rubidium  oscillators  also 
have been used to  generate LO signals a t  microwave  fre- 
quencies.  Their coherence time  is on the  order of 20 s a t  3 cm, 
but is many  minutes a t  6 cm.  A good crystal oscillator has 
smaller  short-term  fluctuations  than  the  rubidium,  but  can- 
not be used at microwave frequencies because its  frequency 
drifts  rapidly (large long-term  phase  fluctuations). I t  is 
possible, however, to  override  the second characteristic by 
phase-locking a high-quality  crystal oscillator to  a  rubidium 
oscillator with  a  time  constant of about a minute.  This gives 
a coherence time of 1 min at X = 3 cm.  The  superiority of this 
combination  has been directly  demonstrated  in  VLB  observa- 
tions  between  the  NRAO in Green  Bank,  W.  Va.,  and  the 
Owens  Valley Radio  Observatory (OVRO)  in California.  A 
maser was a t  NRAO,  and  at  OVRO  there was a Hewlett 
Packard 5065A Rubidium  Oscillator,  either  running  alone  or 
driving  a  Sulzer 2.5-C crystal  oscillator.  The  latter  combina- 
tion was strikingly  better  than  the  rubidium alone. 

Cesium  oscillators  form the  fundamental  time  and fre- 
quency  standards,  but  they  have  traditionally been noisier 
than  rubidium oscillators. The  latest  generation of cesium 
oscillators is said  to be much  improved, but  they  have  not 
yet been tested  in  VLB  systems. 

Local oscillator signals  are  derived  from  the  atomic oscilla- 
tor  outputs  by  various  combinations of synthesizers  and 
multipliers.  These  can be very  stable,  and  contribute negligi- 
ble phase noise. I t  must be noted,  though,  that  some  syn- 
thesizers  and  multipliers  are  very  much  better  than  others 
for  this  purpose,  and  the  casual  attachment of an LO chain 
to  a  hydrogen  maser oscillator does  not  guarantee a stable 
signal. 

B. Long-Term  Phase Stability 
A transcontinental  interferometer  has d / X  ranging  from 

106 to 108, depending on wavelength,  and  the  corresponding 
angular  resolutions  are  from 0.1 to 0’.001. VLB  systems  thus 
have  the  potential for measuring  source positions to  very 
high accuracy. 

The  customary way to  measure a position with  an  inter- 
ferometer is to  measure  the  phase of the  interference fringes 
with  respect  to  those of a  standard  source. In a VLB  system 
this will fail if the  relative  phase  between  the  two local 
oscillators drifts  substantially,  and  unpredictably,  between 
the  two  measurements.  The  comparison  interval,  then,  cannot 
be more than  the  coherence  time discussed in  the previous 
section. 

The  simplest  scheme  switches  the  antennas  back  and  forth 
between  a  standard  source  and  the  source  under test. This  has 
been done a t  3.8 cm  with  hydrogen  maser  oscillators  between 
Goldstone  and  Haystack.  The  time scale  for phase  stability 
appears  to be a half-hour or more. A more complicated  scheme 
uses two  antennas at each  terminal,  one  tracking  the  standard 
source  and  the  other  the  source  under  test. I t  would be possi- 
ble to record both  signals all the  time,  but  in  practice  they 
are recorded alternately, in 1-s blocks. The  phase of the  two 
sets of fringes can  then be compared  almost  continuously, 
and  the need for long-term  phase  stability is obviated.  Such 
‘four-antenna”  observations  have been done  between  NRAO 
and  OVRO, also  between NRAO  and  the  Haystack  Ob- 
servatory. 

A  yet more complicated  scheme uses three  antennas at 
each  terminal,  and  the  redundant  phase  information  is used 
to derive  atmospheric  corrections.  One successful  “six- 
antenna”  experiment  has been done  between  OVRO  and 
NRAO a t  21 cm.  Its  object is to  make high-precision  measure- 
ments of the positions and motions of pulsars. 

Position measurements using these  techniques  are dis- 
cussed in  detail  by  Counselman [ M I .  

TIMING REQUIREMENTS 
In  the  VLB  unit  [Fig. l(b)] video signals  are  recorded  on 

magnetic  tapes which are processed later  to find the cross 
correlation  function. In the  NRAO  Mark  I  system,  computer- 
compatible  tape is used and  the processing is done on a 
general-purpose  computer.  In  the  Canadian  system  and  the 
NRAO  Mark  I1  system,  recording  is on video  tape.  Special- 
purpose processors are used to find the  correlation  function, 
which is then  analyzed in a  general-purpose  computer. 

In a conventional  interferometer [Fig. l(a)],  the  signals 
are  brought  into  time  synchronism  by  stepping  the  compensa- 
tion  delay  line so that I T & )  - ~ ( i )  I <<E1, where B is the  band- 
width.  In  the  VLB  unit  this  function  is easily  performed in 
the processor. However,  the  VLB  interferometer  lacks  initial 
synchronization because tape  starting is controlled  by  the 
two  independent clocks. No  attempt  is  made  to  keep  these 
docks  synchronized  to B-’ seconds;  rather, in the processor, 
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many  time  delays  are  tried  until fringes are  found.  This  is 
occasionally a disheartening or evem unmcaessf.ul pro-, 
but most  recent experience has been that  the  tape  indices  are 
known a priori to 10 or 20 /LS, and  the  required  amount of 
searching is usually small. 

I t  has become easy  to  maintain  time at  an  observatory  to 
the  accuracy  required for VLB  experiments. A rubidium 
oscillator  keeps time  to  one  part in lo1*, or a few microseconds 
per  month.  The clocks are  set  against  any of the  network of 
cesium standard  time  stations which are  maintained  around 
the world, or by  Loran-C  where i t  is available.  Even  the  sky- 
wave  Loran signals are  adequate,  for  they  can easily  give 10- 
or 15-ps accuracy once a receiving system  is  calibrated. 

MEASUREMENT OF FRINGE AMPLITUDE 
When  the cross-correlation function  is  formed, i t  contains 

the  interference fringes  which form a sine  wave of frequency 
vds/dt (to  first  order).  This  natural  rate  can be in  the kilo- 
hertz region, and  sometimes  an oscillator offset is introduced 
for convenience, to  make  the  net fringe rate close to zero. In  
most  VLB  experiments,  only  the fringe amplitude is measured, 
because that is easier than  measuring  phase  and  because  the 
amplitude  alone still gives mast of the  available  information  on 
brightness  distributions.  In  this  section we discuss measure- 
m m t  of fringe  amplitude. 

A .  Calibration  and  Signal-to-Noise  Ratio 
In  any interferometer  system  the  fringe-amplitude scale 

must be calibrated  in flux units,  and  this  is  usually  done  by 
observing  standard sources,  i.e.,  unresolved (point)  sources of 
known  strength.  In  VLB  systems  this  must  often be done in 
several  steps, because there  may be no sources which are 
known a  Priori to be unresolved. A  second complication  is 
that  digital  VLB  systems use 1-b techniques  and  direct 
amplitude  information  is  lost.  Fortunately,  it  is easily  re- 
covered through  the  correlation coefficient. The  1-b  correla- 
tion coefficient p is related  to  the cross-correlation coefficient 
between  the  two I F  signals plt by  the  Van Vleck formula [19] 
p= (2/r) arcsin PU, and,  sinceplzel, 

2 
p = - PlS .  

r 

p1, is related  to  the  antenna  and  system  temperatures  by 

where y is  the  unknown  fringe  visibility. 
The  optimum  measurement  technique  consists of making 

careful  measurement of the  antenna  temperature of the 
source T, and of the total system  temperature T,  for each 
servation.  The  ratios  on  the  right-hand  side of (2) are  then 
determined.  In  many cases, unfortunately,  the  antenna 
temperature  catmot be measured with  any  accuracy because 
the  source is weak. In  these cases the usual procedure  is  to 
assume  that  the  antenna  pointing  is perfect and  calculate T, 
from  the  known  total flux and  the  antenna  gain.  In principle 
y can now be determined. In  practice, however, (1) is wrong 
by  an  imperfectly k.nown number b ,  whose v a h e  is near 1.5: 

L 
p = -  

r b  PlZ 

TABLE I 
TELESCOPE PARAMETERS 

Location Dianeter {m) (T,/T0)‘ 

rbbeciho,  Puerto  Rico 305 3 

GoMshone, California 64  6 

Algonquin Park, Ontario 46 20 

Cmsala, Sweden 26 20 

because the  calculation for p uses several simplifications, such 
as time  shifting  by  integral  bit  intervals  rather  than  smaller 
values [14]. Any  phase  instabilities,  from  the  oscillators or 
the  atmosphere, also increase b.  

The relation  between p and pu is  usually  unknown  to 10 
percent or more, and  the  (square-root)  ratios of antenna  to 
system  temperature  may  also be unknown  to 10 percent or 
more. These  errors  should be largely  systematic  and  constant 
in  any series of observations,  whereas noise errors  are  often 
much  smaller. I t  is  customary,  therefore,  to  attempt  to elimi- 
nate  the  large  systematic  errors  by  scaling all values of plz by 
a constant  factor to obtain  agreement  with  some a @wri  
values of y. A few sources,  including PKS 0106+01, OJ 287, 
and OR 103, have been known  through experience to be 
smaller  than  others at centimeter  wavelengths,  and  the  scaling 
may  be  set  to  make  these  have  unit  fringe  visibility.  (How- 
ever,  this  is  dangerous  since  with sufficient resolution  any 
source will have y < 1. Moreover,  these  compact  sources  are 
time  varying a t  centimeter  and  decimeter  wavelengths  and 
their flux may  not be  known very well.) The final scaling 
error  may still be as great  as +_lo  percent,  but  the  relative 
fringe amplitudes  between  sources  in  any  one series are more 
accurate. 

With  the  Mark  I1  digital  system,  the  bandwidth B is 
usually 2 MHz  and  the  typical  integration  time s is 30 s. 
The noise level in measuring p12 can be shown  to be 

and  the  minimum  detectable  value  is  approximately 5 A p ~  
=lo-*. To  see what  this  means  in  terms of flux density,  re- 
write (2) as 

where S is  the flux density of the  source, S, is  the  “correlated 
flux density,”  and To1 and Tm are  “degrees of antenna  tem- 
perature  per flux unit” for the  two  antennas.  The  ratio 
( T J T O ) ~ I ~  is a figure of merit,  and  some  values for representa- 
tive telescopes are  in  Table  I.  In  general,  this  ratio is different 
for different  wavelengths,  and  an  optimum  value  is  shown. 

In  the best cases the noise level is about 0.1 fu,l  but for 
some observations it  has been as high as 1 tu. Final  accuracy, 
however, is never as good as f O . l  fu  because systematic  and 
calibration  errors  dominate  the  error  budget  except  in  very 
weak  cases. 

Note  that a low system  temperature  and a large effective 
area  have  equal  weight  in  making a good figure of merit 

1 fu stand8 for flux unit; 1 fu = 1 0 1  W m t  Hz-1. 
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Goldstone  and  Onsala  are  relatively  better  than  the  others 
because  they use maser  amplifiers. 

B. Saturation 
The figure of merit ( T # / T O ) ~ / *  is shown  in  Table I for  weak 

sources, but when the  source is strong  enough  to  contribute 
appreciably  to T., we must  write T./T,,= (T,,+T,)/T,,, where 
To is contributed  by  the  source  and T,, is  from  the  receiver, 
the  ground,  etc.  When To is bigger than T,,, the  ratio  ap- 
proaches  unity  and  this  side of the  interferometer becomes 
saturated. No further  improvement in sensitivity  can be 
obtained by  increasing the size of the antenna or by  decreas- 
ing  the receiver temperature;  the  signal is already  due  to  the 
source  itself.  Saturation (defined  when T,= T,) occurs a t  
Arecibo a t  430 MHz when S>lO fu,  which  is  the  case for a 
number of compact  sources.  Three  sources, 3C 84,3C 273, and 
3C 274, are  strong  enough to  saturate  Goldstone  at  centimeter 
wavelengths,  and will also saturate  the new  100-m  telescope 
at Bonn. 

When  one  end of the interferometer  is  saturated,  the  sys- 
tem  sensitivity is set  by  the  other  end.  In this case the com- 
mon remark  that  the effective area  is  the  geometric  mean  is 
misleading. In  the  limit of strong  saturation, (2) becomes 

PIZ 31 Y ( T o 2 / T a d 1 ’ 2 .  (6 )  

BRIGHTNESS  DISTRIBUTIONS 
The simplest  parameter  describing  the  brightness  dis- 

tribution of a source  is  the effective diameter,  and  in  many 
early  VLB  papers jus t  this  number, or an  upper  limit, was  re- 
ported.  In  most  cases,  however,  ‘diameter”  was merely the 
diameter of a circular  Gaussian  which  had the  same  fringe 
visibility  as the real source, at one  spacing  and  one  position 
angle. T h u s  i t  was no more than a  one-dimensional  approxima- 
tion to  an  ”angular  scale” ; i t  often was  meaningful  and useful 
but also  could  be  misleading. Better  approximations  to  the 
brightness  distribution  are now being produced,  and  their 
sophistication  is  increasing. 

I t  is well known that  the  output of a correlation  inter- 
ferometer  is a component of F(v, u), the  Fourier  transform of 
the  brightness  distribution of the  source.  Furthermore,  the 
function I? can be synthesized  by  observing at different  times 
ol day  and  by using  different  spacings [20]. However, the 
amount of synthesis  done  in  the  typical  VLB  experiment  is 
very  small. At  best,  the  source  is  tracked while i t  is  above  the 
horizon, and  this gives the  amplitude of the visibility  function 
(I’(u,  u)[ =y(u, u) along the  diurnai  track, an ellipse in  the 
(a, u) plane.  (Examples of diurnal  tracks  are in Figs. 2 and 3.) 
This  information  is grossly  insufficient  for any  Fourier  in- 
version, and all investigators  resort  to model fitting  to  obtain 
an approximation to  the  brightness  distribution.  Usually  there 
is little a +&ri knowledge of the  source  shape,  and so the 
simplest model  which fits the  data is  used. The simplest 
models  contain  one  parameter  plus a constraint  on  total flux; 
these  models are circular and  are  usually  Gaussian  but  can  be 
uniform or ringlike,  according to  one’s  preferences. In  most 
cases  where the source is well resolved,  there  is a notable  lack 
of circular  symmetry  and  more  complicated models must  be 
used. The next  stage  is a two-parameter model,  usually an 
equal  point  double  with  separation  and  position  angle to  be 
determined  by  the  data.  In a few cases this  has  been  remark- 
ably  successful,  the best and  most  interesting case being 3C 
279 observed  with  the  Goldstack  interferometer at X = 3.8  cm 
[la]. There is a strong  attraction  to  double  sources  because i t  
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Fig. 2. Fringe amplitude data from the  Goldstone-Haystack  inter- 
ferometer (Goldstack) at X=3.8 an, Feb. 28, 1971. The  source is the 
Seyfert  Galaxy 3C 120. Absuasa is the hour angle  from  the  inter- 
ferometer  meridian,  and  ordinate is  the fringe amplitude measured as 
the correlated flux density.  The  inset  shows  the track of the rneasure- 
ments  on  the (u, v )  plane,  with u and v measured in millions of wave- 
lengths.  The  two  curves through the  data  (the  vertical bars) show the 
expected  visibility  curves from two  different  models,  a  double  and  a 
ring. 

2 
3 Y 

> 

u (108 X) 
Fig. 3. Diurnal  tracks  on  the (u, a) plane  for the FOG array at 2.5 cm, 

6 =  400. a, OVRO-Fort Davis, b, OVRO-NRAO, c, Fort Davis- 
NRAO. 

is known that  many  extended  radio  sources  are  double  on a 
large  angular  scale.  Often  the  two  components  are  symmetri- 
cally  spaced  across a galaxy and  it is  tempting  to  think  that 
the galaxy  has  ejected the  components.  Can  the  very  small 
doubles  simply be young  versions of the  large  mature  radio 
sources? The answer  to  this is probably no, on energetic 
grounds, but  speculation of some  connection  persists and 
colors the  nature of the models  which are  used.  (This is dis- 
cussed further  by  Kellermann [16].) 

When the  equal  point  double  does  not fit the measured 
data, more complicated  models  are  tried.  Clearly the degree 
of complication  can be increased  until a satisfactory fit is  ob- 
tained,  but  along  the  way  faith  in  the  approximation  to  reality 
may be lost, if indeed  there  ever  was  any. In  many cases there 
are  ambiguities  in  the model fitting, For example,  Fig. 2 shows 
data for 3C 120 and two  possible  models  which both fit very 
well, a double  and a circular  ring [21j. From  those  limited 
measurements i t  is notpossible  tochoose  between  the models. 

Model fitting as in  Fig. 2 is inadequate  to give a clear  idea 
of the  shapes of sources;  in  some cases  no  reasonable  models 
exist  and  in  others  they  are  ambiguous,  but  in all they  are 
unsure. To  get a  better view of these  sources, i t  is  necessary to 
sample the (u, u) plane  more  generously.  A start in this  direc- 
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tion  is being made  through  several series of three-station  ob- 
servations.  One of these  is  on  the  “FOG”  array,  consisting of 
telescopes a t   For t  Davis,  Tex.; Owens Valley,  Calif.;  and 
Green  Bank, W. Va.  Fig. 3 shows tracks for the  three base- 
lines at 2.8 cm.  These  are  for a source a t  declination +40°, 
where there  are  several  important  compact sources. The (u, u) 
coverage for the  three baselines is  evidently  very  much  better 
than  for  any  one alone. Regular  observations  with  this  array 
are  planned,  to  study  sources which have  variable  brightness 
distributions. 

One  can  contemplate  larger  arrays using  existing  telescopes 
to  get more  coverage in  the u, (u) plane  and  thus more angular 
resolution  and  better models. Already  several  four-station 
experiments  have been done using three telescopes in  the 
United  States  and  one  in  Sweden [ll].  There  are  more  than a 
dozen  digital  Mark  I1  recorders at observatories  in  North 
America and  Europe,  and  one  can  imagine a combined  assault 
on a few complex  sources.  A  serious objection  to  this  is  the 
processing time per  baseline,  which is  rather more than  the 
observing  time,  and  thus  is close to half a year  full-time for a 
two-day  experiment  with  twelve  stations. I t  is probable that 
such  complicated  multistation  experiments will have  to  await 
the  development of a satellite-linked  system which  could 
make  real-time  correlation of many baselines possible. 

Multistation  observations  are also important for astro- 
metric  and geodetic measurements. If three  stations  are used 
rather  than  two,  various closure errors  can  be  determined, 
and positions found more accurately. 

VLB SPECTROSCOPY 
Two molecular  species, OH and HzO, show  maser  action 

in  interstellar clouds and  emit  strong  radiation  in  narrow 
spectrum lines from  compact regions. The high resolution 
study of these lines is an  active  area of VLB  research,  and  is 
discussed by Welch [17]. 

Recording  on  tape for line work is basically the  same as for 
continuum work, but  the processing is more complicated be- 
cause,  in essence, maps at many frequencies are  desired,  rather 
than  just  one  map.  In principle the  analysis  is  made  by  mea- 
suring  the cross-correlation function p12(u, v ,  z), including  time 
lag.  Then  the  Fourier  transform gives the  brightness  distribu- 
tion as a function of frequency [22]. In  practice, of course, u 
and v are weakly sampled  and  only  crude models are gener- 
ated. In  some cases it  has  turned  out  that a molecular source 
consists of a number of isolated spots of emission, each at a 
different frequency. A map of the overall source  can  then be 
generated  even if the  isolated  spots  have  unknown  shape, be- 
cause  each spot turns  up at a different  frequency  and  its posi- 
tion  can  be  determined  unambiguously [23],  [24]. 

The Hz0 line  is at 1.3 cm and  the  observations  between 
Simeis, Crimea,  and  Westford, Mass., are  the highest resolu- 
tion  interferometric  measurements  ever  made,  with d / x  
= 6x108. Preliminary  results  from  these  observations  show 
that all the Hz0 sources  are at least  partially resolved [25]. 

In  a few cases a molecular  cloud produces  both OH and 
HtO radiation.  In  these cases the  diameters seem to be roughly 
proportional  to  the  square of the  wavelength.  This  suggests 
that   the measured sizes are  not  intrinsic  but  rather  are set 
by  scattering  in  the  interstellar medium. This conclusion  re- 
mains  questionable, however,  because the size is an  order of 
magnitude  larger  than  expected  on  the basis of pulsar  scintilla- 
tions. 

IRREGULAR PROPAGATION EFFECTS 
Radio-wave scattering in interplanetary  space  and  in  inter- 

stellar  space  can  have a profound influence on  VLB  measure- 
ments because the  instrumental  resolution  may be comparable 
with  the  scattering angle. The  phenomena  are  intimately con- 
nected  with  intensity  scintillations,  and  the  pertinent  param- 
eters will be reviewed  first for  them.  The  subject is treated  in 
detail  by  Cronyn  and Cohen [26]. 

A .  Intensity Fluctuations 
Three  angles  are  important  for  this discussion: the  scatter- 

ing  angle&;  the cutoff angle6 ,4 / (d , ) ,  where e is  the  distance 
to  the  scattering region; and  the  instrinsic  angle of the  source 
6. When 6<6, we effectively have a point  source,  but  when 
6>6, scintillations  are  quenched.  In  the  first case we may 
imagine that  the  various  rays  within  the  scattering cone (as 
received by  an  antenna)  are all coherent, so that  they  can  in- 
terfere  and  produce  the  random  diffraction  pattern  which 
drifts  past  the  antenna.  In  the  second case,  however, the  rays 
are  incoherent  and  there  is  no  interference.  For  interplanetary 
scintillations  (IPS) 6,-0’.5, and  for  interstellar  scintillations 
(ISS) 6,-10-s‘; also, for  strong  scattering, 6, is  inversely 
proportional  to  wavelength. 

Scintillations  are also quenched if a bandwidth  limit B, is 
exceeded; B, is  estimated  from At, the  time  lag  between a 
central  ray  and  one  from  the  angle 6,: 

B,  - A t 1  - c/(Ze,*). 

This  is  an  important  limit for both  IPS  and  ISS at low fre- 
quencies;  sometimes i t  is called the  correlation  bandwidth. 

The diffraction pattern  on  the  ground  has a scale b-X/6,, 
and if the  pattern moves with velocity u, the  time  scale  for 
fluctuations  is 7 ~ b / u .  The  time scales are  roughly of the 
order of 1 s for IPS,  and loo0 s for ISS. 

B. Visibility Fluctuations 
The general theory of visibility  fluctuations  has been pre- 

sented  by  Cronyn [27]. The main special consideration which 
applies to VLB  work is that  the  antenna  separation s may be 
greater  than b ,  so that  the  antennas  are  in  different  scintilla- 
tion  patches. If the  scintillations  are  strong,  the  amplitude 
and  phase will vary  independently  in  the  two  antennas,  on  the 
scintillation  time  scale z; and  the  integration  time of the  inter- 
ferometer  must be less than7,  or else the fringes will be smeared 
out.  Even if the  scintillations  in  each  antenna  are  weak, i t  is 
possible to  have  large  phase  fluctuations between the  two 
antennas  when s>>b. This will happen  whenever  the  spectrum 
of fluctuations in the  scattering  medium  contains  substantial 
energy at small wavenumbers, i.e., a t  scales greater  than 
(Az)1’*. I n  this case the  time  limit for coherent fringes is  ap- 
proximately s/u rather  than b/u. Some of the  attempts  to 
measure  ray  bending  near  the  sun  apparently failed on  this 
account.  With  the  Goldstack  system, s-3800 km  and  the 
scale  for IPS  is b ~ 2 0  km. The observations consisted of 
measuring  the  relative positions between  two  quasars as a 
function of solar  elongation, by observing  the  two  sources 
alternately a d  comparing  the phases of the  two  sets of fringes. 
But  the  minimum  alternation  time  was  about 1 min, which is 
larger  than s/uNlO s, and*&  phase  comparison was meaning- 
less. A different  technique, the “four-antenna”  scheme, uses 
two  antennas at each  station (as mentioned  earlier);  the effec- 



COHEN: VERY-LONGBASELINE INTERFEROMETRY 1197 

tive  alternation  time  is 1 s and  phase  comparison becomes 
possible. 

When s < b  the  amplitude of the fringes fluctuates  with  the 
scintillation  time  scale, but  the  phase difference is  steady  and 
there  is  no  limit  to  the  coherent  integration  time. 

C. The Aj@arent Diameter 
I t  appears  that all methods of measuring  diameter  are 

equivalent,  and all reduce  to  measuring  the  transverse co- 
herence  in  the  wave field. Any conclusions derived  from  inter- 
ferometry  must also apply  to  measurements  made  in  any 
other  way, e.g., with  lunar  occultations, or with IPS. 

There  are  several possible circumstances  where  the  appar- 
ent size is the  scattering  angle 8, rather  than  the  intrinsic 
angle 8.  IF either  the  integration  time limit or the  bandwidth 
limit is seriously  vidated,  then  the  various  rays  within  the 
scattered  cone of radiation  are  incoherent,  and  the  apparent 
size will be 8,. For example, VLB observations of the  Crab 
puisar  have  shown an  apparent  diameter of 0’.07 at 111 
MHz [28]. But   i t  is  entirely  implausible  that  this could be  the 
intrinsic size, and so i t  must  represent  the  scattering angle. 
For this  pulsar B, is only  about 100 Hz at 111 MHz, and, 
since  the  observing  bandwidth  was 330 kHz,  the  limit was 
seriously  vidated.  This is an  instrumental effect, for  thediam- 
eter of the Crab  pulsar can  be measured  in  other ways. In par- 
ticular,  the  observation  that it shows  stroag ISS with a cor- 
relation  bandwidth B,400 Hz means  that 8<8,-10+w. 

A more fundamental case exists  when 0, <e<&, for now 
the  rays  within  the  scattering  cone  are  intrinsically  incoherent 
and  the  apparent size is 8, for all measurements [26]. I t  is 
likely that  many  sources  have size 8, (interstellar) at fre- 
quencies below about 1 GHz [ D l ;  in  fact,  the  only ones  which 
do  not  may be the  pulsars (for which 8 <e,) and local sources 
such as Jupiter  and  spacecraft.  Another conceivable exception 
is a molecular maser  source, which may  have  some coherence 
across  its face. 
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