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Introduction to Voice Presentation Attack
Detection and Recent Advances

Md Sahidullah, Héctor Delgado, Massimiliano Todisco, Tomi Kinnunen, Nicholas

Evans, Junichi Yamagishi and Kong-Aik Lee

Abstract Over the past few years significant progress has been made in the field

of presentation attack detection (PAD) for automatic speaker recognition (ASV).

This includes the development of new speech corpora, standard evaluation proto-

cols and advancements in front-end feature extraction and back-end classifiers. The

use of standard databases and evaluation protocols has enabled for the first time

the meaningful benchmarking of different PAD solutions. This chapter summarises

the progress, with a focus on studies completed in the last three years. The article

presents a summary of findings and lessons learned from two ASVspoof challenges,

the first community-led benchmarking efforts. These show that ASV PAD remains

an unsolved problem and that further attention is required to develop generalised
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PAD solutions which have potential to detect diverse and previously unseen spoof-

ing attacks.

1 Introduction

Automatic speaker verification (ASV) technology aims to recognise individuals us-

ing samples of the human voice signal [1, 2]. Most ASV systems operate on esti-

mates of the spectral characteristics of voice in order to recognise individual speak-

ers. ASV technology has matured in recent years and now finds application in a

growing variety of real-world authentication scenarios involving both logical and

physical access. In scenarios, ASV technology can be used for remote person au-

thentication via the Internet or traditional telephony. In many cases, ASV serves as a

convenient and efficient alternative to more conventional password-based solutions,

one prevalent example being person authentication for Internet and mobile banking.

scenarios include the use of ASV to protect personal or secure/sensitive facilities,

such as domestic and office environments. With the growing, widespread adoption

of smartphones and voice-enabled smart devices, such as intelligent personal assis-

tants all equipped with at least one microphone, ASV technology stands to become

even more ubiquitous in the future.

Despite its appeal, the now-well-recognised vulnerability to manipulation through

presentation attacks (PAs), also known as spoofing, has dented confidence in ASV

technology. As identified in ISO/IEC 30107-1 standard [3], the possible locations of

presentation attack points in a typical ASV system are illustrated in Fig. 1. Two of

the most vulnerable places in an ASV system are marked by 1 and 2, correspond-

ing to physical access and logical access. This work is related to these two types of

attacks.

Unfortunately, ASV is arguably more prone to PAs than other biometric systems

based on traits or characteristics that are less-easily acquired; samples of a given per-

son’s voice can be collected readily by fraudsters through face-to-face or telephone

conversations and then replayed in order to manipulate an ASV system. Replay

attacks are furthermore only one example of ASV PAs. More advanced voice con-

version or speech synthesis algorithms can be used to generate particularly effective

PAs using only modest amounts of voice data collected from a target person.

There are a number of ways to prevent PA problems. The first one is based on

a text-prompted system which uses an utterance verification process [4]. The user

needs to utter a specific text, prompted for authentication by the system which re-

quires a text-verification system. Secondly, as human can never reproduce an iden-

tical speech signal, some countermeasures use template matching or audio finger-

printing to verify whether the speech utterance was presented to the system ear-

lier [5]. Thirdly, some work looks into statistical acoustic characterisation of au-

thentic speech and speech created with presentation attack methods or spoofing

techniques [6]. Our focus is on the last category, which is more convenient in a

practical scenario for both text-dependent and text-independent ASV. In this case,
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Fig. 1: Possible attack locations in a typical ASV system. 1: microphone point, 2: transmission

point, 3: override feature extractor, 4: modify probe to features, 5: override classifier, 6: modify

speaker database, 7: modify biometric reference, 8: modify score and 9: override decision.

given a speech signal, S, PA detection here, the determination of whether S is a

natural or PA speech can be formulated as a hypothesis test:

• H0: S is natural speech.

• H1: S is created with PA methods.

A can be applied to decide between H0 and H1. Suppose that X = {x1,x2, ...,xN}
are the acoustic feature vectors of N speech frames extracted from S, then the loga-

rithmic likelihood ratio score is given by,

Λ(X) = log p(X|λH0
)− log p(X|λH1

) (1)

In1, λH0
and λH1

are the acoustic models to characterise the hypotheses corre-

spondingly for natural speech and PA speech. The parameters of these models are

estimated using training data for natural and PA speech. A typical PAD system is

shown in Fig. 2. A test speech can be accepted as natural or rejected as PA speech

with help of a threshold, θ computed on some development data. If the score is

greater than or equal to the threshold, it is accepted; otherwise, rejected. The per-

formance of the PA system is assessed by computing the (EER) metric. This is the

error rate for a specific value of a threshold where two error rates, i.e., the proba-

bility of a PA speech detected as being natural speech (known as false acceptance

rate or FAR) and the probability of a natural speech speech being misclassified as a

PA speech (known as false rejection rate or FRR), are equal. Sometimes (HTER) is

also computed [7]. This is the average of FAR and FRR which are computed using

a decision threshold obtained with the help of the development data.

Awareness and acceptance of the vulnerability to PAs have generated a growing

interest in develop solutions to presentation attack detection (PAD), also referred to

as spoofing countermeasures. These are typically dedicated auxiliary systems which

function in tandem to ASV in order to detect and deflect PAs. The research in this

direction has progressed rapidly in the last three years, due partly to the release of
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Fig. 2: Block diagram of a typical presentation attack detection system.

several public speech corpora and the organisation of PAD challenges for ASV. This

article, a continuation of the chapter [8] in the first edition of the Handbook for Bio-

metrics [9] presents an up-to-date review of the different forms of voice presentation

attacks, broadly classified in terms of impersonation, replay, speech synthesis and

voice conversion. The primary focus is nonetheless on the progress in PAD. The

chapter reviews the most recent work involving a variety of different features and

classifiers. Most of the work covered in the chapter relates to that conducted using

the two most popular and publicly available databases, which were used for the two

ASVspoof challenges co-organized by the authors. The chapter concludes with a

discussion of research challenges and future directions in PAD for ASV.

2 Basics of ASV spoofing and countermeasures

Spoofing or presentation attacks are performed on a biometric system at the sen-

sor or acquisition level to bias score distributions toward those of genuine clients,

thus provoking increases in the false acceptance rate (FAR). This section reviews

four well-known ASV spoofing techniques and their respective countermeasures:

impersonation, replay, speech synthesis and voice conversion. Here, we mostly re-

view the work in the pre-ASVspoof period, as well as some very recent studies on

presentation attacks.

2.1 Impersonation

In speech or mimicry attacks, an intruder speaker intentionally modifies his or her

speech to sound like the target speaker. Impersonators are likely to copy lexical,



Introduction to Voice Presentation Attack Detection and Recent Advances 5

prosodic, and idiosyncratic behaviour of their target speakers presenting a potential

point of vulnerability concerning speaker recognition systems.

2.1.1 Spoofing

There are several studies about the consequences of mimicry on ASV. Some studies

concern attention to the voice modifications performed by professional imperson-

ators. It has been reported that impersonators are often particularly able to adapt the

fundamental frequency (F0) and occasionally also the formant frequencies towards

those of the target speakers [10, 11, 12]. In studies, the focus has been on analysing

the vulnerability of speaker verification systems in the presence of voice mimicry.

The studies by Lau et al. [13, 14] suggest that if the target of impersonation is known

in advance and his or her voice is “similar” to the impersonator’s voice (in the sense

of automatic speaker recognition score), then the chance of spoofing an automatic

recognizer is increased. In [15], the experiments indicated that professional imper-

sonators are potentially better impostors than amateur or naive ones. Nevertheless,

the voice impersonation was not able to spoof the ASV system. In [10], the authors

attempted to quantify how much a speaker is able to approximate other speakers’

voices by selecting a set of prosodic and voice source features. Their prosodic and

acoustic based ASV results showed that two professional impersonators imitating

known politicians increased the identification error rates.

More recently, a fundamentally different study was carried out by Panjwani et

al. [16] using crowdsourcing to recruit both amateur and more professional imper-

sonators. The results showed that impersonators succeed in increasing their average

score, but not in exceeding the target speaker score. All of the above studies anal-

ysed the effects of speech impersonation either at the acoustic or speaker recognition

score level, but none proposed any countermeasures against impersonation. In a re-

cent study [17], the experiments aimed to evaluate the vulnerability of three modern

speaker verification systems against impersonation attacks and to further compare

these results to the performance of non-expert human listeners. It is observed that,

on average, the mimicry attacks lead to increased error rates. The increase in error

rates depends on the impersonator and the ASV system.

The main challenge, however, is that no large speech corpora of impersonated

speech exists for the quantitative study of impersonation effects on the same scale

as for other attacks, such as text-to-speech synthesis and voice conversion, where

generation of simulated spoofing attacks as well as developing appropriate counter-

measures is more convenient.

2.1.2 Countermeasures

While the threat of impersonation is not fully understood due to limited studies in-

volving small datasets, it is perhaps not surprising that there is no prior work investi-

gating countermeasures against impersonation. If the threat is proven to be genuine,
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then the design of appropriate countermeasures might be challenging. Unlike the

spoofing attacks discussed below, all of which can be assumed to leave traces of

the physical properties of the recording and playback devices, or signal processing

artefacts from synthesis or conversion systems, impersonators are live human beings

who produce entirely natural speech.

2.2 Replay

attacks refer to the use of pre-recorded speech from a target speaker, which is then

replayed through some playback device to feed the system microphone. These at-

tacks require no specific expertise nor sophisticated equipment, thus they are easy

to implement. Replay is a relatively low-technology attack within the grasp of any

potential attacker even without specialised knowledge in speech processing. Several

works in the earlier literature report significant increases in error rates when using

replayed speech. Even if replay attacks may present a genuine risk to ASV systems,

the use of prompted-phrase has the potential to mitigate the impact.

2.2.1 Spoofing

The study on the impact of replay attack on ASV performance was very limited

until recently before the release of AVspoof [18] and ASVspoof 2017 corpus. The

earlier studies were conducted either on simulated or on real replay recording from

far-field.

The vulnerability of ASV systems to replay attacks was first investigated in a

text-dependent scenario [19], where the concatenation of recorded digits was tested

against a hidden Markov model (HMM) based ASV system. Results showed an

increase in the FAR from 1 to 89% for male speakers and from 5 to 100% for female

speakers.

The work in [20] investigated text-independent ASV vulnerabilities through the

replaying of far-field recorded speech in a mobile telephony scenario where signals

were transmitted by analogue and digital telephone channels. Using a baseline ASV

system based on joint factor analysis (JFA), the work showed an increase in the

EER of 1% to almost 70% when impostor accesses were replaced by replayed spoof

attacks.

A physical access scenario was considered in [21]. While the baseline perfor-

mance of the Gaussian mixture model- universal background model (GMM-UBM)

ASV system was not reported, experiments showed that replay attacks produced a

FAR of 93%.

The work in [18] introduced audio-visual spoofing (AVspoof) database for replay

attack detection where the replayed signals are collected and played back using dif-

ferent low-quality (phones and laptop) and high-quality (laptop with loud speakers)

devices. The study reported that FARs for replayed speech was 77.4% and 69.4%
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for male and female, respectively, using a total variability system speaker recog-

nition system. In this study, the EER for bona fide trials was 6.9% and 17.5% for

those conditions. This study also includes presentation attack where speech signals

created with voice conversion and speech synthesis were used in playback attack. In

that case, higher FAR was observed, particularly when high-quality device is used

for playback.

2.2.2 Countermeasures

A countermeasure for replay attack detection in the case of text-dependent ASV was

reported in [5]. The approach is based upon the comparison of new access samples

with stored instances of past accesses. New accesses which are deemed too simi-

lar to previous access attempts are identified as replay attacks. A large number of

different experiments, all relating to a telephony scenario, showed that the coun-

termeasures succeeded in lowering the EER in most of the experiments performed.

While some form of text-dependent or challenge-response countermeasure is usu-

ally used to prevent replay attacks, text-independent solutions have also been inves-

tigated. The same authors in [20] showed that it is possible to detect replay attacks

by measuring the channel differences caused by far-field recording [22]. While they

show spoof detection error rates of less than 10% it is feasible that today’s state-

of-the-art approaches to channel compensation will render some ASV systems still

vulnerable.

Two different replay attack countermeasures are compared in [21]. Both are

based on the detection of differences in channel characteristics expected between

licit and spoofed access attempts. Replay attacks incur channel noise from both the

recording device and the loudspeaker used for replay and thus the detection of chan-

nel effects beyond those introduced by the recording device of the ASV system thus

serves as an indicator of replay. The performance of a baseline GMM-UBM system

with an EER of 40% under spoofing attack falls to 29% with the first countermea-

sure and a more respectable EER of 10% with the second countermeasure.

In another study [23], a speech database of 175 subjects has been collected for

different kinds of replay attack. Other than the use of genuine voice samples for

the legitimate speakers in playback, the voice samples recorded over the telephone

channel were also used for unauthorised access. Further, a far-field microphone is

used to collect the voice samples as eavesdropped (covert) recording. The authors

proposed an algorithm motivated from music recognition system used for compar-

ing recordings on the basis of the similarity of the local configuration of maxima

pairs extracted from spectrograms of verified and reference recordings. The exper-

imental results show the EER of playback attack detection to be as low as 1.0% on

the collected data.
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2.3 Speech synthesis

, commonly referred to as text-to-speech (TTS), is a technique for generating in-

telligible, natural sounding artificial speech for any arbitrary text. Speech synthesis

is used widely in various applications including in-car navigation systems, e-book

readers, voice-over for the visually impaired and communication aids for the speech

impaired. More recent applications include spoken dialogue systems, communica-

tive robots, singing speech synthesisers and speech-to-speech translation systems.

Typical speech synthesis systems have two main components [24]: text analysis

followed by speech waveform generation, which are sometimes referred to as the

front-end and back-end respectively. In the text analysis component, input text is

converted into a linguistic specification consisting of elements such as phonemes.

In the speech waveform generation component, speech waveforms are generated

from the produced linguistic specification. There are emerging end-to-end frame-

works that generate speech waveforms directly from text inputs without using any

additional modules.

Many approaches have been investigated, but there have been major paradigm

shifts every ten years. In the early 1970s, the speech waveform generation com-

ponent used very low dimensional acoustic parameters for each phoneme, such

as formants, corresponding to vocal tract resonances with hand-crafted acoustic

rules [25]. In the 1980s, the speech waveform generation component used a small

database of phoneme units called diphones (the second half of one phoneme plus the

first half of the following) and concatenated them according to the given phoneme

sequence by applying signal processing, such as linear predictive (LP) analysis, to

the units [26]. In the 1990s, larger speech databases were collected and used to se-

lect more appropriate speech units that matched both phonemes and other linguistic

contexts such as lexical stress and pitch accent in order to generate high-quality

natural sounding synthetic speech with the appropriate prosody. This approach is

generally referred to as unit selection, and is nowadays used in many speech syn-

thesis systems [27, 28, 29, 30, 31].

In the late 2000s, several machine learning based data-driven approaches emerged.

‘Statistical parametric speech synthesis’ was one of the more popular machine learn-

ing approaches [32, 33, 34, 35]. In this approach, several acoustic parameters are

modelled using a time-series stochastic generative model, typically a HMM. HMMs

represent not only the phoneme sequences but also various contexts of the linguistic

specification. Acoustic parameters generated from HMMs and selected according

to the linguistic specification are then used to drive a vocoder, a simplified speech

production model in which speech is represented by vocal tract parameters and ex-

citation parameters in order to generate a speech waveform. HMM-based speech

synthesisers [36, 37] can also learn speech models from relatively small amounts of

speaker-specific data by adapting background models derived from other speakers

based on the standard model adaptation techniques drawn from speech recognition,

i.e., maximum likelihood linear regression (MLLR) [38, 39].

In the 2010s, deep learning has significantly improved the performance of speech

synthesis and led to a significant breakthrough. First, various types of deep neural
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networks are used to improve the prediction accuracy of the acoustic parameters [40,

41]. Investigated architectures include recurrent neural network [42, 43, 44], resid-

ual/highway network [45, 46], autoregressive network [47, 48], and generative ad-

versarial networks (GAN) [49, 50, 51]. Furthermore, in the late 2010s conventional

waveform generation modules that typically used signal processing and text analy-

sis modules that used natural language processing were substituted by neural net-

works. This allows for neural networks capable of directly outputting the desired

speech waveform samples from the desired text inputs. Successful architectures for

direct waveform modelling include dilated convolutional autoregressive neural net-

work, known as “Wavenet” [52] and hierarichical recurrent neural network, called

“SampleRNN” [53]. Finally, we have also seen successful architectures that totally

remove the hand-crafted linguistic features obtained through text analysis by relying

in sequence-to-sequence systems. This system is called Tacotron [54]. As expected,

the combination of these advanced models results in a very high-quality end-to-end

TTS synthesis system [55, 56] and recent results reveal that the generated synthetic

speech sounds as natural as human speech [56].

For more details and technical comparisons, please see the results of Blizzard

Challenge, which annually compares the performance of speech synthesis systems

built on the common database over decades [57, 58].

2.3.1 Spoofing

There is a considerable volume of research in the literature which has demonstrated

the vulnerability of ASV to synthetic voices generated with a variety of approaches

to speech synthesis. Experiments using formant, diphone, and unit-selection based

synthetic speech in addition to the simple cut-and-paste of speech waveforms have

been reported [19, 59, 20].

ASV vulnerabilities to HMM-based synthetic speech were first demonstrated

over a decade ago [60] using an HMM-based, text-prompted ASV system [61] and

an HMM-based synthesiser where acoustic models were adapted to specific hu-

man speakers [62, 63]. The ASV system scored feature vectors against speaker and

background models composed of concatenated phoneme models. When tested with

human speech, the ASV system achieved a FAR of 0% and a false rejection rate

(FRR) of 7%. When subjected to spoofing attacks with synthetic speech, the FAR

increased to over 70%, however, this work involved only 20 speakers.

Larger scale experiments using the Wall Street Journal corpus containing in the

order of 300 speakers and two different ASV systems (GMM-UBM and SVM using

Gaussian supervectors) was reported in [64]. Using an HMM-based speech synthe-

siser, the FAR was shown to rise to 86% and 81% for the GMM-UBM and SVM sys-

tems respectively representing a genuine threat to ASV. Spoofing experiments using

HMM-based synthetic speech against a forensics speaker verification tool BATVOX

was also reported in [65] with similar findings. Therefore, the above speech synthe-

sisers were chosen as one of spoofing methods in the ASVspoof 2015 database.
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Spoofing experiments using the above advanced DNNs or using spoofing-specific

strategies such as GAN have not yet been properly investigated. Only a rela-

tively small-scale spoofing experiment against a speaker recognition system using

Wavenet, SampleRNN and GAN is reported in [66].

2.3.2 Countermeasures

Only a small number of attempts to discriminate synthetic speech from natural

speech had been investigated before the ASVspoof challenge started. Previous work

has demonstrated the successful detection of synthetic speech based on prior knowl-

edge of the acoustic differences of specific speech synthesizers, such as the dynamic

ranges of spectral parameters at the utterance level [67] and variance of higher order

parts of mel-cepstral coefficients [68].

There are some attempts which focus on acoustic differences between vocoders

and natural speech. Since the human auditory system is known to be relatively in-

sensitive to phase [69], vocoders are typically based on a minimum-phase vocal tract

model. This simplification leads to differences in the phase spectra between human

and synthetic speech, differences which can be utilised for discrimination [64, 70].

Based on the difficulty in reliable prosody modelling in both unit selection and

statistical parametric speech synthesis, other approaches to synthetic speech detec-

tion use F0 statistics [71, 72]. F0 patterns generated for the statistical parametric

speech synthesis approach tend to be over-smoothed and the unit selection approach

frequently exhibits ‘F0 jumps’ at concatenation points of speech units.

After the ASVspoof challenges took place, various types of countermeasures that

work for both speech synthesis and voice conversion have been proposed. Please

read the next section for the details of the recently developed countermeasures.

2.4 Voice conversion

, in short, VC , is a spoofing attack against automatic speaker verification using

an attackers natural voice which is converted towards that of the target. It aims to

convert one speaker’s voice towards that of another and is a sub-domain of voice

transformation [73]. Unlike TTS, which requires text input, voice conversion oper-

ates directly on speech inputs. However, speech waveform generation modules such

as vocoders, may be the same as or similar to those for TTS.

A major application of VC is to personalise and create new voices for TTS syn-

thesis systems and spoken dialogue systems. Other applications include speaking

aid devices that generate more intelligible voice sounds to help people with speech

disorders, movie dubbing, language learning, and singing voice conversion. The

field has also attracted increasing interest in the context of ASV vulnerabilities for

almost two decades [74].
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Most voice conversion approaches require a parallel corpus where source and tar-

get speakers read out identical utterances and adopt a training phase which typically

requires frame- or phone-aligned audio pairs of the source and target utterances and

estimates transformation functions that convert acoustic parameters of the source

speaker to those of the target speaker. This is called “parallel voice conversion”.

Frame alignment is traditionally achieved using dynamic time warping (DTW) on

the source-target training audio files. Phone alignment is traditionally achieved us-

ing automatic speech recognition (ASR) and phone-level forth alignment. The es-

timated conversion function is then applied to any new audio files uttered by the

source speaker [75].

A large number of estimation methods for the transformation functions have been

reported starting in the late 1980s. In the late 1980’s and 90’s, simple techniques em-

ploying vector quantisation (VQ) with codebooks [76] or segmental codebooks [77]

of paired source-target frame vectors were proposed to represent the transforma-

tion functions. However, these VQ methods introduced frame-to-frame discontinu-

ity problems.

In the late 1990s and 2000s, joint density Gaussian mixture model (JDGMM)

based transformation methods [78, 79] were proposed and have since then been

actively improved by many researchers [80, 81]. This method still remains popular

even now. Although this method achieves smooth feature transformations using a

locally linear transformation, this method also has several critical problems such as

over-smoothing [82, 83, 84] and over-fitting [85, 86] which leads to muffled quality

of speech and degraded speaker similarity.

Therefore, in the early 2010, several alternative linear transformation methods

were developed. Examples are partial least square (PLS) regression [85], tensor

representation [87], a trajectory HMM [88], mixture of factor analysers [89], local

linear transformation [82] or noisy channel models [90].

In parallel to the linear-based approaches, there have been studies on non-

linear transformation functions such as support vector regression [91], kernel partial

least square [92], and conditional restricted Boltzmann machines [93], neural net-

works [94, 95], highway network [96], and RNN [97, 98]. Data-driven frequency

warping techniques [99, 100, 101] have also been studied.

Recently, deep learning has changed the above standard procedures for voice

conversion and we can see many different solutions now. For instance, variational

auto-encoder or sequence-to-sequence neural networks enable us to build VC sys-

tems without using frame level alignment [102, 103]. It has also been showed that a

cycle-consistent adversarial network called “CycleGAN” [104] is one possible so-

lution for building VC systems without using a parallel corpus. Wavenet can also be

used as a replacement for the purpose of generating speech waveforms from con-

verted acoustic features [105].

The approaches to voice conversion considered above are usually applied to the

transformation of spectral envelope features, though the conversion of prosodic fea-

tures such as fundamental frequency [106, 107, 108, 109] and duration [107, 110]

has also been studied.
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For more details and technical comparisons, please see results of Voice Conver-

sion Challenges that compare the performance of VC systems built on a common

database [111, 112].

2.4.1 Spoofing

When applied to spoofing, the aim with voice conversion is to synthesise a new

speech signal such that the extracted ASV features are close in some sense to the tar-

get speaker. Some of the first works relevant to text-independent ASV spoofing were

reported in [113, 114]. The work in [113] showed that baseline EER increased from

16% to 26% thanks to a voice conversion system which also converted prosodic

aspects not modeled in typical ASV systems. This work targeted the conversion

of spectral-slope parameters and showed that the baseline EER of 10% increased

to over 60% when all impostor test samples were replaced with converted voices.

Moreover, signals subjected to voice conversion did not exhibit any perceivable arte-

facts indicative of manipulation.

The work in [115] investigated ASV vulnerabilities to voice conversion based

on JDGMMs [78] which requires a parallel training corpus for both source and tar-

get speakers. Even if the converted speech could be easily detectable by human

listeners, experiments involving five different ASV systems showed their universal

susceptibility to spoofing. The FAR of the most robust, JFA system increased from

3% to over 17%. Instead of vocoder-based waveform generation, unit selection ap-

proaches can be applied directly to feature vectors coming from the target speaker

to synthesise converted speech [116]. Since they use target speaker data directly,

unit-selection approaches arguably pose a greater risk to ASV than statistical ap-

proaches [117]. In the ASVspoof 2015 challenge, we therefore had chosen these

popular VC methods as spoofing methods.

Other work relevant to voice conversion includes attacks referred to as artificial

signals. It was noted in [118] that certain short intervals of converted speech yield

extremely high scores or likelihoods. Such intervals are not representative of intelli-

gible speech but they are nonetheless effective in overcoming typical ASV systems

which lack any form of speech quality assessment. The work in [118] showed that

artificial signals optimised with a genetic algorithm provoke increases in the EER

from 10% to almost 80% for a GMM-UBM system and from 5% to almost 65% for

a factor analysis (FA) system.

2.4.2 Countermeasures

Here, we provide an overview of countermeasure methods developed for the VC

attacks before the ASVspoof challenge began.

Some of the first works to detect converted voice draws on related work in syn-

thetic speech detection [119]. In [70, 120], cosine phase and modified group delay

function (MGDF) based countermeasures were proposed. These are effective in de-
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tecting converted speech using vocoders based on minimum phase. In VC, it is,

however, possible to use natural phase information extracted from a source speaker

[114]. In this case, they are unlikely to detect converted voice.

Two approaches to artificial signal detection are reported in [121]. Experimen-

tal work shows that supervector-based SVM classifiers are naturally robust to such

attacks, and that all the spoofing attacks they used could be detected by using an

utterance-level variability feature, which detected the absence of the natural and dy-

namic variabilities characteristic of genuine speech. A related approach to detect

converted voice is proposed in [122]. Probabilistic mappings between source and

target speaker models are shown to typically yield converted speech with less short-

term variability than genuine speech. Therefore, the thresholded, average pair-wise

distance between consecutive feature vectors was used to detect converted voice

with an EER of under 3%.

Due to fact that majority of VC techniques operate at the short-term frame level,

more sophisticated long-term features such as temporal magnitude and phase mod-

ulation feature can also detect converted speech [123]. Another experiment reported

in [124] showed that local binary pattern analysis of sequences of acoustic vectors

can also be used for successfully detecting frame-wise JDGMM-based converted

voice. However, it is unclear whether these features are effective in detecting recent

VC systems that consider long-term dependency such as recurrent or autoregressive

neural network models.

After the ASVspoof challenges took place, new countermeasures that works for

both speech synthesis and voice conversion were proposed and evaluated. See the

next section for a detailed review of the recently developed countermeasures.

3 Summary of the spoofing challenges

A number of independent studies confirm the vulnerability of ASV technology to

spoofed voice created using voice conversion, speech synthesis, and playback [6].

Early studies on speaker anti-spoofing were mostly conducted on in-house speech

corpora created using a limited number of spoofing attacks. The development of

countermeasures using only a small number of spoofing attacks may not offer the

generalisation ability in the presence of different or unseen attacks. There was a

lack of publicly available corpora and evaluation protocol to help with comparing

the results obtained by different researchers.

The 1 initiative aims to overcome this bottleneck by making available standard

speech corpora consisting of a large number of spoofing attacks, evaluation proto-

cols, and metrics to support a common evaluation and the benchmarking of different

systems. The speech corpora were initially distributed by organising an evaluation

challenge. In order to make the challenge simple and to maximise participation,

the ASVspoof challenges so far involved only the detection of spoofed speech; in

1 http://www.asvspoof.org/
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effect, to determine whether a speech sample is genuine or spoofed. A training set

and development set consisting of several spoofing attacks were first shared with the

challenge participants to help them develop and tune their anti-spoofing algorithm.

Next, the evaluation set without any label indicating genuine or spoofed speech was

distributed, and the organisers asked the participants to submit scores within a spe-

cific deadline. Participants were allowed to submit scores of multiple systems. One

of these systems was designated as the primary submission. Spoofing detectors for

all primary submissions were trained using only the training data in the challenge

corpus. Finally, the organisers evaluated the scores for benchmarks and ranking.

The evaluation keys were subsequently released to the challenge participants. The

challenge results were discussed with the participants in a special session in IN-

TERSPEECH conferences, which also involved sharing knowledge and receiving

useful feedback. To promote further research and technological advancements, the

datasets used in the challenge are made publicly available.

The ASVspoof challenges have been organised twice so far. The first was held

in 2015 and the second in 2017. A summary of the speech corpora used in the two

challenges are shown in Table 1. In both the challenges, EER metric was used to

evaluate the performance of spoofing detector. The EER is computed by considering

the scores of genuine files as positive scores and those of spoofed files as negative

scores. A lower EER means more accurate spoofing countermeasures. In practice,

the EER is estimated using a specific receiver operating characteristics convex hull

(ROCCH) technique with an open-source implementation2 originating from outside

the ASVspoof consortium. In the following subsections, we briefly discuss the two

challenges. For more interested readers, [125] contains details of the 2015 edition

while [126] discusses the results of the 2017 edition.

3.1 ASVspoof 2015

The first ASVspoof challenge involved detection of artificial speech created using a

mixture of voice conversion and speech synthesis techniques [125]. The dataset was

generated with ten different artificial speech generation algorithms. The was based

upon a larger collection spoofing and anti-spoofing (SAS) corpus (v1.0) [127] that

consists of both natural and artificial speech. Natural speech was recorded from 106

human speakers using a high-quality microphone and without significant channel or

background noise effects. In a speaker disjoint manner, the full database was divided

into three subsets called the training, development, and evaluation set. Five of the

attacks (S1-S5), named as known attacks, were used in the training and development

set. The other five attacks, S6-S10, called unknown attacks, were used only in the

evaluation set, along with the known attacks. Thus, this provides the possibility of

assessing the generalisability of the spoofing detectors. The detailed evaluation plan

is available in [128], describing the speech corpora and challenge rules.

2 https://sites.google.com/site/bosaristoolkit/
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Table 1: Summary of the datasets used in ASVspoof challenges.

ASVspoof 2015 [125] ASVspoof 2017 [126]

Theme Detection of artificially generated speech Detection of replay speech

Speech format Fs = 16 kHz, 16 bit PCM Fs = 16 kHz, 16 bit PCM

Natural speech Recorded using high-quality microphone Recorded using different smart phones

Spoofed speech Created with seven VC Collected ‘in the wild’ by crowdsourcing

and three SS methods using different microphone and playback

devices from diverse environments

Spoofing types 5 / 5 / 10 3 / 10 / 57

in train/dev/eval

No of speakers 25 / 35 / 46 10 / 8 / 24

in train/dev/eval

No of genuine speech 3750 / 3497 / 9404 1508 / 760 / 1298

files in train/dev/eval

No of spoofed speech 12625 / 49875 / 184000 1508 / 950 / 12008

files in train/dev/eval

Ten different spoofing attacks used in the ASVspoof 2015 are listed below:-

• S1: a simplified frame selection (FS) based voice conversion algorithm, in

which the converted speech is generated by selecting target speech frames.

• S2: the simplest voice conversion algorithm which adjusts only the first mel-

cepstral coefficient (C1) in order to shift the slope of the source spectrum to the

target.

• S3: a speech synthesis algorithm implemented with the HMM based speech

synthesis system (HTS3) using speaker adaptation techniques and only 20 adap-

tation utterances.

• S4: the same algorithm as S3, but using 40 adaptation utterances.

• S5: a voice conversion algorithm implemented with the voice conversion toolkit

and with the Festvox system3.

• S6: a VC algorithm based on joint density Gaussian mixture models (GMMs)

and maximum likelihood parameter generation considering global variance.

• S7: a VC algorithm similar to S6, but using line spectrum pair (LSP) rather than

mel-cepstral coefficients for spectrum representation.

• S8: a tensor-based approach to VC, for which a Japanese dataset was used to

construct the speaker space.

• S9: a VC algorithm which uses kernel-based partial least square (KPLS) to

implement a non-linear transformation function.

• S10: an SS algorithm implemented with the open-source MARY text-to-tpeech

system (MaryTTS)4.

3 http://www.festvox.org/
4 http://mary.dfki.de/
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Table 2: Performance of top five systems in ASVspoof 2015 challenge (ranked according to the

average % EER for all attacks) with respective features and classifiers.

System Avg. EER for System

Identifier known unknown all Description

A [129] 0.408 2.013 1.211 Features: mel-frequency cepstral coefficients (MFCC),

Cochlear filter cepstral coefficients plus instantaneous frequency (CFCCIF).

Classifier: GMM.

B [130] 0.008 3.922 1.965 Features: MFCC, MFPC,

cosine-phase principal coefficients (CosPhasePCs).

Classifier: Support vector machine (SVM) with i-vectors.

C [131] 0.058 4.998 2.528 Feature: DNN-based with filterbank output and their deltas as input.

Classifier: Mahalanobis distance on s-vectors.

D [132] 0.003 5.231 2.617 Features: log magnitude spectrum (LMS),

residual log magnitude spectrum (RLMS), group delay (GD),

modified group delay (MGD), instantaneous frequency derivative (IF),

baseband phase difference (BPD), and pitch synchronous phase (PSP).

Classifier: Multilayer perceptron (MLP).

E [133] 0.041 5.347 2.694 Features: MFCC, product spectrum MFCC (PS-MFCC),

MGD with and without energy, weighted linear prediction group delay

cepstral coefficients (WLP-GDCCs), and MFCC

cosine-normalised phase-based cepstral coefficients (MFCC-CNPCCs).

Classifier: GMM.

More details of how the SAS corpus was generated can be found in [127].

The organisers also confirmed the vulnerability to spoofing by conducting speaker

verification experiments with this data and demonstrating considerable performance

degradation in the presence of spoofing. With a state-of-the-art probabilistic linear

discriminant analysis (PLDA) based ASV system, it is shown that in presence of

spoofing, the average EER for ASV increases from 2.30% to 36.00% for male and

2.08% to 39.53% for female [125]. This motivates the development of the anti-

spoofing algorithm.

For ASVspoof 2015, the challenge evaluation metric was the average EER. It is

computed by calculating EERs for each attack and then taking average. The dataset

was requested by 28 teams from 16 countries, 16 teams returned primary submis-

sions by the deadline. A total of 27 additional submissions were also received.

Anonymous results were subsequently returned to each team, who were then invited

to submit their work to the ASVspoof special session for INTERSPEECH 2015.

Table 2 shows the performance of the top five systems in the ASVspoof 2015

challenge. The best performing system [129] uses a combination of mel cesptral

and cochlear filter cepstral coefficients plus instantaneous frequency features with

GMM back-end. In most cases, the participants have used fusion of multiple fea-

ture based systems to get better recognition accuracy. Variants of cepstral features

computed from the magnitude and phase of short-term speech are widely used for
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the detection of spoofing attacks. As a back-end, GMM was found to outperform

more advanced classifiers like i-vectors, possibly due to the use of short segments

of high-quality speech not requiring treatment for channel compensation and back-

ground noise reduction. All the systems submitted in the challenge are reviewed in

more detail [134].

3.2 ASVspoof 2017

The is the second automatic speaker verification antispoofing and countermeasures

challenge. Unlike the 2015 edition that used very high-quality speech material, the

2017 edition aims to assess spoofing attack detection with ”out in the wild” condi-

tions. It focuses exclusively on replay attacks. The corpus originates from the recent

text-dependent RedDots corpus5, whose purpose was to collect speech data over mo-

bile devices, in the form of smartphones and tablet computers, by volunteers from

across the globe.

The replayed version of the original RedDots corpus was collected through a

crowdsourcing exercise using various replay configurations consisting of varied de-

vices, loudspeakers, and recording devices, under a variety of different environ-

ments across four European countries within the EU Horizon 2020-funded OCTAVE

project6, (see [126]). Instead of covert recording, we made a “short-cut” and took

the digital copy of the target speakers’ voice to create the playback versions. The

collected corpus is divided into three subsets: for training, development, and eval-

uation. Details of each are presented in Table 1. All three subsets are disjoint in

terms of speakers and data collection sites. The training and development subsets

were collected at three different sites. The evaluation subset was collected at the

same three sites and also included data from two new sites. Data from the same site

include different recordings and replaying devices and from different acoustic envi-

ronments. The evaluation subset contains data collected from 161 replay sessions in

62 unique replay configurations7. More details regarding replay configurations can

be found in [126, 135].

The primary evaluation metric is “pooled” EER. In contrast to the ASVspoof

2015 challenge, the EER is computed from scores pooled across all the trial seg-

ments rather than condition averaging. A baseline8 system based on common GMM

back-end classifier with constant Q cepstral coefficient (CQCC) [136, 137] features

was provided to the participants. This configuration is chosen as baseline as it has

shown best recognition performance on ASVspoof 2015. The baseline is trained

using either combined training and development data (B01) or training data (B02)

alone. The baseline system does not involve any kind of optimisation or tuning with

5 https://sites.google.com/site/thereddotsproject/
6 https://www.octave-project.eu/
7 A replay configuration refers to a unique combination of room, replay device and recording

device while a session refers to a set of source files, which share the same replay configuration.
8 See Appendix A.2. Software packages
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Fig. 3: Performance of the two baseline systems (B01 and B02) and the 49 primary systems (S01—

S48 in addition to late submission D01) for the ASVspoof 2017 challenge. Results are in terms of

the replay/non-replay EER (%).

respect to [136]. The dataset was requested by 113 teams, of which 49 returned pri-

mary submissions by the deadline. The results of the challenge were disseminated

at a special session consisting of two slots at INTERSPEECH 2017.

Most of the systems are based on standard spectral features, such as CQCCs,

MFCCs, and perceptual linear prediction (PLP). As a back-end, in addition to the

classical GMM to model the replay and non-replay classes, it has also exploited the

power of deep classifiers, such as convolutional neural network (CNN) or recurrent

neural network (RNN). A fusion of multiple features and classifiers is also widely

adopted by the participants. A summary of the top-10 primary systems is provided

in Table 3. Results in terms of EER of the 49 primary systems and the baseline B01

and B02 are shown in Figure 3.

4 Advances in front-end features

The selection of appropriate features for a given classification problem is an im-

portant task. Even if the classic boundary to think between a feature extractor

(front-end) and a classifier (back-end) as separate components is getting increas-

ingly blurred with the use of end-to-end deep learning and other similar techniques,

research on the ‘early’ components in a pipeline remains important. In the context

of anti-spoofing for ASV, this allows the utilisation of one’s domain knowledge to

guide the design of new discriminative features. For instance, earlier experience

suggests that lack of spectral [70] and temporal [123] detail is characteristic of syn-

thetic or voice-coded (vocoded) speech, and that low-quality replayed signals tend

to experience loss of spectral details [143]. These initial findings sparked further re-

search into developing advanced front-end features with improved robustness, gen-

eralisation across datasets, and other desideratum. As a matter of fact, in contrast

to classic ASV (without spoofing attacks) where the most significant advancements

have been in the back-end modelling [2], in ASV anti-spoofing, the features seem
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Table 3: Summary of top 10 primary submissions to ASVspoof 2017. Systems’ IDs are the same

received by participants in the evaluation. The column ‘Training’ refers to the part of data used for

training: train (T) and/or development (D).

ID Features Post-

proc.

Classifiers Fusion #Subs. Training Performances

on eval subset

(EER%)

S01 [138] Log-power Spec-

trum, LPCC

MVN CNN, GMM, TV, RNN Score 3 T 6.73

S02 [139] CQCC, MFCC, PLP WMVN GMM-UBM, TV-PLDA,

GSV-SVM, GSV-GBDT,

GSV-RF

Score – T 12.34

S03 MFCC, IMFCC,

RFCC, LFCC, PLP,

CQCC, SCMC,

SSFC

– GMM, FF-ANN Score 18 T+D 14.03

S04 RFCC, MFCC, IM-

FCC, LFCC, SSFC,

SCMC

– GMM Score 12 T+D 14.66

S05 [140] Linear filterbank

feature

MN GMM, CT-DNN Score 2 T 15.97

S06 CQCC, IMFCC,

SCMC, Phrase

one-hot encoding

MN GMM Score 4 T+D 17.62

S07 HPCC, CQCC MVN GMM, CNN, SVM Score 2 T+D 18.14

S08 [141] IFCC, CFCCIF,

Prosody

– GMM Score 3 T 18.32

S09 SFFCC No GMM None 1 T 20.57

S10 [142] CQCC – ResNet None 1 T 20.32

to make the difference. In this section, we take a brief look at a few such methods

emerging from the ASVspoof evaluations. The list is by no means exhaustive and

the interested reader is referred to [134] for further discussion.

4.1 Front-ends for detection of voice conversion and speech

synthesis spoofing

The front-ends described below have been shown to provide good performance on

the ASVspoof 2015 database of spoofing attacks based on voice conversion and

speech synthesis. The first front-end was used in the ASVspoof 2015 challenge,

while the rest were proposed later after the evaluation.

Cochlear filter cepstral coefficients with instantaneous frequency (CFC-

CIF). These features were introduced in [129] and successfully used as part of the

top-ranked system in the ASVspoof 2015 evaluation. They combine cochlear filter

cepstral coefficients (CFCC), proposed in [144], with instantaneous frequency [69].

CFCC are based on wavelet transform-like auditory transform and on some mech-

anisms of the cochlea of the human ear, such as hair cells and nerve spike den-
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sity. To compute CFCC with instantaneous frequency (CFCCIF), the output of the

nerve spike density envelope is multiplied by the instantaneous frequency, followed

by the derivative operation and logarithm non-linearity. Finally, the discrete cosine

transform (DCT) is applied to decorrelate the features and obtain a set of cepstral

coefficients.

Linear frequency cepstral coefficients (LFCC). LFCCs are very similar to the

widely used mel-frequency cepstral coefficients (MFCCs) [145], though the filters

are placed in equal sizes for linear scale. This front-end is widely used in speaker

recognition and has been shown to perform well in spoofing detection [146]. This

technique performs a windowing on the signal, computes the magnitude spectrum

using the short-time Fourier transform (STFT), followed by logarithm non-linearity

and the application of a filterbank of linearly-spaced N triangular filters to obtain a

set of N log-density values. Finally, the DCT is applied to obtain a set of cepstral

coefficients.

Constant Q cepstral coefficients (CQCC). This feature was proposed in [136,

137] for spoofing detection and it is based on the constant Q transform (CQT) [147].

The CQT is an alternative time-frequency analysis tool to the STFT that provides

variable time and frequency resolution. It provides greater frequency resolution at

lower frequencies but greater time resolution at higher frequencies. Figure 4 illus-

trates the extraction process. The CQT spectrum is obtained, followed by logarithm

non-linearity and by a linearisation of the CQT geometric scale. Finally, cepstral

coefficients are obtained though the DCT.

Fig. 4: Block diagram of CQCC feature extraction process.

As an alternative to CQCC, infinite impulse response constant-Q transform cep-

strum (ICQC) features [148] use the infinite impulse response - constant Q trans-

form [149], an efficient constant Q transform based on the IIR filtering of the fast

Fourier transform (FFT) spectrum. It delivers multiresolution time-frequency anal-

ysis in a linear scale spectrum which is ready to be coupled with traditional cepstral

analysis. The IIR-CQT spectrum is followed by the logarithm and decorrelation,

either through the DCT or principal component analysis.

Deep features for spoofing detection. All of the above three features sets are

hand-crafted and consists of a fixed sequence of standard digital signal processing

operations. An alternative approach, seeing increased popularity across different

machine learning problems, is to learn the feature extractor from a given data by

using deep learning techniques [150, 151]. In speech-related applications, these fea-

tures are widely employed for improving recognition accuracy [152, 153, 154]. The

work in [155] uses deep neural network to generate bottleneck features for spoofing

detection; that is, the activations of a hidden layer with a relatively small number of
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nodes compared to the size of other layers. The study in [156] investigates various

features based on deep learning techniques. Different feed-forward DNNs are used

to obtain frame-level deep features. Input acoustic features consisting of filterbank

outputs with their first derivatives are used to train the network to discriminate be-

tween the natural and spoofed speech classes, and output of hidden layers are taken

as deep features which are then averaged to obtain an utterance-level descriptor.

RNNs are also proposed to estimate utterance-level features from input sequences

of acoustic features. In another recent work [157], the authors have investigated

deep features based on filterbank trained with the natural and artificial speech data.

A feed forward neural network architecture called here as filterbank neural network

(FBNN) is used here that includes a linear hidden layer, a sigmoid hidden layer and

a softmax output layer. The number of nodes in the output is six; and of them, five

are for the number of spoofed classes in the training set, and the remaining one is for

natural speech. The filterbanks are learned using the stochastic gradient descent al-

gorithm. The cepstral features extracted using these DNN-based features are shown

to be better than the hand-crafted cepstral coefficients.

Scattering cepstral coefficients. This feature for spoofing detection was pro-

posed in [158]. It relies upon scattering spectral decomposition [159, 160]. This

transform is a hierarchical spectral decomposition of a signal based on wavelet filter-

banks (constant Q filters), modulus operator, and averaging. Each level of decompo-

sition processes the input signal (either the input signal for the first level of decom-

position, or the output of a previous level of decomposition) through the wavelet

filterbank and takes the absolute value of filter outputs, producing a scalogram. The

scattering coefficients at a certain level are estimated by windowing the scalogram

signals and computing the average value within these windows. A two-level scat-

tering decomposition has been shown to be effective for spoofing detection [158].

The final feature vector is computed by taking the DCT of the vector obtained by

concatenating the logarithms of the scattering coefficients from all levels and retain-

ing the first a few coefficients. The “interesting” thing about scattering transform is

its stability to small signal deformation and more details of the temporal envelopes

than MFCCs [159, 158].

Fundamental frequency variation features. The prosodic features are not as

successful as cepstral features in detecting artificial speech on ASVspoof 2015,

though some earlier results on PAs indicate that pitch contours are useful for such

tasks [6]. In a recent work [161], the author use fundamental frequency varia-

tion (FFV) for this. The FFV captures pitch variation at the frame-level and pro-

vides complementary information on cepstral features [162]. The combined system

gives a very promising performance for both known and unknown conditions on

ASVspoof evaluation data.

Phase-based features. The phase-based features are also successfully used in

PAD systems for ASVspoof 2015. For example, relative phase shift (RPS) and

modified group delay (MGD) based features are explored in [163]. The authors

in [164] have investigated relative phase information (RPI) features. Though the

performances on seen attacks are promising with these phase-based features, the

performances noticeably degrade for unseen attacks, particularly for S10.
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General observations regarding front-ends for artificial speech detection.

Beyond the feature extraction method used, there are two general findings com-

mon to any front end [146, 129, 137, 148]. The first refers to the use of dynamic

coefficients. The first and second derivatives of the static coefficients, also known as

velocity and acceleration coefficients, respectively are found important to achieve

good spoofing detection performance. In some cases, the use of only dynamic fea-

tures is superior to the use of static plus dynamic coefficients [146]. This is not en-

tirely surprising, since voice conversion and speech synthesis techniques may fail to

model the dynamic properties of the speech signals, introducing artefacts that help

the discrimination of spoofed signals. The second finding refers to the use of speech

activity detection. In experiments with ASVspoof 2015 corpus, it appears that the

silence regions also contain useful information for discriminating between natural

and synthetic speech. Thus, retaining non-speech frames turns out to be a better

choice for this corpus [146]. This is likely due to the fact that non-speech regions

are usually replaced with noise during the voice conversion or speech synthesis

operation. However, this could be a database-dependent observation, thus detailed

investigations are required.

4.2 Front-ends for replay attack detection

The following front-ends have been proposed for the task of replay spoofing de-

tection, and evaluated in replayed speech databases such as the BTAS 2016 and

ASVspoof 2017. Many standard front-ends, such as MFCC, LFCC, and PLP, have

been combined to improve the performance of replay attack detection. Other front-

ends proposed for synthetic and converted speech detection (CFCCIF, CQCC) have

been successfully used for the replay detection task. In general, and in opposition

to the trend for synthetic and converted speech detection, the use of static coef-

ficients has been shown to be crucial for achieving good performance. This may

be explained by the nature of the replayed speech detection task, where detecting

changes in the channel captured by static coefficients helps with the discrimination

of natural and replayed speech. Two additional front-ends are described next.

Inverted mel frequency cepstral coefficients (IMFCC). This front-end is rel-

atively simple and similar to the standard MFCC. The only difference is that the

filterbank follows an inverted mel scale; that is, it provides an increasing frequency

resolution (narrower filters) when frequency increases, and a decreased frequency

resolution (wider filters) for decreasing frequency, unlike the mel scale [165]. This

front-end was used as part of the top-ranked system of the Biometrics: Theory, Ap-

plications, and Systems (BTAS) 2016 speaker antispoofing competition [7].

Features based on convolutional neural networks. In the recent ASVspoof

2017 challenge, the use of deep learning frameworks for feature learning was proven

to be key in achieving good replay detection performance. In particular, convolu-

tional neural networks have been successfully used to learn high-level utterance-

level features which can later be classified with simple classifiers. As part of the top-
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ranked system [138] in the ASVspoof 2017 challenge, a light convolutional neural

network architecture [166] is fed with truncated normalised FFT spectrograms (to

force fixed data dimensions). The network consists of a set of convolutional layers,

followed by a fully-connected layer. The last layer contains two outputs with soft-

max activation corresponding to the two classes. All layers use the max-feature-map

activation function [166], which acts as a feature selector and reduces the number of

feature maps by half on each layer. The network is then trained to discriminate be-

tween the natural and spoofed speech classes. Once the network is trained, it is used

to extract a high-level feature vector which is the output of the fully connected layer.

All the test utterances are processed to obtain high-level representations, which are

later classified with an external classifier.

Other hand-crafted features. Many other features have also been used for re-

played speech detection in the context of the ASVspoof 2017 database. Even if

the performances of single systems using such features are not always high, they

are shown to be complementary when fused at the score level [167], similar to

conventional ASV research outside of the spoofing detection. These features in-

clude MFCC, IMFCC, rectangular filter cepstral coefficients (RFCCs), PLP, CQCC,

spectral centroid magnitude coefficients (SCMC), subband spectral flux coefficient

(SSFC), and variable length Teager energy operator energy separation algorithm-

instantaneous frequency cosine coefficients (VESA-IFCC). Though, of course, one

usually then has to further train the fusion system, which makes the system more

involved concerning practical applications.

5 Advances in back-end classifiers

In the natural vs. spoof classification problem, two main families of approaches

have been adopted, namely generative and discriminative. Generative approaches

include those of GMM-based classifiers and i-vector representations combined with

support vector machines (SVMs). As for discriminative approaches, deep learning

based techniques have become more popular. Finally, new deep learning end-to-

end solutions are emerging. Such techniques perform the typical pipeline entirely

through deep learning, from feature representation learning and extraction to the

final classification. While including such approaches into the traditional classifiers

category may not be the most precise, they are included in this classifiers section for

simplicity.

5.1 Generative approaches

Gaussian mixture model (GMM) classifiers. Considering two classes, namely nat-

ural and spoofed speech, one GMM can be learned for each class using appropriate

training data. In the classification stage, an input utterance is processed to obtain
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its likelihoods with respect to the natural and spoofed models. The resulting clas-

sification score is the log-likelihood ratio between the two competing hypotheses;

in effect, those of the input utterance belonging to the natural and to the spoofed

classes. A high score supports the former hypothesis, while a low score supports the

latter. Finally, given a test utterance, classification can be performed by thresholding

the obtained score. If the score is above the threshold, the test utterance is classi-

fied as natural, and otherwise, it is classified as spoof. Many proposed anti-spoofing

systems use GMM classifiers [146, 129, 136, 168, 155, 158, 148].

I-vector. The state-of-the-art paradigm for speaker verification [169] has been

explored for spoofing detection [170, 171]. Typically, an i-vector is extracted from

an entire speech utterance and used as a low-dimensional, high-level feature which

is later classified by means of a binary classifier, commonly cosine distance mea-

sure or support vector machine (SVM). Different amplitude- and phase-based fron-

tends [130, 138] can be employed for the estimation of i-vectors. A recent work

shows that data selection for i-vector extractor training (also known as T matrix) is

an important factor for achieving completive recognition accuracy [172].

5.2 Discriminative approaches

DNN classifiers. Deep learning based classifiers have been explored for use in the

task of natural and spoofed speech discrimination. In [173, 155], several front-ends

are evaluated with neural network classifier consisting of several hidden layers with

sigmoid nodes and softmax output, which is used to calculate utterance posteriors.

However, the implementation detail of the DNNs - such the number of nodes, the

cost function, the optimization algorithm and the activation functions - is not pre-

cisely mentioned in those work and the lack of this very relevant information make

it difficult to reproduce the results.

In a recent work [174], a five-layer DNN spoofing detection system is investi-

gated for ASVspoof 2015 which uses a novel scoring method, termed in the paper

as human log-likelihoods (HLLs). Each of the hidden layers has 2048 nodes with a

sigmoid activation function. The network has six softmax output layers. The DNN

is implemented using a computational network toolkit9 and trained with stochastic

gradient descent methods with dynamics information of acoustic features, such as

spectrum-based cepstral coefficients (SBCC) and CQCC as input. The cross entropy

function is selected as the cost function and the maximum training epoch is chosen

as 120. The mini-batch size is set to 128. The proposed method shows considerable

PAD detection performance. The author obtain an EER for S10 of 0.255% and aver-

age EER for all attacks of 0.045% when used with CQCC acoustic features. These

are the best reported performance in ASVspoof 2015 so far.

DNN-based end-to-end approaches. End-to-end systems aim to perform all the

stages of a typical spoofing detection pipeline, from feature extraction to classifi-

9 https://github.com/Microsoft/CNTK
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cation, by learning the network parameters involved in the process as a whole. The

advantage of such approaches is that they do not explicitly require prior knowledge

of the spoofing attacks as required for the development of acoustic features. Instead,

the parameters are learned and optimised from the training data. In [175], a con-

volutional long short-term memory (LSTM) deep neural network (CLDNN) [176]

is used as an end-to-end solution for spoofing detection. This model receives input

in the form of a sequence of raw speech frames and outputs a likelihood for the

whole sequence. The CLDNN performs time-frequency convolution through CNN

to reduce spectral variance, long-term temporal modelling by using a LSTM, and

classification using a DNN. Therefore, it is a entirely an end-to-end solution which

does not rely on any external feature representation. The works in [177, 138] pro-

pose other end-to-end solutions by combining convolutional and recurrent layers,

where the first act as a feature extractor and the second models the long-term de-

pendencies and acts as a classifier. Unlike the work in [175], the input data is the

FFT spectrogram of the speech utterance and not the raw speech signal. In [178],

the authors have investigated CNN-based end-to-end system for PAD where the raw

speech is used to jointly learn the feature extractor and classifier. Score-level combi-

nation of this CNN system with standard long-term spectral statistics based system

shows considerable overall improvement.

6 Other PAD approaches

While most of the studies in voice PAD detection research focus on algorithmic

improvements for discriminating natural and artificial speech signals, some recent

studies have explored utilising additional information collected using special addi-

tional hardware to protect ASV system from presentation attacks [179, 180, 181,

182]. Since an intruder can easily collect voice samples for the target speakers using

covert recording; the idea there is to detect and recognise supplementary information

related to the speech production process. Moreover, by its nature, that supplemen-

tary information is difficult, if not impossible, to mimic using spoofing methods in

the practical scenario. These PAD techniques have shown excellent recognition ac-

curacy in the spoofed condition, at the cost of additional setup in the data acquisition

step.

The work presented in [180, 181] utilises the phenomenon of , which is a dis-

tortion in human breath when it reaches a microphone [183]. During natural speech

production, the interactions between the airflow and the vocal cavities may result in

a sort of plosive burst, commonly know as pop noise, which can be captured via a

microphone. In the context of professional audio and music production, pop noise

is unwanted and is eliminated during the recording or mastering process. In the con-

text of ASV, however, it can help in the process of PAD. The basic principle is that

a replay sound from a loudspeaker does not involve the turbulent airflow generating

the pop noise as in the natural speech. The authors in [180, 181] have developed

a pop noise detector which eventually distinguishes natural speech from playback
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recording as well as synthetic speech generated using VC and SS methods. In ex-

periments with 17 female speakers, a tandem detection system that combines both

single- and double-channel pop noise detection gives the lowest ASV error rates in

the PA condition.

The authors in [179] have introduced the use of a smartphone-based magnetome-

ter to detect voice presentation attack. The conventional loudspeakers, which are

used for playback during access of the ASV systems, generate sound using acoustic

transducer and generate a magnetic field. The idea, therefore, is to capture the use

of loudspeaker by sensing the magnetic field which would be absent from human

vocals. Experiments were conducted using playback from 25 different conventional

loudspeakers, ranging from low-end to high-end and placed in different distances

from the smartphone that contains the ASV system. A speech corpus of five speak-

ers was collected for the ASV experiments executed using an open-source ASV

toolkit, SPEAR10. Experiments were conducted with other datasets, using a simi-

larly limited number of speakers. The authors demonstrated that the magnetic field

based detection can be reliable for the detection of playback within 6-8 cm from

the smartphone. They further developed a mechanism to detect the size of the sound

source to prevent the use of small speakers, such as ear phones.

The authors in [184, 185] utilise certain acoustics concepts to prevent ASV sys-

tems from PAs. They first introduced a method [184] that estimates dynamic sound

source position (articulation position within mouth) of some speech sounds using

a small array using microelectromechanical systems (MEMS) microphones embed-

ded in mobile devices and compare it with loudspeakers, which have a flat sound

source. In particular, the idea is to capture the dynamics of time-difference-of-arrival

(TDOA) in a sequence of speech sounds to the microphones of the smartphone.

Such unique TDOA changes, which do not exist under replay conditions, are used

for detecting replay attacks. The similarities between the TDOAs of test speech and

user templates are measured using probability function under Gaussian assumption

and correlation measure as well as their combinations. Experiments involving 12

speakers and three different types of smartphone demonstrate a low EER and high

PAD accuracy. The proposed method is seen to remain robust despite the change of

smartphones during the test and the displacements.

In [185], the same research group has used the idea of the Doppler effect to

detect the replay attack. The idea here is to capture the articulatory gestures of the

speakers when they speak a pass-phrase. The smartphone acts as a Doppler radar and

transmits a high frequency tone at 20 kHz from the built-in speaker and senses the

reflections using the microphone during authentication process. The movement of

the speaker’s articulators during vocalisation creates a speaker-dependent Doppler

frequency shift at around 20 kHz, which is stored along with the speech signal dur-

ing the speaker-enrolment process. During a playback attack, the Doppler frequency

shift will be different due to the lack of articulatory movements. Energy-based fre-

quency features and frequency-based energy features are computed from a band of

19.8 kHz and 20.2 kHz. These features are used to discriminate between the natu-

10 https://www.idiap.ch/software/bob/docs/bob/bob.bio.spear/

stable/index.html
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ral and replayed voice; and the similarity scores are measured in terms of Pearson

correlation coefficient. Experiments are conducted with a dataset of 21 speakers and

using three different smartphones. The data also includes test speech for replay at-

tack with different loudspeakers and for impersonation attack with four different

impersonators. The proposed system was demonstrated to be effective in achieving

low EER for both types of attacks. Similar to [184], the proposed method indicated

robustness to the phone placement.

Fig. 5: Throat-microphones used in [182] [Reprinted with permission from IEEEACM Transac-

tions on (T-ASL) Audio, Speech, and Language Processing].

The work in [182] introduces the use of a specific non-acoustic sensor, throat mi-

crophone (TM), or laryngophone, to enhance the performance of the voice PAD

system. An example of such microphones is shown in Fig. 5. The TM is used

with a conventional acoustic microphone (AM) in a dual-channel framework for

robust speaker recognition and PAD. Since this type of microphone is attached to

the speaker’s neck, it would be difficult for the attacker to obtain a covert recording

of the target speaker’s voice. Therefore, one possibility for the intruder is to use the

stolen recording from an AM and to try to record it back using a TM for access-

ing the ASV system. A speech corpus of 38 speakers was collected for the ASV

experiments. The dual-channel setup yielded considerable ASV for both licit and

spoofed conditions. The performance is further improved when this ASV system is

integrated with the dual-channel based PAD. The authors show zero FAR for replay

imposters by decision fusion of ASV and PAD.

All of the above new PAD methods deviating from the “mainstream” of PAD re-

search in ASV are reported to be reliable and useful in specific application scenarios

for identifying presentation attacks. The methods are also fundamentally different

and difficult to compare in the same settings. Since the authors focus on the method-

ological aspects, experiments are mostly conducted on a dataset of limited number



28 Authors Suppressed Due to Excessive Length

of speakers. Extensive experiments with more subjects from diverse environmental

conditions should be performed to assess their suitability for real-world deployment.

7 Future directions of anti-spoofing research

The research in ASV anti-spoofing is becoming popular and well-recognised in the

speech processing and voice-biometric community. The state-of-the-art spoofing de-

tector gives promising accuracy in the benchmarking of spoofing countermeasures.

Further work is needed to address a number of specific issues regarding its prac-

tical use. A number of potential topics for consideration in further work are now

discussed.

• Noise, reverberation and channel effect. Recent studies indicate that spoof-

ing countermeasures offer little resistance to additive noise [186, 187], rever-

beration [188] and channel effect [189] even though their performances on

“clean” speech corpus are highly promising. The relative degradation of per-

formance is actually much worse than the degradation of a typical ASV system

under the similar mismatch condition. One reason could be that, at least until

the ASVspoof 2017 evaluation, the methodology developed has been driven in

clean, high-quality speech. In other words, the community might have devel-

oped its methods implicitly for laboratory testing. The commonly used speech

enhancement algorithms also fail to reduce the mismatch due to environmental

differences, though multi-condition training [187] and more advanced training

methods [190] have been found useful. The study presented in [189] shows con-

siderable degradation of PAD performance even in matched acoustic conditions.

The feature settings used for the original corpus gives lower accuracy when both

training and test data are digitally processed with the telephone channel effect.

These are probably because the spoofing artefacts themselves act as extrinsic

variabilities which degrade the speech quality in some way. Since the task of

spoofing detection is related to detecting those artefacts, the problem becomes

more difficult in the presence of small external effects due to variation in envi-

ronment and channel. These suggests further investigations need to be carried

out for the development of robust spoofing countermeasures.

• Generalisation of spoofing countermeasures. The property of spoofing coun-

termeasures for detecting new kinds of speech presentation attack is an impor-

tant requirement for their application in the wild. Study explores that coun-

termeasure methods trained with a class of spoofing attacks fail to generalise

this for other classes of spoofing attack [191, 167]. For example, PAD systems

trained with VC and SS based spoofed speech give a very poor performance for

playback detection [192]. The results of the first two ASVspoof challenges also

reveal that detecting the converted speech created with an “unknown” method

or the playback voice recording in a new replay session are difficult to detect.

These clearly indicate the overfitting of PAD systems with available training

data. Therefore, further investigation should be conducted to develop attack-
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independent universal spoofing detector. Other than the unknown attack issue,

generalisation is also an important concern for cross-corpora evaluation of the

PAD system [193]. This specific topic is discussed in chapter 19 of this book.

• Investigations with new spoofing methods. The studies of converted spoof

speech mostly focused on methods based on classical signal processing and

machine learning techniques. Recent advancements in VC and SS research

with deep learning technology show significant improvements in creating high

quality synthetic speech [52]. The GAN [194] can be used to create (genera-

tor) spoofed voices with relevant feedback from the spoofing countermeasures

(discriminator). Some preliminary studies demonstrate that the GAN-based ap-

proach can make speaker verification systems more vulnerable to presentation

attacks [195, 66]. More detailed investigations should be conducted on this di-

rection for the development of countermeasure technology to guard against this

type of advanced attack.

• Joint operations of PAD and ASV. The ultimate goal of developing PAD sys-

tem is to protect the recogniser, the ASV system from imposters with spoofed

speech. So far, the majority of the studies focused on the evaluation of stan-

dalone countermeasures. The integration of these two systems is not trivial num-

ber of reasons. First, standard linear output score fusion techniques, being ex-

tensively used to combine homogenous ASV system, are not appropriate since

the ASV and its countermeasures are trained to solve two different tasks. Sec-

ond, an imperfect PAD can increase the false alarm rate by rejecting genuine ac-

cess trials [196]. Thirdly, and more fundamentally, it is not obvious whether im-

provements in standalone spoofing countermeasures should improve the overall

system as a whole: a nearly perfect PAD system with close to zero EER may

fail to protect ASV system in practice if not properly calibrated [197]. In a re-

cent work [198], the authors propose a modification in a GMM-UBM based

ASV system to make it suitable for both licit and spoofed conditions. The joint

evaluation of PAD and ASV, as well as their combination techniques, certainly

deserves further attention. Among other feedback received from the attendees

of the ASVspoof 2017 special session organised during INTERSPEECH 2017,

it was proposed that the authors of this chapter consider shifting the focus from

standalone spoofing to more ASV-centric solutions in future. We tend to agree.

In our recent work [199], we propose a new cost function for joint assessment of

PAD and ASV system. In another work [200], we propose a new fusion method

for combining scores of countermeasures and recognisers. This work also ex-

plores speech features which can be used both for PAD and ASV.

8 Conclusion

This contribution provides an introduction to the different voice presentation attacks

and their detection methods. It then reviews previous works with a focus on recent

progress in assessing the performance of PAD systems. We have also briefly re-
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viewed two recent ASVspoof challenges organised for the detection of voice PAs.

This study includes discussion of recently developed features and the classifiers

which are predominantly used in ASVspoof evaluations. We further include an

extensive survey on alternative PAD methods. Apart from the conventional voice-

based systems that use statistical properties of natural and spoofed speech for their

discrimination, these recently developed methods utilise a separate hardware for the

acquisition of other signals such as pop noise, throat signal, and extrasensory signals

with smartphones for PAD. The current status of these non-mainstream approaches

to PAD detection is somewhat similar to the status of the now more-or-less standard

methods for artificial speech and replay PAD detection some three to four years ago:

they are innovative and show promising results, but the pilot experiments have been

carried out on relatively small and/or proprietary datasets, leaving an open question

as to how scalable or generalisable these solutions are in practice. Nonetheless, in

the long run and noting especially the rapid development of speech synthesis tech-

nology, it is likely that the quality of artificial/synthetic speech will eventually be

indistinguishable from that of natural human speech. Such future spoofing attacks

therefore could not be detected using the current mainstream techniques that focus

on spectral or temporal details of the speech signal, but will require novel ideas that

benefit from auxiliary information, rather than just the acoustic waveform.

In the past three years, the progress in voice PAD research has been accelerated

by the development and free availability of speech corpus such as the ASVspoof

series, SAS, BTAS 2016, AVSpoof. The work discussed several open challenges

which show that this problem requires further attention to improving robustness due

to mismatch condition, generalisation to new type of presentation attacks, and so

on. Results from joint evaluations with integrated ASV system are also an important

requirement for practical applications of PAD research. We think, however, that this

extensive review will be of interest not only to those involved in voice PAD research

but also to voice-biometrics researchers in general.

Appendix A. Action towards reproducible research

A.1. Speech corpora

1. Spoofing and Anti-Spoofing (SAS) database v1.0: This database presents the

first version of a speaker verification spoofing and anti-spoofing database,

named SAS corpus [201]. The corpus includes nine spoofing techniques, two

of which are speech synthesis, and seven are voice conversion.

Download link: http://dx.doi.org/10.7488/ds/252

2. ASVspoof 2015 database: This database has been used in the first Automatic

Speaker Verification Spoofing and Countermeasures Challenge (ASVspoof 2015).

Genuine speech is collected from 106 speakers (45 male, 61 female) and with

no significant channel or background noise effects. Spoofed speech is gener-
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ated from the genuine data using a number of different spoofing algorithms.

The full dataset is partitioned into three subsets, the first for training, the second

for development and the third for evaluation.

Download link: http://dx.doi.org/10.7488/ds/298

3. ASVspoof 2017 database: This database has been used in the Second Automatic

Speaker Verification Spoofing and Countermeasuers Challenge: ASVspoof 2017.

This database makes an extensive use of the recent text-dependent RedDots cor-

pus, as well as a replayed version of the same data. It contains a large amount of

speech data from 42 speakers collected from 179 replay sessions in 62 unique

replay configurations.

Download link: http://dx.doi.org/10.7488/ds/2313

A.2. Software packages

1. Feature extraction techniques for anti-spoofing: This package contains the

MATLAB implementation of different acoustic feature extraction schemes as

evaluated in [146].

Download link: http://cs.joensuu.fi/˜sahid/codes/AntiSpoofing_

Features.zip

2. Baseline spoofing detection package for ASVspoof 2017 corpus: This package

contain the MATLAB implementations of two spoofing detectors employed as

baseline in the official ASVspoof 2017 evaluation. They are based on constant

Q cepstral coefficients (CQCC) [137] and Gaussian mixture model classifiers.

Download link: http://audio.eurecom.fr/software/ASVspoof2017_

baseline_countermeasures.zip
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